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Abstract

Wrinkling is a universal instability occurring in a wide variety of engineering
and biological materials. Despite extensive study across different systems, a full
description is still lacking, particularly in the case of growing materials. Most studies
consist of some combination of a substantially simplified elastic model, an analysis
that does not go beyond first order, and numerical simulations in commercial
software packages that do not necessarily correspond to the mathematical system
studied. This thesis addresses all three of these shortcomings by providing a
systematic analysis of a fully hyperelastic bilayer past the linear stability threshold
into the weakly nonlinear regime, along with a carefully discretised numerical
bifurcation analysis of the system.

For comparison, we assume that wrinkling is generated either by the isotropic
growth of the film or by the lateral compression of the entire film-substrate system
(both in plane strain). We adopt a stream-function-based formulation and perform
an exhaustive linear analysis of the wrinkling problem for all stiffness ratios and
under a variety of additional boundary and material effects. Namely, we consider
the effect of added pressure, surface tension, an upper substrate, and fibres. We
obtain analytical estimates of the instability in the two asymptotic regimes of
long and short wavelengths.

We then carry out a weakly-nonlinear analysis to derive an amplitude equation
that describes the evolution of the wrinkling amplitude beyond the bifurcation
point, followed by a comprehensive numerical bifurcation analysis of the problem
using the finite element method. We demonstrate excellent agreement between
the weakly-nonlinear analysis and the numerical experiments and are also able to
directly solve for the bifurcation point in our discretised system and characterise
the effect of implementation details such as the aspect ratio of the computational
domain on the observed bifurcation point.

We then explore solutions of the amplitude equation in the case that the wrinkling
amplitude is allowed to vary over long spatial and/or temporal scales. Finally,
we demonstrate that our numerical experiments are able to identify secondary
bifurcations in the system similar to those observed in experiments for which
analytical methods have thus far been unable to provide a complete explanation.
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We are not interested in the fact that the brain has
the consistency of cold porridge.

— Alan M. Turing
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1.1 Introduction

While Turing’s throwaway comment at the beginning of a radio discussion (Turing,

1952) on the possibility of artificial intelligence largely holds true—for the most

part, the mysteries of the function of the brain offer greater allure than those

concerning its form—it belies the considerable complexity that underpins the shape

of many organs and it is only recently that we have begun to apply sufficiently rich

mathematical models of biological tissues to understand why the porridge-like mass

1
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in each of our crania has the intricate structure that it does. The morphogenesis

of the mammalian brain is a fine example of growth-induced pattern formation:

in humans, the growth of the embryonic cortex accompanies a transformation

from a largely smooth surface to one featuring deep folds beginning around 24

weeks of gestation (shown in fig. 1.1). All over the human body (and indeed in

many other biological systems), there are similarly complex examples of shapes

and structures that form as we grow. These growth processes are driven by the

interplay of genetics, biochemistry and mechanics and have been the subject of

study since at least the time of Galileo (Galilei, 1638). Perhaps most famously,

D’Arcy Thompson’s treatise On Growth and Form (Thompson, 1961) made a

particularly detailed case for the consideration of physical forces and mathematical

laws in understanding the form of living beings. From this work and others (a brief

history can be found in Taber (1995), Ambrosi et al. (2011) or Goriely (2017)),

the field of growth biomechanics began to take root.

Figure 1.1: 3D reconstructions of the cortical folding process in ferret (top) and human
(bottom) brains from MR data. Reproduced with permission from Barnette et al. (2009).

During the mid-20th century, papers such as Mooney (1940) and Rivlin (1948)

began the crucial work of extending the hugely successful theory of linear elasticity

(which is itself a generalisation of Hooke’s law—ut tensio, sic vis (Hooke, 1678))

to describe the behaviour of bodies that undergo large deformations. This was

spurred in part by an explosion in the use of rubber as a wartime material despite

a purely empirical understanding of its properties. Based on largely forgotten work
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by Cauchy in the previous century (Cauchy, 1823; Cauchy, 1827), the resulting

theory of nonlinear elasticity has been a scientific and mathematical triumph,

finding wide applicability in engineering contexts as well as driving progress in

pure mathematical areas such as the calculus of variations.

In time, it was recognised that the vocabulary of nonlinear elasticity had many

insights to offer to biomechanics, where many materials undergo large deformations

(Skalak, 1981). While both growth processes and elastic responses can both readily

be described in the language of kinematics, the interplay between them can be

subtle: stress influences growth and growth influences stress. A crucial leap in the

understanding of how to marry these effects was the application of a decomposition of

the deformation gradient in Rodriguez, Hoger, and McCulloch (1994), a codification

of the idea that an observed growth deformation can be understood on a local level

as the composition of a growth operation from one stress-free state to another (which

does not have to vary continuously in space) with an elastic operation that ensures

the body is in a physically realisable state. This decomposition has become the basis

of a large body of work, including this thesis, though there are still outstanding

questions revolving around whether the growth part of the decomposition can be

shown to be governed by some constitutive relation. Discussion of the history

of this approach in biomechanics can be found in the review articles Garikipati

(2009) and Menzel and Kuhl (2012).

With this framework in place, many instances of growth-induced pattern

formation, some examples of which are illustrated in fig. 1.2, can be viewed through

the lens of mechanical instability—they arise by a process analogous to the buckling

of beams or columns (as studied in Euler (1744)). The existence of non-homogeneous

patterns after growth corresponds to a bifurcation in the equilibrium equations of the

system after the addition of an incremental deformation. While this approach is well

studied in traditional elastic contexts, it is not immediately obvious that the residual

stresses that result from growth processes can induce mechanical instabilities alone.

Indeed, it is only in the past two decades that this has conclusively shown to be the
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case (Ben Amar and Goriely, 2005). This thesis presents a comprehensive analysis

of one such growth-induced instability: wrinkling.

Figure 1.2: Examples of growth-induced wrinkling across different length scales: (A) a
bacterial biofilm, (B) a human brain, (C) a pumpkin skin and (D) a Shar-Pei dog. Image
A reused from Asally et al. (2012), image B reproduced with permission from Hill and
Walsh (2005), image C reused from Yin et al. (2008) ©2008 National Academy of Sciences,
image D is by Dave Wharton, used under CC BY-SA 2.0

1.2 Review of wrinkling instabilities

The systematic study of wrinkling instabilities in soft materials began in earnest

in the late 20th century. Tanaka et al. (1987) demonstrated that polymer gels

immersed in liquid evolve patterns on their surface as they swell and derived the

scaling behaviour of the wrinkling wavelength with respect to the thickness of

the gel. Bowden et al. (1998) deposited thin metal films on thermally expanded

polymers to create visually striking ordered networks of patterns after cooling,

noting that the controlled generation of such patterns could be used to create

optical components such as diffraction gratings. This marks a shift in attitude

towards the occurrence of instability in engineering contexts: instead of being viewed

as a failure mode (as it is in the case of buckling structural supports in buildings,

for instance), it was promoted as a novel fabrication method. In subsequent years,

many similar experimental observations and analyses were conducted in areas of

application such as flexible electronics (Khang et al., 2006; Lacour et al., 2004),

stimuli-responsive biomaterial design (Kim, Yoon, and Hayward, 2010; Cao et al.,

2014) and measurement of material properties (Chung, Nolte, and Stafford, 2011).

In the study of growth, these techniques were used to provide insight into the

morphogenesis of human brains (Ben Amar and Bordner, 2017; Goriely et al., 2015),
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intestines (Ben Amar and Jia, 2013), skin (Ciarletta and Ben Amar, 2012) and

other organs (Ciarletta, Balbi, and Kuhl, 2014; Li et al., 2011).

1.2.1 Concepts and definitions

We begin by giving an introduction to the formalism of kinematics and nonlinear

elasticity. The interested reader can find a more detailed treatment in Ciarlet (1987).

The fundamental abstraction of the theory of elasticity is the body, a region of

three-dimensional space that we identify with a reference configuration B ⊂ R3.

A deformation is a sufficiently smooth, orientation-preserving, injective mapping

χ : B → R3. We denote a point in the reference configuration by X with its

coordinates with respect to a standard orthonormal basis denoted by (X, Y, Z). We

denote points in the image of χ, also referred to as the deformed configuration by

x, expressed by its coordinates with respect to the same standard basis as (x, y, z).

Note that, in general, these bases need not coincide but for the purposes of this

thesis we will not need to consider this generality. It is sometimes convenient to

work in terms of the displacement u := χ− id instead of the deformation itself.

To understand the geometric effect of a deformation, we must consider how a

vector in the tangent space of a point in B is transformed by χ. The linear map that

describes this transformation is known as the deformation gradient F is defined by

F := ∂χ

∂X
. (1.1)

Local changes in volume after the deformation are determined by the Jacobian deter-

minant

J := det F. (1.2)

By considering the Taylor expansion of χ around a point X, we find that we

can express the transformation of an infinitesimal length element by the action

of the right Cauchy-Green strain tensor

C := F>F. (1.3)
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In order to complete our picture of the physics of deformations, we must also be

able to described forces acting on bodies. By drawing on the axioms of force balance

and moment balance along with the stress principle of Cauchy and Euler, one can

deduce the existence of the Cauchy stress tensor T : χ(B) → Sym3(R), which

satisfies the equations of equilibrium in the deformed configuration

−div T = ρb in χ(B),

Tn = s on χ(Γ1) ⊂ χ(∂B),
(1.4)

where ρ is the mass density, b is the acting body force density, s is the acting surface

force density and n is the surface normal vector, all measured in the deformed

configuration. In this thesis, we will only consider conservative forces. An equivalent

expression to (1.4) in the reference configuration can be found by considering the

first Piola-Kirchhoff stress tensor T0 : B → M3(R), defined by

T0(X) = J(X)T(χ(X))(F(X))−>. (1.5)

The equations of equilibrium in the reference configuration are given by

−div T0 = ρ0b0 in B,

T0N = s0 on Γ1,
(1.6)

where ρ0 = Jρ ◦ χ is the mass density, b0 = b ◦ χ is the acting body force density,

s0 = J |F−Tn|s ◦ χ is the acting surface force density and N is the surface normal

vector, all measured in the reference configuration.

We call a material elastic if its first Piola-Kirchhoff stress tensor only depends

on χ through its gradient—i.e.

T0(X) = T̂0(F(X),X). (1.7)

This is equivalent to the Cauchy stress tensor having the same property. We

call an elastic material hyperelastic if there exists a stored energy function W :

M+
3 (R) × B → R such that

T̂0(F,X) = ∂W

∂F
(F,X). (1.8)
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If this is the case, then solving the equations of equilibrium of the system can

be seen as a necessary condition for the minimisation of the total energy func-

tional—defined by

I(χ) =
∫
B
W (F(X),X) dX +

∫
B
ρ0V (χ) dX−

∫
Γ1

s0 · χ(X) dA, (1.9)

where V is a potential for the body force—over the space of admissible deformations:

those deformations which satisfy an imposed displacement on some set Γ0 ⊂ ∂B.

For many materials, the energetic cost of changing the volume is extremely large.

In these materials, it is often convenient to model them as being incompressible,

where we further restrict the set of admissible deformations to require that J = 1

everywhere. This is equivalent to replacing the stored energy function with

W (F(X),X) := W (F(X),X)− p(J(X)− 1), (1.10)

where p is a Lagrange multiplier. We can compute the first Piola-Kirchhoff stress

using this modified energy function

T0(F) := ∂W

∂F
(F), (1.11)

(dropping X dependence for notational convenience) and push it forward to obtain

the Cauchy stress

T = J−1T0F>

= J−1
(
∂W

∂F
F> − p(cof F)F>

)
= T̂− p1,

(1.12)

where 1 is the identity matrix in M3(R). This gives us a physical interpretation for

p: it represents a hydrostatic pressure that has no effect on the motion itself. The

equations of equilibrium for incompressible elasticity in the reference configuration

are then given by

−div(T0 − p cof F) = ρ0b0 in B,

J = 1 in B,

T0N = s0 on Γ1,

(1.13)
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and now features an additional unknown: p. The simplest explicit hyperelastic

model is the incompressible neo-Hookean material, which can be derived from

statistical thermodynamic models of rubber (Treloar, 1956). It has a stored

energy density function given by

W (F,X) = µ

2
(
tr(F>F

)
− 3) = µ

2 (tr(C)− 3) (1.14)

where µ > 0 is the shear modulus of the rubber in its unstressed state (Biot, 1963).

1.2.2 Biot’s instability

One of the first mathematical studies of wrinkling in elastic solids came from Biot in

his seminal paper (Biot, 1963). In this work, he considers an incompressible elastic

half-space under uniform compression of two different types, each of which induces

a surface instability—at some critical value of compression, a family of deformations

that display periodic oscillation localised to the surface of the material become viable

solutions of the equilibrium equations of elasticity. The wavelength of the oscillations

along the surface of the material is undetermined by the theory as there is no possible

choice of a length scale for an infinite half plane. Here we give an exposition of this

result (drawing on additional material presented in Biot (1965) and Goriely (2017)),

which will allow us to fix notation and terminology for the rest of this thesis.

The body under consideration is an incompressible neo-Hookean half-space

occupying the region Y > 0 under uniform compression in the X direction. A unit

cube in the material has normal stresses T11, T22 and T33 applied to its faces to

become a cuboid with side lengths λ1, λ2 and λ3 after deformation. The deformation

gradient F is then diag(λ1, λ2, λ3), the stored energy density is given by

W (F,X) = µ

2 (λ2
1 + λ2

2 + λ2
3 − 3), (1.15)

and incompressibility means that the stretches must satisfy

λ1λ2λ3 = 1. (1.16)
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From (1.12) we see that we can write the components of the Cauchy stress as

T11 = µλ2
1 − p,

T22 = µλ2
2 − p,

T33 = −p,

(1.17)

Let us now consider the case of plane strain compression, where the body is

subjected to a force in only the first direction and is constrained in the third

direction, i.e. T22 = 0 and λ3 = 1. We can then describe the deformation in

terms of a single stretch λ:

λ1 = λ, λ2 = 1
λ
. (1.18)

Solving (1.17) for p gives us

T11 = µ
(
λ2 − 1

λ2

)
(1.19)

We can now introduce a two-dimensional incremental deformation around the homo-

geneous solution we computed above. This consists of perturbing the deformation

χ(X) = χ(0)(X) + εχ(1)(χ(0)(X)), (1.20)

where χ(0) is the homogeneous deformation considered above and ε is a small

parameter, and the pressure

p = p(0) + εp(1). (1.21)

The deformation gradient F can then be computed to be

F =
(
1 + εF(1)

)
F(0). (1.22)

We then perform a perturbation expansion of T to first order, i.e. substitute

T = T(0) + εT(1) +O(ε2), (1.23)

and use the constitutive relation (1.12) to express T(1) in terms of F(0) and F(1):

T(0) + εT(1) +O(ε2) = ∂W

∂F

∣∣∣∣∣
F=(1+εF(1))F(0)

F(0)>(1+ εF(1))>− (p(0) + εp(1))1. (1.24)
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Hence, at each order in ε, we have

T(0) = ∂W

∂F

∣∣∣∣∣
F=F(0)

F(0)> − p(0)1,

T(1) =
(

(F(1)F(0)) : ∂
2W

∂F2

∣∣∣∣∣
F=F(0)

)
F(0)> + ∂W

∂F

∣∣∣∣∣
F=F(0)

F(0)>F(1)> − p(1)1.
(1.25)

Substituting in the neo-Hookean energy density gives us

T(0) = µF(0)F(0)> − p(0)1,

T(1) = µ(F(1)F(0)F(0)> + F(0)F(0)>F(1)>)− p(1)1.
(1.26)

The components of the Cauchy stress at first order are given by

T
(1)
11 = 2µλ2F

(1)
11 − p(1),

T
(1)
22 = 2µλ−2F

(1)
22 − p(1),

T
(1)
12 = T

(1)
21 = µ(λ−2F

(1)
12 + λ2F

(1)
21 ).

(1.27)

The equations of equilibrium (1.13) can then be solved at each order in ε. At

first order, these read:

−div T(1) = 0 in B,

tr F(1) = 0 in B,

T(0)n(1) + T(1)n(0) = 0 on Γ1,

(1.28)

where we have used the approximation to the determinant at the identity

det(1 + εA) = 1 + tr(A)ε+O(ε2). (1.29)

This linear system of equations is homogeneous and admits periodic solutions of the

form
χ(1)(x, y) =

(
ax
ay

)
eikx+ikζy,

p(1)(x, y) = ikape
ikx+ikζy,

(1.30)

where the unknown ax, ay and ap (but not k) are determined up to a single degree

of freedom by the solutions of the following solvability condition:

λ2 + (λ2 + λ−2)ζ2 + λ−2ζ4 = 0. (1.31)

This equation has four solutions (ζ = ±i and ζ = ±λ2i), but only those which

correspond to incremental deformations which decay at infinity are of physical
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relevance, leaving us with ζ1 = i and ζ2 = λ2i. Each solution ζi allows us to specify

ax, ay and ap in terms of a single parameter ai, so (1.30) now reads

χ(1)(x, y) =
(
a1
a1i

)
c1e

ikx−ky +
(

a2
a2λ

−2i

)
c2e

ikx−λ2ky,

p(1)(x, y) = ia1c1k(λ2 − λ−2)eikx−ky,
(1.32)

where the ai, ci, k and λ remain undetermined. The final stage is the application of

the stress-free boundary condition on the surface of the half-space. At each order

in ε, an outward normal vector at the free surface is given by

n(0) = −

0
1
0

 ,

n(1) = −

a1c1ke
ikx−ky + a2c2λ

−2eikx−kλ
2y

1
0

 .
(1.33)

Substituting this into (1.28) shows that nonzero incremental deformations are

viable when λ is a root of

1− 4λ2 + 2λ4 + λ8. (1.34)

The only positive real root of this polynomial with λ 6= 1 is given by

λbiot := 1
3

(
(17 + 3

√
33)1/3 − 2

(17 + 3
√

33)1/3
− 1

)
≈ 0.543689. (1.35)

Thus, we have found a critical compression ratio at which an incremental deformation

featuring periodic oscillations at the surface of the half-space becomes a solution of

the equations of equilibrium—i.e. a wrinkling instability. The physical interpretation

of this finding is not immediately obvious: both the amplitudes ai and the

wavenumber k of the oscillations are left undetermined by the analysis. Indeed, in

a half-space (which is not physically realisable), there is no defining length scale

to make sense of these notions. In practice, experiments with finite rubber blocks

show that they develop localised creasing instabilities at much lower compressions—

typically around λ ≈ 0.65—than those predicted by the above analysis. Nonetheless,

this prototypical example sets out a general method by which one might compute the

critical strain required to induce wrinkling which can then be applied to geometries

for which this instability is actually realised.
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1.2.3 Growth-induced instabilities

As briefly mentioned previously, volumetric growth processes can generate residual

stresses in elastic bodies (Skalak et al., 1996). It has been shown (Ben Amar

and Goriely, 2005) that these stresses can be sufficient to induce an instability

even in the absence of external loading. Here, we demonstrate how the method

of incremental deformations described in the previous section can be modified to

incorporate the effects of volumetric growth.

The mathematical foundation of our continuum-mechanical model is the theory

of volumetric morphoelasticity—a kinematic “description of growth processes that

change the shape and volume of a body and quantify the stresses generated through

these processes” (Goriely, 2017). The crucial ingredient in this adaptation is

the aforementioned decomposition of the deformation gradient (due to Rodriguez,

Hoger, and McCulloch (1994)):

F = AG, (1.36)

where A is the elastic deformation tensor (which describes deformations resulting

from stresses) and G is the growth tensor (which describes the addition of new

material). By this decomposition, growth of three-dimensional bodies is broken

down into two constituent parts: a local growth process followed by the development

of elastic strains to maintain the integrity of the body. The stored energy density

W is now considered as a function of A = FG−1 and the condition of elastic

incompressibility reads det A = 1. The growth tensor G may vary throughout the

material, but is often taken to be constant or piecewise constant. The formulation

of appropriate constitutive laws to govern the form of G is still an area of active

research (Menzel and Kuhl, 2012). Note that in the incompressible case, the

Jacobian determinant now satisfies

J = det F = det(AG) = det G. (1.37)

The method of incremental deformations then proceeds as demonstrated for Biot’s

instability and has been successfully applied to model surface wrinkling in biological
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tissues such as mucosa (Li et al., 2011) and indeed the cortex of the brain. While

the precise details of the mechanical basis of cortical folding are still the subject

of active research, there is mounting evidence that the key ingredient driving the

process is the volumetric expansion of the tissue itself (Xu et al., 2010; Bayly et al.,

2013; Bayly, Taber, and Kroenke, 2014; Budday, Steinmann, and Kuhl, 2014). In

particular, it was recently demonstrated that the wrinkling instability also correctly

captures variations of thickness between the ridges and grooves (gyri and sulci)

of the cerebral cortex in both analogue polymer experiments and computational

simulations (Holland et al., 2018).

1.2.4 Instabilities in multi-layered structures

Multi-layered elastic materials have been widely studied in the engineering literature

with applications ranging from construction materials (Allen, 1969) to 3D printing.

These structures are of immediate interest in the context of almost all of the

previously mentioned biological tissues—many organs are inhomogeneous and/or

anisotropic in their composition. However, the differences in mechanical properties

between these different layers of biological tissue may be subtle, which rules out

often-used simplifying assumptions such as extreme stiffness ratios and necessitates

the exploration of the intermediate parameter space in full generality.

Perturbation methods have been used to great success to compute the critical

uniaxial compression required to cause buckling of an elastic half-space coated in

a thin, stiffer elastic film (Cai and Fu, 1999). Following works have considered

variations of the physical setting such as pre-stretching the substrate (Cao and

Hutchinson, 2012), further compressing the buckled bilayer to induce a second,

periodic-doubling bifurcation (Fu and Cai, 2015), the limiting behaviour of the

system as the stiffness ratio of the layers tends to unity (Fu and Ciarletta, 2015),

the effect of adding reinforced fibres to the substrate (Stewart et al., 2016) and

the replacement of compression with growth as a mechanism to induce buckling

(Ben Amar and Bordner, 2017).
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This final modification is of particular relevance in the study of the morphogenesis

of the brain. The physical structure of mammalian brains consists of distinct layers of

cells with similar, but different mechanical properties and thicknesses. In particular,

we can divide the brain into the outer layer of grey matter (the cortex), which

primarily consists of neuron cell bodies, and the inner white matter (the subcortex),

which primarily consists of axons and their insulating myelin sheaths.

Experimental verification of these theories is currently limited due to the

difficulties involved in acquiring and mechanically testing brain matter in utero,

but advances in noninvasive imaging techniques may provide the data needed

to better validate their predictions (Ronan et al., 2013; Garcia et al., 2018).

Recently, it has been demonstrated that it is possible to capture the mechanical

response of brain tissue in an elasticity-based framework (Mihai et al., 2017).

Furthermore, preliminary numerical simulations have been able to demonstrate—

at least phenomenologically—brain morphogenesis in this framework (see Bayly

et al. (2013) and Budday et al. (2015)).

1.2.5 Related topics
Plate models

A slightly different approach to wrinkling and similar pattern formation phenomena

comes from works of plates bounded on a substrate (Audoly and Boudaoud, 2008;

Kohn, 2014). In these works, elastic sheets bonded to elastic substrates are modelled

using a variational form of the von Kármán plate equations (which can be derived

from full 3D nonlinear elasticity (Ciarlet, 1997)) and identifies wrinkling as the

result of competition between minimisation of the nonconvex membrane energy

and the regularising bending energy. In particular, scaling laws of the energy with

respect to thickness of the elastic sheet were identified and it was demonstrated that

this fitted with characteristic wrinkling patterns seen in the physical world (Kohn

and Nguyen, 2013; Bella and Kohn, 2017). While these studies provide precise

estimates, they have a limited (and well acknowledged) range of validity regarding
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properties of the displacement field of the plate which cannot capture some of the

phenomenology we see in thick, multi-layered elastic media.

Creasing

Another important related phenomenon in the theory of soft solids is creasing,

where a sharp, self contacting region forms almost instantaneously when a critical

compression is exceeded, as demonstrated in fig. 1.3. Experimentally, this is seen to

occur at a lower critical strain than that predicted by Biot’s analysis (Trujillo, Kim,

and Hayward, 2008) and in recent years, an understanding of this phenomenology

as a separate elastic surface instability has been developed (Li et al., 2012). This

has come from both numerical studies (Hohlfeld and Mahadevan, 2011; Hong,

Zhao, and Suo, 2009) and recent asymptotic analyses (Karpitschka et al., 2017;

Ciarletta, 2018), which address the mathematical difficulties involved in capturing

the discontinuities associated with the presence of the sharp crease through use

of coupled radial near-field and far-field solutions.

Figure 1.3: Experimental image showing the creasing instability in a cross-section of
an elastomeric bilayer under compression. In this case, the Young’s modulus of the film
(green) is approximately 17 times smaller than that of the substrate (black, underneath).
The scale bar represents 20 µm. Reproduced with permission from Cai et al. (2012).
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1.3 Other preliminaries

1.3.1 Weakly nonlinear analysis

It has long been known that linear methods are not sufficient to capture the post-

buckling behaviour of materials. Perhaps most famously, Koiter (1945) demonstrated

that a nonlinear theory was required in order to explain discrepancies between

predicted and experimentally observed critical loads in thin structures such as

shells and plates. Depending on the setting, it was found that the linear theory

might significantly underestimate or overestimate the load that a structure could

endure before buckling, either of which could have negative consequences in the

context of aeronautical engineering that motivated much work in the field at the

time. In the following decades, advances were made including the development of

methods involving multiple scales (Lange and Newell, 1971) and the extension of

these methods to the significantly more algebraically complex setting of nonlinear

elasticity (Fu and Ogden, 1999).

Here, we give an exposition of one such method applied to a toy problem that

shares some features of the wrinkling problem of interest to us. The key idea is

that we must examine perturbation expansions involving higher order terms. In

particular, the bifurcation parameter is perturbed past the critical value computed

from the first order analysis. By solving the equilibrium equations of the system

at higher orders, the undetermined amplitude of the first order solution can be

computed. To illustrate this process, we demonstrate it on the problem of the

planar deflection of an infinite, uniform Euler-Bernoulli beam attached to a cubically

nonlinear Winkler foundation—that is to say that the restoring force to a deflection

of the beam is determined locally, but is not linear. A schematic of this quasi-

physical model is shown in fig. 1.4. Static configurations of such a rod under the

action of a compressive force P along the length of the rod (in the x direction)

satisfy the following (scaled) nonlinear ODE:

d4v

dx4 + P
d2v

dx2 + v − κ2v
2 − κ3v

3 = 0 x ∈ R, (1.38)
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where v is the displacement in the y direction and the κi are parameters describing

the nonlinearity of the foundation (they have no direct physical interpretation). In

the case of a finite but long rod, we can consider the effect of different boundary

conditions at the rod ends (see Lange and Newell (1971) for details), but this will

not be necessary for the infinite case. This model is well studied in the literature; a

similar analysis to what will follow can be found in Fu (2001), for example.

beam

rigid base

nonlinear springs

P P 

Figure 1.4: A cartoon of an infinite beam attached to a nonlinear Winkler foundation
under uniaxial compression.

We wish to find non-trivial solutions of this equation (clearly v ≡ 0 is always a

solution regardless of the values of P , κ2 and κ3) as the compressive force increases.

First, let us apply the perturbation expansion

v(x) = εv(1)(x) + ε2v(2)(x) + ε3v(3)(x) +O(ε4). (1.39)

At first order, (1.38) becomes

L[v(1)] := d4v(1)

dx4 + P
d2v(1)

dx2 + v(1) = 0 x ∈ R (1.40)

This linear ODE has physically relevant solutions of the form

v(1)(x) = aeikx + āe−ikx (1.41)

where the wave number k satisfies

P = k2 + k−2 (1.42)

Thus, the minimal value of P for which non-trivial solutions can exist is Pcr = 2

(obtained at critical wave number kcr = 1).

We now consider what happens when we increase the compressive force by a

small increment from this critical point, writing

P = Pcr + ε2P1, (1.43)
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and attempt to solve the equation at higher orders. At second order, we obtain:

L[v(2)](x) = κ2 (a exp(ix) + ā exp(−ix))2 (1.44)

which we can solve to obtain (up to the addition of a constant multiple of v1)

v(2)(x) = κ2

(1
9a

2 exp(2ix) + 1
9 ā

2 exp(−2ix) + 2aā
)
. (1.45)

At third order, we obtain:

L[v(3)](x) =
(2

9κ
2
2 + κ3

)
a3 exp(3ix) +

(
P1 + 38

9 κ
2
2aā+ 3κ3aā

)
a exp(ix)

+
(2

9κ
2
2 + κ3

)
ā3 exp(−3ix) +

(
P1 + 38

9 κ
2
2aā+ 3κ3aā

)
ā exp(−ix) (1.46)

Here, we finally see the effect of the increased compression on the system and we can

now proceed to derive a relationship between the amplitude of our deformation a

and the compressive force P . In order for the formal expansion (1.39) to be uniform,

we require that each v(i) is bounded in x. The exp(ix) and exp(−ix) terms in (1.46)

are in the kernel of L and would therefore result in “secular” terms of the form

x exp(ix) in a general solution of the ODE, violating our boundedness condition.

Thus, the condition we require on a is the satisfaction of the “amplitude equation”:

(
P1 + 38

9 κ
2
2aā+ 3κ3aā

)
a = 0 (1.47)

Without loss of generality we can assume a to be real (allowing complex values only

changes the phase of the oscillations), resulting in the following solutions of (1.47):

a = 0 and a = ±
√

−9P1

38κ2
2 + 27κ3

(1.48)

In particular, we can see that non-trivial solutions are only possible for values

of P < Pcr. This is the desired subcritical bifurcation we were seeking. In

chapter 4, we shall see how a similar amplitude relation arises in the study of

the wrinkling instability and that its criticality behaviour changes type depending

on the material properties of the system.
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1.3.2 The finite element method

In traditional engineering contexts, there are many instances where experimental

verification of a design or theory may be too costly or dangerous and direct

mathematical analysis is intractable. The development of numerical methods

such as the finite element method (backed by some key technological advances in

computing) presented a “third way” in which quantitative information about some

physical phenomenon could be discerned by means of the approximate solution

of some equation(s) relating to it.

The key idea in most numerical methods is discretisation, the replacement of

something continuous with something discrete that in some sense approximates

the original object. In the case of the finite element method for the solution of

linear elliptic partial differential equations, we begin by taking the weak formulation

of the equation so that it is in the form

find u ∈ Υ such that B[u, v] = l[v] ∀v ∈ Υ, (1.49)

where Υ is an appropriate Banach space (prototypically a Sobolev space—see

(Evans, 2010) for the necessary theoretical background), B : Υ × Υ → R is a

coercive, continuous bilinear form and l : Υ → R is a linear form. We then

discretise the typically infinite dimensional function space Υ by replacing it with

a finite-dimensional subspace Υh ⊂ Υ—usually some set of piecewise polynomial

functions with bounded degree. The discretised problem then reads

find uh ∈ Υh such that B[uh, vh] = l[vh] ∀vh ∈ Υh, (1.50)

where h is a parameter that determines the fineness of the discretisation. Denoting

the basis elements of Υh by φi (i ∈ {1, . . . N(h)}), uh can be written as

uh =
N(h)∑
i=1

Uiφi, (1.51)

for some unknown coefficients Ui. We can then rewrite (1.50) as

find (U1 . . . UN(h)) ∈ RN(h) such that
N(h)∑
i=1

B[φi, φj] = l[φj] ∀j ∈ {1, . . . N(h)},

(1.52)
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which is simply a system of N(h) linear equations that can be solved using linear

algebra methods. In the case that the bilinear form B is symmetric, we can rewrite

(1.49) as a minimisation problem in the following way:

find u ∈ Υ such that I(u) ≤ I(v) ∀v ∈ Υ, (1.53)

where I(v) := B(v, v)/2 − l(v). Note that we can rewrite (1.49) as

F(u; v) := I ′(u)v = 0. (1.54)

The corresponding discretised problem to (1.53) is

find uh ∈ Υh such that I(uh) ≤ I(vh) ∀vh ∈ Υh. (1.55)

This approach is often referred to as “energy minimisation”, as the “energy” I

often arises from a physical energy when solving many problems in physics. In

such cases, the finite element approximation has an intuitive physical meaning:

the finite element approximation uh is the minimal energy solution in Υh. A

modified version of Céa’s Lemma tells us that the finite element approximation

is optimal in the energy norm induced by B.

In order to apply the finite element method to nonlinear equations such as

the equilibrium equations of elasticity, we require some modifications. The energy

I is no longer necessarily quadratic in its argument, but we can still write an

equation of the form (1.54) to describe our variational formulation—there is no

longer a bilinear form B, but there F is still linear in the test function v. To

solve this nonlinear equation, we turn to the Newton-Kantorovich method, an

iterative scheme based on the Taylor expansion

F(u+ δu; v) ≈ F(u; v) + Fu(u; v)δu. (1.56)

If we seek δu such that F(u+ δu; v) = 0, this approximate relation can be viewed

as a linear equation in δu, which can then be solved by previously described

methods. For a more thorough discussion on the precise assumptions required

to make sense of this, refer to Farrell (2020).
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There is an enormous body of theoretical work on the numerical analysis of

the finite element method, much of which lies outside the scope of this document.

Here, we will highlight a few important properties of the method and discuss the

construction of certain finite element spaces relevant in the context of elasticity;

we advise the interested reader to review Brenner and Scott (2008) for a much

more thorough treatment.

The first important property we will consider is exactly in which sense we can

say that the solution to the discretised problem can be said to be an approximation

to the solution of the original problem. The answer to this question is given

by the the following result.

Lemma 1.1 (Céa’s Lemma). Let u be the solution to the variational problem (1.49).

The finite element approximation uh ∈ Υh of u ∈ Υ given by the solution to the

discretised problem (1.50) is the best fit to u in ‖ · ‖Υ up to a constant, i.e.:

‖u− uh‖Υ ≤
c1

c0
min
vh∈Υh

‖u− vh‖Υ,

for some c0, c1 dependent only on B.

Proof. Brenner and Scott (2008) Theorem 2.8.1

This quasi-optimality lemma forms the basis of error analysis for the finite

element method. Once a particular finite element space has been chosen, the

minimisation problem on the right can be analysed to give the expected rate of

convergence of uh to u as h → 0.

In order to construct a finite element space, first we must discretise our domain.

We break up the domain into a collection of pairwise disjoint open sets Ki for

which the union of their closures is equal to the closure of the domain. A common

choice for such a subdivision in two dimensions (direct analogues exist in higher

dimensions) is a triangulation, where each Ki is a triangle and no vertex of a triangle

lies on the interior of any other triangle’s edge. Given a single triangle K, the

other two ingredients we require are a d-dimensional space of functions P—say,

the polynomials of degree at most q—and the degrees of freedom N , a basis for



22 1.3. Other preliminaries

the dual space P∗. To given a concrete example, let us take K to be the triangle

with vertices (0, 0), (0, 1) and (1, 0); P = P1 (the linear polynomials on K) and

N = {N1, N2, N3} to be the evaluation maps at each of the vertices of K, i.e.

N1(v) = v(0, 0), N2(v) = v(0, 1), N3(v) = v(1, 0). (1.57)

We can then specify any linear polynomial on K with the three numbers given

by evaluation on the nodes of K, allowing us to build our global finite element

approximation uh locally on an element-by-element basis. If this is done in such

a way that the global approximation is continuous, one obtains the CG1 finite

element (also known as the degree 1 continuous Galerkin element or linear Lagrange

element) and if this continuity constraint is dropped, one obtains the DG1 element

(the degree 1 discontinuous Galerkin element). This construction can be extended

to use higher degree polynomial functions by adding further evaluation points to

the edges and interior of the triangle.

In order to solve problems in incompressible elasticity, we must be able to impose

the nonlinear constraint of incompressibility J = 1. Thus, we must specify a finite

element space for both the displacement and the Lagrange multiplier p used to

impose the constraint. Such mixed finite element problems require somewhat careful

numerical treatment, as we will now demonstrate. First, let us state the variational

form of the equilibrium equations of incompressible elasticity:
∫
B

[
∂W

∂F

(
1 + ∂u

∂X
,X
)
− p cof

(
1 + ∂u

∂X

)]
: ∂v
∂X

dX

=
∫
B
ρ0b0 · v dX +

∫
Γ1

s0 · v dA ∀v ∈ Υ,∫
B
q

[
det

(
1 + ∂u

∂X

)
− 1

]
dX = 0 ∀q ∈ Λ,

(1.58)

where the function spaces are given by

Υ = {v ∈ H1(B;R3) : v|Γ0
= 0}, Λ = L2(B,R). (1.59)

It can be shown (see Le Tallec (1994) for the full details) that in order for a finite

element discretisation of (1.58) to be well-posed, the solution uh and the finite
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element spaces Υh and Λh must satisfy the following inf-sup condition:

inf
qh∈Λh
‖qh‖=1

sup
vh∈Υh
‖vh‖=1

∫
B
qh cof

(
1 + ∂uh

∂X

)
: ∂vh
∂X

dX = c0 > 0, (1.60)

where c0 depends only on h. This is extremely difficult to verify directly, but it

can be shown that element spaces that satisfy a constraint of the same type for

the Stokes problem will also satisfy (1.60) for incompressible hyperelasticity under

certain conditions (see Braess and Ming (2005)). A detailed exposition of the

numerical analysis of the Stokes problem and other mixed finite element problems

can be found in Boffi, Brezzi, and Fortin (2013). A popular choice of stable element

pair for such problems in two dimensions is the generalised Taylor-Hood element

(CGk)2 × CGk−1 for k ≥ 2 (Taylor and Hood, 1973), but we will make use of the

Scott-Vogelius element (CGk)2 × DGk−1 (Scott and Vogelius, 1985). In general,

this is only stable for k ≥ 4, which requires a prohibitively high number of degrees

of freedom, but it can be shown (Olshanskii and Rebholz, 2011) that a particular

choice of triangulation can make this element stable in two dimensions for k ≥ 2.

1.4 Contribution

This thesis makes a number of contributions:

• The presentation of a stream function based framework for the study of

the wrinkling instability in elastic bilayers for problems involving growth,

compression or a combination of the two.

• The consideration of the effect of a number of physical effects to the incidence

of the wrinkling instability, namely the contributions of added surface tension,

pressure, fibres, or the presence of an additional top layer. The stiff film

asymptotic limit is computed where tractable and we identify whether the

system supports a Biot-type or Euler-type instability for sufficiently soft films.

• An extension of the linear analysis to the post-buckling regime to compute

an amplitude relation for the growth case including a mode amplitude that
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can vary over far spatial and slow temporal scales. This gives the stiffness

ratio threshold at which the wrinkling bifurcation changes from supercritical

to subcritical.

• A numerical bifurcation analysis of the problem of a growing neo-Hookean

film on a neo-Hookean substrate using the deflated continuation algorithm.

We show excellent agreement with the analytically derived amplitude equation

with no fitting parameters.

• Discretisation and solution of the Moore-Spence system for the bilayer problem

for direct numerical computation of the critical growth value in the discretised

system. We characterise the effect of implementation details such as domain

width on the bifurcation behaviour of the system.

• Exploration of the solution set of the amplitude equation, a nonlinear Klein-

Gordon type equation. We identify the parameter regimes where localised

solutions are possible in the subcritical case.

• Identification of secondary bifurcations in the numerical bifurcation analysis of

the bilayer problem that correspond to phenomena seen in physical experiments

and may direct analytical studies in future works.

Most of the material in this thesis has already been published in the following

journal articles, which form the basis of the text in this thesis:

• H. Alawiye, E. Kuhl, and A. Goriely. Revisiting the wrinkling of elastic

bilayers I: linear analysis. Philosophical Transactions of the Royal Society A,

377:20180076, 2019.

• H. Alawiye, P. E. Farrell, and A. Goriely. Revisiting the wrinkling of elastic

bilayers II: post-bifurcation analysis. Journal of the Mechanics and Physics of

Solids, 143:104053, 2020
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1.5 Notation

A list of commonly used notation is given in table 1.1. Occasionally, one of the

symbols in the table is used with a different meaning (often with a subscript, as a

subscript or with a diacritic); this is clarified wherever it occurs.

Table 1.1: Index of frequently used symbols

Symbol Name
A Elastic deformation gradient
B Domain
C Coefficient of amplitude relation
F Deformation gradient
G Growth tensor
I Total energy functional
J Volume ratio (Jacobian determinant)
L Domain length
M Solvability matrix
N Surface normal vector (reference configuration)
O Big O (Bachmann-Landau notation)
T Cauchy stress tensor
T0 First Piola-Kirchhof stress tensor
W Stored energy density
X Reference coordinate vector
X Reference coordinate (1st direction)
Y Reference coordinate (2nd direction)
a Amplitude
ci Arbitrary constant
ei Root of equation
f Function
f Of the film (as subscript)
g Growth ratio
h Profile function
k Wavenumber
n Surface normal vector (deformed configuration)
p Pressure (Lagrange multiplier)
s Of the substrate (as subscript)
t Time
u Displacement vector
u Displacement in 1st direction
v Displacement in 2nd direction
x Deformed coordinate vector
x Deformed coordinate (1st direction)
y Deformed coordinate (2nd direction)
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Symbol Name
Ψ Stream function
β Stiffness ratio
γ Growth ratio in film
δ Small increment
ε Small parameter
ζ Far spatial variable
λ Compression ratio
µ Shear modulus
ρ Density
τ Slow temporal variable
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2.1 General formulation

The basis of our computations is a three-dimensional formulation similar to those

presented in Ben Amar and Bordner (2017) and Holland et al. (2017). We can

substantially simplify the problem by only considering two-dimensional deformations,

which is achieved by assuming that the material is in plane strain—that there is

both no displacement in the transverse dimension and no dependence of the other

components of the displacement on the spatial coordinate in that dimension.

We consider the following model, illustrated in fig. 2.1: let the region Bs represent

the initial unstressed infinite elastic substrate and Bf be an elastic film bonded to

its upper surface. Together, these form the domain B = Bf ∪ Bs. Let µs and µf

represent the shear moduli of their respective layers, β = µf/µs be their ratio and

X be a coordinate system across the two layers in the reference configuration. Let

27
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plane strain

film
substrate growth

or
compression

periodic boundary
traction free

no displacement at infinity

X

Y

2L

X

Z

Y

Figure 2.1: Geometry of the domain. The system is composed of a bilayer with an
infinitely deep layer of width 2L bonded by a film of thickness 1. Considering only plane
strain, the problem is reduced to the deformation of a two-dimensional system under
either compression or growth causing wrinkling. The boundary conditions are: continuity
of traction and displacement between the layers, traction free upper layer, no displacement
at Y = −∞ and horizontal periodicity.

us henceforth fix our domains as Bf = [−L,L]× (0, 1] (taking the thickness of the

film to be 1 without loss of generality) and Bs = [−L,L]× (−∞, 0] for some fixed

L > 0 to be determined. After a static deformation, the new material coordinates

of the deformed configuration are given by x(X) with deformation gradient

F = ∂x
∂X

. (2.1)

We consider the two extreme cases that we label growth and compression.

2.2 Growth and compression

The fundamental assumption which allows us to incorporate material growth into

the framework of elasticity comes from the theory of morphoelasticity, as described

earlier. We assume that any residual stresses within the material in the absence

of applied loads are the result of growth on a local level and hence that we can

decompose the deformation gradient multiplicatively as in (1.36). The application of

the growth tensor alone to the reference configuration may not produce a physically

realisable body, but the following application of the elastic tensor introduces stresses

that enforce the boundary conditions and remove unphysical phenomena such

as self-intersection.

For a hyperelastic material, with elastic strain-energy density function W , we

can define an augmented energy density functional for the composed deformation by

W (F,G) = (det G)W (FG−1)− p
(
det(FG−1)− 1

)
. (2.2)
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Here, p is a Lagrange multiplier that imposes the incompressibilty constraint. In

the particular case of a neo-Hookean material that we use here, the strain-energy

density of an elastic deformation is given by

W (A) = µ

2 (tr AA> − 3). (2.3)

Let Ξ be the set of admissible elastic deformations—those deformations with

sufficient regularity for (2.2) to be integrable. For a fixed growth tensor G we can

write the elastic deformation tensor A induced by any x ∈ Ξ as

A = FG−1 = ∂x
∂X

G−1. (2.4)

We can also consider an additional lateral compression in addition to or in

place of growth in our system. As with growth, we can specify an initial diagonal

stretch tensor A0 to prescribe the external stretches that are applied to the bilayer.

Since no new material is generated in this process, we must have det A0 = 1.

Our multiplicative decomposition is now

F = AA0G. (2.5)

Since A0 represents an elastic process, our energy density functional (2.2) is

unchanged. Indeed, we only separate it from A for notational convenience.

We will study initial, stretch tensors A0 given by

A0 =
(
λ 0
0 λ−1

)
, (2.6)

and a growth tensor G satisfying det G = J . In our case, we fix G = gI, where

g(X) =

γ X ∈ Bf

1 X ∈ Bs
. (2.7)

We then have J = g2. In our study, we will specialise to the compression-only

case by taking J = 1.

We can now specify our mathematical problem. We look for deformations

x that are local minimisers of the total elastic energy of our system, subject to
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the elastic incompressibility constraint det A = 1. More explicitly, given G and

A0, our variational problem is

minimise
x∈Ξ
p∈Λ

I(x, p) :=
∫
B

(µ2 det G)
(
tr
(
AA>A2

0

)
− 3

)
− p(det A− 1) dX, (2.8)

where Λ is a suitable Lagrange multiplier space that allows us to impose the

pointwise constraint on A. The Euler-Lagrange equation for this system yields

a necessary condition on minimisers of the energy.

2.3 Mixed coordinate formulation

Taking advantage of the two-dimensional nature of the problem, we can make use

of a technical tool to automatically satisfy the elastic incompressibility constraint.

Essentially, we can find a stream function for the deformation, which is named

after a similar construction used for the 2D Stokes flow. The difference here is that

the domain of the stream function is a mixed coordinate space—it is a function

of coordinates in both the reference and deformed configurations. The idea was

first proposed in this setting by Rooney and Carroll (1984) and used in Ben Amar

and Ciarletta (2010) and Ben Amar and Bordner (2017).

Let x(X) = (x(X, Y ), y(X, Y )) be any two-dimensional deformation for which

det F = ∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
≡ J, (2.9)

where J is piecewise constant in each subdomain of B. More general growth

conditions can be incorporated into this formulation, but for simplicity we will

only study the constant case. Any such F can be decomposed multiplicatively as

in (1.36) into an incompressible elastic deformation tensor A. Away from some

pathological cases, we can use an implicit function theorem based argument to

define a function Ψ on the mixed coordinates (x, Y ) such that

X = 1
Jλ

∂Ψ
∂Y

(x, Y ) and y = 1
λ

∂Ψ
∂x

(x, Y ). (2.10)
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From these representations, we can also compute the partial derivatives found in

F = ∂x
∂X to rewrite the deformation gradient as

F = 1
∂xY Ψ

(
Jλ −∂Y Y Ψ

J∂xxΨ λ−1
(
(∂xY Ψ)2 − ∂Y Y Ψ∂xxΨ

)) . (2.11)

Explicitly computing the determinant of F, we find

det F = 1
(∂xY Ψ)2

[
J
(
(∂xY Ψ)2 − ∂Y Y Ψ∂xxΨ

)
+ J∂xxΨ∂Y Y Ψ

]
= J, (2.12)

hence the determinant constraint (2.9) is automatically satisfied exactly. To translate

our energy functional into this stream function formulation, we make the change

of integration variables

dxdY = ∂x

∂X
dXdY = Jλ

∂xY ΨdXdY. (2.13)

Since det A = 1 by construction, the Lagrange multiplier term in (2.8) disappears

and leaves us with the minimisation problem

minimise
Ψ∈Φ

Ĩ(Ψ) :=
∫
B̃

µ

2Jλ3∂xY Ψ
[
−2Jλ2(∂xY Ψ)2+

+ (∂xY Ψ)4 − 2∂Y Y Ψ(∂xY Ψ)2∂xxΨ + J2λ2
(
λ2 + (∂xxΨ)2

)
+

+(∂Y Y Ψ)2
(
λ2 + (∂xxΨ)2

)]
dxdY, (2.14)

where B̃ is the mixed coordinate configuration of the domain B and Φ is the set

of stream functions that produce admissible deformations.

To obtain the Euler-Lagrange equation of (2.14) and its boundary conditions

explicitly, we must compute the first variation of its integral functional Ĩ. For

notational simplicity, we rewrite Ĩ as

Ĩ(Ψ) =
∫
B̃

f(∂xxΨ, ∂xY Ψ, ∂Y Y Ψ) dxdY. (2.15)

The Euler-Lagrange equations for the system are then given by

∂2

∂x2

(
∂f

∂(∂xxΨf)

)
+ ∂2

∂x∂Y

(
∂f

∂(∂xY Ψf)

)
+ ∂2

∂Y 2

(
∂f

∂(∂Y Y Ψf)

)
= 0,

∂2

∂x2

(
∂f

∂(∂xxΨs)

)
+ ∂2

∂x∂Y

(
∂f

∂(∂xY Ψs)

)
+ ∂2

∂Y 2

(
∂f

∂(∂Y Y Ψs)

)
= 0

. (2.16)
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2.4 Boundary conditions

The physical constraints we impose on the system at the boundaries are illustrated

in fig. 2.1. We impose that all displacements in the substrate vanish at infinity,

that the displacements are x-periodic and that the upper surface of the film is

traction free. We define separate stream functions Ψf and Ψs for each layer of

the system and we seek to simultaneously solve for the energy-minimising stream

function of each layer. The problems for each layer are coupled by the introduction

of boundary conditions at the layer interfaces that impose continuity of traction

and displacement between layers.

From the physical condition that the two layers can not detach from one

another, we obtain, at Y = 0:

∂Ψf

∂x
= ∂Ψs

∂x
, (2.17a)

∂Ψf

∂Y
= γ2∂Ψs

∂Y
. (2.17b)

From repeated integration by parts in our calculation of the first variation, we

obtain additional natural boundary conditions at the interface (Y = 0), representing

the physical conditions on the continuity of traction:

∂

∂Y

(
∂f

∂(∂Y Y Ψf)

)
+ ∂

∂x

(
∂f

∂(∂xY Ψf)

)
= ∂

∂Y

(
∂f

∂(∂Y Y Ψs)

)
+ ∂

∂x

(
∂f

∂(∂xY Ψs)

)
,

(2.18a)

γ2 ∂f

∂(∂Y Y Ψf)
= ∂f

∂(∂Y Y Ψs)
. (2.18b)

On the top of the film (Y = 1), we obtain the traction-free conditions through

the same process:

∂

∂Y

(
∂f

∂(∂Y Y Ψf)

)
+ ∂

∂x

(
∂f

∂(∂xY Ψf)

)
= 0, (2.19a)

∂f

∂(∂Y Y Ψf)
= 0. (2.19b)

Finally, we impose the decay conditions

lim
Y→−∞

∂xΨs − Y = 0, (2.20a)

lim
Y→−∞

∂Y Ψs − x = 0. (2.20b)
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The two fourth-order PDEs for Ψf and Ψs in (2.16), the x-periodicity condition and

the eight boundary conditions given by (2.17)–(2.20) form the full Euler-Lagrange

system. It should be noted that the explicit form of these Euler-Lagrange equations

and their boundary conditions are lengthy with significant nonlinearity, making

their direct solution impossible through analytic means.
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3.1 Perturbation

Despite the difficulties that a complete characterisation of solutions to this problem

presents, it is easy to see that the homogeneous growth solution given by

x(0)(X, Y ) =

(λX, γ2λ−1Y ) (X, Y ) ∈ Bf ,

(λX, λ−1Y ) (X, Y ) ∈ Bs,
(3.1)

with corresponding stream functions

Ψ(0)
f (x, Y ) = γ2xY Y ∈ (0, 1],

Ψ(0)
s (x, Y ) = xY Y ∈ (−∞, 0],

(3.2)

35
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is a solution of (2.16). Consider a perturbation of the form Ψ = Ψ(0) + εΨ(1),

where ε is a small positive parameter. To linear order in ε, the Euler-Lagrange

equations for the system read

λ2∂
4Ψ(1)

f
∂Y 4 + (γ4 + λ4) ∂

4Ψ(1)
f

∂x2∂Y 2 + γ4λ2∂
4Ψ(1)

f
∂x4 = 0,

λ2∂
4Ψ(1)

s
∂Y 4 + (1 + λ4) ∂

4Ψ(1)
s

∂x2∂Y 2 + λ2∂
4Ψ(1)

s
∂x4 = 0,

(3.3)

with boundary conditions given explicitly in Appendix A. Assuming a periodic

decomposition of the form Ψ(1)(x, Y ) = sin(kx)h(1)(Y ) for some k > 0, we ar-

rive at the ODEs

λ2 d4h
(1)
f

dY 4 − k
2(γ4 + λ4)d2h

(1)
f

dY 2 + γ4k4λ2h
(1)
f = 0,

λ2 d4h(1)
s

dY 4 − k
2(1 + λ4)d2h(1)

s
dY 2 + k4λ2h(1)

s = 0,
(3.4)

with boundary conditions given in Appendix A. Solving (3.4) with the decay

conditions at Y → ∞ (A.2g-A.2h), we obtain the general solutions

h
(1)
f (Y ) = c1e

−kγ2Y + c2e
kγ2Y + c3e

−kY + c4e
kY ,

h(1)
s (Y ) = c5e

kY + c6Y e
kY ,

(3.5)

in the case λ = 1,

h
(1)
f (Y ) = c1e

−kλY + c2Y e
−kλY + c3e

kλY + c4Y e
kλY ,

h(1)
s (Y ) = c5e

kλ−1Y + c6e
kλY ,

(3.6)

in the case λ = γ and

h
(1)
f (Y ) = c1e

−kγ2λ−1Y + c2e
kγ2λ−1Y + c3e

−kλY + c4e
kλY ,

h(1)
s (Y ) = c5e

kλ−1Y + c6e
kλY ,

(3.7)

otherwise. Substituting these expressions into our boundary conditions, we obtain

a homogeneous system of six linear equations in the six unknown coefficients

c := {ci}6
i=1 that can be abbreviated as

M(k, γ, β)c = 0, (3.8)

where M is a 6× 6 matrix. This system will only have nontrivial solutions if

det M = 0, (3.9)

thus giving us a solvability condition for our system.
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3.2 Bifurcation analysis

We now focus our attention on two specific cases: a bilayer that is compressed

unilaterally but experiences no growth and a bilayer that is under no compression

but has a growing upper layer. The determinant of M is sufficiently complex

that its zero level set cannot be obtained in closed form. However, they can be

obtained asymptotically for short and long wavelengths and solved numerically

in the intermediate regime.

3.2.1 Compression case

In the case of pure compression, we set γ = 1 and consider λ as our bifurcation

parameter. The determinant of M can be written in the form

det M(k, λ, β) = 1
λ7

4∑
i=0

pi(k, λ, β)ekζi , (3.10)

where each pi is a polynomial in its arguments and (ζi)4
i=0 = (0, λ−1 + λ,−λ−1 +

λ, λ−1 − λ,−λ−1 − λ). For large values of k, exp(kζ1) is the dominant term, and

thus p1 must vanish in order for the determinant to vanish in that limit. This

polynomial—which has total degree 34—vanishes whenever λ is equal to either

a particular root of the equation

λ3 + λ2 + λ− 1 = 0, (3.11)

given by

λbiot = 1
3

(
(17 + 3

√
33) 1

3 − 2
(17 + 3

√
33) 1

3
− 1

)
≈ 0.543689, (3.12)

or a particular root λ∗(β) of a polynomial given by the equation(1 + β)λ3 + (1− β)λ2 + (1 + β)λ− 1 + β = 0 if β < 1,
(1 + β)λ3 − (1− β)λ2 + (1 + β)λ+ 1− β = 0 if β > 1.

(3.13)

The root in question is not present in the case β = 1 (this is in fact the classical Biot

instability of an elastic half space as the two layers can no longer be distinguished),

but when it exists, it is always strictly less than λbiot. Thus, λbiot provides a
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lower bound for the critical compression ratio required to cause the emergence

of nontrivial solutions.

To better understand the solution set, we can solve the determinant relation

numerically. We can fix a stiffness ratio β and find the compression ratio λ as a

function of the wavenumber k. An example of such a dispersion curve is shown

in fig. 3.1 for the particular value β = 10.

1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

λ

λbiot

k

λcr

kcr

Figure 3.1: The maxima of the dispersion curves of det(M) = 0 in the λ-k plane provide
the first critical values of λ at which oscillatory solutions can be obtained. For instance,
the critical compression λcr and wavenumber kcr are indicated for the top curve. The
curves from top to bottom are obtained for decreasing values of β. The bottom curve is
obtained for a value of β < 1.

From this, we can deduce that if we were to gradually decrease the compression

ratio λ from 1, we would expect to see nontrivial periodic solutions emerging at

λcr ≈ 0.89 with wavenumber kcr ≈ 0.61. We can repeat this process and track the

position of this critical point as we vary the value of β, as shown in fig. 3.2.

As β decreases towards 1, λcr approaches λbiot. For values of β infinitesimally

above 1, a finite wavenumber k ≈ 0.941 is selected, but at β = 1, all wavenumbers

are possible. For β < 1, we see the reappearance of a critical point, but it is in

fact a local minimum rather than a local maximum. Hence, surface instability

appears first for all values of β < 1.

For large values of β corresponding to a stiff film on a soft substrate, the

selected wavenumber becomes vanishingly small and the critical compression
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λbiot
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Figure 3.2: The critical wavenumber kcr and compression λcr as functions of β−1. The
two points on the curves correspond to the critical values found for β = 10. For β < 1, the
critical compression is given by the Biot value and kcr →∞. The asymptotic estimates
provide good approximations of these curves up to β ≈ 20 (red/dashed). Please note that
the vertical axis in this figure and similar figures found later in this document represents
both the wavenumber and the compression as indicated by the curve labels.

ratio on an infinite domain approaches 1, corresponding to the Euler buckling

instability. A standard asymptotic analysis reveals the following approximations

(illustrated in fig. 3.2):

λcr = 1− 32/3

4 β−2/3 + 33 · 31/3

160 β−4/3 − 32/3

8 β−5/3

− 7629
22400β

−2 + 39 · 31/3

160 β−7/3 + 3302617
5376000 · 31/3β

−8/3 +O(β−3), (3.14)

kcr = 31/3β−1/3 − 3
5β
−1 + 463 · 32/3

5600 β−5/3 + 3217
33600 · 32/3β

−7/3 +O(β−8/3). (3.15)

We recover the well-known dependence for the wavelength with a β1/3 scaling that

was already established by Biot (Biot, 1937) and has been recovered numerous

times since then (see Sun et al. (2012), for example).

3.2.2 Growth case

The growth case displays many similarities to the compression case. Considering

large values of k once more reveals the existence of a Biot-type wrinkling instability
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for the system as described in section 1.1. As before, the determinant can be

written in the form

det M(k, γ, β) = 1
γ3

4∑
i=0

pi(k, γ, β)ekζi , (3.16)

where each pi is a polynomial in its arguments and (ζi)4
i=0 = (0, 1+γ2,−1+γ2,−1−

γ2, 1− γ2). For large enough k, exp(kζ1) is the dominant term and hence in order

for the determinant to vanish in that limit, p1 must vanish. We find that polynomial

p1 vanishes whenever γ is equal to either a particular root of the equation

γ3 − γ2 − γ − 1 = 0, (3.17)

given by

γbiot = 1
λbiot

= 1
3

(
1 +

(
19− 3

√
33
) 1

3 +
(
19 + 3

√
33
) 1

3
)
≈ 1.83929, (3.18)

or a particular root γ∗(β) of the equation

β2γ6 − (3β2 + 2β)γ4 − (β2 + 4β + 4)γ2 − (β2 + 2β) = 0. (3.19)

Further examination reveals that we have γ∗(β) > γbiot for all values of β > 0.

Thus, γbiot provides an upper bound on the critical growth factor required in order

to achieve nontrivial periodic solutions.

Solving the determinant relation numerically once more, we can fix a stiffness

ratio β and find the growth factor γ as a function of the wavenumber k. An example

of such a dispersion relation is shown in fig. 3.3 for the particular value β = 3.

In a thought experiment where we gradually increase the growth factor γ from

1, we expect to see nontrivial periodic solutions emerging at γcr. As before, by

repeating this process, we can track the position of this critical point as we vary

the value of β, as shown in fig. 3.4.

As β decreases, γcr approaches γbiot and we see that the value of kcr increases

without bound, demonstrating the aforementioned instability. The value of β = βmin

at which the wavenumber first diverges can be found exactly (but is not given

explicitly here) and is βmin ≈ 1.90379.
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Figure 3.3: Solutions of the dispersion relation for a range of β values. In a thought
experiment, the film grows starting at γ = 1. The homogeneous solution remains stable
until a new solution emerges at γ = γcr associated with wavenumber k = kcr. For β > βmin,
the solution arises before Biot’s instability (indicated by a dashed line).The two upper
curves are obtained for values of β just above and just below the critical value βmin.
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Figure 3.4: Critical solutions value of growth and wavenumber as a function of 1/β
(asymptotic approximations shown dashed). Critical solutions exist for β > βmin ≈ 1/1.9
after which, the Biot instability is the dominant instability.

As shown in Figure 3.4, for large values of β, the critical values are well

approximated by
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γ2
cr = 1 + 32/3

2 β−2/3 + 2 · 31/3

5 β−4/3 + 201
2800β

−2 − 27403
112000 · 31/3β

−8/3

+583461 · 31/3

21560000 β−10/3 − 553132947
22422400000β

−4 + O(β−14/3) (3.20)

kcr = 31/3β−1/3 − 11
10β

−1 + 881
1400 · 31/3β

−5/3 + 601
2800× 32/3β

−7/3

−1193837
8624000β

−3 + 56746499
343200000 · 31/3β

−11/3 + O(β−13/3). (3.21)

3.3 Generalisations

We now investigate a number of modifications to the physical problem that model

different effects seen in nature. Of particular interest is the effect of these changes

on the presence and position of Euler-type (large wavelength) and Biot-type (small

wavelength) instabilities in the system. To this end, we repeat the linear analysis

found in section 3.1, adding additional insights where necessary. Since the method

has already been described at length, we briefly explain the new aspects of the

problem without details.

3.3.1 Bilayer with surface tension

The first modification we consider is the addition of surface energy. In elastic solids,

there is an energetic cost to maintaining a surface that we must incorporate into our

variational formulation when the material is sufficiently soft or to model the effect

of a small layer on top of the material surface. To do this, we add another term

to the energy functional in (2.8) to represent the surface energy at the interface

between the layers and/or at the top of the upper layer. Following Ben Amar and

Bordner (2017), this contribution takes the form

d
∫
Γ

ds, (3.22)

where d is a constant surface energy density and Γ is a subset of ∂Bf ∪ ∂Bs. The

addition of this term has no effect on the bulk Euler-Lagrange equations (2.16), but
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instead modifies the boundary conditions. In particular, (A.2a) becomes

λ2 d3h
(1)
f

dY 3 (1)− k2(2γ4 + λ4)dh(1)
f

dY (1)− dβ−1k4γ6λh
(1)
f (1) = 0. (3.23)

This extra term adds dependence on the surface energy parameter d to the system

of linear equations (3.8) so that it is now of the form

M̂(k, γ, λ, β, d)c = 0. (3.24)

As before, this homogeneous system of linear equations has nontrivial solutions

precisely when the determinant of the matrix M̂ vanishes.

Compression

In the compression case (γ = 1), we can write the determinant in the form

det M̂(k, λ, β, d) = 1
λ5

4∑
i=0

p̂i(k, λ, β, d)ekζi , (3.25)

where each p̂i is some polynomial in its arguments and (ζi)4
i=0 = (0, λ−1 + λ,−λ−1 +

λ, λ−1−λ,−λ−1−λ). First, we remark that k = 0 is always a solution for λ = λbiot.

Second, for large values of k, we have again that exp(kζ1) is the dominant term

and hence for large k, p̂1 must vanish. There is no longer a zero of this polynomial

at λbiot for all k, but there is still one at λ∗(β) (for β 6= 1). For this root, we have

λ∗(β) < λbiot for all β > 0 as shown in fig. 3.5. Hence, we conclude that as λ

decreases, it eventually reaches λbiot at k = 0 which becomes the first instability.

When we compute the position of the critical growth and wavenumber as a

function of β−1 (plotted in fig. 3.6), we see a dramatic change in the qualitative

behaviour of both quantities. Firstly, we see the disappearance of the critical point

for values of β . 2.1. However, the critical point ceases to be a global maximum

before this occurs: for values of β . 2.6 the global maximum of the dispersion curve

occurs at k = 0 with a selected compression ratio of λbiot. Hence the addition of

surface tension prevents the Biot instability from occurring, which is replaced by an

Euler-type instability. If the film is sufficiently soft then the whole system buckles

in a similar manner to a beam instead of displaying periodic fine wrinkling.
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Figure 3.5: λ as a function of k for β = 10, d = 7.5 (here kcr ≈ 0.58 and λcr ≈ 0.78).
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Figure 3.6: Exact (solid) and approximate (dashed) values of kcr and λcr as functions
of β−1 for d = 7.5

With the addition of another parameter, we can also fix the value of β and

track the change in the critical growth and wavenumber as d varies. As one

might expect, fig. 3.7 demonstrates that the higher the surface energy density,

the lower the compression ratio required to induce wrinkling and the lower the

wavenumber of the wrinkling.

As before, for large values of β corresponding to a stiff film on a soft substrate, the

selected wavenumber becomes vanishingly small and the critical compression factor

approaches 1. A standard asymptotic analysis reveals the following approximations

(illustrated in fig. 3.6) that demonstrate the influence of the surface energy parameter
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Figure 3.7: kcr and λcr as functions of d for β = 10

d on the critical growth factor and wavenumber selection when compared to

(3.14) and (3.15):

λcr = 1− 32/3

4 β−2/3 − d

4β
−1 − 33 · 31/3

160 β−4/3

− 1
16
(
2 · 32/3 − 3 · 32/3d

)
β−5/3 +O(β−2), (3.26)

kcr = 31/3β−1/3 − 3
5β
−1 − 1

431/3dβ−4/3 +O(β−5/3). (3.27)

Growth

In the growth case, we can write the determinant in the form

det M̂(k, γ, β, d) = 1
γ3

4∑
i=0

p̂i(k, γ, β, d)ekζi , (3.28)

where each p̂i is some polynomial in its arguments and (ζi)4
i=0 = (0, 1 + γ2,−1 +

γ2,−1− γ2, 1− γ2). Consideration of the dominant term in the large k limit yields

an asymptote at γ = γ∗(β), which approaches γbiot from above in the large β

limit. As in the compression case, this asymptote is independent from d. The

dispersion curve is similar to fig. 3.1 with γ∗(β) replacing γbiot. Echoing the results

from the compression case, the critical growth factor is significantly increased,

but occurs at a smaller wavenumber.

When we compute the position of the critical growth and wavenumber as a

function of β−1 (plotted in fig. 3.8), we see a dramatic change in the qualitative
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(β)

0.5 1.0

1

2
γbiot

γcr

γ*

1/β
kcr

Figure 3.8: Exact (solid) and approximate (dashed) values of kcr and γcr as functions
of β−1 for d = 7.5

behaviour of both quantities. In particular, we no longer see a blow-up in the

wavenumber as β decreases and we see an apparent increase in γcr without bound.

However, the critical point that we are computing stops being a global minimum

of γ for sufficiently small values of β. For β under this threshold, we would again

expect a Biot-type instability.
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*
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Figure 3.9: kcr and γcr as functions of d for β = 10.

Plotting the critical growth factor and wavenumber as a function of d (shown in

fig. 3.9) reveals that the higher the surface energy density, the higher the growth

factor required to induce wrinkling and the lower the wavenumber of the wrinkling.

Another standard asymptotic analysis for large values of β gives the following
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approximations (illustrated in fig. 3.8) for the correction that the surface energy

parameter d induces on the critical growth factor:

γ2
cr = 1 + 32/3

2 β−2/3 + d

2β
−1 + 2 · 31/3

5 β−4/3 + 5d
8 · 31/3β

−5/3 +O(β−2), (3.29)

kcr = 31/3β−1/3 − 11
10β

−1 − 5d
4 · 32/3β

−4/3 +O(β−5/3). (3.30)

3.3.2 Bilayer with upper substrate

A second modification is to add another elastic layer (of either finite or infinite

thickness) on top of the film. Here, we modify B to include an additional subdomain

Bt with shear modulus µt and relabel the stiffness ratios as βf := µf/µs and

βt := µt/µs. With Bt = [−L,L] × (0,∞], we now have a system of three ODEs

for our Euler-Lagrange equations:

λ2 d4h
(1)
t

dY 4 − k
2(1 + λ4)d2h

(1)
t

dY 2 + k4λ2h
(1)
t = 0,

λ2 d4h
(1)
f

dY 4 − k
2(γ4 + λ4)d2h

(1)
f

dY 2 + γ4k4λ2h
(1)
f = 0,

λ2 d4h(1)
s

dY 4 − k
2(1 + λ4)d2h(1)

s
dY 2 + k4λ2h(1)

s = 0,

(3.31)

with boundary conditions given in Appendix A. After consideration of the decay

conditions at Y → +∞ ((A.3k) and (A.3l)), we obtain the following general

solution for ht (the others are unchanged):

ht(Y ) =

c7e
−kY + c8Y e

−kY if λ = 1,
c7e
−kλ−1Y + c8e

−kλY otherwise.
(3.32)

Following the same method as before, we obtain a homogeneous linear system of eight

equations in the eight unknowns c̃ := {ci}8
i=1. This leads to the solvability condition

M̃(k, γ, λ, βf , βt)c̃ = 0, (3.33)

which only has nontrivial solutions if det M̃ = 0.
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Compression

In the compression case, on numerically plotting the solution set of the determinant

relation, we find a similar dispersion curve compared to the unmodified problem

(fig. 3.1) but with λbiot replaced by an asymptote λ∗ that depends on both βf and βt.

The addition of another elastic layer decreases the critical compression ratio and

the compression threshold for large k while increasing the critical wavenumber.
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Figure 3.10: The critical wavenumber kcr and compression λcr as functions of β−1
f for

βt = βf/20

For a given, fixed stiffness ratio βfβ
−1
t , from fig. 3.10 we can see that as βf

and βt decrease, the critical compression ratio approaches the previously discussed

threshold. However, we now find that for β < 1, we have an Euler-type buckling

instability where the wavenumber k = 0 is selected.
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Figure 3.11: The critical wavenumber kcr and compression λcr as functions of β−1
t for

βf = 10
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In contrast, fig. 3.11 shows us that if we fix βf and vary βt, we observe a gradual

increase in λcr and a gradual decrease in kcr as βt decreases, with the wavenumber

remaining well determined. Thus, the addition of an upper layer decreases the critical

compression ratio and increases the critical wavenumber selected in the system.

For film with large stiffness, the asymptotic expressions are

λcr = 1− k3
1 + 6βt + 6

12 k1
β
−2/3
f + 99 (βt + 1) 2

160 k2
1

β
−4/3
f +O(β−2

f ), (3.34)

kcr = k1β
−1/3
f − 3

5 (βt + 1) +O(β−5/3
f ), (3.35)

where k1 = (3 + 3βf)1/3.

Growth

Repeating the techniques used in our previous cases, for large k we identify a critical

growth threshold at a particular root γ?(βf , βt) of the following equation:
β2

f γ
6 − (3β2

f + 2βfβt)γ4 − (β2
f + 4βfβt + 4β2

t )γ2 − (β2
f + 2βfβt) = 0 βt < 1,

β2
f γ

6 − (3β2
f + 2βf)γ4 − (β2

f + 4βf + 4)γ2 − (β2
f + 2βf) = 0 βt ≥ 1

(3.36)

Thus, we see that whichever substrate is softer dictates the position of the large k

asymptote. In the limit of small βt (very soft upper layer), we see that γ? → γbiot is

a solution of the relation as before and we recover the bilayer. As in the compression

case, the profile of the dispersion curve is similar to the corresponding unmodified

problem (fig. 3.3). The addition of another elastic layer only slightly increases

the critical growth factor, the critical wavenumber and the growth threshold for

large k (shown in fig. 3.12).

Finally, fig. 3.13 demonstrates that if we again fix βf and decrease βt, γcr and

kcr both decrease with no apparent blow-up behaviour. Hence, the addition of an

upper layer increases the critical growth factor and critical wavenumber selected in

the system. In particular, as the stiffness of the upper layer approaches that of the

film from below, the critical growth and wavenumber increase without bound.
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Figure 3.12: The critical wavenumber kcr and compression λcras functions of β−1
f for

βt = βf/20
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Figure 3.13: The critical wavenumber kcr and compression λcr as functions of β−1
t for

βf = 10

3.3.3 Pressure

We can derive the effect of a normal pressure of magnitude p acting on the top

of the film layer by directly imposing this constraint on the surface. A pressure

p on the surface can be expressed in terms of the Cauchy stress tensor T as

T · n = pn for all points on the top surface. To express this condition, we compute,

to first order, the normal vector field and the Cauchy stress. First, we recall

that for a sufficiently regular deformation, the unit surface normal vector in the
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deformed configuration is given by

n(X) = 1√
(∂Xy(X, 1))2 + 1

(−∂Xy(X, 1), 1). (3.37)

After changing coordinates into our stream function formulation, applying our

perturbation Ψ = Ψ(0) + εΨ(1) from the homogeneous solution (3.1) and our periodic

decomposition Ψ(1)(x, Y ) = sin(kx)h(1)(Y ), we can rewrite (3.37) as:

n(x) = (0, 1) + (1, 1
2)k2h(1) sin(kx)ε+O(ε2). (3.38)

Second, we compute the Cauchy stress by using the constitutive equations for

an incompressible neo-Hookean material:

T = µAAT − qI, (3.39)

where q denotes the Lagrange multiplier associated with incompressibility. We

expand both T = T(0) + εT(0) and q = q0 + εq1. Since the base solution is

homogeneous, it can be solved directly by using the boundary condition and

to order 0 in ε, we find

T(0) =
 λ2µf

γ2 − q0 0
0 γ2µf

λ2 − q0

 , (3.40)

where q0 = λ−2(γ2µf − pλ2). To first order, we use the the equilibrium equation

div T = 0, (3.41)

to find

T(1) =

 −2kµ cos(kx)λ2

γ4
dh(1)

f
dY − q1(Y ) −µ sin(kx)

γ2λ

(
k2h1(Y )λ2 + d2h

(1)
f

dY 2

)
−µ sin(kx)

γ2λ

(
k2h1(Y )λ2 + d2h

(1)
f

dY 2

)
2kµ cos(kx)

λ2
dh(1)

f
dY − q1(Y )

 ,
(3.42)

where

q1 = µf

γ4k
cos(kx)

d3h
(1)
f

dY 3 − k
2λ2 dh(1)

f
dY

 . (3.43)

Substituting these expressions into the first-order traction condition

T(0) · n(1) + T(1) · n(0) = pn(1), (3.44)

yields precisely (A.2a) and (A.2b). We conclude that the pressure has no effect on

the linear analysis of the system: a bilayer develops the same wrinkling instability

regardless of the pressure.
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3.3.4 Fibre-reinforced substrate

A last modification we make to the bilayer system is to introduce embedded elastic

fibres into the elastic substrate, as considered in Stewart et al. (2016). This adds

an orientational anisotropy into the system that mimics structures seen in many

biological materials. For simplicity, we restrict our attention to the case of a single

family of fibres with a vertical orientation and no pre-stretch. To describe the

energetic cost of deforming the fibres, we add the following term to the energy

density function (Goriely and Tabor, 2013; Melnik, Rocha, and Goriely, 2015):

Wr(A) = m ((A ·N) · (A ·N)− 1)2 , (3.45)

where N is a vertical unit vector in the reference configuration and m quantifies both

the stiffness of the fibres and their volume fraction. As this modification changes

the bulk energy, it has a corresponding effect on the Euler-Lagrange equation for

the substrate. After perturbation and periodic decomposition, it reads:

(
λ2 − 4m(1− λ−2)

) d4h(1)
s

dY 4 − k
2
(
1 + λ4 − 4m(1− 3λ−2)

) d2h(1)
s

dY 2 + k4λ2h(1)
s = 0.

(3.46)

Similarly, the traction boundary conditions at the film-substrate interface become

β

λd3h
(1)
f

dY 3 (0)− k2λ−1(2γ4 + λ4)dh(1)
f

dY (0)
 =

γ4
((
λ− 4m(λ− λ−1)

) d3h(1)
s

dY 3 (0)− k2λ−1
(
2 + λ4 − 8m(1− 2λ−2)

) dh(1)
s

dY (0)
)
,

(3.47a)

β

λd2h
(1)
f

dY 2 (0) + k2γ4λ−1h
(1)
f (0)

 =

γ2
(
1− 4m(1− λ−2)

)(
λ

d2h(1)
s

dY 2 (0) + k2λ−1h(1)
s (0)

)
. (3.47b)

Compression

In the compression case, the addition of fibres initially seems to have a limited effect.

Compared to the unmodified case with the same large stiffness ratio, adding fibres
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with 0 < m < 1 causes the critical wavenumber to increase, the critical compression

ratio to decrease and has no effect on the large k asymptote.

However, as we vary the stiffness ratio, we see some markedly different behaviour

in the evolution of the critical point as a function of β (demonstrated in fig. 3.14).

For stiffness ratios β < βc ≈ 8, the critical wavenumber rapidly decreases. This

local maximum close to k = 0 persists even when β > 1 (at β = 1 we have no

length scale and the wavelength is again undetermined). The position of the critical

compression ratio does not appear to degenerate to λbiot for small values of β.
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Figure 3.14: kcr and λcr as functions of β−1 for m = 5/9

Increasing the fibre stiffness parameter m (shown in fig. 3.15) has a similar

effect; for fibres stiffer than m = mc ≈ 0.67, the critical wavenumber becomes

close to k = 0.

To summarise, for fibres significantly stiffer than the elastic substrate in which

they are embedded, we see a lower wavenumber wrinkling pattern emerge.

Growth

In the growth case, the addition of fibres causes both the critical wavenumber and

the critical growth factor to increase slightly but the large k behaviour of the system

is unchanged. The critical growth factor and wavenumber have a similar qualitative

behaviour compared to the unmodified case with the notable characteristic that the

stiffness ratio 1/βmin at which the wavenumber blows up is significantly reduced.

Plotting the dependence of the critical growth factor and wavenumber on the fibre
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Figure 3.15: kcr and λcr as functions of m for β = 10

stiffness parameter m as in fig. 3.16 shows a gradual increase in both quantities as

the fibres become stiffer. For a fixed β, there exists a finite (but extremely large)

m such that γcr = γbiot and kcr becomes infinite.
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Figure 3.16: kcr and γcr as functions of m for β = 10

3.4 Conclusions

We have presented a complete linear analysis for the plane-strain wrinkling of a

film on an elastic substrate in the case of lateral compression and film growth.

The analysis does not make any approximation on the thinness of the film or the

relative stiffness ratio between substrate and film. Hence, it can be used as a general
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benchmark for approximate theories and identify their domain of validity. We also

considered the role of secondary effects such as surface tension, pressure, and fibres.

Our analysis further establishes that for films that are much stiffer than the

substrate, a regular asymptotic expression in powers of 1/β leads to accurate

predictions for the critical parameter and critical wavenumber selected at the

wrinkling instability even when supplementary effects are considered. A rule of

thumb is that for β & 10, a 3-term expansion is sufficient in all cases to capture

the correct behaviour. It also suggests that in this regime, approximate theories

(beams and plates) may be sufficient as long as they correctly model the effect of

the substrate. Our analysis can be used to gauge this calibration by matching the

asymptotic behaviours of a plate or beam to the ones derived here.

As β decreases, a number of different effects appear that make general conclu-

sions harder to reach. Depending on both the loading and the effect considered,

qualitatively different behaviours are observed. For instance, the addition of any

surface tension in compression changes the Biot surface instability (kcr →∞) to a

Euler-type instability (kcr → 0). Yet, the Biot instability is still the first selected

for a growing film. Similarly, the minimal value βmin at which a linear instability is

found depends greatly on both the loading and extra surface effects. It is therefore

harder to obtain a general picture for the bifurcation of soft films on substrate. Yet,

the linear analysis may not even be relevant in that regime for two reasons.

First, the film may undergo a creasing instability for values of the axial stretch

around λ = 1/γ ≈ 0.64 (Ciarletta, 2018). Hence, the linear unstable wrinkling

mode may not be observed past that critical value. Whether this instability is

universally observed in bilayers and always selected is still an open problem.

Second, the analysis performed here is only a linear analysis and does not

allow us to conclude about the existence of periodic solutions past the bifurcation

point. The main problem is that the wrinkling instability may be supercritical or

subcritical depending on the stiffness ratio (Cao and Hutchinson, 2011; Cao and

Hutchinson, 2012; Hutchinson, 2013; Ciarletta and Fu, 2015; Fu and Ciarletta, 2015).

Previous studies suggest that for sufficiently stiff films, the wrinkling instability
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is supercritical. The question is then to determine the value of β at which this

supercritical bifurcation becomes subcritical and whether this value occurs before

or after the Biot instability or the wrinkling instability.
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4.1 Growth case

We first focus on the growth case and extend our previous analysis by including

higher order terms in our perturbation expansion of the stream function. This will

allow us to derive a so-called amplitude equation, the solutions of which specify the

as-of-yet undetermined amplitude of the oscillatory solutions. At this point, we

also allow the amplitude to depend on a far spatial ζ := εx and a slow temporal

variable τ := εt that evolve over longer length and time scales than the oscillations

themselves. We consider perturbations of the form

Ψ = Ψ(0) + εΨ(1) + ε2Ψ(2) + ε3Ψ(3), (4.1)
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and furthermore perturb the critical parameter

γ = γcr(1 + ε2γ1). (4.2)

We then take periodic decompositions of the form

Ψ(1)(x, Y, t) =a(εx, εt)h(1,1)(Y )eikx + c.c.,

Ψ(2)(x, Y, t) =a(εx, εt)2h(2,2)(Y )e2ikx + ∂ζa(εx, εt)h(2,1)(Y )eikx + c.c.,

Ψ(3)(x, Y, t) =a(εx, εt)3h(3,3)(Y )e3ikx + 2a(εx, εt)∂ζa(εx, εt)h(3,2)(Y )e2ikx

+ ∂ζζa(εx, εt)h(3,1)(Y )eikx + c.c.,

(4.3)

where c.c. denotes the complex conjugate of all preceding expressions. To deal

with the added slow dynamics of the system, we replace our neo-Hookean energy

density W with the Lagrangian density

1
2ρ
∣∣∣∣∣∂x
∂t

∣∣∣∣∣
2

−W (A). (4.4)

To use this in our formulation, we must be able to express the kinetic energy

of the system in terms of stream functions. We can compute the components of

the time derivative of the displacement as
∂x

∂t
= − ∂Y tΨ

∂xY Ψ
∂y

∂t
= 1
λ

(
∂xtΨ−

∂Y tΨ∂xxΨ
∂xY Ψ

)
.

(4.5)

Combining these expressions with (4.4), we can write the Lagrangian of the

system in the form

Ĩ(Ψ) =
∫
B̃

f(∂xxΨ, ∂xY Ψ, ∂Y Y Ψ, ∂xtΨ, ∂Y tΨ) dxdY. (4.6)

The Euler-Lagrange equations are then given by

∂2

∂x2

(
∂f

∂(∂xxΨf)

)
+ ∂2

∂x∂Y

(
∂f

∂(∂xY Ψf)

)
+ ∂2

∂Y 2

(
∂f

∂(∂Y Y Ψf)

)

+ ∂2

∂x∂t

(
∂f

∂(∂xtΨf)

)
+ ∂2

∂Y ∂t

(
∂f

∂(∂Y tΨf)

)
= 0,

∂2

∂x2

(
∂f

∂(∂xxΨs)

)
+ ∂2

∂x∂Y

(
∂f

∂(∂xY Ψs)

)
+ ∂2

∂Y 2

(
∂f

∂(∂Y Y Ψs)

)

+ ∂2

∂x∂t

(
∂f

∂(∂xtΨs)

)
+ ∂2

∂Y ∂t

(
∂f

∂(∂Y tΨs)

)
= 0.

(4.7)



4. Derivation of the amplitude relation 59

The linear analysis we have already carried out is unchanged by these modi-

fications (although we relabel h(1)
f as h(1,1)

f and ci as c(1,1)
i ), so we proceed to the

second order. After substituting (4.1) into (2.16), the Euler-Lagrange equations

for the first mode at second order in ε read

d4h
(2,1)
f

dY 4 − k2(1 + γ4
cr)

d2h
(2,1)
f

dY 2 + γ4
crk

4h
(2,1)
f = −2ik(1 + γ4

cr)
d2h

(1,1)
f

dY 2 + 4ik3γ4
crh

(1,1)
f ,

d4h(2,1)
s

dY 4 − 2k2 d2h(2,1)
s

dY 2 + k4h(2,1)
s = −4ikd2h(1,1)

s
dY 2 + 4ik3h(1,1)

s .

(4.8)

We also obtain a complex conjugate set of equations. On substitution of the

first order solution, we can write each of the equations (4.8) in the form

L(1)[h(2,1)] = F (2,1), (4.9)

where L(n) is one of the linear differential operators

L(n)
f [h] := d4h

dY 4 − (nk)2(1 + γ4
cr)

d2h

dY 2 + γ4
cr(nk)4h,

L(n)
s [h] := d4h

dY 4 − 2(nk)2 d2h

dY 2 + (nk)4h,

(4.10)

and F (2,1) represents a (known) scalar, nonlinear function of β (through γcr and

k). The equations for the second mode at second order can also be written

in a similar form:

L(2)[h(2,2)] = F (2,2). (4.11)

We can then solve these equations exactly using computer-based symbolic

algebra as the particular integrals are straightforward but intractable by hand.

By again considering decay conditions of the form lim
Y→−∞

hs = 0, we obtain the

general solutions

h
(2,1)
f (Y ) = c

(2,1)
1 e−kγ

2
crY + c

(2,1)
2 ekγ

2
crY + c

(2,1)
3 e−kY + c

(2,1)
4 ekY + G (2,1)

f ,

h(2,1)
s (Y ) = c

(2,1)
5 ekY + c

(2,1)
6 Y ekY + G (2,1)

s ,
(4.12)

and

h
(2,2)
f (Y ) = c

(2,2)
1 e−2kγ2

crY + c
(2,2)
2 e2kγ2

crY + c
(2,2)
3 e−2kY + c

(2,2)
4 e2kY + G (2,2)

f ,

h(2,2)
s (Y ) = c

(2,2)
5 e2kY + c

(2,2)
6 Y e2kY + G (2,2)

s .
(4.13)



60 4.1. Growth case

where each G is a (known) scalar, nonlinear function of k(β) and γcr(β). To

determine the arbitrary coefficients in (4.12) and (4.13), we must apply the boundary

conditions (we omit their precise form for brevity) to obtain two inhomogeneous

systems of linear equations of the form

M(2,1)c(2,1) = HHH (2,1), (4.14)

M(2,2)c(2,2) = HHH (2,2), (4.15)

for some (known) nonlinear, vector-valued functions HHH of k(β), γcr(β), and β. On

closer inspection, we find that M(2,1) is singular and so we must establish whether

any solutions to (4.14) do in fact exist. The Fredholm alternative tells us that the

system has a solution if and only if every ξ in the left null space of M(2,1) satisfies

ξHHH (2,1) = 0. (4.16)

This condition is satisfied identically and M(2,2) has full rank so we can proceed

to third order.

After substituting (4.1) and the computed first and second-order solutions into

(2.16), the Euler-Lagrange equations for the first mode at third order in ε can

be written in a similar form to (4.9):

L(1)[h(3,1)] = F (3,1). (4.17)

We finally see the impact of the perturbed growth factor in (4.2) as F (3,1) is a

function of γ1 in addition to γcr(β) and k(β). We then obtain the general solutions

h
(3,1)
f (Y ) = c

(3,1)
1 e−kγ

2
crY + c

(3,1)
2 ekγ

2
crY + c

(3,1)
3 e−kY + c

(3,1)
4 ekY + G (3,1)

f ,

h(3,1)
s (Y ) = c

(3,1)
5 ekY + c

(3,1)
6 Y ekY + G (3,1)

s ,
(4.18)

with G (3,1)
f featuring dependence on γ1 in addition to k(β) and γcr(β). On applying

the boundary conditions, we find a mismatch that will allow us to constrain the

amplitude of the oscillations of our solution. The inhomogeneous system of linear

equations for the arbitrary coefficients in (4.18) is of the form

M(3,1)c(3,1) = HHH (3,1), (4.19)
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where HHH (3,1) contains the γ1 dependence. On left-multiplying both sides of (4.19)

by a vector ξ from the left nullspace of the singular matrix M(3,1), we obtain

ξHHH (3,1) = 0. (4.20)

Closer inspection reveals that (4.20) is an equation of the form
∂2a

∂τ 2 − C2
∂2a

∂ζ2 = C0γ1a+ C1|a|2a, (4.21)

where C0, C1 and C2 are real-valued functions of β. This equation is a nonlinear

Klein-Gordon equation, typical for pitchfork bifurcations in spatially-extended

conservative problems found in solid mechanics (see e.g. Lange and Newell, 1971;

Goriely, Nizette, and Tabor, 2001).

For instance, substituting in the previously computed critical parameter values

for β = 10 yields C0 ≈ 4.75 and C1 ≈ −0.05. In the case of constant amplitude,

nontrivial solutions for a are given by

|a|2 = −C0

C1
γ1. (4.22)

It is immediately apparent that the sign of C0 and C1 of particular importance

in determining the type of bifurcation (Cai and Fu, 1999; Fu and Ogden, 1999).

Indeed a direct analysis for the existence of homogeneous solutions of this amplitude

equation shows that the bifurcation will be subcritical for values of C1 > 0 and

supercritical for values of C1 < 0. We plot the dependence of C0 and C1 on β in fig. 4.1

and track the changes in sign that signify qualitative changes in physical behaviour.

Recalling that we must have β > βmin ≈ 1.9−1 for the instability to take place,

the bifurcation is subcritical for

βmin < β < 0.95−1 (4.23)

and supercritical for

β > 0.95−1 (4.24)

We can now focus on the particular parameter value βss ≈ 0.95−1 where the

bifurcation goes from supercritical to subcritical. We return to the critical solutions

of the dispersion relation illustrated in fig. 3.4 and identify the critical growth factor

γss ≈ 1.576 associated with βss (shown in fig. 4.2).
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Figure 4.1: C0, C1 and C2 as functions of β−1 in the growth case
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Figure 4.2: Growth factor γss at the super-to-sub transition

4.1.1 On creasing

It has long been known that homogeneous soft elastic solids under compres-

sive stress will undergo a creasing instability—the development of localised, self-

contacting cusps on the free surface—rather than a wrinkling instability, thus

avoiding the quandary of wrinkling length scale posed by Biot (1963). It has been

well documented in the experimental and numerical literature that for bilayers
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Reference εcrease Method
Ciarletta and Truskinovsky, 2019 0.364 theory: asymptotic matching
Ciarletta, 2018 0.362 theory: asymptotic matching
Jin et al., 2015 0.35–0.36 simulation: finite element
Diab and Kim, 2014 0.35 simulation: finite element
Hohlfeld, 2013 0.35 simulation: finite element
Hohlfeld and Mahadevan, 2011 0.354 simulation: finite element
Wong et al., 2010 0.35 simulation: finite element
Hong, Zhao, and Suo, 2009 0.35 simulation: finite element
Tang et al., 2017 0.33–0.38 experiment: PDMS
Wang and Zhao, 2015 0.36 experiment: elastomer
Jin et al., 2015 0.37 experiment: PDMS
Trujillo, Kim, and Hayward, 2008 0.33 experiment: hydrogel

Table 4.1: Previous results on the critical strain εcrease required for creasing

with a sufficiently soft upper layer, we also see a creasing instability (see Wang

and Zhao (2015)).

At the point of the super-to-sub transition, the strain in the upper layer of the

homogeneous trivial solution is given by 1− γ−1
ss ≈ 0.365. This is noteworthy by

virtue of the fact that it corresponds almost exactly to the critical strain associated

with some experimental studies on creasing in soft polymers (Trujillo, Kim, and

Hayward, 2008; Tang et al., 2017) (a summary of significant results in the literature

can be found in table 4.1). While our analysis does not yet constructively say

anything about the formation of creases, the coincidence of the computed value of

strain at the point at which wrinkling becomes unstable and the observed value

for strain for which we expect a homogeneous medium to crease suggests that

these phenomena might be related, or at least that these two instabilities may

interact in the nonlinear regime.

4.1.2 Verification of the amplitude relation

Clearly, a ≡ 0 is always a solution of (4.21). For values of γ1 close to 0 in the

supercritical case, we expect a to remain small and so we can then neglect the cubic

term in our examination of the amplitude near the bifurcation point. Hence, in
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the static case we are interested in solutions of the linear ODE

C2
∂2a

∂ζ2 + C0γ1a = 0, (4.25)

which has general solution

a(ζ) = c1 sin(
√

C0C
−1
2 γ1ζ) + c2 cos(

√
C0C

−1
2 γ1ζ). (4.26)

On examination of the linear order of the periodic decomposition of the stream

function found in (4.3), we see that the periodic behaviour is modulated by the

changing amplitude. More precisely, through use of Euler’s formula, we see that

we can rewrite Ψ(1) as a sum of terms of the form

ce(±kcr±
√

C0C−1
2 γ1ε)ixh(1,1)(Y ). (4.27)

Thus, the change in wavenumber δ := ε−1(k − kcr) is related to the change in

growth factor by the relation

δ2 = C0

C2
γ1. (4.28)

We can compute the relationship between δ and γ1 in an alternate manner by

returning to the dispersion ratio. If we perturb (3.9) by changing γ as prescribed

in (4.2) and k as k = kcr + εδ, at second order in ε we obtain a closed form

expression of the same form as (4.28). While it is computationally intractable

to verify their equality analytically due to the form of C0 and C1, we can show

their excellent agreement numerically.

4.2 Compression case

We can perform the same computations in the case of pure lateral compression.

We perturb the critical compression ratio

λ = λcr(1 + ε2λ1), (4.29)
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and take the same periodic decompositions (4.3). The Euler-Lagrange equations

for the first mode at second order now read

λ2
cr

d4h
(2,1)
f

dY 4 − k2(1 + λ4
cr)

d2h
(2,1)
f

dY 2 + λ2
crk

4h
(2,1)
f =

− 2ik(1 + λ4
cr)

d2h
(1,1)
f

dY 2 + 4ik3λ2
crh

(1,1)
f ,

λ2
cr

d4h(2,1)
s

dY 4 − k2(1 + λ4
cr)

d2h(2,1)
s

dY 2 + λ2
crk

4h(2,1)
s =

− 2ik(1 + λ4
cr)

d2h(1,1)
s

dY 2 + 4ik3λ2
crh

(1,1)
s ,

(4.30)

and the family of linear differential operators corresponding to (4.10) is given by

L(n)
f [h] = L(n)

s [h] := λ2
cr

d4h

dY 4 − (nk)2(1 + λ4
cr)

d2h

dY 2 + λ2
cr(nk)4h. (4.31)

The general solutions of the Euler-Lagrange equations at second order are given by

h
(2,1)
f (Y ) = c

(2,1)
1 e−kλ

−1
cr Y + c

(2,1)
2 ekλ

−1
cr Y + c

(2,1)
3 e−kλcrY + c

(2,1)
4 ekλcrY + G (2,1)

f ,

h(2,1)
s (Y ) = c

(2,1)
5 ekλ

−1
cr Y + c

(2,1)
6 ekλcrY + G (2,1)

s ,
(4.32)

and

h
(2,2)
f (Y ) = c

(2,2)
1 e−2kλ−1

cr Y + c
(2,2)
2 e2kλ−1

cr Y + c
(2,2)
3 e−2kλcrY + c

(2,2)
4 e2kλcrY + G (2,2)

f ,

h(2,2)
s (Y ) = c

(2,2)
5 e2kλ−1

cr Y + c
(2,2)
6 e2kλcrY + G (2,2)

s ,
(4.33)

where each G is a scalar, nonlinear function of k(β) and λcr(β). Repeating the

previously detailed procedure for the third order equations yields an amplitude

relation of the form

∂2a

∂τ 2 − C2
∂2a

∂ζ2 = C0λ1a+ C1|a|2a. (4.34)

Once more, supercritical solutions correspond to negative values of C1 (note that

we are concerned with negative values of λ1). Plots of the coefficients C0 and

C1 are given in fig. 4.3.

We see that the transition from supercritical to subcritical behaviour with

decreasing β occurs at βss ≈ 0.571−1 (β−1
ss ≈ 1.75), which corresponds to a critical

compression ratio of λss ≈ 0.6747. Our computed value of βss is close to, but differs

slightly from the previously reported values of 1.74 (Cai and Fu, 1999) and 1.73
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Figure 4.3: C0, C1 and C2 as functions of β−1 in the compression case

(Hutchinson, 2013). The difference may be due to a difference in the ansatz that we

use (the base solutions are not strictly equivalent since we use a mixed-coordinates

system). It should also be noted that the critical compression ratio agrees less

well with the critical strain reported in creasing experiments. However, this is still

consistent with these experimental observations—we show that when the wrinkling

instability is stable, the critical strain required for wrinkling is always lower than

the experimentally reported strain required for creasing.

We have now successfully characterised the behaviour of the wrinkling amplitude

in the immediate post-buckling regime, but to probe the behaviour of solutions

further past the bifurcation point, we turn to numerical tools.
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5.1 Discretisation of the problem

In addition to the analytical calculations presented above, we carried out a systematic

program of numerical experiments to explore the post-buckling regime in the

growth case. In contrast to the approach used above, these finite element method

computations were carried out without the use of the stream function construction—

while this made the analysis more tractable, the full nonlinearity it introduces

into (2.16) makes it unattractive for discretisation. Instead, we adopted a mixed

displacement-pressure formulation and imposed the incompressibility constraint

with a Lagrange multiplier.

67



68 5.1. Discretisation of the problem

Another difference between the approaches comes from the nature of the domain.

In our analytical calculations, we made use of a semi-infinite domain as an idealised

model of the physical situation. Discretising such domains is subtle, so we choose

to truncate it in the Y direction at some point. Various numerical studies (Cao

and Hutchinson, 2012; Jin et al., 2015) suggest that a substrate ten times thicker

than the film is sufficiently deep to negate any possible interaction between the

bottom of the substrate and any wrinkles on the surface of the film as we expect

the displacements to decay exponentially in the negative Y direction. Additionally,

we must choose a boundary condition to apply to the bottom of the substrate,

which we choose to be zero displacement (although zero traction might also be

appropriate). On the sides of the domain, we allow the material to slide freely up

the “walls” of the domain, but not to penetrate through them (the displacement

in the X direction must vanish). A further difficulty arises from the width of the

domain: in our analysis, we were able to choose this a posteriori to fit an integer

number of wrinkles into it—a luxury we are not afforded in the numerical setting.

We can inform our choice of domain size using the results of our perturbation

analysis, but this will preclude us from independently verifying it.

Based on the above considerations, we restate our minimisation problem:

minimise
u∈Υ

p∈L2(B;R)

I(u, p) :=
∫
B

(µ2 det G)(tr AAT − 2)− p(det A− 1) dX. (5.1)

where B = (−L,L) × (−10, 1) for some L > 0, G = g1, A = 1 + ∂u
∂X and the

set of admissible displacements is given by

Υ = {u ∈ H1(B;R2) : u(·,−10) = (0, 0), u(±L, ·) = 0}, (5.2)

where u(X) = (u(X, Y ), v(X, Y )) and evaluation on the boundary is understood

in the sense of traces. As usual, we compute solutions of (5.1) by solving the

Euler-Lagrange equation

δI = 0, (5.3)

varying in u and p simultaneously.
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After unreported numerical experiments, we settled on using the Scott-Vogelius

(CGk)2 × DGk−1 mixed finite element on an unstructured triangular mesh with

a single iteration of barycentric mesh refinement applied to it, yielding a total

of 141,730 degrees of freedom for each PDE solve for k = 2. The mesh was

graded in such a way that the vast majority of resolution was concentrated in the

film; the predicted exponential decay in the displacement in the substrate allowed

for a very coarse mesh towards the bottom of the computational domain. The

choice of finite element discretisation comes from both considerations of stability

and effective imposition of the nonlinear incompressibility condition. Braess and

Ming (2005) demonstrated that any pair of spaces that is stable for the Stokes

problem will also be stable for incompressible hyperelasticity. The Scott-Vogelius

element pair has been shown by Arnold and Qin (1992) to be stable for the 2D

Stokes problem on barycentrically refined meshes for k ≥ 2 and enjoys a number

of advantageous properties (see Olshanskii and Rebholz (2011)) such as exact

imposition of the divergence-free constraint found in the incompressible formulation

of the problem. While achieving exact discrete enforcement of the nonlinear

constraint in this formulation is not possible, we noted a two order of magnitude

reduction in the constraint residual

‖ det A− 1‖L2(B;R), (5.4)

compared to the more common Taylor-Hood element. For a detailed exposition of

the substantial effects that poor enforcement of the incompressibility constraint

can have on the computation of bifurcation points for problems in elasticity, we

refer to Auricchio et al. (2013).

5.2 Computation of bifurcation diagrams

We wish to understand the evolution of the solution set of the PDE as its parameters

are varied. The main tool we apply is deflated continuation, an algorithm that

advantageously combines two existing numerical techniques in nonlinear PDE

analysis: deflation and continuation.
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Deflation can be summarised as the positive answer to the following question:

Given a solution z∗ to a nonlinear PDE problem F on a Banach space
Z, can we (under reasonable conditions) define a new problem G that
satisfies the conditions below?

1. applying Newton’s method to G will not yield z∗;
2. for z 6= z∗, z solves F ⇔ z solves G.

This is achieved by systematically introducing singularities to the problem that will

prevent the rediscovery of z∗ by Newton’s method. This technique was introduced

in Farrell, Birkisson, and Funke (2015) as an adaptation of the approach presented

in Brown and Gearhart (1971) for the solution of nonlinear algebraic equations.

Continuation methods are a classical tool in bifurcation analysis. Given a

nonlinear equation

F(z, γ) = 0, (5.5)

with parameter γ ∈ R, suppose we have found a solution z∗0 for a particular γ0

and wish to now solve the equation for a slightly perturbed parameter value, say

γ1 = γ0 + ∆γ. There are several approaches to this problem, the most obvious

of which is zero-order continuation. For this, we simply use z∗0 as the initial

guess for the solution at γ = γ1.

The two procedures are combined as follows. Given a bifurcation problem (5.5),

we specify a range of parameter values [γmin, γmax] of interest and a continuation

step size ∆γ. Then, starting from γ = γmin, we first perform zero-order continuation

followed by deflation on each of the known solutions for the current value of γ.

We then search for new solutions using Newton’s method, with one initial guess

for each of the previous solutions. If we find another solution, we can deflate it

and repeat our search from the same initial guess until Newton’s method fails to

converge. Finally, we increment γ by ∆γ and repeat the whole process until we

reach γmax. The main advantage of this approach is that it allows for the detection

of disconnected branches, so long as they are close to known ones.
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5.3 Numerical results

We discretised and numerically solved the Euler-Lagrange equation (5.3) using

Firedrake (Rathgeber et al., 2016) and PETSc (Balay et al., 2019). We considered

19 values of the inverse stiffness ratio β−1 between 0.05 and 0.95. For each fixed

value of β, we applied deflated continuation in γ for an appropriate subset of [1, 1.6].

We used a non-uniform spacing of values with the density of continuation points

increasing with proximity to an asymptotic approximation of the critical growth

value γcr. Each solve of the nonlinear PDE was performed using Newton’s method,

with the linear system arising at each Newton iteration solved using the sparse LU

factorisation algorithm of MUMPS (Amestoy et al., 2001).

Figure 5.1: Example numerical wrinkling solution for β = 4, γ = 1.303 (colored by
strain—we can see the mesh because the strain approximation is discontinuous)

We were able to discover the primary wrinkling bifurcation and continue solutions

past the critical growth parameter for the full range of stiffness ratios considered.

An example of a post-bifurcation wrinkling solution for an intermediate value

of β is shown in fig. 5.1. For each stiffness ratio, we can then compute the

evolution of the observed wrinkling amplitude of the numerical solutions as γ is

increased past γcr by computing

aobs = ‖v‖L∞({Y=1};R) − (γ2 − 1), (5.6)
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where the γ − 1 term arises from the vertical displacement present in the uniform

growth solution. This was then compared (see section 5.3.1) to the corresponding

solutions of the static amplitude equation (4.22) (an example is shown in fig. 5.2)

and found to be in excellent agreement with no fitting parameters in most cases.

However, for some stiffness ratios we found that the bifurcation did not occur

until slightly after the predicted critical value of γ (although the shape of the

bifurcating branch remained correct). To investigate this phenomenon further, we

turned to direct methods for determining where the first instance of a non-trivial

solution branch occurs in the numerics.
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Figure 5.2: Observed amplitude of numerical solutions (black) and amplitude relation
(4.22) (orange) for β ∈ {20, 10, 4, 2}. The amplitude relation (which is valid for a small
perturbation of γcr) shows good agreement with the numerics well into the post-buckling
regime.

5.3.1 Comparison of amplitude of numerical and analytical
solutions

In order to compare the observed amplitude (5.6) with our analytical prediction,

we recall that the vertical displacement can be computed from the stream function

in the growth case by

v = y − Y = ∂Ψ
∂x
− Y. (5.7)



5. Numerical bifurcation analysis 73

Taking the first two terms of the perturbation expansion (4.1) and substituting

in (4.3), we find that

v|Y=1 = γ2 − 1 + ε
(
ika(εx, εt)h(1,1)(1) + c.c.

)
+O(ε2). (5.8)

Substituting in the constant amplitude solutions (4.22), we then have

aobs = ‖v‖L∞({Y=1};R) − (γ2 − 1)

= 2k
√

C0(γ − γcr)
C1γcr

∣∣∣h(1,1)
f (1)

∣∣∣+O(ε2).
(5.9)

which can be computed explicitly to produce figures such as fig. 5.2.

5.4 Direct computation of the primary bifurca-
tion point

While the computations described in the previous section allow us to examine the

post-buckling behaviour of the system past the bifurcation point, it is somewhat

difficult to see precisely where the pitchfork begins. However, we can identify the

bifurcation point of the discretised system by solving an extended set of equations

known as the Moore-Spence system (introduced by Moore and Spence (1980)

for the computation of turning points and adapted to pitchfork bifurcations by

Werner and Spence (1984)).

The essential idea is to treat the bifurcation parameter γ in (5.5) as a variable

we wish to solve for and augment the equation with the requirement that the

derivative of the residual in the z direction is not invertible (and hence has a

nonzero eigenvector w with eigenvalue 0). Mathematically the combined system

can be written as: find z, γ, w ∈ Z × R × Z such that

F(z, γ) = 0, (5.10a)

Fz(z, γ)w = 0, (5.10b)

‖w‖ = 1. (5.10c)
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In order to solve a discretisation of this system using Newton’s method, an

initial guess must be carefully constructed. First, we solve (5.10a) for z using

the following asymptotic approximation for γcr for our chosen value of β (see

section 3.2.2 for its derivation):

γ2
cr ≈ 1 + 32/3

2 β−2/3 + 2 · 31/3

5 β−4/3 + 201
2800β

−2. (5.11)

We then use this computed z to solve the generalised eigenvalue problem

Fz(z, γ)w = rw, (5.12)

for the eigenmode w associated with the minimal eigenvalue r using the SLEPc

(Hernandez, Roman, and Vidal, 2005) implementation of the Krylov-Schur algorithm

(Stewart, 2001). We can then combine our approximate z, γcr and w to form an

initial guess for Newton’s method applied to the complete Moore-Spence system

(5.10). This approach is extremely robust and Newton’s method converges to the

solution of (5.10) in 4 iterations.

5.4.1 Effect of computational domain aspect ratio

Due to the finite width of our computational domain and our enforcement of sliding

boundary conditions on the vertical walls, we are constrained to only ever realise

an integer number of wrinkling periods in the numerical solutions we find. This

both makes it difficult to verify precisely the predictions regarding wavenumber

from the linear analysis and has the effect of delaying the bifurcation slightly past

the predicted critical growth threshold. To examine this effect more closely, we

can introduce an aspect ratio parameter α in order to transform the computational

domain from width 2L to 2αL while keeping the height of both layers the same.

We apply the simple coordinate transform

X = α−1X̃ Y = Ỹ

u(X, Y ) = α−1ũ(X̃, Ỹ ) v(X, Y ) = ṽ(X̃, Ỹ ),
(5.13)



5. Numerical bifurcation analysis 75

which gives us the deformation gradient relation

∂ũ

∂X̃
= ∂u

∂X

∂ũ

∂Ỹ
= α

∂u

∂Y
,

∂ṽ

∂X̃
= α−1 ∂v

∂X

∂ṽ

∂Ỹ
= ∂v

∂Y
.

(5.14)

Using these relations, we can replace the appropriate terms in (5.1) to formulate a

minimisation problem for the rescaled system. This approach carries the significant

benefit of allowing us to perform solves for domains of different aspect ratios

without the tedious process of re-meshing.

Equally, we can also use this rescaling with the discretised Moore-Spence system

to efficiently examine the effect of domain width on the observed bifurcation point

in the numerical system. Of particular interest is the observed wavenumber kobs
of a numerical wrinkling solution given by

kobs := (nobs + 1)π
2Lα , (5.15)

where nobs is the observed number of minima and maxima of the vertical displacement

of the top surface of the domain (excluding the endpoints). Given a fixed stiffness

ratio β and corresponding critical wavenumber kcr, we can then compute the

value of the aspect ratio αn that would allow (n + 1)/2 periods (or equivalently

n interior extrema) of a sinusoidal profile with wavenumber kcr to fit into the

interval [−αL, αL]:

αn := (n+ 1)π
2Lkcr

. (5.16)

By solving the discretised Moore-Spence system for a range of values of α, we see

that those which minimise the gap between the expected and realised value of γcr
occur close to some αn for an even value of n (see fig. 5.3 for an example). This

suggests that the delay in bifurcation is predominantly caused by the domain-width

constraint. This effect is accentuated at lower values of β, as illustrated in fig. 5.4.

As hinted at in fig. 5.3, even with the optimal aspect ratio, there remains a small

but significant difference between the expected and observed value of γcr for some

values of β. Some of this can be explained by discretisation error and the domain
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Figure 5.3: Error in computed bifurcation point as a function of aspect ratio α for
β = 2.5

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲
▲▲▲▲▲▲▲

▲▲▲
▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲
▲▲

▲▲▲▲▲
▲▲▲▲
▲▲

▲▲▲▲▲
▲▲▲▲▲▲

▲
▲▲▲▲▲▲
▲▲▲
▲

▲
▲▲▲▲▲
▲▲▲▲▲

▲
▲▲
▲▲▲
▲▲
▲
▲▲

▲▲
▲
▲▲▲▲▲
▲▲▲

▲
▲
▲▲▲▲▲
▲▲
▲▲

▲
▲
▲
▲
▲▲▲▲
▲▲▲

0.2 0.4 0.6 0.8
1.0

1.1

1.2

1.3

1.4

1.5

1/β

γcr

Figure 5.4: Computed critical growth factor as a function of β−1. For each value
of β considered, we performed the computations for 11 uniformly spaced aspect ratios
α ∈ [1, 1.5] (all shown)

truncation that we carry out, but we have not yet performed a comprehensive

analysis on whether we can explicitly account for all of the difference as a result

of these factors. Nonetheless, our numerical experiments have provided a robust

corroboration of our weakly-nonlinear analysis and given us further insight into the

post-buckling behaviour of the system past the bifurcation point. In particular,
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the tools developed are easily adaptable to further numerical experiments such as

different domain geometries or boundary conditions.
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This chapter is derived from Alawiye, Farrell, and
Goriely (2020).

6
Solutions of the amplitude relation
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The computations and comparisons featured in chapter 5 all relate to solutions

with constant amplitude a. However, the decomposition (4.3) allowed for variations

of the amplitude on far spatial and long temporal scales, ultimately yielding the

nonlinear Klein-Gordon type amplitude equation (4.21). We now search for solutions

of this nonlinear PDE, following the method set out by Lega and Goriely (1999).

6.1 Hamiltonian form

First, let us consider travelling wave solutions for which

a(ζ, τ) = ã(ζ − cτ)eiωτ , (6.1)

for some wave speed c and phase shift ω. Writing ξ = ζ − cτ , we then obtain

(C2 − c2)ã′′ + 2icωã′ + (C0γ1 + ω2)ã+ C1|ã|2ã = 0. (6.2)

79
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This can be further transformed into a pair of real-valued equations by writing ã

in polar form, i.e. ã(ξ) = r(ξ)eiθ(ξ), and taking real and imaginary parts of the

resulting equation. Here it is useful to write the derivative of θ as Θ:

(C2 − c2)r′′ +
(
−2cωΘ(C2 − c2)Θ2 + C0γ1 + ω2

)
r + C1r

3 = 0,

−2
(
(C2 − c2)Θ− cω

)
r′ + (C2 − c2)Θ′r = 0.

(6.3)

We can then find two first integrals of (6.3):

Φ1 = c(C2 − c2)ω(r′)2 + (C2 − c2)r2Θ(cωΘ− C0γ1 − ω2) + 1
2cC1ωr

4,

Φ2 = −r2
(
(C2 − c2)Θ + cω

)
.

(6.4)

The latter equation can be rearranged to provide a closed form expression for

Θ in terms of r:

Θ = − Φ2 + cωr2

(C2 − c2)r2 . (6.5)

The two first integrals can be combined to write down a useful conserved quantity

Φ = (C2 − c2)(Φ1 − C0γ1Φ2)− (C2 + c2)Φ2ω
2

c(C2 − c2)2ω
. (6.6)

In particular, we can interpret Φ as a Hamiltonian for the motion of a particle

in a potential Veff defined as follows:

Φ− (r′)2 = v−2r
−2 + v2r

2 + v4r
4 =: Veff, (6.7)

where the coefficients vi are given by:

v−2 = Φ2
2

(C2 − c2)2 , v2 = C2(C0γ1 + ω2)− c2C0γ1

(C2 − c2)2 , v4 = C1

2(C2 − c2) . (6.8)

Depending on the values of the parameters, the “potential” Veff can take a

number of different shapes (illustrated in figs. 6.1 and 6.2), only some of which

support periodic orbits. Of particular importance in determining this are signs of

v2 and v4 as well as whether v−2 vanishes. Let us restrict our attention to the static

case (c = ω = 0). We always have C0 > 0 and C2 > 0 and we see a sign change in

C1 from negative for β > βss to positive for β < βss. At the same point, we also
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see a change in the sign of γ1 from positive to negative as the system changes from

supercritical to subcritical with decreasing β. The coefficients of Veff are given by

v−2 = Φ2
2

C 2
2
, v2 = C0γ1

C2
, v4 = C1

2C2
. (6.9)

By considering the shape of Veff, we see that if Φ2 (and hence v−2) vanishes, we

can find localised solutions if and only if v2 and v4 have opposite sign. By the

observations above, we see that this is always true.

- 3 - 2 - 1 1 2

- 1.0

- 0.5

Veff

r(ξ)

(a) v2 < 0, v4 > 0

- 3 - 2 - 1 1 2

- 0.5

0.5

Veff

r(ξ)

(b) v2 > 0, v4 < 0

Figure 6.1: Potentials for which v−2 vanishes

If Φ2 is nonzero, we must have v2 > 0, v4 < 0 and
√

3v3
2 + 9v4 > 0 in order to

see such solutions, which immediately limits us to the supercritical case.
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−9v4
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2
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(c) v2 > 0, v4 < 0,
√

3v3
2 <

−9v4

Figure 6.2: Potentials for which v−2 does not vanish

In our efforts to better understand the subcritical case, let us focus on the

case in which v−2 = 0, v2 < 0 and v4 > 0. localised solutions in such potentials

consist of homoclinic orbits linking r̃ = 0 to itself. The maximal value of r achieved

in such orbits can easily be seen to be

rmax =
√
−v2

v4
=
√
−2C0γ1

C1
. (6.10)
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6.2 Explicit solutions

In order to compute explicit solutions, it is convenient to make the substitution

r̃(ξ) = −
(
v2

3 + v4r(ξ)2
)
. (6.11)

The Hamiltonian (6.7) then becomes

(r̃′)2 = 4r̃3 − g2r̃ − g3, (6.12)

where the invariants gi are given by

g2 = 4
3(v2

2 + 3Φv4), g3 = −
(

8v3
2

27 + 4Φv2v4

3 + 4v2
4v−2

)
. (6.13)

So long as g3
2 6= 27g2

3, the general solution of (6.12) is given by

r̃(ξ) = ℘(ξ + ξ0|ω1, ω3), (6.14)

where ℘ is the Weierstrass elliptic function and ξ0 is a constant of integration. To

compute the half periods ωi, let us label the roots of the cubic on the right hand

side of (6.12) as e1, e2 and e3 so that it reads

(r̃′)2 = 4(r̃ − e1)(r̃ − e2)(r̃ − e3). (6.15)

If g3
2 > 27g2

3, all three roots are real and distinct. In this case, let us order them

so that e1 > e2 > e3. We then have

ω1 =
∫ ∞
e1

(
4r̂3 − g2r̂ − g3

)−1/2
dr̂,

ω3 = i
∫ ∞
e3

(
4r̂3 − g2r̂ − g3

)−1/2
dr̂,

ω2 = −(ω1 + ω3).

(6.16)

For a detailed review of the theory of elliptic functions in this context, refer

to Whittaker and Watson (1920). Reversing the transformation (6.11), we can

now write an expression for r:

r(ξ) =
√
−v2 + 3℘(ξ + ξ0|ω1, ω3)

3v4
. (6.17)
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At this stage, we make the important observation that in the static case, the

first integrals (6.4) are actually scalar multiples of one another:

Φ1 = −C0C2γ1r
2Θ, Φ2 = −C2r

2Θ. (6.18)

If Φ2 vanishes, Φ1 (and hence Φ) must also vanish and either r ≡ 0 or θ is constant

(i.e. it just has the effect of a uniform phase shift). The vanishing of both Φ

and Φ2 means we now have g3
2 = 27g2

3 and ω3 = ∞. In this special case, the

Weierstrass elliptic function and its imaginary half period ω1 can be expressed

in the following elementary fashion:

℘(ξ|ω1,∞) =
(
π

2ω1

)2
 1

sin2
(
πξ
2ω1

) − 1
3

 , ω2
1 = g2π

2

18g3
= C2π

2

4C0γ1
. (6.19)

We can now use (6.17) and (6.19) to write down an explicit form for a localised

solution in the subcritical case v−2 = 0, v2 < 0, v4 > 0. Taking ξ0 to be an odd

multiple of ω1 in (6.14) to ensure a real-valued solution, we then obtain

r(ξ) =
√
−2C0γ1

C1
sech

√−C0γ1

C2
ξ

 . (6.20)

Finally, we return to our perturbation expansion (4.1) and periodic decomposition

(4.3) to realise mathematically the profile of a variable amplitude solution to our

system, an example of which is shown graphically in fig. 6.3.

We conclude with the remark that it is not clear which non-constant solutions

of the amplitude equation correspond to physically realisable wrinkling envelopes.

Our suspicion is that this set consists of only the “pulse” solution given in (6.20),

but this has yet to be confirmed.
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Figure 6.3: Profile of a subcritical variable amplitude solution for β−1 = 1.01, γ =
γcr − 0.012. Note that the aspect ratio is not 1:1



7
Epilogue

7.1 Summary

This thesis has given a detailed exposition of the post-buckling behaviour of an

elastic film bonded to an elastic substrate and subjected to compressive stress

induced by either growth of the film or lateral compression.

Chapter 1 presented a brief history of mathematical modelling of growth

mechanics, an exposition of the theory of incremental deformation and a summary of

how previous studies have used these elements to study growth-induced instabilities.

This chapter provides context and motivation for how this thesis project came

about and fixes notation for the rest of the document.

Chapter 2 presented a general formulation for the modelling of an incompressible

hyperelastic bilayer subjected to film growth or lateral compression. A mixed

coordinate formulation involving a stream function type construction was specified

and the Euler-Lagrange equations and their boundary conditions were derived.

In chapter 3, this formulation was used to perform a linear bifurcation analysis

to identify the critical values of the driving parameters that would permit the

formation of a wrinkling instability in the bilayer. The asymptotic behaviour of

these parameters was derived in the stiff-film limit and the effect of a number of

additional physical effects on the critical parameters was considered.
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Chapter 4 extended the linear analysis into the weakly-nonlinear regime by

perturbing the critical parameters and solving the Euler-Lagrange equations of the

systems at higher orders in the perturbation expansion. At third order, an amplitude

equation that describes how the magnitude of surface oscillations increased past the

critical growth factor was derived. Analysis of this equation also yielded a threshold

value for the transition between a supercritical and subcritical bifurcation when

the film becomes sufficiently soft relative to the substrate.

In chapter 5, the above analyses were corroborated by a numerical bifurcation

analysis using a carefully chosen finite element discretisation. Good agreement with

the post-buckling amplitude was demonstrated without the use of fitting parameters.

A numerical scheme to directly compute the bifurcation point of the system was

described and used to investigate the effect of domain aspect ratio on the observed

value of the critical growth factor in the computations.

In chapter 6, qualitative behaviours of non-constant solutions to the amplitude

equations were examined to give an explicit general solution in terms of an elliptic

function and to realise a variable-amplitude solution of our system in the subcritical

regime that features completely localised deformation.

7.2 Future work

Though the investigations in this thesis are in some sense self-contained, there are

a number of immediate extensions that would naturally follow from the work

contained within it.

7.2.1 Numerical realisation of variable amplitude solutions

As of yet, we have been unable to discover any variable amplitude solutions of

the type discussed in chapter 6. It is likely that in order to realise such solutions

numerically, one would have to carry out computations with a domain width much

larger than that considered in chapter 5. Aside from the obvious increase in

the degrees of freedom required to discretise a larger domain to the same degree

of fineness, there is an additional cost associated with performing a numerical
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bifurcation analysis on these larger domains. In our numerical experiments, it

became apparent that various local alterations of a wrinkling deformation could

often produce further local energy minima. Each of these localised variations could

occur in a number of places, as demonstrated in fig. 7.1.

Figure 7.1: Example of the same localised alteration to a wrinkling solution in different
places for γ = 1.27, β = 10.

This causes a combinatorial blowup in the number of solution branches present

in wide domain, thus slowing the deflated continuation process down to a crawl.

Future investigations could make use of large-scale computational resources in order

to address this, or a more narrowly targeted bifurcation analysis algorithm.

7.2.2 Period-doubling

Another ongoing avenue of research is the study of the secondary period-doubling

bifurcation that has been experimentally observed to occur in elastic bilayers with

sufficiently stiff films (Pocivavsek et al., 2008; Brau et al., 2011). In their experiments,

a stiff polymer film was bonded to a much softer gel or elastomer substrate and

subjected to lateral compression. After sufficient compression, the wrinkling

instability described in this thesis occurred as expected, but further increasing

compression induced interesting post-buckling behaviour, as illustrated in fig. 7.2.
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Figure 7.2: Experimental images demonstrating the evolution of a wrinkling instability
into a period-doubling instability. Reproduced with permission from Pocivavsek et al.
(2008) and Brau et al. (2011).

Reference Model Case Method
Cao and Hutchinson, 2012 INH comp. commercial FE
Sun et al., 2012 CNH comp. commercial FE
Budday, Kuhl, and Hutchinson, 2015 CNH growth direct FE
Fu and Cai, 2015 INH comp. perturbation method
Cai and Fu, 2019 various comp. perturbation method

Table 7.1: Previous analyses of period-doubling in hyperelastic bilayers (“INH” and
“CNH” denote incompressible and compressible neo-Hookean models respectively).

In a periodic fashion, some wrinkles grow in amplitude at the expense of their

neighbours, resulting in a pattern consisting of the superposition of two periodic

elements: a primary wrinkle with the original wavenumber k and a secondary,

period-doubled wrinkle with wavenumber k/2. Mathematical analysis of this

secondary bifurcation has proven difficult in the fully nonlinear elastic case, with

notable contributions displayed in table 7.1. Our numerical methods were able

to realise period-doubled solutions (illustrated in fig. 7.3) through the deflated

continuation procedure.
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Figure 7.3: Period-doubled finite element solution in the compression case with β ≈ 89,
λ = 0.715.

We believe it should be possible to capture the bifurcation analytically in our

stream function formulation, though we have not yet carried this out.

7.2.3 Creasing

As remarked in sections 1.2.5 and 4.1.1, the creasing instability remains poorly

understood, with the literature featuring scant theoretical explanations for its

occurrence and no rigorous numerical studies. Much of the difficulty surrounding this

problem is the incidence of self-contact: while the class of admissible deformations

in the minimisation problem of nonlinear elasticity ensures local invertibility by

way of the orientation-preserving condition, this is not sufficient to ensure global

injectivity of solutions. This was demonstrated in our own numerical investigations

with softer films, as shown in fig. 7.4. In order to ensure global injectivity, one

must verify the Ciarlet-Nečas condition

∫
B
det F(X) dX ≤ vol χ(B). (7.1)

It is possible to prove necessary conditions on the solution of the minimisation

problem with this additional condition by way of a modified boundary value problem

(see Ciarlet (1987) for details), but it is not tractable to directly solve through either

analytical or numerical means. Significant new theoretical work will be required

before we are able to explicitly solve for self-contacting solutions in this framework.
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Figure 7.4: Self-intersecting numerical solution (top) with zoom detail (bottom) for
β = 5, γ ≈ 1.3.

7.2.4 Three dimensional models

One limitation of our work is the restriction of our analyses to the case of uniaxial

compression in plane strain. The stream function approach does not easily gen-

eralise to the fully three-dimensional description required for the study of biaxial

compression. In the closest analogous construction, two of the three coordinates

can be written as derivatives of a generating function as in the method employed

in this manuscript, but the third can only be described implicitly, which greatly

complicates the mathematical analysis. Recent progress has been made in works such

as Cheewaruangroj and Biggins (2019) by analysis of the original equations, but this

forgoes the benefits of exact imposition of the incompressibility constraint that the
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stream function formulation provides. While aspects of our analysis appear similar

to previous works, we believe that a detailed post-bifurcation analysis validated

with a dedicated numerical scheme is necessary for the further development of the

field. In particular, outstanding questions regarding the long-time behaviour of

the subcritical bifurcation branches remain open.

7.2.5 Remodelling and general growth laws

In the course of this work, we have only considered isotropic growth processes; that

is to say those for which the growth tensor G is given by a constant multiple of

the identity at any given point in the domain. While this allows us to capture

all of the important phenomena of the wrinkling instability, there are many other

growth tensors that could be considered. The formulation presented in chapter 2 is

generalisable to arbitrary Y -dependent functions and there is no theoretical obstacle

to the treatment of such growth tensors (and others) in the numerical schemes

detailed in chapter 5. A simple anisotropy to consider might be one of the form

G =
(
g 0
0 g−1

)
. (7.2)

Here, the “growth” tensor does not actually change the volume of the material, but

rather remodels it by organising its mass in some preferential direction. Remodelling

processes are of great importance in many biological contexts, though in many

cases they are driven by factors such as mechanical loading which greatly increase

the mathematical complexity of the system. Nevertheless, we have performed

preliminary numerical experiments (sampled in fig. 7.5) that demonstrate that

the simple anisotropic growth law given in (7.2) can produce both the wrinkling

instability and some more interesting morphologies that give immediate starting

points for further theoretical study.
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Figure 7.5: Morphologies in numerical solutions for the anisotropic growth tensor (7.2)
with β = 20 and various γ ∈ [1, 1.6].
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A
Boundary conditions

A.1 Regular case

The boundary conditions for the stream functions are

λ
∂3Ψ(1)

f
∂Y 3 (x, 1) + λ−1(2γ4 + λ) ∂

3Ψ(1)
f

∂x2∂Y
(x, 1) = 0, (A.1a)

λ
∂2Ψ(1)

f
∂Y 2 (x, 1)− λ−1γ4∂

2Ψ(1)
f

∂x2 (x, 1) = 0, (A.1b)

∂Ψ(1)
f

∂x
(x, 0)− ∂Ψ(1)

s
∂x

(x, 0) = 0, (A.1c)

∂Ψ(1)
f

∂Y
(x, 0)− γ2∂Ψ(1)

s
∂Y

(x, 0) = 0, (A.1d)

β

λ∂3Ψ(1)
f

∂Y 3 (x, 0) + λ−1(2γ4 + λ4) ∂
3Ψ(1)

f
∂x2∂Y

(x, 0)
− (A.1e)

γ4
(
λ
∂3Ψ(1)

s
∂Y 3 (x, 0) + λ−1(2 + λ4) ∂

3Ψ(1)
s

∂x2∂Y
(x, 0)

)
= 0,

β

λ∂2Ψ(1)
f

∂Y 2 (x, 0)− γ4λ−1∂
2Ψ(1)

f
∂x2 (x, 0)

 (A.1f)

− γ2
(
λ
∂2Ψ(1)

s
∂Y 2 (x, 0)− λ−1∂

2Ψ(1)
s

∂x2 (x, 0)
)

= 0,

lim
Y→−∞

Ψ(1)
s (x, Y ) = 0, (A.1g)

lim
Y→−∞

∂Ψ(1)
s

∂Y
(x, Y ) = 0. (A.1h)
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After substitution of Ψ(1)(x, Y ) = sin(kx)h(1)(Y ) for some k > 0, these boundary

conditions read

λ
d3h

(1)
f

dY 3 (1)− k2λ−1(2γ4 + λ4)dh(1)
f

dY (1) = 0, (A.2a)

λ
d2h

(1)
f

dY 2 (1) + k2γ4λ−1h
(1)
f (1) = 0, (A.2b)

hf(0)− hs(0) = 0, (A.2c)
dh(1)

f
dY (0)− γ2 dh(1)

s
dY (0) = 0, (A.2d)

β

λd3h
(1)
f

dY 3 (0)− k2λ−1(2γ4 + λ4)dh(1)
f

dY (0)


− γ4
(
λ

d3h(1)
s

dY 3 (0)− k2λ−1(2 + λ4)dh(1)
s

dY (0)
)

= 0, (A.2e)

β

λd2h
(1)
f

dY 2 (0) + k2γ4λ−1h
(1)
f (0)

− γ2
(
λ

d2h(1)
s

dY 2 (0) + k2λ−1h(1)
s (0)

)
= 0, (A.2f)

lim
Y→−∞

h(1)
s (Y ) = 0, (A.2g)

lim
Y→−∞

dh(1)
s

dY (Y ) = 0. (A.2h)
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A.2 Boundary conditions for an upper substrate

In the presence of an upper layer, the boundary conditions must be transformed

as follows with boundary conditions given by

hf(1)− ht(1) = 0, (A.3a)
dh(1)

f
dY (1)− γ2 dh(1)

t

dY (1) = 0, (A.3b)

βf

λ2 d3h
(1)
f

dY 3 (1)− k2(2γ4 + λ4)dh(1)
f

dY (1)
−

βtγ
4

λ2 d3h
(1)
t

dY 3 (1)− k2(2 + λ4)dh(1)
t

dY (1)
 = 0, (A.3c)

βf

λ2 d2h
(1)
f

dY 2 (1) + k2γ2h
(1)
f (1)

− βtγ
2

λ2 d2h
(1)
t

dY 2 (1) + k2h
(1)
t (1)

 = 0, (A.3d)

lim
Y→∞

h
(1)
t (Y ) = 0, (A.3e)

lim
Y→∞

dh(1)
t

dY (Y ) = 0, (A.3f)

hf(0)− hs(0) = 0, (A.3g)
dh(1)

f
dY (0)− γ2 dh(1)

s
dY (0) = 0, (A.3h)

βf

λ2 d3h
(1)
f

dY 3 (0)− k2(2γ4 + λ4)dh(1)
f

dY (0)
−

γ4
(
λ2 d3h(1)

s
dY 3 (0)− k2(2 + λ4)dh(1)

s
dY (0)

)
= 0, (A.3i)

βf

λ2 d2h
(1)
f

dY 2 (0) + k2γ2h
(1)
f (0)

− γ2
(
λ2 d2h(1)

s
dY 2 (0) + k2h(1)

s (0)
)

= 0, (A.3j)

lim
Y→−∞

h(1)
s (Y ) = 0, (A.3k)

lim
Y→−∞

dh(1)
s

dY (Y ) = 0. (A.3l)
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B
Software availability

At various points during the course of this work we have made reference to the

particular form of some expressions being too lengthy to write in full. In the

interests of our results being reproducible by others, we have archived a copy of

the Mathematica code used to perform the analyses described in chapters 3 and 4.

It is available for perusal at (Alawiye, 2020).
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