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Abstract

Geometric numerical integrators are known to exhibit greater accuracy and physical
reliability than classical timestepping schemes, in particular over long durations.
However, there have long remained difficulties in devising such discretisations that
preserve non-quadratic conservation and dissipation laws.

In this thesis we propose a unified framework for the construction of timestepping
schemes of arbitrary order for systems of both ordinary (ODE) and partial (PDE)
differential equations, that preserve multiple such structures for arbitrary quantities
of interest. This jointly employs finite elements (FEs) in time and systematically
introduces auxiliary variables (AVs) to transfer the proofs of these structures from
the continuous level to the discrete.

We demonstrate the ideas by devising a novel integrator that conserves all
known invariants of general conservative ODEs, an energy-conserving and entropy-
generating scheme for PDEs within the GENERIC formalism (including the Boltz-
mann equation), and a FE scheme for the compressible Navier–Stokes (NS) equations
that conserves mass, momentum, and energy, and provably possesses non-decreasing
entropy. Moreover, we show the approach generalises and unifies several existing
ideas in the literature, including Gauss methods, the energy- and helicity-stable
integrator of Rebholz for the incompressible NS equations, the energy-stable ODE
integrator of Hairer, Cohen & Lubich, the energy- and entropy-stable integrator of
Romero for GENERIC ODEs, and the energy-stable PDE integrator of Giesselmann,
Karsai & Tscherpel.

When applied to PDEs, we employ the FE method for our schemes’ spatial
discretisations. While our framework typically imposes no restriction on the FE
spaces, we demonstrate how ideas from FE exterior calculus may be used to simplify
our schemes, assuming certain compatibility conditions exist on the spaces used. This
allows us to derive a novel, mixed velocity–vorticity FE scheme for the incompressible
NS equations that is both energy- and (in the 2D case) enstrophy-stable, alongside an
energy- and helicity-stable scheme for the equations of incompressible Hall magneto-
hydrodynamics (MHD) that generalises a scheme of Laakmann, Hu & Farrell.

We derive some general analytic results for our schemes. For certain stable dis-
cretisations of a class of advection-diffusion-type PDEs (including the incompressible
NS and MHD equations) we are able to show both the existence of discrete solutions,
and their uniqueness. For stable discretisations of ODEs, we are able to show both
the unique existence of discrete solutions, and their convergence.



Lastly, we extend our framework to the preservation of adiabatic invariants,
quantities that exhibit rapid oscillations about a slowly changing value. As an
example, we consider the motion of a charged particle in a strong magnetic field.
Through a modification of the AVs introduced by our framework, we construct an
energy-stable integrator for the motion of such particles that further preserves the
adiabatic invariance of the magnetic moment.

In many of these cases, we demonstrate the benefits provided by our structure-
preserving approach through numerical simulations. These include the general
conservative ODE integrator (using as examples the Kepler problem and the Ko-
valevskaya top), the conservative Poisson ODE integrator (using as an example
the Benjamin–Bona–Mahony equation), the fully stable compressible NS scheme,
the energy- and enstrophy-stable integrator for the incompressible NS equations,
and the charged particle problem.
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Introduction
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Structure-preserving (SP) numerical methods for initial-value problems (IVPs)

have proven to be essential tools in the accurate modelling of ordinary (ODE) and par-

tial (PDE) differential equations, particularly in long-time simulations. Alternatively

known as geometric numerical integrators, such methods aim not just to deliver

approximate solutions, but to replicate, at the discrete level, key geometric structures

of the continuous problem, including symmetries, symplecticity, invariants, and

dissipation inequalities. In the modern day, the field is mature and widely used; we

refer the reader, for instance, to the works of Sanz-Serna & Calvo [SC94], Budd &

Piggott [BP03], Hairer et al. [HLW06; Hai+06], Christiansen, Munthe-Kaas & Owren

[CMO11], Blanes & Casas [BC17] or Iserles & Quispel [IQ18].

Despite extensive development, however, there have long remained difficulties in

devising integrators that preserve non-quadratic dissipation laws or invariants. It

can well be argued that the focus in the literature has traditionally been primarily on

quadratic structures, with schemes that preserve non-quadratic structures being de-

veloped generally on a case-by-case basis, in particular in the discretisation of PDEs.

1
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In this thesis we aim to address this issue by presenting a general framework

for the construction of SP integrators for systems of both ODEs and PDEs, that

preserve arbitrarily many such structures for arbitrary quantities of interest (QoIs);

moreover, the approach extends to arbitrary order in time, and in the PDE case to

arbitrary spatial discretisations. The approach combines two key ideas: first, the use

of finite elements in time (FET) allows us to interact (at the discrete level) with the

fundamental theorem of calculus (FTC), dictating the change in our QoIs over time

intervals; second, the systematic introduction of auxiliary variables (AVs) ensures we

can reproduce the evolution law of each considered QoI discretely, by reproducing a

discrete form of the proof. Our key contribution lies in the straightforward procedure

we propose for the application of these ideas, for general QoIs and general systems.

To demonstrate our framework, we consider a broad class of physically mean-

ingful QoIs for a diverse set of systems. For instance, we construct integrators

that preserve all known invariants, including e.g. energies and Casimirs, of general

conservative ODE systems. Within the GENERIC formalism, we extend the method

to PDEs, deriving schemes that are both energy-conserving and entropy-generating;

in particular, this includes certain kinetic-type equations such as the Boltzmann

equation. For the compressible Navier–Stokes (NS) equations, we construct finite

element (FE) schemes that conserve mass, momentum, and energy, and satisfy

a discrete entropy inequality.

The framework further develops and generalise a number of existing schemes

in the literature. Within ODE applications, for example, these include the energy-

preserving integrators developed by Hairer, Cohen & Lubich [CH11; HL14], and

the energy- and entropy-stable GENERIC integrator of Romero [Rom09]. Within

PDE applications, we highlight our generalisations of the energy- and helicity-stable

incompressible NS integrators of Rebholz [Reb07], and the general energy-stable

integrators of Giesselmann, Karsai & Tscherpel [GKT25].

A key strength of the framework is its flexibility in space for PDE discretisations;

in particular, as stated above, we typically impose no constraints on the spatial

discretisation. When using FE spaces that satisfy certain compatibility conditions de-

riving from finite element exterior calculus (FEEC), we show that our SP schemes may

simplify significantly, allowing for efficient implementation and more elegant mixed

formulations. We demonstrate this with a novel energy-stable velocity–vorticity FE

integrator for the incompressible NS equations that preserves the evolution of the
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enstrophy (a dissipation inequality in 2D), and with an energy- and helicity-stable

scheme for incompressible Hall magneto-hydrodynamics (MHD) that generalises

the work of Laakmann, Hu & Farrell [LHF23].

By leveraging our schemes’ SP properties, we also prove several analytic re-

sults. For advection–diffusion (AD) PDEs, such as incompressible NS and MHD,

we establish the existence and, under certain stronger conditions, uniqueness of

discrete solutions. For ODEs, we prove both the existence of unique solutions,

and their convergence.

We explore also the extension of our framework to adiabatic invariants, quantities

that are not necessarily conserved, but evolve slowly compared to fast system

dynamics. The Lorentz problem considers the motion of a charged particle in a

strong magnetic field; using this as an illustration, we demonstrate how a modified

idea of the AVs introduced by our framework can lead to an energy-conserving

integrator that further preserves the adiabatic invariance of the magnetic moment.

Throughout the thesis, we complement theoretical developments with numer-

ical simulations, demonstrating our integrators’ improved accuracy and stability.

These include examples ranging from the Kepler problem and Kovalevskaya top

(when considering general conservative ODEs) and the Lorentz problem, to the

incompressible and compressible NS equations.

The framework presented in this thesis was originally proposed in the preprint

[AF25] alongside the example applications used here for the energy- and helicity-

stable incompressible NS integrator, and the mass-, momentum-, energy- and entropy-

stable integrator for the compressible NS equations. Unless otherwise stated (e.g. in

the case of the energy- and helicity-stable integrator the incompressible Hall MHD

equations) we believe all remaining schemes introduced in this thesis to be novel in

the literature; in particular these include those for general conservative ODE systems,

GENERIC PDE systems (including the Boltzmann equation), the Lorentz problem,

and the energy- and enstrophy-stable incompressible NS integrator.
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1.1 Funding

This work has been part-funded by the EPSRC Energy Programme [grant number

EP/W006839/1] and a CASE aware from the UK Atomic Energy Authority.

1.2 Code availability

The code that was used to generate the numerical results in Figs. 6.1, 6.2 & 10.1

was written in Python using NumPy [Har+20], with the former two figures using

PETSc [Bal+24]. The code for Fig. 6.4 & 6.5 was written in MATLAB [The23a] using

the Optimization Toolbox [The23b].

All remaining numerical simulations were done in Firedrake [Ham+23], with

the Gauss method in Figs. 7.1 & 7.2 using Irksome [FKM21]. Code for reproducing

the numerical results of this work can be found at [And25].

1.3 Overview

This thesis is partitioned into three parts. Each includes an introductory chapter; these

introductions discuss the relevant motivation and literature for the material discussed

in the corresponding part, and an overview of the contents of each contained chapter.

In Part I, we define our general framework for the construction of geometric

numerical integrators for IVPs that preserve multiple general conservation and

dissipation structures, via FET and the systematic introduction of AVs. We further

offer certain preliminary analytic results for our schemes in the case of AD PDEs,

demonstrating the existence of solutions and, under certain stronger criteria, their

uniqueness. We further discuss the implementation of our schemes, in particular

discussing those cases in which the proposed AVs may be pre-computed, and do

not require introduction on the computational level. As a running example, we

consider the incompressible NS equations, in which both the energy and helicity

are conserved in the ideal limit, and energy is dissipated otherwise; we refer to

these properties as energy and helicity stability. We apply our framework to derive

an energy- and helicity-stable integrator (a high-order-in-time generalisation of

that of Rebholz [Reb07]), i.e. one that preserves the conservation and dissipation

properties of the energy and helicity discretely. The aforementioned analysis allows
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us to consider the existence and uniqueness of solutions to our discrete scheme,

while our notes on the implementation of our schemes indicate how a certain AV

(approximating the velocity) may be eliminated on the computational level for

more efficient implementation.

In Part II, we demonstrate the framework through application to various conser-

vative and dissipative systems of ODEs and PDEs. For ODEs, we consider Poisson

and gradient-descent systems, general conservative systems, and ODEs derived

from the GENERIC formalism. In the first case, our work reproduces the schemes

of Hairer, Cohen & Lubich [CH11; HL14]; in the last it represents an extension of

that of Romero [Rom09] to arbitrary order in time. For the general conservative

integrator, however, we believe our scheme to be novel. We establish uniqueness

and convergence results that are generally applicable to each of these schemes.

For PDEs, we again consider Poisson and gradient-descent systems, PDEs derived

from the GENERIC formalism (including a form of the Boltzmann equation), and

the compressible NS equations; for the Poisson and gradient-descent systems, our

scheme resembles that of Giesselmann, Karsai & Tscherpel [GKT25], however in the

latter two cases we again believe our proposed discretisations to be novel. Various

numerical examples demonstrate the benefits of the SP schemes, including for the

Kepler problem, the Benjamin–Bona–Mahony (BBM) equation (an example Poisson

system), and a shockwave formation in the compressible NS equations.

In Part III, we discuss two extensions of the framework: the preservation of certain

adiabatic invariants (see Henrard [Hen93] or Arnold, Kozlov & Neishtadt [AKN06])

and connections with FEEC (see the original work of Hiptmair [Hip01] or Arnold,

Falk & Winther [AFW06; AFW09; Arn18]). In the former, we construct energy-stable

integrators for charged particles in strong magnetic fields that preserve the adiabatic

invariance of the magnetic moment; this requires a generalised notion of the AVs

introduced by our framework. In the latter, we revisit the energy- and helicity-stable

integrators of Part I, using FEEC to eliminate a certain Lagrange multiplier (LM)

from the discretisation, simplifying the computational application. We then derive a

novel energy-stable integrator for the incompressible NS equations that preserves the

evolution of enstrophy, in particular a dissipation inequality in the 2D case; we show

that, through FEEC, this may be written in an amenable mixed velocity–vorticity

form. We conclude by considering the preservation of energy and helicity stability

in the incompressible Hall MHD equations; after extensive manipulation, we are
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able to show an energy- and helicity-stable scheme proposed by our framework

is equivalent to a high-order generalisation of that proposed by Laakmann, Hu &

Farrell [LHF23]. Each of the schemes proposed here can be analysed through the

results for general AD systems established in Part I, giving both the existence of

solutions and their uniqueness.



Part I

A general framework for geometric
numerical integration: Conservation

laws & dissipation inequalities

7



“

{
“What one fool can do, another can.”

— Ancient Simian Proverb

}
”

— Silvanus P. Thompson [Tho10]

2
Introduction

Contents

2.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

This part of the thesis introduces our framework for the construction of conserva-

tive and accurately dissipative integrators for ODEs and PDEs. Typical approaches

for the construction of numerical integrators for PDEs handle the spatial and temporal

discretisations separately, the latter typically being done through Runge–Kutta

(RK) methods; in contrast, our framework relies on the discretisation of variational

problems posed in space-time, albeit over a single time interval, i.e. we do not solve

for all times simultaneously. This represents the first of two key ideas in our approach.

The second is the systematic introduction of AVs. Through our framework, each

structure to be preserved can be connected to a certain associated test function; for

each structure, we introduce a specific AV, a certain projection of this associated

test function over a space-time domain. These AVs are then coupled back into the

original system, creating an SP mixed method.

Incompressible Navier–Stokes, energy, helicity & topology

As a well-studied example of wide interest, we demonstrate our framework through

the design of a stable integrator for the NS equations. The first structure we consider

therein is the dissipation (or conservation in the ideal limit) of energy 1
2∥u∥

2, where

8
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u is the flow velocity and ∥ · ∥ denotes the L2 norm. This is arguably the most

fundamental structure within the NS equations, and crucial to their analysis (see

Temam [Tem24] or Girault & Raviart [GR12]); the preservation of energy stability,

i.e. the construction of schemes that preserve the dissipation (or conservation) or

energy discretely, is therefore essential for the design of well-posed numerical

integrators. We use our framework to construct an energy-stable FE scheme for

the NS equations, and exploit the preserved energy law in our analysis in Section 3.3

to prove the existence and (under certain conditions) uniqueness of solutions to

our discretisation.

The second structure we consider relates to the topology of the incompressible NS

equations in 3D. In the ideal case and in the absence of external forces, vortex lines

(i.e. streamlines of the vorticity field curl u) are convected by the flow (see Arnold

& Khesin [AK08, Chap. I Cor. 5.11]). As a consequence, the topology of the vortex

lines is preserved over time; that is to say, if the initial vortex lines are twisted or

knotted, they must remain equivalently twisted or knotted. First observed by Moreau

[Mor61] in 1961, the ideal conservation of the fluid helicity 1
2(u, curl u), where (·, ·)

denotes the L2 inner product, is an important (but not equivalent) consequence of

this topological persistence property. A result from Arnold [Arn14] in 1974, often

called the helicity theorem (see Arnold & Khesin [AK08, Chap. III Th. 4.4]), offers an

intuitive topological interpretation of the helicity: for general divergence-free fields

in 3D, the helicity is in a certain specific sense a continuous analogue of the linking

number, a discrete topological invariant that quantifies the linking of closed curves

in 3D (see Cantarella et al. [Can+99]). Conservation of the helicity at the discrete level

therefore goes some way to the preservation of vortex line topology, ensuring that

numerical solutions are unable to untie certain twists in the flow on a global scale.

See the review paper of Moffatt & Tsinober [MT92] for a further discussion of the

importance of helicity for the dynamics of 3D flows. In our scheme, we are able to

preserve both the dissipation of energy and, in the ideal case, the conservation of

helicity, for discretisations of arbitrary order in space and time.
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2.1 Related literature

Relevant literature relating to specific applications of our framework (i.e. existing

stable integrators for previously studied systems) will be reviewed in Parts II & III

when these applications are introduced. We restrict our review here to the core

techniques applied in our framework and their connection to SP, alongside energy

and helicity stable integrators for the incompressible NS equations.

Continuous Petrov–Galerkin & structure preservation

The connections between continuous Petrov–Galerkin (CPG) and SP date back to

1990, when French & Schaeffer [FS90] first observed that CPG time discretisations

are SP for many problems. When applied to certain conservative ODE systems,

CPG naturally conserves the energy; when applied to gradient descent systems, CPG

naturally dissipates the energy. The authors also report that CPG applied to some (but

not all) Hamiltonian PDEs is again conservative. In each of these cases our framework

recovers the discretisation proposed by French & Schaeffer when applied to the same

systems, choosing In (see Step B of the framework below) to be the exact integral.

Betsch & Steinmann extended these observations to general Hamiltonian ODEs

written in canonical coordinates [BS00b; BS00a] and applied the technique to develop

an energy-conserving scheme for elastodynamics [BS01]. This was generalised further

by Egger, Habrich & Shashkov [EHS21] to a broad class of conservative or dissipative

PDEs written with a skew-symmetric or semidefinite operator acting on the time

derivative. Celledoni & Jackaman [CJ21] observed that CPG is energy-conserving

for multisymplectic systems. In each of these cases, our framework recovers the

proposed discretisations when applied to these problems.

Systematic introduction of auxiliary variables

The idea of using AVs to preserve conservation and dissipation structures dates back

to the discrete gradient method of McLachlan, Quispel & Robidoux in 1999 [MQR99].

The authors employ the discrete gradient concept introduced by Gonzalez [Gon96]

to derive one-stage energy-conserving discretisations of energy-conserving systems,

and dissipative discretisations of gradient descent systems. Under certain conditions,

these discrete gradients identify with the AVs introduced by our framework, in
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particular when considering the mean-value discrete gradient of Harten, Lax &

van Leer [HLL83].

This approach was generalised to higher order in time discretisations by Cohen,

Hairer & Lubich [CH11; HL14]. The discrete variational derivative represents an

alternative extension of this idea to PDEs [FM10; DO11].

Other methods

Brugnano, Iavernaro & Frasca-Caccia [BI12; BI16; BFI19] have developed line integral

methods for conservative ODEs and PDEs. These schemes are closely related to

Gauss methods, the framework of Cohen & Hairer [CH11], and CPG schemes with

a particular choice of quadrature rule. Of particular relevance to our work is their

method for enforcing conservation of invariants other than the energy; they devise a

systematic way to perturb the discrete system of Cohen & Hairer in such a way that

retains energy conservation and the same order of accuracy, but also conserves other

invariants [BI16, Sec. 6.1]. In contrast to our approach, their scheme requires the use of

at least as many stages as invariants to be preserved; in particular, the authors devise

a 3-stage time discretisation for the Kepler problem that conserves all invariants.

A framework for the construction of SP modifications to explicit RK schemes for

certain conservative PDEs was proposed in [EG22]. This was extended to implicit-

explicit schemes for systems with a parabolic component in [EG23].

We note in passing the scalar auxiliary variable method of Shen, Xu & Yang

[SXY18] which, in contrast to our approach, introduces a single real auxiliary variable

involving the energy, rather than a field approximating its gradient.

Energy- and helicity-stable integrators for the incompressible Navier–
Stokes equations

As arguably the most fundamental structure in arguably the most fundamental

nonlinear equation in the study of numerical PDEs, the literature on the design

of energy-stable integrators for the incompressible NS equations is vast. We can,

however, trace its origins back to the late 1950s & 1960s.

In 1959, Phillips [Phi59] observed that, when improperly handled, nonlinear

advective terms could lead to the breakdown of solutions for numerical integrators. It

was shown by Arakawa [Ara66] 7 years later that these instabilities could be avoided
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by conserving certain quadratic norms on the solution; early finite-difference schemes

to do so include those of Harlow & Welch [HW65] and Arakawa, Mesinger & Lamb

[MA76; AL77]. In 1970, Piacsek & Williams [PW70] connected the conservation

of energy with the preservation of the skew-symmetry of the advective operator

on the discrete level. A general framework for the construction of 1-stage, energy-

dissipative schemes for the incompressible NS equations was proposed by Simo &

Armero in 1994 [SA94]; these correspond to schemes deriving from our framework

with F̃ as defined in (3.23) below.

At lowest order in time and after elimination of the AV approximating the velocity

(see Section 4.2), our energy- and helicity-stable NS integrator aligns exactly with the

1-stage energy- and helicity-stable scheme proposed by Rebholz [Reb07]; our scheme

can therefore be interpreted as a generalisation of this scheme to higher order in time.

The uniqueness analysis presented by Rebholz in Subsection 3.1 therein aligns with

ours presented in Subsection 3.3.4, albeit with a more careful handling from Rebholz

in the continuous setting such that the results are stable under mesh refinement; see

also Section 4 therein for a proof of convergence of the scheme of Rebholz.

Zhang et al. [Zha+22] proposed an energy- and helicity-stable dual-field discretisa-

tion for the incompressible NS equations. Their scheme introduces two variables each

for the velocity and vorticity (for a total of four variables) the updates of which are

alternated in a staggered fashion, such that each step in the resulting scheme is linear.

Finite element software with support for finite elements in time

While some publicly and commercially available FE software packages support

domains of high dimensions (> 3) these implementations are typically not optimised

for the use of FET.

The best support in this area comes perhaps in Firedrake [Ham+23]. Irksome

[FKM21], a Python library adding a time discretisation layer to Firedrake’s finite

element interface, offers some initial support for variational-in-time integrators, with

work to include more general FET schemes ongoing. The numerical simulations for

this thesis rely largely on the use of Firedrake, with the FET aspects implemented

using a package made specifically for this thesis.
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2.2 Overview

In Chapter 3, we define our general framework for the construction of geometric

numerical integrators. As stated above, to fix ideas we consider the incompressible

NS equations, constructing FE schemes that preserve both the energy and helicity

stability to arbitrary order in space and time. We demonstrate the scheme with a

numerical test on an example vortex with varying Reynolds number, comparing

our scheme to a classical energy-stable discretisation. While we do not analyse all

schemes that may be derived from our framework,1 we present an analysis for SP

discretisations of general AD systems, using the preserved structures (in particular

the preserved energy stability) to prove certain existence and uniqueness results.

Its generality makes it applicable to various other SP discretisations derived from

our framework (see Chapter 10).

In Chapter 4, we discuss certain aspects of the implementation of our schemes.

Since many commercial FE software options do not support space-time domains, we

discuss how we can use tensor-product constructions of our space-time spaces to

circumvent these shortcomings. We further discuss how, under certain circumstances

(including most SP methods for ODEs), the AVs introduced by our framework can

be computed explicitly offline for all solution variables, thus eliminating the need

to introduce them in the implementation, and conclude with a discussion about

the connections between the SP schemes deriving from our framework and Gauss

collocation methods [HLW06, Sec. II.1.3].

1Such a complete analysis would be comparable with an analysis of all possible FE methods.
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We present now the general framework. We will show how it can be used to

modify a certain given discrete timestepping scheme (e.g. RK/FET) for a transient

system to preserve chosen conservation laws or dissipation inequalities. In particular,

the ideas will be presented for PDE systems; the extension to ODE systems follows

by replacing discrete function spaces with suitable finite-dimensional vector spaces.

14



3. The general framework 15

Example (Incompressible NS)

To fix ideas, throughout this chapter we will employ the incompressible NS

equations as our running example. The equations can be written in strong form

as

u̇ = u× curl u−∇p+ 1
Re∆u, (3.1a)

0 = div u, (3.1b)

over a cuboid domain Ω ⊂ R3 (as we shall be considering periodic boundary

conditions) where × denotes the cross product, ∆ denotes the Laplacian, and

throughout this thesis ∗̇ is shorthand for the partial derivative with respect to

time t. Here u : R+ × Ω → R3 is the velocity, p : R+ × Ω → R is the total (or

Bernoulli) pressure, and Re > 0 is the Reynolds number; we use a rotational (or

Lamb) form for the advective term. We consider periodic boundary conditions

(BCs) with the additional constraint on the initial condition (IC)∫
Ω

u(0) = 0. (3.2)

If (3.2) holds then any solution to (3.1) satisfies
∫

Ω u = 0 at all times. This

condition is included to ensure certain energy estimates exist on solutions to

the scheme; namely, we require that ∥∇u∥ defines a norm on u where ∥ · ∥
denotes the L2(Ω) norm.

Define the energy Q1(u) := 1
2∥u∥

2 and helicity Q2(u) := 1
2(u, curl u), where

(·, ·) denotes the L2(Ω) inner product. Under periodic BCs, Q1 and Q2 are

conserved in solutions of the formal ideal limit Re =∞, while Q1 is necessarily

dissipated for Re < ∞; we wish to construct a timestepping scheme that

preserves these behaviours.

The rest of this chapter proceeds as follows. In Section 3.1, we present our

general framework for constructing stable FE integrators, using the incompressible

NS equations as a running example. In Section 3.2, we demonstrate the SP properties

of our derived stable NS discretisations numerically, through a series of simulations

on a vortex at varying Re. In Section 3.3, we present some preliminary analytic results

for certain schemes deriving from our framework; in particular, we prove existence
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and uniqueness results for stable integrators deriving from our framework for general

AD systems, again using the SP incompressible NS discretisation to fix ideas.

3.1 Definition of the framework

A. Definition of semi-discrete form

We define first an abstract semi-discrete formulation of a transient PDE, discretised

in space only. This is posed over a general affine space

X :=
{
u ∈ C1(R+;U) : u(0) satisfies known initial data

}
. (3.3)

Here, U denotes an appropriate finite-dimensional spatial function space, andC1(R+;U)
the space of continuously differentiable functions from R+ to U. The abstract semi-

discrete weak problem is then as follows: find u ∈ X such that

M(u; u̇, v) = F (u; v) (3.4)

at all times t ∈ R+ and for all v ∈ U. Here M : U× U× U→ R is possibly nonlinear

in u, but bilinear in u̇ and v; this is the significance of the semicolon. While we

do not impose it in general as a condition on M , in all cases considered in this

thesis M(u; ·, ·) defines an inner product on U. Similarly, F : U× U→ R is possibly

nonlinear in u, but linear in the test function v.

Remark 3.1 (Clarifications on the distinction between U and X). To avoid confusion, we

clarify here a certain distinction: the space U, defined in space only, is a function space, i.e. we

require 0 ∈ U; the space X, defined in space and time, is an affine space, i.e. in general 0 ̸∈ X

due to the imposed IC on u(0) for u ∈ X. In particular, since U must be a function space, our

framework is in general not applicable for strongly imposed inhomogeneous (non-zero) BCs;

strongly imposed homogeneous (zero) or periodic BCs remain admissible, alongside those

imposed weakly.

Example (Incompressible NS)

Working with the NS example, we construct a simple semi-discretisation, which

we show can be written in the form (3.4).
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Let V, Q be periodic finite-dimensional function spaces (typically FE

spaces) vector-valued for the velocity and scalar-valued for the pressure

respectively. To work in the most general case possible, we consider two

common alternative semi-discretisations for (3.1). The first formulation is: find

(u, p) ∈ C1(R+;V)× C0(R+;Q), satisfying known ICs in u such that

(u̇,v) = (u× curl u,v) + (p, div v)− 1
Re(∇u,∇v), (3.5a)

0 = (div u, q), (3.5b)

at all times t ∈ R+ and for all (v, q) ∈ V × Q. The second is similar, with

variational equations

(u̇,v) = (u× curl u,v)− (∇p,v)− 1
Re(∇u,∇v), (3.6a)

0 = − (u,∇q). (3.6b)

Up to regularity, the formulations (3.5) and (3.6) are equivalent.

In its current form, there are no time derivatives on the pressure term p,

implying neither (3.5) nor (3.6) can be written in the form of (3.4).a To remedy

this, we define a discretely divergence-free subspace U ⊂ V, as either

U :=
{

u ∈ V : (div u, q) = 0 for all q ∈ Q and
∫

Ω
u = 0

}
, (3.7a)

or

U :=
{

u ∈ V : − (u,∇q) = 0 for all q ∈ Q and
∫

Ω
u = 0

}
. (3.7b)

We can then effectively eliminate both p and the mass conservation equation

(3.5b) or (3.6b), while further incorporating the condition
∫

Ω u = 0, by posing

the semi-discretisation in U; the solution space X is then defined from U

as in (3.3). The general semi-discretisation, representing either (3.5) or (3.6)

depending on the choice (3.7a) or (3.7b) of U, then states: find u ∈ X such that

(u̇,v) = (u× curl u,v)− 1
Re(∇u,∇v) (3.8)

at all times t ∈ R+ and for all v ∈ U. The discrete divergence-free conditions

imposed on U in either (3.5) or (3.6) would then, in implementation, be enforced



3. The general framework 18

in (3.8) through LMs, reproducing (3.7a) or (3.7b) respectively, with a further

LM enforcing the condition
∫

Ω u = 0 (see (3.32) at the end of this section).

This is in the form of (3.4) with M , F given by

M(u; u̇,v) := (u̇,v), (3.9a)

F (u; v) := (u× curl u,v)− 1
Re(∇u,∇v). (3.9b)

aThis is because (3.1) represents a differential–algebraic equation (DAE) [AP98].

B. Definition of timestepping scheme

To make this fully discrete, we define a finite-dimensional affine space Xn over the

timestep Tn = [tn, tn+1]. We employ polynomials in time of degree S ≥ 1:

Xn :={u ∈ PS(Tn;U) : u(tn) satisfies known initial data}. (3.10)

We further introduce In[ϕ], a general linear operator (quadrature rule) that approx-

imates the integral

In[ϕ] ≈
∫

Tn

ϕ. (3.11)

The approximation must be sign-preserving, i.e.

ϕ ≥ 0 =⇒ In[ϕ] ≥ 0, (3.12a)

appropriately scaled in ∆tn := tn+1 − tn, i.e.

In[1] = ∆tn, (3.12b)

and the map ϕ 7→ In[ϕ2] 1
2 must define a norm on PS−1(Tn), the space of degree-(S−1)

polynomials on Tn. Examples of such linear operators include the exact integral,

and any S-stage quadrature rule with positive weights.

The abstract timestepping scheme is then as follows: find u ∈ Xn such that

In[M(u; u̇, v)] = In[F (u; v)] (3.13)

for all v ∈ Ẋn = PS−1(Tn;U).
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Example (Incompressible NS)

No specific choice of In is required. For our running example, we might choose

In to be a Gauss–Legendre (GL) quadrature rule, yielding a Gauss collocation

method.

C. Identification of associated test functions

The properties we wish to preserve (conservation laws or dissipation structures) are

associated with particular choices of test functions. For Fréchet-differentiable QoIs

(Qp : U → R)P
p=1, we assume there exist test functions (wp(u))P

p=1, where each wp is

a functional acting on u, such that the Fréchet derivatives Q′
p(u; v) = M(u; v, wp(u))

for general u, v; under the typical case of M(u; ·, ·) an inner product, each functional

wp(u) is simply the corresponding Riesz representation of Q′
p(u; ·). Consequently,

for u an exact solution of the PDE,

Qp(u(tn+1))−Qp(u(tn)) =
∫

Tn

Q′
p(u; u̇) =

∫
Tn

M(u; u̇, wp(u)) =
∫

Tn

F (u;wp(u)). (3.14)

Note, no constraints are posed here on the space containing wp(u); it is not generally

true that wp(u) ∈ U. For each p, the behaviour of Qp is then encoded in the sign of

F (u;wp(u)); in particular for conserved Qp, F (u;wp(u)) = 0, whereas for dissipated

Qp, F (u;wp(u)) ≤ 0.

Example (Incompressible NS)

We consider two QoIs,

Q1(u) := 1
2∥u∥

2, Q2(u) := 1
2(u, curl u), (3.15)

the kinetic energy and the helicity respectively. Consider u the exact solution

of (3.1): for the kinetic energy Q1,

Q1(u(tn+1))−Q1(u(tn)) =
∫

Tn

(u, u̇) (3.16a)

=
∫

Tn

[
(u× curl u,u)− 1

Re(∇u,∇u)
]

(3.16b)

= − 1
Re

∫
Tn

∥∇u∥2 ≤ 0; (3.16c)
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for the helicity Q2,

Q2(u(tn+1))−Q2(u(tn)) =
∫

Tn

(curl u, u̇) (3.17a)

=
∫

Tn

[
(u× curl u, curl u)− 1

Re(∇u,∇ curl u)
]

(3.17b)

= − 1
Re

∫
Tn

(∇u,∇ curl u). (3.17c)

In each case the advection term vanishes due to properties of the cross product.

Both (3.16, 3.17) align with (3.14) for respective associated test functions

w1(u) := u, w2(u) := curl u. (3.18)

Both Q1 and Q2 are conserved in the ideal limit Re =∞.

D. Introduction of AVs

Our aim is to replicate the conservation/dissipation properties (3.14) discretely.

However, as it stands this cannot be done, as in general wp(u) ̸∈ Ẋn implying it

is not a valid choice of discrete test function. We therefore introduce AVs (w̃p)P
p=1

into the formulation, computing approximations to the associated test functions

(wp(u))1 within the discrete test space Ẋn. Namely, for all p = 1, . . . , P , w̃p ∈ Ẋn

is defined weakly such that

In[M(u; vp, w̃p)] =
∫

Tn

Q′
p(u; vp)

(
=
∫

Tn

M(u; vp, wp(u))
)
, (3.19)

for all vp ∈ Ẋn.

Example (Incompressible NS)

For the NS system, the auxiliary velocity and vorticity ũ (= w̃1),ω (= w̃2) ∈ Ẋn

are defined weakly such that

In[(ṽ, ũ)] =
∫

Tn

(u, ṽ), In[(χ,ω)] =
∫

Tn

(curl u,χ), (3.20)

for all ṽ,χ ∈ Ẋn. In particular, the primal variable u is a discrete velocity

of polynomial degree S in time, that is continuous across time intervals; the

1 We use the notation (wp(u)) as shorthand for (wp(u))P
p=1. Similar abbreviations are used

henceforth throughout this thesis, when the indexing is previously established and clear from context.
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auxiliary variable ũ, on the other hand, is secondary approximation to the

velocity of polynomial degree S− 1 in time with the same spatial discretisation,

that is discontinuous across time intervals.

Note, in the continuous case, the vorticity curl u should satisfy both

div[curl u] = 0 and
∫

Ω curl u = 0.a These results are analogous to the

restrictions on U in (3.7); as such, it is appropriate to approximate curl u by

ω ∈ Ẋn = PS−1(Tn;U).
It is for similar reasons that we elect to consider periodic BCs. Any BC

strongly imposed on u as a restriction on U will naturally be imposed on ω also.

With periodic BCs this is not a concern, as the same restrictions of periodicity

are required on both u and ω.

a The former condition may be seen by div ◦ curl = 0. The latter may be seen by testing
against each basis vector ei and applying integration by parts (IBP) (curl u, ei) = (u, curl ei) =
0.

Remark 3.2 (Direct computation of AVs). In some cases, certain w̃p can be computed

explicitly, and are therefore not needed in the implementation; this in particular is the case for

ũ (= w̃1) in the incompressible NS example. We discuss this further in Section 4.

E. Modification of RHS

We must define F̃ , a modification of F in (3.13), so that when the test function is

chosen to be an AV we recover the associated conservation or dissipation law.

More specifically, we require the construction of F̃ : U × UP × U → R with

the following properties:

1. F̃ (u, (w̃p); v) is linear in its final argument.

2. F̃ coincides with F when evaluated at the associated test functions: for all

(u, v) ∈ U× U,

F̃ (u, (wp(u)); v) = F (u; v), (3.21)

when the left-hand side (LHS) is well defined.



3. The general framework 22

3. F̃ preserves the conservation/dissipation structures of F : for each q = 1, . . . , P ,

if F (u;wq(u)) = 0, then F̃ (u, (w̃p); w̃q) = 0;

if F (u;wq(u)) ≥ 0, then F̃ (u, (w̃p); w̃q) ≥ 0; (3.22)

if F (u;wq(u)) ≤ 0, then F̃ (u, (w̃p); w̃q) ≤ 0.

This process is problem-specific, requires some judgement, and is best understood by

example.

Example (Incompressible NS)

With the AVs defined to live in Ẋn, the choice v = ũ (= w̃1) is now valid in

(3.13). We wish to replicate the energy dissipation law (3.16) when this choice

is made. By inspection, defining

F̃ (u, ũ; v) := (ũ× curl u,v)− 1
Re(∇ũ,∇v), (3.23)

then when testing with v = ũ in (3.23)

F̃ (u, ũ; ũ) = − 1
Re∥∇ũ∥2 ≤ 0, (3.24)

satisfying (3.22) for q = 1. To satisfy (3.22) for q = 2, we further modify (3.23)

to recover the helicity law (3.17) by defining

F̃ (u, (ũ,ω); v) := (ũ× ω,v)− 1
Re(∇ũ,∇v), (3.25)

such that when further testing with v = ω (= w̃2) in (3.25),

F̃ (u, (ũ,ω);ω) = − 1
Re(∇ũ,∇ω). (3.26)

In the ideal case Re = ∞, both (3.24, 3.26) evaluate as 0, preserving the

conservation structures.
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F. Construction of SP scheme

With F̃ defined, the final SP scheme is as follows.

Definition 3.3 (Final discretisation). Find (u, (w̃p)) ∈ Xn × ẊP
n such that

In[M(u; u̇, v)] = In[F̃ (u, (w̃p); v)], (3.27a)

In[M(u; vp, w̃p)] =
∫

Tn

Q′
p(u; vp), (3.27b)

for all (v, (vp)) ∈ Ẋn × ẊP
n .

Notably, the exact integral on the right-hand side (RHS) of (3.27b) cannot be

substituted for In without breaking the SP properties of the scheme, as described

in Theorem 3.4 below.

Example (Incompressible NS)

The final energy- and helicity-conserving scheme is as follows: find (u, (ũ,ω)) ∈
Xn × Ẋ2

n such that

In[(u̇,v)] = In

[
(ũ× ω,v)− 1

Re(∇ũ,∇v)
]
, (3.28a)

In[(ũ, ṽ)] =
∫

Tn

(u, ṽ), (3.28b)

In[(ω,χ)] =
∫

Tn

(curl u,χ), (3.28c)

for all (v, (ṽ,χ)) ∈ Ẋn × Ẋ2
n. In its current state, the discretisation (3.28) is not

amenable to numerical implementation, due to LMs implicitly contained in the

definition of U enforcing the discrete divergence-free conditions; see below for

a definition of the scheme (3.28) with these LMs extracted.

Theorem 3.4 (SP of the framework). Where solutions to (3.27) exist, they preserve the sign

of the changes to the functionals Qq(u), q = 1, . . . , P , across each timestep. In particular, if

Qq(u) is conserved by the exact solution, then it is also conserved by the discretisation (up to

quadrature errors, solver tolerances, and machine precision).

Proof. For each QoI Qq,

Qq(u(tn+1))−Qq(u(tn)) =
∫

Tn

Q′
q(u; u̇) = In[M(u; u̇, w̃q)] = In[F̃ (u, (w̃p); w̃q)], (3.29)
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where the second equality holds by (3.27b), and the final by (3.27a). Thus, if Qq(u)

is conserved by the exact solution, F̃ (u, (w̃p); w̃q) = 0 by (3.22); by the linearity of

In, Qq(u) is conserved across timesteps. Otherwise, if Qq(u) is non-decreasing for

the exact solution, F̃ (u, (w̃p); w̃q) ≥ 0 by (3.22); by the sign-preserving property of In

(3.12a), Qq(u) is non-decreasing across timesteps. The same argument holds if Qq(u)

is non-increasing.

Example (Incompressible NS)

For the NS scheme (3.28) we find

Q1(u(tn+1))−Q1(u(tn)) = − 1
ReIn[∥∇ũ∥2] ≤ 0, (3.30a)

Q2(u(tn+1))−Q2(u(tn)) = − 1
ReIn[(∇ũ,∇ω)]. (3.30b)

These identities resemble weak forms of (3.16, 3.17).

The framework is summarised below.

Framework 3.5 (Our proposed framework
for constructing SP schemes for IVPs)

A. Define the semi-discrete formulation

B. Define the timestepping scheme

C. Identify the associated (spatial) test functions

D. Introduce corresponding AVs

E. Modify the RHS of the weak form

F. Construct the SP scheme

If one begins with a symmetric timestepping scheme, the resulting scheme will

inherit its symmetry, a property that is essential for accurately capturing the long-

term behaviour of reversible systems [HLW06, Chap. V & XI].
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Example (Incompressible NS)

Before demonstrating the scheme (3.28) numerically, we again note that, for

numerical implementation, we may remove the LMs contained in U enforcing

the discrete divergence-free and zero-momentum conditions. To do so, let us

define spaces Yn, Rn, P̂n,

Yn := {u ∈ PS(Tn;V) : u(tn) satisfies known initial data in U} , (3.31a)

Sn := PS−1(Tn;Q), (3.31b)

P̂n := PS−1(Tn)3. (3.31c)

With U defined as in (3.7a), the scheme may be equivalently stated as follows:

find (u, (ũ,ω), (p, θ), (λ,α)) ∈ Yn × Ẏ2
n × S2

n × P̂2
n such that

In[(u̇,v)] = In

[
(ũ× ω,v)− 1

Re(∇ũ,∇v)
]

+
∫

Tn

(p, div v)− λ ·
∫

Ω
v, (3.32a)

In[(ũ, ṽ)] =
∫

Tn

(u, ṽ), (3.32b)

In[(ω,χ)] =
∫

Tn

(curl u,χ) +
∫

Tn

(θ, divχ)−α ·
∫

Ω
χ, (3.32c)

0 =
∫

Tn

(div u, q), (3.32d)

0 =
∫

Tn

(divω, η), (3.32e)

0 =
∫

Tn

µ ·
∫

Ω
u, (3.32f)

0 =
∫

Tn

β ·
∫

Ω
ω, (3.32g)

for all (v, (ṽ,χ), (q, η), (µ,β)) ∈ Ẏn× Ẏ2
n× S2

n× P̂2
n. With U defined as in (3.7b),

this is similar, with each of the 4 (p, div v)-like operators instead taking the

form −(∇p,v).
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3.2 Vortex test

To demonstrate the SP properties of the SP NS scheme (3.28) results, we consider a

stationary Hill spherical vortex [Hil94] with swirling motion [Mof69, Sec. 6(b)]. In

spherical coordinates (r, θ, φ), define the Stokes stream function

ψ(r, θ, ϕ) :=


2
[
J 3

2
(4ηr)

(4r) 3
2
− J 3

2
(η)
]
(r sin θ)2, r ≤ 1

4

0, r >
1
4

, (3.33)

where Jα denotes the Bessel function of the first kind of order α, and η the first root

of J 5
2
, around 5.76. Up to projection onto U, the ICs u(0) are given by ψ as

u(0) = ∂θψ

r2 sin θ r̂− ∂rψ

r sin θ θ̂ + 4ηψ
r sin θ φ̂ (3.34)

where (r̂, θ̂, φ̂) are the corresponding spherical unit vectors, and ∂θ, ∂r denote partial

derivatives with respect to θ, r respectively. This defines the first stationary Hill

spherical vortex of radius 1
4 ; we consider the domain Ω = (−0.5, 0.5)3.

In space, we use tetrahedral cells of uniform diameter 2−3; we take U and P to

form the lowest order Taylor–Hood FE pair (see Ern & Guermond [EG21b, Sec. 54.3]),

i.e. continuous Galerkin (CG, a.k.a. Lagrange) elements of degrees 2 and 1 respectively

(similarly see Ern & Guermond [EG21a, Sec. 6 & 7]). In time, we take S = 3 with

In the exact integral, a uniform timestep ∆t = 2−10, and duration 3 · 2−6. For

comparison, we run simulations using the full SP scheme (3.28) alongside one that

preserves the structure in the energy only using F̃ as defined in (3.23); this latter

scheme is equivalent to a typical S-stage Gauss method (see Section 4.3 below). We

vary Re ∈ 4s over s ∈ {0, . . . , 8}.
Fig. 3.1 shows the evolution of the energy Q1 and helicity Q2 in the two simu-

lations. From the graph on the lower right, we observe that the energy-preserving

scheme has an artificial dissipation in the helicity at all Re, due to the lack of

preservation of the helicity-dissipation structure. In all other cases, the dissipations in

the energy and helicity decrease in magnitude as Re increases; moreover the energy is

universally non-increasing. Fig. 3.1 shows a cross-section of the velocity streamlines

at the initial and final times with both schemes, at Re = 48. When compared with the

results from the full SP scheme, one can observe that the artificial helicity dissipation

in the energy-preserving scheme causes increased unphysical instability in the vortex.
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(Q1, Q2)-preserving Q1-preserving

energy
Q1

0

0.52

1.04

helicity
Q2

0 0.02 0.040

9.9

19.8

t

Re = 48

Re = 44

Re = 40

0 0.02 0.04
t

Figure 3.1: Evolution of the energy Q1 and helicity Q2 in the (Q1, Q2)-preserving scheme
(3.28) and the Q1-preserving scheme derived from (3.23), with varying Re = 4s for s ∈
{0, . . . , 8}.

3.3 Analysis: Existence & uniqueness

We detail now some results on the existence and uniqueness properties of certain

schemes deriving from the framework. In particular, we restrict our attention to

AD systems, with a conserved or dissipated quadratic energy, the behaviour of

which is preserved to the discrete level. This includes the stable incompressible

NS integrator (3.28) which we will again use as a running example. However,

the generality of the analysis means it extends also to the schemes proposed in

Sections 10.4 & 10.5; we shall revisit the results of this section in Subsections 10.4.1

& 10.5.1 to show how they can be used to give existence and uniqueness results

for the discretisations proposed therein.
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(a) t = 0

(b) (Q1, Q2)-preserving, t = 3 · 2−6 (c) Q1-preserving, t = 3 · 2−6

Figure 3.2: Cross-sections of streamlines of the velocity u for the Hill vortex at times t ∈
{0, 3 · 2−6} in the (Q1, Q2)-preserving scheme (3.28) and the Q1-preserving scheme derived
from (3.23) with Re = 216. Colouring indicates ∥u∥.

Our analysis makes use of the assumption that U is finite-dimensional, whereby

all norms and forms of continuity on U are equivalent. We make this decision as

the generality of our framework renders a general infinite-dimensional analysis

unsuitable. Under a careful handling of the different norms on U however, certain

aspects of the analysis presented in this section may well be extended to certain

infinite-dimensional settings. We specifically make use of theorems that, under

stricter regularity conditions, extend to infinite dimensions, in particular Schaefer’s

fixed point theorem and the contraction mapping theorem (CMT); this is done
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with the intention that, when investigating a specific problem setting for which

the continuous analysis is of importance, certain aspects and results from the discrete

analysis could be modified with relative ease.

Again due to our sole consideration of finite-dimensional U, we omit from

this section any discussion of convergence. Convergence under refinement of the

time discretisation is discussed in Subsection 6.1.1 in the case of ODE systems, for

which, with no spatial discretisation, this ceases to be an issue. The same analysis

presented therein could well be employed here to show convergence to a solution

of an associated semi-discrete problem, discretised in space only; this is of limited

use however, as it fails to guarantee convergence under simultaneous refinement

of the discretisations in both space and time.

Remark 3.6 (Non-Newton linearisations intended for analysis only). In the analyses to

come, we introduce two different linearisations (Definitions 3.19 & 3.14) of the general SP

discretisation (3.27). We note here that these are intended as analytic tools only, in particular

for their ability to inherit certain energy estimates; we do not necessarily suggest their use as

nonlinear solvers as, when convergent, Newton linearisations generally converge more quickly

(see Fig. 3.3). In fact, only one of these linearisations, the Picard linearisation (Definition 3.19),

we know to converge at all, and only under certain conditions (see Subsection 3.3.4 and

Lemma 3.24).

The rest of this section proceeds as follows. In Subsection 3.3.1, we introduce some

preliminary results and notation that will be of general use. In Subsection 3.3.2, we

define a general AD system alongside certain technical results. In Subsection 3.3.3, we

show that, under relatively loose conditions, solutions to an SP discretisation of such a

system exist on arbitrary timesteps ∆tn (Theorem 3.18). In Subsection 3.3.4, we show

that, under slightly stricter conditions, these solutions exist uniquely (Theorem 3.26).

Example (Incompressible NS)

Again, for didactic purposes we will be using as a running example the SP

discretisation (3.28) of the NS equations.

To simplify the application of the framework to the incompressible NS

equations, we assumed no forcing term in our strong form of the equations

(3.1). We may retroactively consider a forcing term f : Ω → R3 by rewriting
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Energy estimate region

Picard iterates

Newton iterates

Failure of energy estimates

True solution

Figure 3.3: Visualisation of the trade-offs in iterate behaviour between a (hypothetical)
Newton and Picard linearisation (Definition 3.19) for a (hypothetical) nonlinear problem.
Note the Newton iterates temporarily fail the energy estimates, albeit for a faster convergence
rate than the Picard iterates in the tail; this typically poses little problem in practice, but a
large problem for the analysis.

(3.1a) as

u̇ = u× curl u−∇p+ 1
Re∆u + f . (3.35)

The application of the framework is then effectively identical, resulting in the

slightly modified form of (3.28),

In[(u̇,v)] = In

[
(ũ× ω,v)− 1

Re(∇ũ,∇v) + (f ,v)
]
, (3.36a)

In[(∇u,∇v)] =
∫

Tn

(u, ṽ), (3.36b)

In[(ω,χ)] =
∫

Tn

(curl u,χ). (3.36c)

For completeness in the analysis, we shall henceforth make this modification,

considering instead the more general discretisation (3.36), reducing to (3.28)

when f = 0.

3.3.1 Notation & preliminaries

As U is finite-dimensional, all norms on U are equivalent; the notation ∥ · ∥∗ therefore

refers to any fixed norm on U, with a function evaluated on U said to be continuous
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if it is continuous with respect to any and all of these norms. We further write

a ≲ b if there exists a constant C > 0 dependent only on S and U, in particular

independent of ∆tn, such that a ≤ Cb.

We gather some technical notes and results that will be used in later proofs.

Note the following lemmas on In, showing respectively that it induces a certain

inner product (Lemma 3.7) and that certain norms over Tn are either continuously

dependent or, stronger still, equivalent (Lemma 3.8).

Lemma 3.7 (In defines an inner product). The map (ϕ, φ) 7→ In(ϕφ) defines an inner

product on PS−1(Tn).

Proof. Symmetry and linearity are immediate. For positive-definiteness, recall that

the map ϕ 7→ In[ϕ2] 1
2 defines a norm on PS−1(Tn).

Lemma 3.8 (Bounds on norms in time). For all bounded v : Tn → R,

In[v] ≤ ∆tn sup
Tn

|v|. (3.37a)

For all v ∈ Ẋn,

∆tn sup
Tn

∥v∥2
∗ ≲

∫
Tn

∥v∥2
∗ ≲ In[∥v∥2

∗]. (3.37b)

Proof. For the former inequality (3.37a),

In[v] ≤ In[sup
Tn

|v|] = ∆tn sup
Tn

|v|, (3.38)

with the inequality holding by (3.12a) and the equality holding by (3.12b).

For the latter inequalities (3.37b) note that supTn
∥·∥∗ and (

∫
Tn
∥·∥2

∗)
1
2 define norms

on Ẋn. Supposing ∥ · ∥∗ were a norm induced by an inner product, the same would

be true of (In[∥ · ∥2
∗])

1
2 by Lemma 3.7; we then see it to be true for general ∥ · ∥∗ by the

equivalence of norms on U. These inequalities then hold by the equivalence of norms

on Ẋn, up to simple confirmation of the scaling in ∆tn.

We lastly introduce an assumption on M (Assumption 3.9) under which we show

In[M ] defines an inner product (Lemma 3.10).

Assumption 3.9 (M defines an inner product). M(u; u̇, v) is independent of u; as such,

we write M(·, ·) = M(u; ·, ·). Moreover, M(·, ·) defines an inner product on U.
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Example (Incompressible NS)

In the case of the incompressible NS discretisation (3.28), M(·, ·) is simply the

L2 inner product.

Lemma 3.10 (In[M ] defines an inner product). Under Assumption 3.9, In[M(·, ·)] defines

an inner product on Ẋn.

Proof. Symmetry and linearity are immediate. Positive-definiteness holds as a

consequence of Assumption 3.9 and (3.37b).

3.3.2 Advection–diffusion systems

We define now the general AD system (Assumption 3.11) alongside certain technical

lemmas (Lemmas 3.12 & 3.13) that will be of use in the existence (Subsection 3.3.3)

and uniqueness (Subsection 3.3.4) analyses to come.

Definition

We use the following assumption to define a general AD system.

Assumption 3.11 (AD conditions). Assume Assumption 3.9, that M defines an inner

product on U. Assume further that the AVs (w̃p) may be partitioned into type-A (w̃(A)
p )

and a single type-B w̃(B) such that F̃ is affine in w̃(B). These AVs are associated with QoIs

type-A (Q(A)
p ) and type-B Q(B) ≥ 0; we require that Q(B)′(·; ·) defines an inner product on

U. Assume lastly that F̃ can be decomposed as

F̃ (u, (w̃p); v)= C
(
u, (w̃(A)

p ); w̃(B), v
)
− κD

(
w̃(B), v

)
+G

(
u, (w̃(A)

p ); v
)
, (3.39)

where κ ≥ 0 is a diffusivity constant (independent of space x and time t) and:

• the advective term C : U× UP −1 × U× U→ R is bilinear and skew-symmetric in its

final two arguments, i.e. such that C(u, (w̃(A)
p ); w̃(B), w̃(B)) = 0;

• the diffusive term D : U× U→ R defines an inner product on U;
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• the forcing term G : U × UP −1 × U → R is linear and uniformly continuous in its

final argument, i.e. such that the bound

∣∣∣G(u, (w̃(A)
p ); v

)∣∣∣≲ ∥v∥∗ (3.40)

holds uniformly for all u, (w̃(A)
p ) in U.

Here, type-B abbreviates “bounding”; this quantity will be used to derive en-

ergy estimates for the analysis. Type-A abbreviates “additional”; these quantities

represent those additional structures preserved by our discretisation. We refer to

the case G = 0 as force-free. We refer to the case κ > 0 as diffusive, and the

case κ = 0 as conservative.

Example (Incompressible NS)

For the NS scheme (3.36) the AVs (ũ,ω) may be partitioned into the type-B

auxiliary velocity ũ and type-A auxiliary vorticity ω. Accordingly, the QoIs

(Q1, Q2) may be partitioned into the type-B energy Q1 and type-A helicity Q2;

we observe then that Q
1
2
1 defines the L2 norm on U.

We may then decompose F̃ , with κ = Re−1 and C, D, G defined

C(u,ω; ũ,v) := (ũ× ω,v), D(ũ,v) := (∇ũ,∇v), G(u,ω; v) := (f ,v). (3.41)

The zero-mean constraint
∫

Ω v = 0 imposed on U (3.7) implies D is an inner

product by the Poincaré [Poi90] inequality (see Evans [Eva10, Sec. 5.8]); it was

for this precise reason we imposed this restriction on U. Since f is fixed, G is

uniformly continuous in v by Cauchy–Schwarz.

Energy estimates & interpolation of the primal variable

The general AD system (Assumption 3.11) exhibits various structures amenable to

analysis. In particular, the diffusivity (at least in the force-free case G = 0) in the

type-B QoI Q(B) provides a bound for the type-B AV w̃(B) which we shall make use of

in the proofs of both existence (Subsection 3.3.3) and uniqueness (Subsection 3.3.4).

Since energy estimates typically offer bounds on w̃(B), we show there exists an

affine transformation from w̃(B) to u. To understand this transformation, we define

an interpolant u∗ ∈ Ẋn of u ∈ Xn at the GL points within Tn. Formally, let πS
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denote the degree-S Legendre polynomial shifted to the interval Tn such that the

roots of πS are the GL points within Tn, and normalised such that πS(tn+1) = 1
(see Fig. 3.4); we may then write

u = u∗ + (−1)S[u(tn)− u∗(tn)]πS. (3.42)

Lemma 3.12 (Bijection between primal variable and type-B AV). Assume Assump-

tion 3.11, i.e. we are considering an AD system. There exists a linear bijection between w̃(B)

and u∗, and consequently an affine transformation from w̃(B) to u via (3.42).

tn tn+1

−1

1

t

π0 π1 π2
π3 π4 π5

Figure 3.4: The first six Legendre polynomials π0, · · · , π5 shifted to the interval Tn. Note that
πS(tn) = (−1)S .

Proof. The AV w̃(B) ∈ Ẋn is defined to satisfy

In

[
M(v(B), w̃(B))

]
=
∫

Tn

Q(B)′(u; v(B)) (3.43)

for all v(B) ∈ Ẋn. By the orthogonality of the Legendre polynomials, we may rewrite

this RHS in the form

In

[
M(v(B), w̃(B))

]
=
∫

Tn

Q(B)′(u∗; v(B)). (3.44)

Since In[M(·, ·)] and
∫

Tn
Q(B)′(·; ·) define inner products on U (by Lemma 3.10 in

the case of the former, and by assumption on Q(B) for the latter) the result holds

immediately by the Riesz representation theorem.
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Example (Incompressible NS)

For the NS scheme (3.36) u∗ ∈ Ẋn is defined to satisfy

u = u∗ + (−1)S[u(tn)− u∗(tn)]πS. (3.45)

The relation

In[(ṽ, ũ)] =
∫

Tn

(u, ṽ) =
∫

Tn

(u∗, ṽ) (3.46)

for all ṽ ∈ Ẋn defines a bijection between ũ and u∗, and an affine transformation

from ũ to u.

This construction of u∗ is chosen specifically such that the following coercivity re-

sult holds.

Lemma 3.13 (Coercivity of AD bilinear form). Define a bilinear form A : Ẋ2
n → R by

A(w̃(B), v) := In

[
M(u̇∗ − (−1)Su∗(tn)π̇S, v) + κD(w̃(B), v)

]
, (3.47)

where u∗ is a linear transformation of w̃(B) as in Lemma 3.12 (3.44). Then A is coercive when

either κ > 0 or S = 1.

Proof. For general u† ∈ C1(Tn;U), we note first by the FTC,

∫
Tn

Q(B)′(u†; u̇†) =
∫

Tn

∂t[Q(B)(u†)] = Q(B)(u†(tn+1))−Q(B)(u†(tn)). (3.48)

Choosing u† = u∗ − (−1)Su∗(tn)πS , we note

u†(tn+1) =

u∗(tn+1) + u∗(tn), S odd,
u∗(tn+1)− u∗(tn), S even,

u†(tn) = 0, (3.49)

implying

∫
Tn

Q(B)′(u†; u̇†) =

Q(B)(u∗(tn+1) + u∗(tn)) ≥ 0, S odd,
Q(B)(u∗(tn+1)− u∗(tn)) ≥ 0, S even.

(3.50)
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By taking v(B) = u̇† = u̇∗ − (−1)Su∗(tn)π̇S in (3.44),

In

[
M(u̇∗ − (−1)Su∗(tn)π̇S, w̃

(B))
]

=
∫

Tn

Q(B)′(u∗; u̇∗ − (−1)Su∗(tn)π̇S) (3.51a)

=
∫

Tn

Q(B)′(u∗ − (−1)Su∗(tn)πS; u̇∗ − (−1)Su∗(tn)π̇S) (3.51b)

=
∫

Tn

Q(B)′(u†; u̇†) (3.51c)

=

Q(B)(u∗(tn+1) + u∗(tn)) ≥ 0, S odd,
Q(B)(u∗(tn+1)− u∗(tn)) ≥ 0, S even,

(3.51d)

where in the second equality we use the orthogonality of the Legendre polynomials.

Since this is non-negative, the coercivity ofA holds immediately when κ > 0, through

the latter, necessarily coercive κIn[D(w̃(B), v)] term.

Otherwise, in the case S = 1, we show coercivity by considering the former

In[M(u̇∗ − (−1)Su∗(tn)π̇S, v)] term. In this case, u∗ is constant time, implying by

(3.51),

In

[
M(u̇∗ − (−1)Su∗(tn)π̇S, w̃

(B))
]

= Q(B)(2u∗(tn+1)) ≳ sup
Tn

∥u∗∥2
∗ ≳ sup

Tn

∥w̃(B)∥2
∗,

(3.52)

where in the last inequality we use the bijection between u∗ and w̃(B) from Lemma 3.12.

Thus, since κIn[D(w̃(B), w̃(B))] ≥ 0, A is coercive when S = 1.

Note, in finite dimensions, A is also trivially continuous by linearity.

Example (Incompressible NS)

For the NS scheme (3.36) A : Ẋ2
n → R is defined

A(ũ,v) := In

[
(u∗ − (−1)Su∗(tn),v) + 1

Re(∇ũ,∇v)
]
, (3.53)

for u∗ defined implicitly as a function of ũ through (3.46). By Lemma 3.13, this

is coercive when either Re <∞ or S = 1.

3.3.3 Existence

We discuss now the existence of solutions to the general SP discretisation (3.27). Our

proof strategy relies on Schaefer’s fixed point theorem (see Evans [Eva10, Sec. 9.2]).
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We define a certain Schaefer linearisation (Definition 3.14) scaling with a parameter

γ ∈ [0, 1] from a homogeneous linear problem when γ = 0 to a full linearisation when

γ = 1, for which fixed points are solutions to the original discretisation (3.27). We

apply Schaefer’s fixed point theorem to give our final existence result in Theorem 3.18.

Definition of the Schaefer linearisation

Definition 3.14 (Schaefer linearisation). Assume Assumption 3.11, i.e. that (3.27) de-

fines an SP discretisation of an AD system. The Schaefer linearisation is defined for a

parameter γ ∈ [0, 1]. Let m ∈ N denote an iteration index, and, on a given timestep Tn,

suppose (u(γ)
m , (w̃(A,γ)

p,m ), w̃(B,γ)
m ) ∈ Xn × ẊP −1

n × Ẋn are given. We define an iteration: find

(u∗(γ)
m+1, w̃

(B,γ)
m+1 ) ∈ Ẋn × Ẋn such that

In

[
M(u̇∗(γ)

m+1 + (−1)S [γu(tn)− u∗(γ)
m+1(tn)]π̇S, v)

]
= In

[
γC(u(γ)

m , (w̃(A,γ)
p,m ); w̃(B,γ)

m , v)

−κD(w̃(B,γ)
m+1 , v) + γG(u(γ)

m , (w̃(A,γ)
p,m ); v)

]
, (3.54a)

In[M(v(B), w̃
(B,γ)
m+1 )] =

∫
Tn

(Q(B))′(u∗(γ)
m+1; v(B)), (3.54b)

for all (v, v(B)) ∈ Ẋn × Ẋn. With this, define u(γ)
m+1 ∈ Xn from u

∗(γ)
m+1 as in (3.42); from u

(γ)
m+1,

find (w̃(A,γ)
p,m ) ∈ ẊP −1

n such that

In[M(v(A)
p , w̃

(A,γ)
p,m+1)] =

∫
Tn

(Q(A)
p )′(u(γ)

m+1; v(A)
p ) (3.55)

for all (v(A)
p ) ∈ ẊP −1

n .

The Schaefer linearisation decouples the updates in the primary variable and

type-B AV (3.54) from those in the type-A AVs (3.55).

Example (Incompressible NS)

For the NS discretisation (3.36), the Schaefer linearisation at a parameter γ ∈
[0, 1] takes the form: find (u∗(γ)

m+1, ũ
(γ)
m+1) ∈ Ẋ2

n such that

In[(u̇∗(γ)
m+1 + (−1)S[γu(tn)− u∗(γ)

m+1(tn)]π̇S,v)]

= In

[
γ(ũ(γ)

m × ω(γ)
m ,v)− 1

Re(∇ũ(γ)
m+1,∇v) + γ(f ,v)

]
, (3.56a)

In[(ṽ, ũ(γ)
m+1)] =

∫
Tn

(u∗(γ)
m+1, ṽ), (3.56b)
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for all (v, ṽ) ∈ Ẋ2
n. Define u(γ)

m+1 ∈ Xn from u∗(γ)
m+1 as in (3.45); lastly, find

ω
(γ)
m+1 ∈ Ẋn such that

In[(χ,ω(γ)
m+1)] =

∫
Tn

(curl u(γ)
m+1,χ) (3.57)

for all χ ∈ Ẋn.

Properties of the Schaefer linearisation

We discuss now certain properties held by the Schaefer linearisation (3.54, 3.55) in par-

ticular its well-posedness and the boundedness of fixed points. Each of these results

holds in either the diffusive case (κ > 0) or the lowest-order-in-time case (S = 1).

Lemma 3.15 (Well-posedness of Schaefer linearisation). The Schaefer linearisation

(3.54, 3.55) is well posed with a unique solution for all γ ∈ [0, 1] when either κ > 0 or S = 1.

Proof. We begin by noting the maps w̃(B,γ)
m+1 7→ u

∗(γ)
m+1 and consequently w̃(B,γ)

m+1 7→ u
(γ)
m+1

(3.54b) are well defined by Lemma 3.12. We see then that the map u
(γ)
m+1 7→ (w̃(A,γ)

p,m+1)
(3.55) is well defined, since the LHS defines an inner product on Ẋn by Lemma 3.10.

It suffices then to show that w̃(B,γ)
m+1 is uniquely determined by (3.54a), i.e. the map

(u(γ)
m , (w̃(A,γ)

p,m ), w̃(B,γ)
p,m ) 7→ w̃

(B,γ)
m+1 is well defined.

Let us interpret u∗(γ)
m+1 as an implicit (linear) function of w̃(B,γ)

m+1 . DefineA : Ẋn×Ẋn →
R as in (3.47); under the assumptions κ > 0 or S = 1, A is coercive by Lemma 3.13.

Define B : Ẋn × ẊP −1
n × Ẋn × Ẋn → R, linear in its final argument,

B(u(γ)
m , (w̃(A,γ)

p,m ), w̃(B,γ)
m ; v) = In

[
G(u(γ)

m , (w̃(A,γ)
p,m ); v)− (−1)SM(u(tn)π̇S, v)

]
. (3.58)

The primal step of the Schaefer linearisation (3.54a) is then equivalent to solving the

problem: find w̃
(B,γ)
m+1 ∈ Ẋn such that

A(w̃(B,γ)
m+1 , v) = γ

{
In[C(u(γ)

m , (w̃(A,γ)
p,m ); w̃(B,γ)

m , v)] +B(u(γ)
m , (w̃(A,γ)

p,m ), w̃(B,γ)
m ; v)

}
(3.59)

for all v ∈ Ẋn. This is well defined by the Lax–Milgram theorem (see Evans [Eva10,

Sec. 6.2]).

The crucial aspect of this result for analytic purposes is that, with u(γ)
m and

(w̃(A,γ)
p,m ) defined as implicit functions of w̃(B,γ)

m , the Schaefer linearisation may be
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equivalently interpreted as an iteration on the type-B AVs w̃(B,γ)
m , with the convenient

abstract form (3.59).

Example (Incompressible NS)

The incompressible NS Schaefer iteration (3.56, 3.57) is well posed with a unique

solution when either Re <∞ or S = 1.

We now show the boundedness of fixed points of the linearisation, uniform in γ ∈
[0, 1].

Lemma 3.16 (Bounded fixed points of Schaefer linearisation). Fixed points (u(γ), (w̃(A,γ)
p ), w̃(B,γ))

of the Schaefer linearisation (3.54, 3.55) are bounded in w̃(B,γ), uniformly over γ ∈ [0, 1],
when either κ > 0 or S = 1.

Proof. Considering v = w̃(B,γ) in (3.59), by the skew-symmetry of C,

A(w̃(B,γ), w̃(B,γ)) = γB(u, (w̃(A,γ)
p ), w̃(B,γ); w̃(B,γ)). (3.60)

With the coercivity of the LHS A(w̃(B,γ), w̃(B,γ)), it is sufficient to show the RHS is

uniformly bounded by any norm on w̃(B,γ);

|γB(u, (w̃(A,γ)
p ), w̃(B,γ); w̃(B,γ))|

≤ |B(u, (w̃(A,γ)
p ), w̃(B,γ); w̃(B,γ))| (3.61a)

≤
∣∣∣ In

[
G(u, (w̃(A,γ)

p ); w̃(B,γ))− (−1)SM(u(tn)π̇S, w̃
(B,γ))

]∣∣∣ (3.61b)

≤ ∆tn
{

sup
Tn

∣∣∣G(u, (w̃(A,γ)
p ); w̃(B,γ))

∣∣∣+ sup
Tn

∣∣∣M(u(tn)π̇S, w̃
(B,γ))

∣∣∣} (3.61c)

≲ (∆tn + 1) sup
Tn

∥w̃(B,γ)∥∗, (3.61d)

where the second inequality holds by the definition of B (3.58), the third by the

bound (3.37a) and triangle inequality, and the last holds by the uniform boundedness

of G (3.40) with the order-1 term arising as ∆tn supTn
|π̇S| ≲ 1.

Example (Incompressible NS)

Fixed points (u(γ), ũ(γ),ω(γ)) of the NS Schaefer linearisation (3.56, 3.57) are

bounded in ũ(γ), uniformly over γ ∈ [0, 1], when either Re <∞ or S = 1.
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Application of Schaefer’s fixed point theorem

With the Schaefer linearisation established and analysed, we may now proceed to

apply Schaefer’s fixed point theorem (see Evans [Eva10, Sec. 9.2]) which may be

stated in a weak formulation as follows.

Lemma 3.17 (Schaefer’s fixed point theorem: weak formulation). Consider a Hilbert

space X . Take a continuous, coercive bilinear form A : X2 → R; take also a continuous

function T : X2 → R, linear in its second argument, such that the mapping x 7→ T (x; ·)
from X → X∗ is compact. For γ ∈ [0, 1], define an iteration on X with iteration index

m ∈ N: for given x(γ)
m ∈ X , find x(γ)

m+1 ∈ X such that

A(x(γ)
m+1, y) = γT (x(γ)

m ; y) (3.62)

for all y ∈ X . If all fixed points of (3.62) for all γ ∈ [0, 1] are uniformly bounded in X , then

there exists a fixed point when γ = 1, i.e. there exists x ∈ X such that

A(x, y) = T (x; y) (3.63)

for all y ∈ X .

When X is finite dimensional, continuity holds as a consequence of linearity,

and compactness as a consequence of continuity. In such a case therefore, it is

sufficient only that A be coercive, and that T be continuous in its first argument

and linear in its second.

With this established, we may apply it to the linearisation (3.54, 3.55) to prove

the existence of solutions to the original SP discretisation (3.27).

Theorem 3.18 (Existence of solutions: AD systems). Assume Assumption 3.11, i.e. we

are considering an SP discretisation of an AD system, and that the advective C and forcing

G terms are continuous in u, (w̃(A)
p ), and that the type-A AVs (Q(A)

p ) are continuously

differentiable. There then exist solutions on arbitrary timesteps ∆tn when either κ > 0 or

S = 1.

Proof. We shall view the Schaefer linearisation (3.54, 3.55) as an iteration solely over

the type-B AV w̃(B,γ)
m ∈ Ẋn, with the primal variable u∗,(γ)

m and type-A AVs (w̃(A,γ)
p,m )

defined as implicit functions of w̃(B,γ)
m . We apply Schaefer’s fixed point theorem

(Lemma 3.17) to the abstract form (3.59).
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The coercivity of the LHS A holds from Lemma 3.13 when either κ > 0 or S = 1.

By the assumptions of continuity of C and G, the RHS is continuous in u(γ)
m , (w̃(A,γ)

p,m ),
w̃(B,γ)

m . The primal variable u(γ)
m is continuously dependent on w̃(B,γ)

m by the affine

transformation (Lemma 3.12) while the type-A AVs are then continuously dependent

on u(γ)
m , and subsequently w̃(B,γ)

m by composition, by the assumed continuity of (Q(A)
p ).

When interpreted as an implicit function of w̃(B,γ)
m , the RHS of (3.59) is therefore

continuous in w̃(B,γ)
m . The uniform boundedness of the type-B AV w̃(B,γ) within fixed

points of the Schaefer linearisation (3.59) then holds from Lemma 3.16. Thus, by

Schaefer fixed point theorem (Lemma 3.17) fixed points to the Schauder iteration

(3.54, 3.55) exist when γ = 1, i.e. there exist solutions to the SP discretisation (3.27).

Example (Incompressible NS)

Solutions to the SP incompressible NS discretisation (3.36) exist for arbitrary

timesteps ∆tn, when either Re <∞ or S = 1.

3.3.4 Uniqueness

We discuss now the circumstance under which the solutions to the general SP

discretisation (3.27) are unique. Our proof strategy relies instead on the CMT

(a.k.a. Banach’s fixed point theorem, see Evans [Eva10, Sec. 9.2]). We define a

different linearisation, a Picard linearisation (Definition 3.19), for which fixed points

are solutions to the original discretisation (3.27). We apply the CMT to give our

final uniqueness result in Theorem 3.26.

Picard linearisation

Definition 3.19 (Picard linearisation). Assume Assumption 3.11, i.e. we are considering

an SP discretisation of an AD system. Let m ∈ N denote an iteration index, and, on a given

timestep Tn, suppose um ∈ Xn is given. We define an iteration: find (um+1, w̃
(B)
m+1) ∈ Xn×Ẋn

such that

In[M(u̇m+1, v)] = In

[
F̃ (um, (w̃(A)

p,m), w̃(B)
m+1; v)

]
, (3.64a)

In

[
M(v(B), w̃

(B)
m+1)

]
=
∫

Tn

Q(B)
p

′(um+1; v(B)), (3.64b)
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for all (v, v(B)) ∈ Ẋn × Ẋn; with this, find (w̃(A)
p,m+1) ∈ ẊP −1

n such that

In

[
M(v(A)

p , w̃
(A)
p,m+1)

]
=
∫

Tn

Q(A)
p

′(um+1; v(A)
p ), (3.65)

for all (v(A)
p ) ∈ ẊP −1

n .

Similarly to the Schaefer linearisation (3.54, 3.55) the Picard linearisation decou-

ples the updates in the primary variable and type-B AV (3.64) from those in the

type-A AVs (3.65), however the difference lies in how this is done.

We recall that the Schaefer linearisation depended continuously on an additional

parameter γ = [0, 1]. At γ = 1, it represented a full linear fixed point iteration for

the nonlinear problem, simply handling the nonlinear advective and forcing terms

explicitly; transferring gradually to γ = 0, all inhomogeneous terms (i.e. the advective

and forcing terms, as well as the ICs) are gradually eliminated, reducing the problem

to a trivial homogeneous one. This had the property that energy estimates held for

all fixed points of the Schaefer linearisation uniformly for all γ ∈ [0, 1] (Lemma 3.16).

In contrast, the Picard linearisation has no dependence on an additional parameter.

Instead, it resembles the Schaefer linearisation at γ = 1—fixed points of the Picard

linearisation equate to solutions of the full nonlinear discretisation—however the

advective term is handled semi-implicitly, i.e. implicitly in w(B)
m+1. This does not affect

the linearity, however we similarly observe below (Lemma 3.21) that this construction

implies a stronger energy estimate, bounding not just fixed points but all iterates.

Example (Incompressible NS)

For the NS discretisation (3.36), the Picard linearisation takes the form: find

(um+1, ũm+1) ∈ Xn × Ẋn such that

In[(u̇m+1,v)] = In

[
(ũm+1 × ωm,v)− 1

Re(∇ũm+1,∇v)
]
, (3.66a)

In[(ṽ, ũm+1)] =
∫

Tn

(ṽ,um+1), (3.66b)

for all (v, ṽ) ∈ Ẋn × Ẋn; with this, find ωm+1 ∈ Ẋn such that

In[(χ,ωm+1)] =
∫

Tn

(χ, curl um) (3.67)

for all χ ∈ Ẋn.
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Properties of the Picard linearisation

We discuss now certain properties held by the Picard linearisation (3.64, 3.65) in

particular its well-posedness and the boundedness of iterations. Similarly to the

existence analysis above, each of these results holds in either the diffusive case

(κ > 0) or the lowest-order-in-time case (S = 1).

Lemma 3.20 (Well-posedness of Picard linearisation). The Picard linearisation (3.64, 3.65)

is well posed with a unique solution when either κ > 0 or S = 1.

Proof. The proof strategy here is very similar to that of Lemma 3.15.

We begin by noting the map w̃(B)
m+1 7→ um+1 (3.64b) is well defined by Lemma 3.12.

We see then the map um+1 7→ (w̃(A)
p,m+1) (3.65) is well defined, since the LHS defines an

inner product on Ẋn by Lemma 3.10. It suffices then to show that w̃(B)
m+1 is uniquely

determined by (3.64a).

Let us interpret um+1 as an implicit (affine) function of w̃(B)
m+1. DefineA : Ẋn×Ẋn →

R as in (3.47); under the assumptions κ > 0 or S = 1, A is coercive by Lemma 3.13.

Define B : Ẋn × ẊP −1
n × Ẋn × Ẋn → R as in (3.58). The primal step of the Picard

linearisation (3.54a) is then equivalent to solving the problem: find w̃
(B)
m+1 ∈ Ẋn such

that

A(w̃(B)
m+1, v)− In

[
C(um, (w̃(A)

p,m+1); w̃(B)
m , v)

]
= B(um, (w̃(A)

p,m), w̃(B)
m ; v) (3.68)

for all v ∈ Ẋn. This is well defined by the Lax–Milgram theorem (see Evans [Eva10,

Sec. 6.2]) since the skew-symmetry of C implies its introduction does not affect the

coercivity of the LHS.

Example (Incompressible NS)

The NS Picard linearisation (3.66, 3.67) is well posed with a unique solution

when either Re <∞ or S = 1.

We now show the boundedness of Picard iterations. Notably, this bound differs

from that of the Schaefer linearisation (Lemma 3.16) in that it holds on all iterations,

and not just the fixed points.

Lemma 3.21 (Bounded solutions of Picard linearisation). Iterates (um+1, (w̃(A)
p,m+1), w̃

(B)
m+1)

of the Picard linearisation (3.64, 3.65) are bounded in w̃(B)
m+1, when either κ > 0 or S = 1.
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Proof. The proof here is almost identical to that of Lemma 3.16, by taking v = w̃
(B)
m+1

in (3.68).

Example (Incompressible NS)

Iterates (um+1, ũm+1,ωm+1) of the NS Picard linearisation (3.66, 3.67) are

bounded in ũm+1 when either Re <∞ or S = 1.

Application of the contraction mapping theorem

With the Picard linearisation established and analysed, we may now proceed to apply

the CMT. We begin by defining certain regularity conditions, under which we may

assert the Picard linearisation (3.64, 3.65) is a contraction.

Assumption 3.22 (AD regularity). Assume Assumption 3.11, i.e. we have an SP discreti-

sation of an AD system. Assume further that C,G ∈ Liploc, i.e. they are locally Lipschitz,

and each Q(A)
p ∈ Lip1

loc, i.e. it is locally Lipschitz differentiable such that for any compact

K ⊂ U,

|C(u+, (w̃(A)+
p ); w̃(B), v)− C(u−, (w̃(A)−

p ); w̃(B), v)|

≲ max{∥u+ − u−∥∗, (∥w̃(A)+
p − w̃(A)−

p ∥∗)} · ∥w̃(B)∥∗∥v∥∗, (3.69a)

|G(u+, (w̃(A)+
p ); v)−G(u−, (w̃(A)−

p ); v)|

≲ max{∥u+ − u−∥∗, (∥w̃(A)+
p − w̃(A)−

p ∥∗)} · ∥v∥∗, (3.69b)

|Q(A)
p

′(u+; v)−Q(A)
p

′(u+; v)|

≲ ∥u+ − u−∥∗ · ∥v∥∗ ∀p, (3.69c)

for all u± ∈ K, (w̃(A)±
p ∈ K) and w̃(B), v ∈ U.

Remark 3.23 (Sufficiency of continuous differentiability). Noting that, for r ≥ 0, any

(r + 1)-times continuously differentiable function necessarily lies in Lipr
loc, it is sufficient to

show C, G are continuouosly differentiable and each Q(A)
p is twice continuously differentiable.

Example (Incompressible NS)

In finite dimensions C (3.41) and Q2 (3.15) are smooth, therefore Assump-

tion 3.22 holds through Remark 3.23.
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Under this assumption, we may show that the Picard linearisation is a contraction,

given certain conditions on κ, ∆tn, S. The proof of this result is where the majority

of the work is required.

Lemma 3.24 (Picard linearisation is a contraction). Assume Assumption 3.22, i.e. we

have a suitably regular AD problem. Then, given either sufficiently large κ, or in the lowest-

order-in-time case S = 1 sufficiently small ∆tn, the Picard linearisation (3.65, 3.64) is a

contraction.

Proof. Considering u±
m+1 ∈ Xn, define u∗±

m+1 ∈ Ẋn, w̃(B)±
m+1 accordingly by (3.42, 3.64b)

respectively; denote also δum+1 := u+
m+1 − u−

m+1, with δu∗
m+1, δw̃(B)

m+1 defined simi-

larly. To show the norms supTn
∥δum+1∥∗ and supTn

∥δw̃(B)
m+1∥∗ are equivalent, it is

sufficient to show supTn
∥δum+1∥∗ and supTn

∥δu∗
m+1∥∗ are equivalent, since the norms

supTn
∥δu∗

m+1∥∗ and supTn
∥δw̃(B)

m+1∥∗ are equivalent similarly to Lemma 3.12. By (3.42)

we see δum+1, δu∗
m+1 are related by

δum+1 = δu∗
m+1 − (−1)Sδu∗

m+1(tn)πS; (3.70a)

this relation can be inverted, as

δu∗
m+1 = δum+1 −

1∫
Tn
π2

S

(∫
Tn

δum+1πS

)
πS. (3.70b)

These linear relations together imply the norms supTn
∥um+1∥∗ and supTn

∥δu∗
m+1∥∗

are equivalent. Together therefore we have the equivalence

sup
Tn

∥δum+1∥∗ ≲ sup
Tn

∥δw̃(B)
m+1∥∗ ≲ sup

Tn

∥δum+1∥∗. (3.71)

It is a simple exercise to confirm each of these scalings is independent of ∆tn.

Before proceeding, we consider the relation briefly the relation between δw̃
(B)
m+1

and δum+1,

In

[
M(v(B), δw̃

(B)
m+1)

]
=
∫

Tn

Q(B)′(δum+1; v(B)). (3.72)

Taking v(B) = ˙δum+1, we find

In

[
M( ˙δum+1, δw̃

(B)
m+1)

]
=
∫

Tn

Q(B)′(δum+1; ˙δum+1) = Q(B)(δum+1(tn+1)) ≥ 0, (3.73)

since δum+1(tn) = 0.

Consider now the bound on w̃(B)
m+1 from Lemma 3.21 when either κ > 0 or S = 1.

It is a simple exercise to confirm this bound is uniform as κ → ∞, i.e. for all κ∗,
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there exists a compact set Kn ⊂ Ẋn such that for all κ ≥ κ∗, all Picard iterates (w̃(B)
m )

lie in Kn. In the case S = 1, we may similarly confirm that this bound is uniform

as ∆tn → 0, i.e. for all ∆t∗n, there exists a compact set Kn ⊂ Ẋn such that for all

∆tn ≤ ∆t∗n, all Picard iterates (w̃(B)
m ) lie in Kn. We restrict our attention then to iterates

w̃(B)±
m in a compact set, over which the Lipschitz results (3.69) hold uniformly as

we take either κ → ∞ or (in the case S = 1) ∆tn → 0. The affine transformation

w̃(B)±
m 7→ u±

m implies the iterates u±
m lie similarly in a uniformly compact set.

Now, for each p, δw̃(A)
p := w̃(A)+

p − w̃(A)−
p satisfies the relation

In

[
M(v(A)

p , δw̃
(A)
p,m+1)

]
=
∫

Tn

Q(A)′(u+
m; v(A)

p )−Q(A)′(u−
m; v(A)

p ) (3.74)

for all v(A)
p ∈ Ẋn. Taking v(A)

p = δw̃
(A)
p,m+1,

In

[
M(δw̃(A)

p,m+1, δw̃
(A)
p,m+1)

]
=
∫

Tn

Q(A)′(u+
m; δw̃(A)

p,m+1)−Q(A)′(u−
m; δw̃(A)

p,m+1). (3.75)

With u±
m ∈ Yn, the local Lipschitz differentiability condition on Q(A)

p (3.69c) implies∣∣∣In

[
M(δw̃(A)

p,m+1, δw̃
(A)
p,m+1)

]∣∣∣≲ ∫
Tn

∥δum∥∗∥δw̃(A)
p,m+1∥, (3.76)

where on the RHS we use the triangle inequality. We may then bound

∆tn sup
Tn

∥δw̃(A)
p,m+1∥2

∗ ≲ In

[
M(δw̃(A)

p,m+1, δw̃
(A)
p,m+1)

]
(3.77a)

≲
∫

Tn

∥δum∥∗∥δw̃(A)
p,m+1∥ (3.77b)

≲ ∆tn sup
Tn

∥δum∥∗ sup
Tn

∥δw̃(A)
p,m+1∥∗, (3.77c)

where the first inequality holds by (3.37b). Dividing through by ∆tn supTn
∥δw̃(A)

p,m+1∥∗,

we bound the difference in the additional AVs,

sup
Tn

∥δw̃(A)
p,m+1∥∗ ≲ sup

Tn

∥δum∥∗. (3.78)

By the uniform boundedness of u±
m, we can assume this scaling constant is indepen-

dent of either κ or ∆tn.

Lastly, with these bounds, we may consider (3.64a). Taking the difference in

(3.64a) between the ∗+ and ∗− iterations, δum+1 must satisfy the relation

In

M( ˙δum+1, v)

+ κD(δw̃(B)
m+1, v)

= In



C(u+
m, (w̃(A)+

p,m ); w̃(B)+
m+1 , v)

− C(u−
m, (w̃(A)−

p,m ); w̃(B)−
m+1 , v)

+G(u+
m, (w̃(A)+

p,m ); v)

−G(u−
m, (w̃(A)−

p,m ); v)


, (3.79)
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for all v ∈ Ẋn. Taking v = δw
(B)
m+1 and applying (3.73),

Q(B)(δum+1(tn+1))

+ κIn

[
D(δw̃(B)

m+1, δw̃
(B)
m+1)

]= In



C(u+
m, (w̃(A)+

p,m ); w̃(B)+
m+1 , w̃

(B)
m+1)

− C(u−
m, (w̃(A)−

p,m ); w̃(B)−
m+1 , w̃

(B)
m+1)

+G(u+
m, (w̃(A)+

p,m ); w̃(B)
m+1)

−G(u−
m, (w̃(A)−

p,m ); w̃(B)
m+1)


.

(3.80)

We will use this result to show the iteration is a contraction.

Let us begin by bounding the RHS of (3.80). Note again that u±
m are uniformly

bounded, and (w̃(A)±
p,m ) are uniformly bounded by (3.78). We may therefore bound the

advective term on the RHS via the Lipschitz conditions (3.69a) as

In

C(u+
m, (w̃(A)+

p,m ); w̃(B)+
m+1 , δw̃

(B)
m+1)

− C(u−
m, (w̃(A)−

p,m ); w̃(B)−
m+1 , δw̃

(B)
m+1)


≲ In

C(u+
m, (w̃(A)+

p,m ); w̃(B)+
m+1 , δw̃

(B)
m+1)

− C(u−
m, (w̃(A)−

p,m ); w̃(B)+
m+1 , δw̃

(B)
m+1)

 (3.81a)

≲ ∆tn sup
Tn

|C(u+
m, (w̃(A)+

p,m ); w̃(B)+
m+1 , δw̃

(B)
m+1)

− C(u−
m, (w̃(A)−

p,m ); w̃(B)+
m+1 , δw̃

(B)
m+1)|

 (3.81b)

≲ ∆tn sup
Tn

max{∥δum∥∗, (∥δw̃(A)
p,m∥∗)}∥w̃(B)+

m+1 ∥∗∥δw̃(B)
m+1∥∗ (3.81c)

≲ ∆tn sup
Tn

∥δum∥∗∥w̃(B)+
m+1 ∥∗∥δw̃(B)

m+1∥∗ (3.81d)

≲ ∆tn sup
Tn

∥δw̃(B)
m ∥∗ sup

Tn

∥δw̃(B)
m+1∥∗, (3.81e)

where in the first inequality we use the skew-symmetry of C,2 in the second we

use (3.37a), in the third we use the Lipschitz regularity of C (3.69a), in the fourth

we use the bound (3.78), and in the final inequality we use (3.71) and the uniform

boundedness of w̃(B)±
m+1 ; by a similar appeal to (3.69b), the forcing term on the RHS

may be bounded as

In

G(u+
m, (w̃(A)+

p,m ); δw̃(B)
m+1)

−G(u−
m, (w̃(A)−

p,m ); δw̃(B)
m+1)

≲ ∆tn sup
Tn

∥δw̃(B)
m ∥∗ sup

Tn

∥δw̃(B)
m+1∥∗. (3.82)

Note, the uniform boundedness as κ→∞ implies the constant contained within ≲

2Note the penultimate term w̃
(B)−
m+1 switching to w̃(B)+

m+1 .
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is independent of κ.3 The bounds (3.81, 3.82) together in (3.80) then imply

Q(B)(δum+1(tn+1)) + κIn

[
D(δw̃(B)

m+1, δw̃
(B)
m+1)

]
≲ ∆tn sup

Tn

∥δw̃(B)
m ∥∗ sup

Tn

∥δw̃(B)
m+1∥∗. (3.83)

With the RHS of (3.80) now bounded, we proceed to the LHS. In the κ→∞ case,

we observe the latter term κIn

[
D(δw̃(B)

m+1, δw̃
(B)
m+1)

]
satisfies the bound

κ∆tn sup
Tn

∥δw̃(B)
m+1∥2

∗ ≲ κIn

[
D(δw̃(B)

m+1, δw̃
(B)
m+1)

]
(3.84)

by (3.37b). Substituting this bound into (3.83),

κ∆tn sup
Tn

∥δw̃(B)
m+1∥2

∗ ≲ ∆tn sup
Tn

∥δw̃(B)
m ∥∗ sup

Tn

∥δw̃(B)
m+1∥∗ (3.85a)

sup
Tn

∥δw̃(B)
m+1∥∗ ≲

1
κ

sup
Tn

∥δw̃(B)
m ∥∗. (3.85b)

As κ→∞, since the constant contained in ≲ remains fixed, this implies the iteration

is ultimately a contraction. In the ∆tn → 0 case when S = 1, we bound the former

term Q(B)(δum+1(tn+1)),

sup
Tn

∥δw̃(B)
m+1∥2

∗ ≲ sup
Tn

∥δum+1∥2
∗ ≲ Q(B)(δum+1(tn+1)), (3.86)

where in the former inequality we use (3.71), in the latter we note that, for S = 1,

∥δum+1∥∗ attains its maximum value at tn+1. Substituting this bound into (3.83),

sup
Tn

∥δw̃(B)
m+1∥2

∗ ≲ ∆tn sup
Tn

∥δw̃(B)
m ∥∗ sup

Tn

∥δw̃(B)
m+1∥∗ (3.87a)

sup
Tn

∥δw̃(B)
m+1∥∗ ≲ ∆tn sup

Tn

∥δw̃(B)
m ∥∗. (3.87b)

As ∆tn → 0, this bound implies the iteration is ultimately a contraction. Thus,

Lemma 3.24 holds.

Remark 3.25 (Picard linearisation as a solver). We recall that, as stated in Remark 3.6,

we do not introduce the Picard linearisation as a solver for the SP discretisation (3.27) but

merely as an analytical tool. If we were to use it however, Lemma 3.24 would offer certain

conditions under which the Picard linearisation would be guaranteed to converge (linearly).

3Independence with respect to ∆tn is included in the definition of ≲.
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Example (Incompressible NS)

Given either sufficiently small Re, or in the lowest-order-in-time case S = 1
sufficiently small ∆tn, the NS Picard linearisation (3.66, 3.67) is a contraction.

With the conditions for the Picard linearisation (3.54, 3.55) to be a contraction

established, the proof that unique solutions exist to the original SP discretisation

(3.27) is a simple application of the CMT.

Theorem 3.26 (Uniqueness of solutions: AD systems). Assume Assumption 3.22,

i.e. we have a suitably regular AD problem. Then there exists a unique solution to the SP

discretisation (3.27) for either sufficiently large κ, or in the lowest-order-in-time case S = 1
with sufficiently small ∆tn.

Proof. This holds an immediate consequence of Lemma 3.24 by the CMT (see [Eva10,

Sec. 9.2]).

Example (Incompressible NS)

The SP discretisation of the NS equations (3.36) is well posed with a unique

solution for either sufficiently small Re, or in the lowest-order-in-time case

S = 1 with sufficiently small ∆tn.



“[. . . ] it wasn’t much good having anything exciting
[. . . ] if you couldn’t share [it] with somebody.”

— Piglet [Mil26]
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The general SP discretisation (3.27) poses a mixed problem in P + 1 solution and

test variables over a space-time domain Ω × Tn; both of these aspects pose certain

computational challenges. The efficiency of numerical solvers typically scales poorly

with the number of solution variables, implying each further structure preserved by

our framework comes at the expense of the computational speed of the numerical

method. Furthermore, a large portion of commercially available FE software is not

equipped to solve variational problems over space-time domains. In this chapter, we

discuss various approaches that can be taken to mitigate these issues.

For the code that used to generate the numerical results throughout this the-

sis, see Section 1.2.

50
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The rest of this chapter proceeds as follows. In Section 4.1, we discuss how a

polynomial-in-time expansion can be used to reduce the space-time problem (3.27)

posed over Ω × Tn to a set of S spatial problems posed over the domain Ω, and

how careful choice of the basis for this expansion can improve the sparsity of our

assembled problem. In Section 4.2, we discuss situations in which one need not

solve for certain AVs (w̃p) numerically, i.e. when the auxiliary equation (3.27b) can be

solved offline for all u (either independent of u, or as an explicit function of it). In

Section 4.3, we conclude with a discussion of the special connection held between

our SP schemes and Gauss collocation methods [HLW06, Sec. II.1.3], in particular

discussing those situations in which the former may reduce to the latter.

4.1 Practical implementation of space-time problems

As a variational problem over the high-dimensional domain Ω× Tn, it is often not

favourable, or possible, to implement (3.27) directly as written.

In this section, we discuss how one can circumvent this issue by writing each

of the solution and test functions in terms of a polynomial basis in time, reducing

the system from one defined over the space-time domain Ω × Tn to one over the

domain Ω in space only. We discuss then how, under certain conditions, careful choice

of the polynomial basis functions for the expansion in time can lead to increased

sparsity in the assembled problem.

4.1.1 Polynomial expansion in time

Let us write each of the solution (u, (w̃p)) and test (v, (vp)) functions in (3.27) in

terms of a polynomial basis in time, and work directly with each component of

this expansion. Suppose (ls)S
s=1 forms a basis for PS−1(Tn); let us write (w̃p), v, (vp),

each a function in Ẋn, in terms of (ls),

w̃p =
S∑

r=1
w̃p,rlr, v =

S∑
r=1

vrlr, vp =
S∑

r=1
vp,rlr. (4.1a)

Supposing (ks)S
s=0 form a basis for PS(Tn) such that k0(tn) = 1 and each ks(tn) = 0

for each s > 0, we may write u, and consequently u̇, as

u = u(tn)k0 +
S∑

r=1
urkr, u̇ = u(tn)k̇0 +

S∑
r=1

urk̇r. (4.1b)
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The scheme (3.27) can then be written in terms of these expansions as follows: find

((ur), (w̃p,r)) ∈ US × UP S such that

In

[
M

(
u;u(tn)k̇0 +

S∑
r=1

urk̇r, vsls

)]
= In

[
F̃

(
u,

(
S∑

r=1
w̃p,rlr

)
; vsls

)]
, (4.2a)

In

[
M

(
u; vp,sls,

S∑
r=1

w̃p,rlr

)]
=
∫

Tn

Q′
p(u; vp,sls), (4.2b)

for all ((vs), (vp,s)) ∈ US × UP S , where u can be substituted for its expansion (4.1b).

Pre-computing this decomposition then gives a set of (P + 1)S discrete problems

in U, posed over the spatial domain Ω only.

4.1.2 Sparsity improvements & preconditioning

Consider the formulation (4.2). Without any further work, few terms cancel, leading

to a largely dense assembled problem at high order in time, as S →∞ (see Fig. 4.1a).

In certain cases, the sparsity of this problem can be improved through careful choice

of basis function (ls). There are many such cases, and many ways in which this can

be done; we consider here two, which will be useful in Section 4.2.

v
v 1

v 2
v 3

v 4
.

u w̃1 w̃2 w̃3 w̃4

(a) (4.2)

u w̃1 w̃2 w̃3 w̃4

(b) (4.3)

u w̃1 w̃2 w̃3 w̃4

(c) (4.6)

Figure 4.1: Graphical illustrations of the sparsity of the problems (4.2, 4.3, 4.6), for a
hypothetical example system with S = 10 and P = 4. Columns align with the solution
functions, ordered (u1, · · · , u10, w̃1,1, · · · , w̃1,10, · · · , w̃4,1, · · · , w̃4,10); rows align with the
test functions, ordered (v1, · · · , v10, v1,1, · · · , v1,10, · · · , v4,1, · · · , v4,10). In the final subfigure
(Fig. 4.1c) we assume Q3, Q4 are quadratic.

4.1.2.1 M independent of u

Let us first suppose M is independent of u, e.g. by Assumption 3.9. By Lemma 3.7,

we may choose (ls) to be orthonormal under the inner product (ϕ, φ) 7→ In(ϕφ),
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e.g. Legendre polynomials when In is the exact integral
∫

Tn
; we choose then (ks) such

that each k̇s = ls (i.e. ks =
∫ t

tn
ls(τ)dτ ) and k0 = 1. In such a case, the system (4.2)

simplifies to the following: find ((ur), (w̃p,r)) ∈ US × UP S such that

M(us, vs) = In

[
F̃

(
u,

(
S∑

r=1
w̃p,rlr

)
; vsls

)]
, (4.3a)

M(vp,s, w̃p,s) =
∫

Tn

Q′
p(u; vp,sls), (4.3b)

for all ((vs), (vp,s)) ∈ US × UP S . The associated sparsity pattern is illustrated in

Fig. 4.1b.

4.1.2.2 In an S-node quadrature rule

Let us now return to the case of general M , and suppose In is an S-node quadrature

rule at quadrature points {τn,s}S
s=1, i.e. our discretisation is an SP modification of an

S-stage collocation method. We may choose (ls) to be the associated Lagrange basis

polynomials at {τn,s}, normalised for each s such that
∫

Tn
ls = 1, in which case the

system (4.2) simplifies to the following: find ((ur), (w̃p,r)) ∈ US × UP S such that

M(u(τn,s); u̇(τs,n), vs)= F̃ (u(τn,s), (w̃p,s); vs), (4.4a)

M(u(τn,s); vp,s, w̃p,s) =
∫

Tn

Q′
p(u; vp,sls), (4.4b)

for all ((vs), (vp,s)) ∈ US × UP S . In the case where some or all of the QoIs (Qp) are

quadratic, the sparsity can be improved further with careful choice of (ks). Let (ks)
be contructed implicitly such that

∫
Tn
krls = δrs for all r, s. In such a case, the final

term on the RHS of (4.4b) reduces to∫
Tn

Q′
p(u; vp,sls) = Q′

p(us; vps). (4.5)

In the case where In is an S-node GL quadrature rule, i.e. our discretisation is an

SP modification of an S-stage Gauss method, (ks) can be found explicitly as the

Lagrange basis at {tn} ∪ {τn,s}. Consequently, u(τn,s) evaluates as us, improving

the sparsity of (4.4) further:

M(us; u̇(τs,n), vs)= F̃ (us, (w̃p,s); vs), (4.6a)

M(us; vp,s, w̃p,s) =

Q′
p(us; vps), Qp quadratic,∫

Tn
Q′

p(u; vp,sls), otherwise.
(4.6b)

The associated sparsity pattern is illustrated in Fig. 4.1c.
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4.1.2.3 Block arrowhead structure & preconditioning

Each of the sparsity patterns in Figure 4.1 implies that the Newton linearisation

of our general SP discretisation (3.27) has a block arrowhead structure, a special

case of the broader class of saddle-point systems. A widely used preconditioning

strategy for such problems is Schur-complement preconditioning (see Benzi, Goluv

& Liesen [BGL05, Sec. 10.1]) in which preconditioners are constructed from a block

factorisation of the system matrix. The essential idea is to split the problem into

(i) a sequence of linear subproblems on a chosen non-singular (1,1) block, and (ii) a

second linear problem on the corresponding Schur complement.

In our case, the natural choice of (1,1) block is the large lower-right block in

Figure 4.1, which couples the auxiliary variables (w̃p) with the corresponding test

functions (vp) in (3.27b). (i) In the variational setting, inversion of this block cor-

responds to solving P linear problems defined by the bilinear form In[M(u; ·, ·)].

Dependent on the operator M , these problems can generally be handled at relatively

low computational cost to a relatively high degree of accuracy. Owing to the

arrowhead structure, the P systems decouple and can therefore be solved in parallel;

moreover, in the special case where M is independent of u, the time bases introduced

above (4.3, 4.4) yield an even further decomposition into SP independent linear

problems. These local solves determine each auxiliary variable w̃p as a function

of the primal variable u. (ii) The remaining Schur complement problem depends

on the choice of Schur-complement preconditioner. For instance, under a classical

block-triangular preconditioner (see Benzi, Golub & Liesen [BGL05, Sec. 10.1.2])

the resulting reduced problem coincides with the primal equation (3.27a), with the

auxiliary variables (w̃p) eliminated implicitly in terms of u. Such reduced systems

can in turn be preconditioned with standard techniques appropriate to the primal

PDE, e.g. geometric multigrid (see Briggs, Henson & McCormick [BHM00]).

4.2 Elimination of AVs

In certain cases, the AVs (w̃p) introduced by our framework need not be introduced

into the numerical implementation. They are simply helpful tools in the construction

and analysis of the scheme, but do not increase the dimension of the original problem.
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4.2.1 ODE systems

The most powerful result arguably comes when we are considering an SP discreti-

sation of an ODE system, such that U = Rn.

The auxiliary equation (3.27b) defines a linear system in w̃p through M ; this can

generally be inverted with minimal computational cost, as the operator M is typically

largely sparse in the final two arguments, e.g. an ℓ2 inner product, or one scaled

with u. This gives us an explicit equation for (w̃p) that can be evaluated offline;

rewriting (w̃p) in (3.27a) according to this explicit pre-computation eliminates the

AVs from the numerical implementation.

4.2.2 PDE systems & independent associated test functions

Moving beyond ODE systems, the most trivial case to consider comes when wp(u)
is simply independent of u. This is often the case when the QoI is a mass function,

and wp(u) is constant in space and time.

Consider the definition of w̃p (3.19):

In[M(u; vp, w̃p)] =
∫

Tn

Q′
p(u; vp) =

∫
Tn

M(u; vp, wp(u)), (4.7)

for all vp ∈ Ẋn. Let us assume wp(u) is independent of u with wp ∈ U, e.g. constant in

space with no relevant zero BCs imposed on U. When In in (4.7) may be equivalently

substituted for
∫

Tn
, the relation is satisfied exactly when w̃p = wp; we may then

equivalently substitute the AV w̃p for the associated test function wp, and avoid

introducing it into our discretisation.

The most natural case in which In may be substituted for the exact integral∫
Tn

comes when we choose In to be the exact integral in Step B of our framework.

We make this choice in Section 7.3 to eliminate certain AVs introduced for mass,

momentum and energy conservation (each approximating 1).

Otherwise, In may be substituted for the exact integral
∫

Tn
in (4.7) when the

quadrature In is exact on M(u; vp, w̃p). This depends on the order of the quadrature

rule In and the order in time of the integrand M(u; vp, w̃p). In the simplest case,

where M is independent of u (e.g. under Assumption 3.9), M(vp, w̃p) is of order S − 1
in time; any consistent ≥ S-node quadrature rule In will evaluate the integral on

M(vp, w̃p) exactly, and can therefore equivalently be substituted for
∫

Tn
.1 In fact,

1This is analogous to the conservation of linear invariants by consistent RK methods.
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provided M is polynomial in u, there necessarily exists a sufficiently high order

for In above which the quadrature In[M(u; vp, w̃p)] is exact. In any of these cases,

the AV w̃p may be equivalently substituted for the associated test function wp(u),

and not introduced into the discretisation.

4.2.3 PDE systems & dependent associated test functions

When considering SP discretisations of PDE systems, the less trivial case comes when

the associated test function wp(u) still lies in U, but is dependent on u (e.g. as was

the case for the incompressible NS example in Chapter 3). This if often the case

when the QoI is a quadratic energy functional when wp(u) ∝ u, or for ODEs when

the inclusion wp(u) ∈ U = Rd is trivial.

Let us now assume M defines as an inner product, as in Assumption 3.9. With M

independent of u, we may write the system (4.2) in the form (4.3). Noting Q′
p(u; ·) =

M(·, wp(u)) (by definition) the auxiliary equation (4.3b) can be written in the form

M(vp,s, w̃p,s) =
∫

Tn

M(vp,sls, wp(u)) = M
(
vp,s,

∫
Tn

wp(u)ls
)
, (4.8)

for all vp,s ∈ US . We can use the fact that M defines an inner product on U to write

w̃p,s, and consequently w̃p, explicitly, as

w̃p,s =
∫

Tn

wp(u)ls, w̃p =
S∑

r=1

(∫
Tn

wp(u)lr
)
lr. (4.9)

In such cases, by substituting this identity for w̃p,s or w̃p back into (4.2a) or (3.27a)

respectively, we can equivalently apply our SP framework without the additional

computational cost of computing the AV.

Example (Incompressible NS)

In the NS scheme (3.28), w1(u) = u ∈ U, whereas w2(u) = curl u ̸∈ U

necessarily. We can therefore use (4.9) to define ũ = w̃1 in (3.28a) and eliminate

(3.28b) from the mixed formulation. However, we must include ω = w̃2 and

(3.28c) if we seek to preserve the helicity.
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4.3 Gauss methods

We give special attention here to the relationship between schemes deriving from our

framework and Gauss collocation methods (see Hairer, Lubich & Wanner [HLW06,

Sec. II.1.3]).

In the ODE setting, Gauss methods are well known to preserve the behaviour

(conservation or dissipation) of general quadratic QoIs; it is natural therefore to

expect that, under such conditions, the SP scheme (3.27) may reduce to such a method.

Indeed if each QoI Qp is quadratic and In is chosen to be a GL quadrature rule, then

the integral
∫

Tn
Q′

p(u; vp) on the RHS of (3.27b) may be precisely substituted for its

quadrature approximation In[Q′
p(u; vp)], since S-node GL quadrature is exact on

degree-(2S−1) polynomials. The scheme (3.27) is thus equivalent to a Gauss method

applied to the following mixed semi-discretisation: find (u, (w̃p)) ∈ U× UP such that

M(u; u̇, v) = F̃ (u, (w̃p); v), M(u; vp, w̃p) = Q′
p(u; vp), (4.10)

for all (v, (vp)) ∈ U × UP .

Example (Incompressible NS)

When one begins with a Gauss collocation method (i.e. In is a GL quadrature

rule) the energy- and helicity-conserving NS scheme (3.28) is equivalent to a

mixed Gauss collocation method in (u, (ũ,ω)). Further eliminating ũ using

(4.9), this can be stated as a Gauss method applied to the following semi-

discretisation: find (u,ω) ∈ U× U such that

(u̇,v) = (u× ω,v)− 1
Re(∇u,∇v), (4.11a)

(ω,χ) = (curl u,χ), (4.11b)

at all times t ∈ R+ and for all (v,χ) ∈ U× U.

As GL quadrature is the only exact S-node quadrature rule of degree (2S − 1),

this is moreover the only such choice of In for which this complete reduction to

a collocation method is possible (assuming there is at least one nonlinear QoI Qp).

This reflects the fact that, in the ODE case, this SP property on quadratic QoIs is
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achieved among all collocation methods by Gauss methods only (see Hairer, Lubich

& Wanner [HLW06, Sec. IV.2.1]).

Conversely, it is well established that RK methods are unable in general to

conserve non-quadratic invariants (see Celledoni et al. [Cel+09]). This is reflected

by the fact that no S-stage quadrature rule can in general integrate Q′
p(u; vp) exactly

for non-quadratic Qp, i.e. if there exists at least one non-quadratic QoI then the

scheme (3.27) derived from our framework cannot in general be equivalent to a

collocation method.

In the case where In is a GL quadrature rule therefore, we can interpret our SP

schemes (3.27) as alternatives to Gauss methods that align precisely when the QoIs

are quadratic, and differ in a way that retains their SP properties otherwise.



Part II

Applications of the framework:
ODEs & PDEs
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“This is where the fun begins.”

— Anakin Skywalker (Hayden Christensen)
[Luc05]

5
Introduction

Contents

5.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

With the general framework established, we turn our attention to certain example

applications, within both ODEs and PDEs. In certain cases, including e.g. the

energy-stable integrators for Poisson & gradient-descent ODEs (6.11) and PDEs (7.8),

these identify with schemes already established in the literature (see the literature

review in Section 5.1) whereas in others, including e.g. the conservative integrator

for conservative ODEs (6.71) and the mass-, momentum-, energy-conserving and

entropy-producing integrator for the compressible NS equations (7.59), we believe the

schemes and their SP properties to be novel. For each of the SP ODE integrators, we

offer conditions for the unique existence of discrete solutions, and their convergence.

Conservative systems, the Kepler problem, the Kovalevskaya top
& the Benjamin–Bona–Mahony equation

Our first example applications concern general conservative systems. Many physical

systems evolve under purely conservative dynamics, with time evolution confined to

an invariant manifoldM, the intersection of level sets of one or more invariants. The

geometry ofM fundamentally shapes the behaviour of solutions, in particular when

it is of low dimension; for example, for topologically circularM, typical for maximally
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superintegrable systems with one fewer invariant than degrees of freedom (DoFs),

solutions are necessarily periodic, while for topologically toroidalM solutions can

exhibit quasiperiodicity. Even for relatively high-dimensionalM, its structure can

be fundamental to the behaviour of solutions. In particular, when the ICs are such

that their invariants implyM is in some way close to a manifold of low dimension,

solutions will exhibit perturbed forms of these qualitative dynamics; for example,

whenM is close to a one-dimensional set, solutions exhibit a perturbed travelling

wave behaviour or form of periodicity, giving rise to the nonlinear stability of solitons,

cnoidal waves and breathers. Moreover, the structure ofM can be fundamental to

the analysis of the well-posedness of conservative systems, particularly for PDEs.

For ODEs, we construct in Section 6.2 a general-purpose integrator, capable of

preserving arbitrarily many invariants. In doing so, we are able to restrict our discrete

trajectories to the exact invariant manifoldM when all invariants are known. We see

the implications of this on the preservation of dynamics in e.g. the discrete solution

for our simulation of the Kovalevskaya top in Subsection 6.2.2, which can clearly be

identified as preserving the quasiperiodicity of the exact solution (see Fig. 6.4). For

maximally superintegrable systems, in particular periodic ODE systems for which we

are able to identify one fewer invariant than DoFs, our method conserves trajectories

exactly.1 The construction of our integrator rewrites the RHS forcing term in terms of

an alternating form acting on the invariant gradients (Lemma 6.16) while coupling

with a set of AVs that discretely approximate these gradients.

For PDEs, we focus in Section 7.1 on the preservation of a single invariant

(typically an energy) with the goal of preserving both the dynamical structure

provided by M and its analytic properties regarding the existence of solutions;

this we are able to achieve for general conservative PDE systems (7.8). We see the

dynamical benefits in our example application on the BBM equation (Subsection 7.1.1)

for which the conservation of energy helps our discrete soliton remain stable over

long durations. Our discrete scheme is constructed using an AV approximating a

suitable representation of Fréchet derivative of the invariant of interest.

1We clarify here that the exact preservation of trajectories is not sufficient to imply exact solutions,
as a reparametrisation in time of the exact trajectory is still admissible. We see this for instance in our
SP discretisation of the Kepler problem in Subsection 6.2.1 (see Fig. 6.1 below).
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Gradient-descent systems

Ubiquitous throughout physical modelling and engineering, gradient-descent sys-

tems’ defining structural features are their monotonic dissipations. This is often not

just key to the long-term dynamics of solutions, but to their analysis, ensuring the

existence of solutions and their convergence as t → ∞.

We construct in Sections 6.1 & 7.1 general-purpose integrators for gradient-descent

ODEs and PDEs; these discretisations preserve the dissipation structure discretely,

in a way that moreover replicates the dissipation inequality from the continuous

level. Similarly to the conservative integrators for ODEs and PDEs, this relies on

the introduction of and coupling with an AV approximating either the gradient

of the dissipated functional (in the ODE case) or a certain representation of its

Fréchet derivative (in the PDE case).

The compressible Navier–Stokes equations, mass, momentum, en-
ergy & entropy

While the incompressible NS equations (considered in Chapter 3) provide a robust

model for many fluid regimes, particularly those dominated by slow (i.e. low Mach

number) flows, they fail to capture essential physical features in settings where

density variations, shock formation, or compressional heating are significant. In

such regimes, we must consider the compressible NS equations (see Feireisl [Fei04])

bringing with it a host of different conservation and dissipation structures.

With density variations now admissible, the conservation of mass becomes a

dynamical law that must be preserved at the discrete level, i.e. no longer enforceable

via algebraic constraints as in the incompressible case (3.28) through constraints

on U (3.7a, 3.7b); momentum conservation retains a similar form, while energy

balance now becomes a conservation law: kinetic energy (ultimately) converts into

internal energy through viscous heating; convergence to equilibrium is driven by the

generation (or conservation, in the inviscid Euler case) of entropy, a certain function

of the material’s thermodynamic quantities related by the medium’s constitutive

relation. In essence, mass, momentum and energy conservation ensures boundedness

and physical realism, while entropy generation ensures irreversibility and regularity.

We refer to a scheme that preserves all these laws as mass-, momentum-, energy-,

and entropy-stable.
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Compressible effects are relevant for important aspects of plasma dynamics,

particularly in the edge region of tokamak plasmas, where steep gradients and

heating dominate the plasma state.2 Owing to the strong anisotropy imposed by

the magnetic field, plasma flows parallel and perpendicular to the field lines are

often modelled via separate 1D and 2D compressible systems (see Arter [Art95]). Ion

and electron species are then typically treated separately, with electron dynamics

often significantly simplified.

During edge-localised modes (ELMs), steep pressure gradients drive sound

waves and shock fronts. Radio-frequency heating and neutral beam injection can

induce localised pressure fluctuations. Confinement loss events such as sawtooth

crashes (discussed further in Chapter 8) may also trigger strong compressive fronts.

Accurately reproducing these features demands a model that accurately preserves

the system’s physical structures and laws.

Through our framework, we construct in Chapter 7.3 a mass-, momentum-,

energy- and entropy-stable FE integrator for the compressible NS equations (7.59).

This requires the introduction of 3 AVs: one approximating the inverse temperature,

one for the velocity, and one further AV approximating an (intensive) quantity related

to the specific Gibbs free energy. Notably, this guarantees convergence to the correct

thermodynamic equilibrium as t → ∞.

Boltzmann, GENERIC, energy & entropy

Fluid models like the compressible NS equations are ineffective in rarefied or low-

density conditions, where the mean free path is large and the continuum assumption

breaks down. In such regimes, the more fundamental description offered by con-

tinuum kinetic models such as the Boltzmann equation (see Cercigniani [Cer12]),

evolving a particle distribution in phase space, are required.

In this thesis we consider two key thermodynamic structures exhibited by the

Boltzmann equation: energy conservation and entropy generation. The former

ensures long-term stability, while the latter governs relaxation and irreversibility.

2While we do not, in this thesis, directly propose an SP discretisation for the full compressible
MHD equations, such a scheme may be built by combining our SP discretisations of the compressible
NS (7.59) and MHD equations (10.83). However, we note that compressible MHD equations are more
commonly applied in contemporary literature within astrophysical settings, suggesting that such a
discretisation may find broader practical use beyond fusion-specific modelling.
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Kinetic effects have a potential to affect all aspects of the operation of plasma in

fusion reactors. In the fusion plasma edge and scrape-off layer, low densities, steep

gradients, and magnetic field anisotropy can give rise to behaviour necessitating a

kinetic treatment. Disruption events (again such as ELMs), pellet injections, and saw-

tooth crashes can drive the plasma far from equilibrium, leading to anisotropic and

multiple-peaked velocity distributions. While kinetic simulations of charged species

in 3D often employ gyrokinetic models (which typically further differ from our

scheme (7.40) through the use of Fokker–Planck-type collision operators) Boltzmann-

like models are still employed, particularly for neutral species. For a summary of

the various model equations frequently used in modern tokamak edge codes, see

the report from Arter [Art23, Sec. 1.2], in particular Proxyapps 2-6, 2-8 and 3-2 for

continuum kinetic models; for further background on kinetic modelling in fusion

plasmas, see Stacey [Sta12, Chap. 16].

The Boltzmann equation can be understood as a metriplectic/GENERIC sys-

tem (see Öttinger [Ött97]): a certain class of systems that conserves an energy

and is non-decreasing in an entropy (consistent with the first and second laws

of thermodynamics).

These formalisms consider ODEs and PDEs governed by two distinct contribu-

tions: a Poisson bracket/operator capturing the reversible dynamics (i.e. the transport

term in the Boltzmann equation) and a dissipative bracket/operator encoding the

irreversible dynamics (i.e. the collisions), the latter driving entropy production and

convergence toward equilibrium. While the metriplectic formulation, through Pois-

son brackets and Hamiltonians, is more favoured in the plasma physics community

and literature, we favour the GENERIC formalism, through Poisson operators and

energy gradients (see the discussion in Section 5.1).

In either case, respecting this dual conservation–dissipation structure at the

discrete level ensures consistency with the system’s physical laws, in turn capturing

the correct macroscopic behaviour, even far from equilibrium. In Section 6.3 (for

ODEs) and Section 7.2 (for PDEs) we construct geometric integrators that respect

preserve these structures for both ODEs (6.87) and PDEs (7.24). These schemes

conserve energy exactly, while generating entropy at a rate consistent with the

continuous system. This is achieved by introducing two AVs, approximating either

the gradients of energy and entropy (in the ODE case) or appropriate Fréchet

derivatives (in the PDE case).
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We use the Boltzmann equation as a key example application of our reversible–

irreversible integrator in Subsection 7.2.1, necessarily preserving both thermody-

namic laws even in far-from-equilibrium simulations.

5.1 Related literature

We discuss now relevant literature to the systems and numerical integrators discussed

within this part of thesis.

Hamiltonian systems & symplectic integrators

A special kind of Poisson system (as considered in Section 6.1) is the Hamiltonian

[Ham34] system, well studied within geometric numerical integration due to its

symplectic structure [HLW06, Chap. VI & VII]. In particular, a famous result of

Zhong & Marsden [GM88] asserts that, under certain conditions on the underlying

Hamiltonian system,3 a numerical integrator can only be both symplectic and energy-

stable if it solves for the system’s trajectory exactly, i.e. it solves the system exactly

up to a reparametrisation in time. The impact of this result seems effectively to

be that we are offered a choice when discretising a Hamiltonian system, between

symplecticity and energy stability; we restrict our attention therefore to the latter.

Regarding GENERIC ODEs, Shang & Öttinger [SÖ20] proposed a splitting, ap-

plying a symplectic integrator to the conservative component. They then defined the

friction matrix for the dissipative component in terms of the symplectic integrator’s

modified energy; this somewhat resembles our definition of D̃ as a function of ∇̃H

in Section 6.3 (Assumption 6.18).

Energy-stable integrators for Poisson & gradient-descent systems

We begin by revisiting certain literature discussed in Chapter 2. The energy-stable

discrete-gradient method of McLachlan, Quispel & Robidoux [MQR99] and in

particular its high-order generalisation by Cohen, Hairer & Lubich [CH11; HL14] for

Poisson & discrete-gradient ODEs identify exactly with the energy-stable scheme

(6.11) when In is an S-stage quadrature rule (see Remark 6.2). In the case of invertible

B, when the ODE system (6.3) is written in the form B(x)−1ẋ = ∇H(x) or the PDE

3In particular, the system is required to have no invariants but the energy (or functions thereof).
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system (7.3) is written in the (variational) form B−1(u; u̇, v) = H ′(u; v) (for all v), the

application of our framework with In =
∫

Tn
to construct an energy-stable integrator

returns a scheme exactly equivalent to a CPG method, i.e. the introduced AVs do

not affect the discretisation. This identifies with the observations of Egger, Habrich

& Shashkov [EHS21] on the energy stability properties of CPG.

In his PhD thesis [Jac19, Chap. 4] Jackaman established a framework for the

construction of energy-conserving semi-discrete schemes for certain Hamiltonian

PDEs, discretised in space only. Similar to (7.8) this introduced an AV approximating

the Riesz representation of the Fréchet derivative of the Hamiltonian; he then

employs Crank–Nicolson in time, which is conservative for a linearised problem.

Jackaman & Pryer [JP21] propose energy-conserving schemes for a certain class of

dispersive Hamiltonian PDEs, including the Korteweg–de Vries (KdV) equation,

using discontinuous FEs in space. Under a certain handling of the non-conforming

terms, this scheme is equivalent to (7.8) at lowest order in time.

In 2023, Brunk et al. [Bru+23b] analysed a 1-stage energy-stable integrator for the

Cahn–Hilliard [CH58; Cah61] equations, a commonly studied 4th-order PDE. As a

gradient-descent system, our integrator (7.8) aligns precisely with theirs at lowest

order in time (S = 1). Since this initial publication, Brunk et al. have extended this

scheme to incorporate various additional phenomena such as temperature variations

[BLS25] and cross-kinetic coupling [BEH24], and to associated systems such as the

Allen–Cahn [BGL25], Cahn–Hilliard–Navier–Stokes [Bru+23a; BS24; BS25; BE25],

Cahn–Hilliard–Forchheimer [BF25a] and Cahn–Hilliard–Biot [BF25b] equations. In

each case, their proposed SP scheme is reproduced by our framework.

Giesselmann, Karsai & Tscherpel [GKT25] recently announced a very closely

related work. They devise energy-conserving and correctly-dissipative FET dis-

cretisations for general port-Hamiltonian systems by introducing projections of a

representation of the Fréchet derivative of the Hamiltonian onto the discrete set,

and explicitly note that this can be understood in terms of an AV. In the absence

of the control terms in the port-Hamiltonian formulation, the proposed scheme

coincides with (7.8) almost exactly when B and D are independent of u, and M

defines an inner product (Assumption 3.9).

We note again the early work of French & Schaeffer [FS90] first establishing the

connections between CPG and SP. The authors proposed the introduction of and

coupling with an AV for energy conservation in the KdV equation, a Hamiltonian
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PDE; this AV coincides exactly with that introduced by both our energy-stable

method (6.11) and that of Giesselmann, Karsai & Tscherpel [GKT25] at lowest

order in time (S = 1).

Stable integrators for conservative ODE systems

As discussed in Section 4.3, the most foundational result within conservative inte-

grators for multiple invariants lies in the conservation of quadratic invariants, or

preservation of quadratic dissipation laws, by symplectic integrators (see [HLW06,

Sec. IV.2]) with RK methods unable in general to preserve non-quadratic structures

(see [Cel+09]). While this result is restrictive, it is sufficient in certain circumstances

to preserve structures on higher-order QoIs through reparametrisation. For exam-

ple, introduced by Lax [Lax68] in 1968, the isospectral flow or Lax pair system4

L̇ = B(L)L − LB(L) for symmetric L(t) ∈ Rd×d and skew-symmetric B(L) ∈ Rd×d

conserves the spectrum of L. While the spectrum of L can be characterised by a set

of non-quadratic structures, Flaschka [Fla74] observed in 1974 that we may write

L(t) = U(t)L(0)U(t)⊤, for some orthogonal U(t) ∈ Rd×d satisfying U̇ = B(L)U with

U(0) = I with transpose U(t)⊤; in 1997, Calvo, Iserles & Zanna [CIZ97] observed that

the conservation of the spectrum of L (i.e. the isospectral property) is then equivalent

to the conservation of the orthogonality of U , a quadratic structure easily conserved

by classical numerical integration methods, allowing the conservation of multiple

non-quadratic invariants through reparametrisation.

Simpler even than quadratic structures, any consistent RK method applied to an

ODE system will preserve all linear structures. Similarly then, this is sufficient under

certain circumstances to preserve higher order structures through reparametrisation.

For the above Lax pair system for example, Diele, Lopez & Politi [DLP98] suggest the

use of the Cayley transform U = (I − Y )−1(I + Y ) for skew-symmetric Y (t) ∈ Rd×d

such that Ẏ = 1
2(I − Y )B(L)(I + Y ) with Y (0) = 0; the isospectral property is then

equivalent to the conservation of the skew-symmetry of Y , a linear structure.

A number of direct approaches exist for the preservation of conservation laws.

One natural such approach is through projection, i.e. the use of an arbitrary numerical

integrator, followed by a projection to the target invariant manifoldM. Under suffi-

cient regularity conditions, these projection methods should cause no deterioration

4See Chu [Chu92] and Calvo, Iserles & Zanna [CIZ97] and citations therein for problems that can
be written in this form, including the Toda lattice and a continuous counterpart to the QR algorithm.
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in the convergence of the method; numerical experiments, however, observe this

can damage the long-term behaviour of the solution, in particular due to the loss of

any other SP properties the initial integrator may have possessed (see Hairer, Lubich

& Wanner [HLW06, Sec. IV.4]). Where there exists a local parametrisation ofM, a

second approach involves redefining the system in these local coordinates; this in

particular is true for systems in Lie groups, for which local parametrisations exist

onM through the associated Lie algebra.5 In the general case however, such local

parametrisations do not exist, or at least are impractical on a computational level.

Moreover, neither of these approaches extend to dissipation inequalities.

Conservative integrators for the Kepler problem

The energy- and momentum-stable method of LaBudde & Greenspan (LB–G) [LG74]

considered in Subsubsection 6.2.1.1 was first proposed in 1974. This defines a

modification to the implicit midpoint (IM) method that preserves the conservation of

both linear6 and angular momentum for general many-body systems with pairwise

attractive forces, while further conserving energy.

We note in passing that the Kepler system may be transformed to simple harmonic

motion, such that each invariant becomes quadratic, by applying an appropriate

transformation (Levi–Civita for d = 2, Kustaanheimo–Stiefel for d = 3). Any

quadratic invariant–conserving scheme, such as Gauss methods, will hence conserve

each invariant of the transformed problem [MN02; MN04; Koz07]. This approach

is restricted to cases where such a transformation can be found.

Energy- and entropy-stable GENERIC numerical integrators

Early considerations of the introduction of dissipative effects into Poisson systems

date back to Grmela [Grm84], Kaufman [Kau84] and Morrison [Mor84a; Mor84b]

in 1984, with the latter interpreting it is as an entropy dissipation. In the language

of traditional Hamiltonian mechanics, formulated through Poisson brackets and

Hamiltonians, these systems were originally referred to by Morrison [Mor86] in 1986

as metriplectic, interpreting the entropy as a Casimir of the original Hamiltonian

5See [HLW06, Chap. IV.6–IV.8] for a further discussion of geometric numerical integration on Lie
groups.

6Note, the momentum was not an invariant in our Kepler example in Subsubsection 6.2.1.1 and
therefore naturally was not conserved by the LB–G method.
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system and the dissipative term as induced by a metric; this terminology remains

more commonplace in the plasma physics and Hamiltonian mechanics literature and

communities. The title of GENERIC, associated with the more tensorial formulation,

was not introduced until 11 years later by Grmela & Öttinger [GÖ97; ÖG97]. However,

we favour this terminology throughout this work for the same reason we consider

the Poisson system (6.3) not through a Poisson bracket, but through a Poisson matrix:

the tensorial formulation of GENERIC explicitly uses gradients of the energy and

entropy, thus making the procedure of our framework clearer when we introduce

the corresponding AVs.

In 2009, Romero [Rom09] proposed an extension of the discrete gradient method

of McLachlan, Quispel & Robidoux [MQR99] to GENERIC ODEs. Discrete gradients

for both ∇H and ∇S were introduced, as well as approximations to the Poisson

and friction matrices B and D, defined to satisfy the compatibility conditions (6.85)

against these discrete gradients; choosing as the discrete gradient the mean-value

discrete gradient of Harten, Lax & van Leer [HLL83] yields the lowest-order case

(S = 1) of our scheme (6.87) when In is the midpoint rule.

In a recent work of Lombardi & Pagliantini [LP24] the authors analyse general

Poisson PDEs with a gradient-descent term, i.e. equations of the form (7.19), in

particular when M is an inner product independent of u (Assumption 3.9). Similar to

our scheme (7.24) they introduce AVs w̃H ≈ wH(u), w̃S ≈ wS(u), which they define

using discrete gradients, identical to our AVs at lowest order in time (S = 1). These

AVs replace wH(u), wS(u) in the primal equation, preserving some of the PDE’s

structure. In contrast to our scheme (7.24) however, their focus extends beyond

GENERIC systems; they therefore do not modify the operators B, D as we do in

(7.24a) through Assumption 7.4, and so do not necessarily preserve the conservation

and dissipation structures on the discrete level.

Structure-preserving integrators for the Boltzmann equation

Much of the literature here has generally focused more on the conservation of

moments, including the energy, than the generation of entropy, the motivation lying

in how efficient algorithms for approximating the collision operator generally rely on

spectral methods (see the recent work of Pareschi & Rey [PR22]); such methods are

generally unreliable in terms of enforcing bound constraints, in particular positivity,
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implying the entropy may become ill defined, and the preservation of its generation

nonsensical. This spectral approach traces back to the early work of Bobylev [Bob75]

with Pareschi, Perthame & Russo [PP96; PR00a; PR00b] introducing the first Fourier–

Galerkin type spectral methods around 20 years later.7

When considering further structures, other techniques are preferred, including

discrete-velocity methods. See Schneider et al. [CRS92; RS94; BPS95] or Buet [Bue96]

for an introduction to these ideas, and Bobylev & Vinerean [BV08] for a discussion

of invariant preservation.

Structure-preserving integrators for the compressible Navier–Stokes
equations

As stated above, the mass-, momentum-, energy- and entropy-stable scheme for

the compressible NS equations (7.59) presented in Section 7.3 is, to the best of our

knowledge, novel. However, SP methods for the compressible NS equations have

been well studied, in particular in the context of finite-volume methods [FLM20].

The concept of entropy-stable methods was introduced and analysed by Tadmor for

the barotropic Euler equations [Tad87; Tad03; Tad16]. In the context of discontinuous

Galerkin (DG) methods, AVs mirroring ours for entropy stability were introduced

by Parsani et al. [Par+16] and Chan [Cha18] preserving the generation of entropy

in the semi-discrete case, discretised in space only; see also [Cha20; Cha25]. See

Chen & Shu [CS20] for a review on different types of entropy-stable schemes for

the compressible NS equations.

The root-density variable present in our scheme (7.59) was employed by Morinishi

[Mor10] and Halpern & Waltz [HW18]; see also Nordström [Nor22] where similar

forms are used in the context of entropy generation. Without introducing the root-

density variable, similar decompositions of the advective term to that of (7.46b)

were used be Kennedy & Gruber [KG08], to improve the skew-symmetry of their

finite difference discretisation and hence improve its energy conservation properties,

and in recent work by Brunk, Jüngel & Lukáčová-Medvid’ová [BJL25], to ensure

energy stability in their FE discretisation of a variable-density system related to

the NS equations.

7See also Mouhot, Pareschi & Filbet [MP06; FMP06] for a discussion of the numerical implementa-
tion of these schemes.
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The problem of constructing energy-stable FE schemes for compressible flow

was considered in the ideal limit by Gawlik & Gay-Balmaz [GG21b] building on

a Lagrangian interpretation of the NS equations [Pav+11]. Dissipative terms were

later introduced by the same authors [GG21a].

5.2 Overview

In Chapter 6, we begin by demonstrating applications of the framework to certain

classes of geometric ODEs. The first of these systems is a simple Poisson or gradient-

descent system—both systems have a very similar form, making the application of

our framework identical in either case—for which we are able to preserve energy

stability, i.e. we are able to use our framework to construct an integrator of arbitrary

order that is discretely energy-conserving in the former case and energy-dissipative in

the latter. We lead on from here to consider a general conservative ODE system, with

potentially multiple invariants; through a general variational form of such equations

in terms of a certain alternating form, we are able simultaneously to preserve all

known conservation laws. For numerical demonstration, we consider the 2D Kepler

problem (a maximally superintegrable system in 4 dimensions with 3 invariants) and

the Kovalevskaya top (a superintegrable system in 6 dimensions with 4 invariants); in

each case we demonstrate the qualitative improvements offered by the SP approach,

as well as a convergence test in the case of the former. We conclude this chapter by

considering ODEs deriving from the GENERIC formalism, for which we are able to

preserve both the energy conservation and entropy generation structures discretely;

as an example application, we consider a classical dissipative thermodynamic system:

a C-cylinder engine. We further consider both the existence of unique solutions to

and convergence of our SP ODE schemes, establishing general analytic results that

we apply to each of these integrators.

In Chapter 7, we proceed by demonstrating applications of the framework within

PDEs. Similar to the ODE discussion, we begin by considering a simple Poisson

or gradient-descent system, applying our framework in either case to preserve the

energy stability; we apply our general scheme to the BBM equation, a Hamiltonian

PDE, observing that our energy-stable integrator offers notably greater preservation

of the system’s dynamics (in particular the long-term stability of an example soliton)

over the equivalent Gauss method. We continue then to PDEs deriving from the



5. Introduction 72

GENERIC formalism, similarly using our framework to derive a general FE integrator

that preserves both energy conservation and entropy generation; our example

application here is the Boltzmann equation, arguably the most classical GENERIC

PDE, for which we are able to construct an integrator that is necessarily both energy-

and entropy-stable. We conclude by considering the compressible NS equations,

which conserve mass, momentum, energy and entropy in the Euler/inviscid case,

and conserve mass, momentum and energy while necessarily generating entropy

otherwise. Through our framework, we are able to construct novel integrators that

preserve all of these structures in either case; we demonstrate our scheme with

numerical simulations of a shockwave (in the viscous regime) and an adiabatic

perturbation (in the Euler regime).
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This chapter begins the discussion of applications by considering geometric ODE

systems, and the discrete preservation of their structures. To use more familiar

notation, we shall write the general SP integrator (3.27) for ODEs in the form: find

(x, (w̃p)) ∈ Xn × ẊP
n such that

In[M(x; ẋ,y)] = In[F̃ (x, (w̃p); y)], In[M(x; yp, w̃p)] =
∫

Tn

∇Qp(x)⊤yp, (6.1)

for all (y, (yp)) ∈ Ẋn × ẊP
n , where ∇Qp(x)⊤ denotes the tranpose of ∇Qp(x), and

Xn is defined as in (3.10) with U = Rd,

Xn :=
{
x ∈ PS(Tn)d : x(tn) satisfies known initial data

}
. (6.2)

73
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We note throughout this chapter that, as discussed in Subsection 4.2.1, the AVs

introduced in the ODE can in general be eliminated on the computational level; they

serve primarily as a tool for the construction and analysis of the discretisations.

The rest of this chapter proceeds as follows. In Section 6.1, we begin by con-

sidering the application of our framework to a simple Poisson or gradient-descent

system (6.3), deriving a discretisation that is energy-stable, i.e. conserves the energy

over timesteps in the former case and dissipates it in the latter. We present some

further preliminary uniqueness and convergence results for general SP ODE inte-

grators derived from our framework, in particular for our energy-stable integrator

for Poisson and gradient-descent systems. In Section 6.2, we extend the idea to

general conservative systems with arbitrarily many invariants, constructing novel

discretisations that conserve all invariants. We consider as example applications the

Kepler problem, and the Kovalevskaya top, and reapply the analytic results of the

previous section to discuss again the uniqueness and convergence of solutions. In

Section 6.3, we conclude by discussing systems of ODEs deriving from the GENERIC

formalism [GÖ97; ÖG97], i.e. a certain class of systems with both a conserved energy

and non-decreasing entropy. We construct novel integrators that preserve both

these structures, applying the results scheme to a model dissipative thermodynamic

system, and again discuss the uniqueness and convergence of solutions.

6.1 Poisson & gradient-descent systems: Energy stability

As an introductory ODE example, we begin by considering both a general Poisson

and gradient-descent system, as the theory and application of our framework (Algo-

rithm 3.5) is similar in either case. These systems exhibit an energy H(x) ∈ R that is

either conserved or dissipated (or at least non-increasing) respectively.

Denote the general ODE in x : R+ → Rd,

ẋ = B(x)∇H(x), (6.3)

with IC x(0) = x0, where B(x) ∈ Rd×d is either skew-symmetric, in the case of a

general Poisson1 system, or negative semidefinite, in the case of a general gradient-

1 As we do not require B to satisfy the Jacobi identity to conserve H , we are more precisely
considering almost Poisson systems. We will however continue to refer to such systems as merely
Poisson for sake of brevity.
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descent2 system. In the Poisson case, this may identify with a Hamiltonian system,

with H denoting the Hamiltonian and B encoding the Poisson bracket; in particular

if the system is written in canonical coordinates x = [p,q], B is simply the constant

symplectic matrix

B(x) =
[
0 −I
I 0

]
, (6.4)

where I is the d/2-dimensional identity matrix. By testing (6.3) against ∇H , we see

H is either conserved or dissipated in the exact solution. We apply our framework

to construct an integrator for (6.3) that preserves this structure.

Application of framework (Framework 3.5)

A. Taking U := Rd, we define X as in (3.3) with U = Rd,

X :=
{
x ∈ C1(R+)d : x(0) satisfies known initial data

}
. (6.5)

We then arrive at our semi-discrete problem: find x ∈ X such that

M(ẋ,y) = F (x; y) (6.6)

at all times t ∈ R+ and for all y ∈ U = Rd, where M , F are defined

M(ẋ,y) := y⊤ẋ, F (x; y) := y⊤B(x)∇H(x). (6.7)

B. Over the timestep Tn, this is cast into a fully discrete form using our choice

of In: find x ∈ Xn, for Xn defined as in (6.2), such that

In[y⊤ẋ] = In[y⊤B(x)∇H(x)], (6.8)

for all y ∈ Ẋn.

C. Considering the evolution of H , since M is simply the ℓ2 inner product, the

associated test function for the conservation of H is simply ∇H .

D. We accordingly introduce an AV ∇̃H ∈ Ẋn, approximating∇H(x), and defined

as in (3.19) such that

In[∇̃H⊤
yH ] =

∫
Tn

∇H(x)⊤yH , (6.9)

2 Similarly, as we not requireB to be symmetric to dissipateH , this class of systems extends beyond
gradient-descent systems, for example to systems that are a linear combination of a gradient-descent
and Poisson system. Again for sake of brevity however, we will continue to use the terminology of
gradient-descent to refer to such systems.
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for all yH ∈ Ẋn.

E. We introduce ∇̃H into the definition of F as

F̃ (x, ∇̃H; y) := y⊤B(x)∇̃H. (6.10)

Clearly this coincides with the definition of F when ∇̃H = ∇H , while ensuring either

F̃ = 0 (in the Poisson case) or F̃ ≤ 0 (in the gradient-descent case) when y = ∇̃H .

F. The final SP scheme is then as follows: find (x, ∇̃H) ∈ Xn × Ẋn such that

In[y⊤ẋ] = In[y⊤B(x)∇̃H], In[∇̃H⊤
yH ] =

∫
Tn

∇H(x)⊤yH , (6.11)

for all (y,yH) ∈ Ẋn × Ẋn.

Theorem 6.1 (Energy stability of the Poisson & gradient-descent ODE integrator).

The integrator (6.11) is energy-stable, with

H(x(tn+1))−H(x(tn))

= 0, Poisson,
≤ 0, gradient-descent.

(6.12)

Proof. While this result holds by Theorem 3.4, we confirm the result here for sake of

example. By considering respectively yH = ẋ and y = ∇̃H in (6.11),

H(x(tn+1))−H(x(tn)) =
∫

Tn

Ḣ =
∫

Tn

∇H⊤ẋ

= In

[
∇̃H

⊤
ẋ
]
= In

[
∇̃H

⊤
B(x)∇̃H

]= 0, Poisson,
≤ 0, gradient-descent,

(6.13)

with the final result holding by either the skew-symmetry or negative semidefinite-

ness of B(x), and the sign-preserving property of In.

Remark 6.2. As stated above, we may use the ideas of Subsection 4.2.1 to eliminate the AV

∇̃H from the integrator (6.11) at the computational level. Letting (ls)S
s=1 denote a basis of

PS−1(Tn) orthonormal under the inner product induced by In (i.e. such that In[lrls] = δrs),

we can solve for ∇̃H explicitly as

∇̃H =
S∑

s=1
ls

∫
Tn

∇H(x(τ))ls(τ)dτ. (6.14)

This identity can then be substituted into the primal equation to give an energy-stable

integrator defined solely on x. In particular in the case of In an S-stage quadrature rule in Tn

(i.e. such that (6.11) represents an energy-stable modification of the corresponding collocation

method), choosing as (ls) the associated (scaled) Lagrange basis we see our scheme (6.11)

aligns exactly with those proposed by Cohen, Hairer & Lubich [CH11; HL14].
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6.1.1 Analysis: Uniqueness & convergence

While in Section 3.3 we detailed some existence and uniqueness results for the in-

compressible NS integrator (3.28) alongside results for general AD systems (Assump-

tion 3.11) these results are of little use for the analysis of the general energy-stable

integrator (6.11). We restrict our attention here instead to general SP discretisations

of ODE systems (6.1) derived from our framework (Framework 3.5). In such a

case, we are able to prove results relating both to the uniqueness of solutions, and

convergence on refinement of the timestep ∆tn. We will revisit these results to show

uniqueness and convergence results of SP integrators for conservative ODEs and

systems deriving from the GENERIC formalism in Subsections 6.2.3 & 6.3.2.

Unlike the Picard linearisation (Definition 3.19) used in the uniqueness proof in

Subsection 3.3.4, our proof of uniqueness in the ODE case makes use of a certain

Picard–Lindelöf linearisation (Definition 6.3) since the preservation of energy esti-

mates on the linearised level is less important in the analysis of ODEs. This definition

has the benefit of increased generality. Under relatively loose regularity conditions,

we are able to show this linearisation is a contraction on sufficiently small timesteps

∆tn, implying the existence of unique solutions by the CMT.

The rest of this subsection proceeds as follows. In Subsubsection 6.1.1.1, we show

that under certain relatively loose regularity conditions on the discretised system,

there exist unique solutions to our SP ODE integrators (6.1) on sufficiently small

timesteps ∆tn. In Subsubsection 6.1.1.2, we show that under certain conditions,

convergence of order S is guaranteed.3

6.1.1.1 Uniqueness

We begin by discussing the unique existence of solutions to the general SP ODE

integrator (6.1). Similarly to Subsection 3.3.4, our proof strategy relies on the CMT,

however differs from that of Subsection 3.3.4 in the choice of linearisation; whereas

Subsection 3.3.4 employs a Picard linearisation (Definition 3.19) we employ a so-

called Picard–Lindelöf linearisation (Definition 6.3). We derive a certain lemma

(Lemma 6.4) from the CMT, showing the existence to certain sufficiently regular

3Note that, while we are only able to show convergence of order S, numerical experiments appear
to indicate an order of 2S at time grid points, i.e. at (tn), assuming one starts with a method of order
2S and relevant regularity conditions hold, aligning with known convergence rates for Gauss methods
and CPG. This is discussed further in Remark 6.8
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nonlinear problems with sufficiently small nonlinear terms. Through a simple

corollary (Corollary 6.5) our final uniqueness result holds in Theorem 3.26 for

sufficiently small timesteps ∆tn.

Definition 6.3 (Picard–Lindelöf linearisation). Let m ∈ N denote the iteration index. On

a given timestep Tn, suppose xm ∈ Xn is given. Find the AV iterates (w̃p,m+1) ∈ ẊP
n such

that

In[M(xm; yp, w̃p,m+1)] =
∫

Tn

Qp
′(xm; yp), (6.15a)

for all (yp) ∈ ẊP
n . With this, find xm+1 ∈ Xn such that

In[M(xm; ẋm+1,y)] = In

[
F̃ (xm, (w̃p,m+1); y)

]
, (6.15b)

for all y ∈ Ẋn. When it is well defined, the map xm 7→ xm+1 is referred to as the Picard–

Lindelöf linearisation.

A simple criterion for the well-definedness of the Picard–Lindelöf linearisation

is that M(x; ·, ·) is non-singular for all x ∈ Rd; in fact, we shall henceforth assume

Assumption 3.9, that M(x; ·, ·) is both independent of x and defines an inner product

on Rd. Now to apply the CMT to this linearisation, we rely on the following lemma.

Lemma 6.4 (CMT lemma). For a given map T : Rn → Rn and ε > 0, consider the

nonlinear problem

X = εT (X). (6.16)

Both the following uniqueness results hold.

• When T ∈ Lip(Rn) (i.e. globally Lipschitz) there exists a unique X such that for

sufficiently small ε (6.16) holds.

• With T |Bs ∈ Liploc(Bs) (i.e. locally Lipschitz on an open ball Bs around 0 of radius s)

over any closed ball Br ⊂ Bs (similarly of radius r < s) there exists a unique X ∈ Br

such that for sufficiently small ε (6.16) holds.

Proof. Considering the map X 7→ εT (X), the result in the globally Lipschitz case

holds immediately from the CMT for ε < 1
L

where L ≥ 0 is the Lipschitz constant of

T .
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For the locally Lipschitz case, it suffices to show that for all Br ⊂ Bs there exists

sufficiently small ε such that the map X 7→ εT (X) maps from Br to Br, and that such

a map is a contraction. Consider ε bounded above by

ε <
r

∥T (0)∥+ rLr

, (6.17)

where Lr ≥ 0 is the Lipschitz constant of T on Br, and ∥ · ∥ denotes the ℓ2 norm.

Checking that the image of T on Br lies in Br,

∥εT (X)∥ ≤ ε(∥T (X)− T (0)∥+ ∥T (0)∥)

≤ ε(Lr∥X∥+ ∥T (0)∥) ≤ ε(rLr + ∥T (0)∥) < r, (6.18)

where the first inequality holds by the triangle inequality, the second by the Lipschitz

bound, the third since xn ∈ Br, and the last by the bound on ε (6.17). The rest follows

immediately from the CMT, since (6.17) ensures εLr < 1.

To apply Lemma 6.4 to show the existence of solutions to (6.1), we rely on the

following simple corollary.

Corollary 6.5 (CMT corollary). For given maps T : (Rn)P +1 → Rn and (Sp : Rn →
Rn)P

p=1, where Sp(0) = 0 for each p, and ε > 0, consider the nonlinear problem

X = εT
(
X, (W̃p)P

p=1

)
, W̃p = Sp(X) ∀p. (6.19)

Both the following uniqueness results hold:

• When T , (Sp) are globally Lipschitz, there exists a unique X such that for sufficiently

small ε (6.19) holds.

• With T , (Sp) locally Lipschitz on neighbourhoods of 0, over a sufficiently small closed

ball Br there exists a unique X ∈ Br such that for sufficiently small ε (6.19) holds.

Proof. The nonlinear problem (6.19) may be equivalently written as

X = εT
(
X, (Sp(X))P

p=1

)
. (6.20)

In the case where T , (Sp) are globally Lipschitz, the map X 7→ T (X, (Sp(X))) is

globally Lipschitz by composition; in the case where T , (Sp) are locally Lipschitz, we

see the map X 7→ T (X, (Sp(X))) is similarly locally Lipschitz on a sufficiently small

neighbourhood of 0 by composition, noting each Sp(0) = 0. Corollary 6.5 therefore

holds by Lemma 6.4.
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With Corollary 6.5 established, we may lastly show that, under certain regularity

conditions, solutions to a general SP ODE discretisation exist uniquely on sufficiently

small timesteps ∆tn.

Theorem 6.6 (Uniqueness of solutions: ODEs). Assume Assumption 3.9. Then both the

following results hold:

• Assume each QoIQp is globally Lipschitz differentiable in x, and F̃ is globally Lipschitz

in x, (w̃p). There then exists a unique solution to (6.1) on sufficiently small timesteps

∆tn.

• Assume each QoI Qp is locally Lipschitz differentiable on a neighbourhood of x(tn), and

F̃ is locally Lipschitz on neighbourhoods of x(tn), wp(x(tn)). For sufficiently small

δ > 0, there then exists a unique solution to (6.1) satisfying supTn
∥x− x(tn)∥ ≤ δ on

sufficiently small timesteps ∆tn.

Proof. To make our argument clearer as ∆tn → 0, let us write t = tn + τ∆tn and

reparametrise in τ ∈ [0, 1]. Define X, (W̃p)P
p=1, Y, (Yp)P

p=1 implicitly as

x(t) = x(tn) + Xn(τ), w̃p(t) = wp(x(tn)) + W̃p,n(τ), (6.21a)

y(t) = Y(τ), yp(t) = Yp(τ). (6.21b)

Letting J denote the quadrature rule In over the interval [0, 1], after some re-

arranging the general SP ODE integrator (6.1) can then be written in the form

J [M(X′
n,Y)] = ∆tnJ [F̃ (x(tn) + Xn, (wp(x(tn)) + W̃p,n); Y)], (6.22a)

J [M(Yp,W̃p,n)] =
∫ 1

0
[∇Qp(x(tn) + Xn)−∇Qp(x(tn))]⊤Yp. (6.22b)

We may show the existence of unique solutions to (6.22) by Corollary 6.5. Since

J [M(·, ·)] defines an inner product similarly to Lemma 3.10, define for each p the

map Sp : Ps−1(0, 1)→ Ps−1(0, 1) (where Ps−1(0, 1) denotes the space of degree-(s− 1)
polynomials on the interval (0, 1)) implicitly such that

J [M(Yp, Sp(X′
n))] =

∫ 1

0
[∇Qp(x(tn) + Xn)−∇Qp(x(tn))]⊤Yp (6.23a)

for all Yp ∈ Ẋn; clearly Sp(0) = 0, while standard arguments alongside the norm

equivalences from Lemma 3.8 show Sp is either globally Lipschitz, or locally Lipschitz
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in a neighbourhood of 0 when Qp is locally Lipschitz differentiable on a neighbour-

hood of x(tn). Define similarly the map T : (Ps−1(0, 1))P +1 → Ps−1(0, 1) implicitly

such that

J [M(T (X′
n, (W̃p,n)),Y)] = J [F̃ (x(tn) + Xn, (wp(x(tn)) + W̃p,n); Y)] (6.23b)

for all Y ∈ Ẋn; standard arguments again show T is either globally Lipschitz, or

locally Lipschitz in a neighbourhood of 0 when F̃ is locally Lipschitz differentiable on

a neighbourhood of x(tn), (wp(x(tn))). With T , (Sp) as defined in (6.23), the general

SP ODE integrator (6.22) can be written in the form (6.19); since (6.22) is equivalent

to (6.1), Theorem 6.6 then holds by Corollary 6.5.

Remark 6.7 (Sufficiency of continuous differentiability). Similarly to Remark 3.69, it is

sufficient in the latter case to show F̃ is continuously differentiable on a neighbourhood of

x(tn), wp(x(tn)), and Qp is twice continuously differentiable on a neighbourhood of x(tn).

Example (Poisson & gradient-descent systems)

The energy-stable integrator for Poisson & gradient-descent systems (6.11)

satisfies both the following uniqueness results:

• Assume B and H are globally Lipschitz and Lipschitz differentiable

respectively. There then exists a unique solution on sufficiently small

timesteps ∆tn.

• Assume B and H are locally Lipschitz and Lipschitz differentiable in

neighbourhoods of x(tn) respectively. For sufficiently small δ > 0,

there then exists a unique solution satisfying supTn
∥x − x(tn)∥ ≤ δ on

sufficiently small timesteps ∆tn.

6.1.1.2 Convergence

We discuss now the convergence of solutions to the general SP ODE integrator (6.1)

to an exact solution X : R+ → Rd. As noted in Section 3.3, the same approach

can be used to demonstrate a certain convergence under refinement of the timestep

in the PDE case, however this only necessarily implies convergence to a certain

semi-discrete solution, discretised in space only; as it stands, the argument here



6. ODEs 82

does not demonstrate convergence under simultaneous refinement of the mesh size,

and so the results here are only truly directly useful in the ODE case, where no

such spatial refinement concerns are present.

Our proof of convergence relies on two technical lemmas: a bound on the

approximation error in a certain projection from bounded functions on Tn to Ẋn

(Lemma 6.11) and a resulting error estimate for the AVs (w̃p) (Lemma 6.13). We

may then derive an error estimate for x (i.e. a bound for x − X) on Tn through

the triangle inequality via an intermediate function u† (6.42) (Theorem 6.14); this

is our main result, demonstrating the method is of order S provided sufficient

regularity conditions hold (Assumption 6.12) We conclude with an extension of

this bound to R+ (Corollary 6.15).

Remark 6.8 (Superconvergence). Theorem 6.14 and Corollary 6.15 imply only a conver-

gence of order S. Numerical experiments however appear to indicate an order of 2S at time

grid points, i.e. at (tn), assuming one starts with a method of order 2S and relevant regularity

conditions hold. (See the convergence rates in Fig. 6.3.) This result would align with the

known convergence rates for Gauss methods and CPG, and we expect it to hold here also.

To discuss the convergence of solutions to our discretisation, it is necessary that

these solutions exist uniquely. Sufficient conditions for this unique existence over

sufficiently small ∆tn are given by Theorem 6.6 in the case of globally Lipschitz differ-

entiable (Qp) and globally Lipschitz F̃ ; in the case where these Lipschitz conditions

hold locally, we simply choose the solution x that minimises supTn
∥x − x(tn)∥.

Continuing to the proof of convergence, we define first the approximation error

εn(Z), quantifying the distance, under the supremum norm, of a certain bounded

function Z : Tn → Rd from Ẋn.

Definition 6.9 (Approximation error). For bounded Z : Tn → Rd, define the Ẋn-

approximation error εn(Z) of Z,

εn(Z) := inf
z∈Ẋn

{
sup
Tn

∥Z− z∥
}
. (6.24)

Similar to Section 3.3, we write a ≲ b if there exists a constant C > 0, independent

of the discrete solution x and both the individual ∆tn and maximum ∆tmax timestep,

such that a ≤ Cb; the constant C may depend on the exact solution X, the problem

setting F̃ , (Qp), and their regularity, or the order S of the integrator. By taking a
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truncated Taylor expansion in time of Z, we then arrive at the following Jackson-type

theorem (see [Jac11] or [Tre20, Chap. 7]).

Lemma 6.10 (Jackson-type theorem). Suppose Z : R+ → Rd has a globally Lipschitz

(S − 1)-times time derivative ∂S−1
t Z ∈ Lip(R+)d. Then εn(Z) satisfies the bound εn(Z) ≲

∥∂S−1
t Z∥Lip∆tSn , where ∥∂S−1

t Z∥Lip denotes the Lipschitz norm of ∂S−1
t Z.

In each application of this lemma, Z will be either the exact solution or a function

thereof, implying this Lipschitz norm can naturally be excluded as it is falls under

the remit of the constant hidden by the general ≲ bound.

Under Assumption 3.9, consider the projection under In[M(·, ·)] of bounded

Z : R+ → Rd into Ẋn. We bound the approximation error of this projection by εn(Z).

Lemma 6.11 (General bound on approximation error). Assuming Assumption 3.9,

suppose z ∈ Ẋn, Z : R+ → Rd, and G ∈ Ẋ∗
n satisfy

In[M(z− Z,y)] = G(y), (6.25)

for all y ∈ Ẋn. Then z− Z satisfies the bound

sup
Tn

∥z− Z∥ ≲ εn(Z) + ∥G∥n, (6.26)

where ∥G∥n is defined

∥G∥n := 1
∆tn

sup
y∈Ẋn: supTn

∥y∥=1
|G(y)|, (6.27)

the supremum dual norm on Ẋ∗
n.

Proof. For all w ∈ Ẋn,

In[M(z−w,y)] = In[M(Z−w,y)] +G(y). (6.28)

We first bound z−w by taking y = z−w,

In[M(z−w, z−w)] = In[M(Z−w, z−w)] +G(z−w) (6.29a)

∆tn sup
Tn

∥z−w∥2 ≲ ∆tn sup
Tn

|M(Z−w, z−w)|+ |G(z−w)| (6.29b)

≲ ∆tn sup
Tn

∥Z−w∥ sup
Tn

∥z−w∥

+ ∆tn∥G∥n sup
Tn

∥z−w∥ (6.29c)

sup
Tn

∥z−w∥ ≲ sup
Tn

∥Z−w∥+ ∥G∥n, (6.29d)
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where the first inequality holds by Assumption 3.9 and (3.37), and the second holds

by the continuity of M and definition of ∥G∥n (6.27). We then bound z− Z through

w using the triangle inequality,

sup
Tn

∥z− Z∥ ≤ sup
Tn

∥z−w∥+ sup
Tn

∥Z−w∥ ≲ sup
Tn

∥Z−w∥+ ∥G∥n; (6.30)

since w is arbitrary, the result holds.

With the projection error (Lemma 6.11) established, we are able to prove our first

convergence result. To do so, we define the following regularity assumptions, under

which we are able to prove convergence of our scheme.

Assumption 6.12 (Convergence regularity). Assume Assumption 3.9, and that In has

order at least 2S − 1, i.e.

∣∣∣∣∫
Tn

ϕ− In[ϕ]
∣∣∣∣ ≲ sup

Tn

∥ϕ(2S−1)∥∆t2S
n , (6.31)

for all (2S−1)-times continuously differentiable ϕ : Tn → R. Assume further that the change

Ẋ in the exact trajectory X is uniformly (2S − 2)-times continuously differentiable, i.e. the

r-th derivative ∂r
t X is bounded (at least up to a chosen final time) for all r = 1, · · · , 2S − 2.

Assume further that each QoI Qp is 2S-times continuously differentiable, and that (at least)

one of the following holds:

• The RHS F̃ is globally Lipschitz, and that for each p the r-th derivative ∇⊗rQp is

bounded for all r = 0, · · · , 2S.

• The RHS F̃ is globally Lipschitz, the QoI Qp is globally Lipschitz differentiable for each

p, and the exact trajectory X is contained within a compact set.

• The RHS F̃ is locally Lipschitz, the exact trajectory X is contained within a compact

set, and for sufficiently small timesteps ∆tmax := maxn ∆tn all discrete trajectories x

are contained within some compact set.4

4In certain cases, these compactness results on the trajectories may be proven through certain
conservation and dissipation structures preserved to the discrete level by the discretisation’s SP
properties.
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Example (Poisson & gradient-descent systems)

For the energy-stable integrator (6.11) the only condition in Assumption 6.12

that simplifies is that of the Lipschitz regularity on F̃ : we require that the

matrix B(x) is either globally or locally Lipschitz in x respectively.

We are thus able to prove the following result, bounding the error between the

discrete AV w̃p and the associated test function wp(X).

Lemma 6.13 (Bound on error of AVs). Assume Assumption 6.12. Then for each p,

w̃p −wp(X) satisfies the bound

sup
Tn

∥w̃p −wp(X)∥ ≲ sup
Tn

∥x−X∥+ ∆tSn. (6.32)

Proof. For each p, the discrete AV w̃p is related to its continuous counterpart wp(X)

by the identity

In[M(w̃p−wp(X),yp)]

=
∫

Tn

∇Qp(x)⊤yp − In[∇Qp(X)⊤yp] (6.33a)

=
∫

Tn

[∇Qp(x)−∇Qp(X)]⊤yp

+
(∫

Tn

∇Qp(X)⊤yp − In[∇Qp(X)⊤yp]
)

=: Gp(yp) (6.33b)

for all yp ∈ Ẋn. We may use Lemma 6.11 to bound supTn
∥w̃p −wp(X)∥ by bounding

the RHS Gp.

For the former term
∫

Tn
[∇Qp(x)−∇Qp(X)]⊤yp, we consider the Lipschitz differ-

entiability condition of Qp. Since Qp is at least twice differentiable, it at least locally

Lipschitz differentiable; by assumption, Qp is then either globally Lipschitz differ-

entiable, or there exists a compact set containing both X and, for sufficiently small

∆tmax, all trajectories x. We may therefore bound ∥∇Qp(x) − ∇Qp(X)∥ ≲ ∥x −X∥

over the whole trajectory, implying

∣∣∣∣∫
Tn

[∇Qp(x)−∇Qp(X)]⊤yp

∣∣∣∣≤ sup
Tn

∥∇Qp(x)−∇Qp(X)∥ sup
Tn

∥yp∥∆tn

≲ sup
Tn

∥x−X∥ sup
Tn

∥yp∥∆tn (6.34)
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For the latter term
∫

Tn
∇Qp(X)⊤yp − In[∇Qp(X)⊤yp], we rely on the order of In

(6.31),∣∣∣∣∫
Tn

∇Qp(X)⊤yp − In[∇Qp(X)⊤yp]
∣∣∣∣≲ sup

Tn

∣∣∣∂2S−1
t [∇Qp(X)⊤yp]

∣∣∣∆t2S
n . (6.35)

Each term in the expansion of ∂2S−1
t [∇Qp(X)⊤yp] takes the form of an inner product

between the following: an r-times spatial derivative derivative ∇⊗rQp(X) for some

r ≤ 2S; up to 2S − 1 derivatives ∂r
t X for certain 1 ≤ r ≤ 2S − 1; a derivative

∂r
t yp for some r ≤ S − 1 (since for r ≥ S, ∂r

t yp = 0). Each of these terms may

be bounded over Tn, in turn allowing us to bound supTn

∣∣∣∂2S−1
t [∇Qp(X)⊤vp]

∣∣∣: we

may bound ∥∇⊗rQp(X)∥ through the 2S-times continuous differentiability of Qp,

either through the compactly contained trajectory or directly through the explicitly

bounded derivatives, depending on the case in question; we may bound each ∥∂r
t X∥

similarly through the explicitly bounded derivatives; we may bound ∥∂r
t yp∥ (in

finite dimensions) by some multiple of ∆t−r
n supTn

∥yp∥, implying a uniform bound

of ∆t1−S
n supTn

∥yp∥. Thus, we may bound∣∣∣∣∫
Tn

∇Qp(X)⊤yp − In[∇Qp(X)⊤yp]
∣∣∣∣≲ sup

Tn

∥yp∥∆tS+1
n . (6.36)

We may then bound Gp by (6.34, 6.36),

∥Gp∥n ≲ sup
Tn

∥x−X∥+ ∆tSn, (6.37)

implying the bound

sup
Tn

∥w̃p −wp(X)∥ ≲ εn(wp(X)) + sup
Tn

∥x−X∥+ ∆tSn (6.38)

by Lemma 6.11. To bound εn(wp(X)) we consider Lemma 6.10. Each term in the

expansion of ∂S−1
t [wp(X)] takes the form of an inner product between the following:

a derivative ∇⊗rwp(X) for some r ≤ S − 1; up to S − 1 derivatives ∂r
t X for certain

1 ≤ r ≤ S − 1. We may see each of these terms is Lipschitz over R+: the term

∇⊗rwp(X) is Lipschitz for r ≤ S − 1 as X is Lipschitz by the assumed continuity of

Ẋ, while wp inherits the regularity of ∇Qp, including either its global (S − 1)-times

Lipschitz differentiability, or its local (S − 1)-times Lipschitz differentiability with

the compactly contained trajectory X; the term ∂r
t X is Lipschitz for 1 ≤ r ≤ S − 1 by

the assumed regularity of Ẋ. Thus, for each n, by (6.38) and Lemma 6.10,

sup
Tn

∥w̃p −wp(X)∥ ≲ εn(wp(X)) + sup
Tn

∥x−X∥+ ∆tSn ≲ sup
Tn

∥x−X∥+ ∆tSn. (6.39)
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Example (Poisson & gradient-descent systems)

Assuming Assumption 6.12 holds, the AV ∇̃H in the integrator (6.11) satisfies

the error estimate

sup
Tn

∥∇̃H −∇H(X)∥ ≲ sup
Tn

∥x−X∥+ ∆tSn. (6.40)

With the error on the AVs established, we arrive at our first convergence results.

Theorem 6.14 (Local convergence). Assume Assumption 6.12. Then on a sufficiently

small timestep ∆tmax, x−X is bounded on Tn by

(0 ≤) sup
Tn

∥x−X∥ − ∥x(tn)−X(tn)∥ ≲ ∆tn∥x(tn)−X(tn)∥+ ∆tS+1
n . (6.41)

Proof. Intermediate between x and X, define also ẋ† ∈ Ẋn
5 such that

In[M(ẋ†,y†)] = In[F̃ (X, (wp(X)); y†)] (6.42)

for all y† ∈ Ẋn; the variable ẋ† necessarily exists by Lemma 3.10. For t ∈ Tn,

x(t)−X(t) = [x(tn)−X(tn)] +
∫ t

tn

[ẋ− ẋ†] +
∫ t

tn

[ẋ† − Ẋ] (6.43a)

sup
Tn

∥x−X∥ ≤ ∥x(tn)−X(tn)∥+
∫

Tn

∥ẋ− ẋ†∥+
∫

Tn

∥ẋ† − Ẋ∥. (6.43b)

We shall bound the latter two terms.

For the former term
∫

Tn
∥ẋ− ẋ†∥, note ẋ and ẋ† are related by the identity

In[M(ẋ− ẋ†,y)] = In[F̃ (x, (w̃p); y)− F̃ (X, (wp(X)); y)], (6.44)

for all y ∈ Ẋn. We seek to bound the RHS term by the Lipschitz condition on F̃ . In

the case of global Lipschitz regularity, this is immediate. In the case of local Lipschitz

regularity, we require x, (w̃p), X, (wp(X)) to lie in a uniform compact domain for

sufficiently small ∆tmax; this is true for x and X by assumption, for (wp(X)) by the

assumed continuity of wp (inherited from the assumed continuity of (∇Qp)), and for

5Without the time derivative, x† is defined only up to a constant, however this is irrelevant for our
proof as x† will appear only through its derivative.
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(w̃p) by the bound (6.32). Thus, we may bound

|In[M(ẋ− ẋ†,y)]| = |In[F̃ (x, (w̃p); y)− F̃ (X, (wp(X)); y)]| (6.45a)

≤ ∆tn sup
Tn

|F̃ (x, (w̃p); y)− F̃ (X, (wp(X)); y)| (6.45b)

≲ ∆tn sup
Tn

{max{∥x−X∥, (∥w̃p −wp(X)∥)p}∥y∥} (6.45c)

≲ ∆tn
(

sup
Tn

∥x−X∥+ ∆tSn
)

sup
Tn

∥y∥, (6.45d)

where in the final inequality we use the error estimate (6.32). Taking y = ẋ− ẋ†,

In[∥ẋ− ẋ†∥2] ≲ ∆tn
(

sup
Tn

∥x−X∥+ ∆tSn
)

sup
Tn

∥ẋ− ẋ†∥. (6.46)

We may bound the LHS below by

sup
Tn

∥ẋ− ẋ†∥
∫

Tn

∥ẋ− ẋ†∥ ≤ ∆tn sup
Tn

∥ẋ− ẋ†∥2 ≲ In[∥ẋ− ẋ†∥2], (6.47)

where the second inequality holds by (3.37b), implying ultimately that

∫
Tn

∥ẋ− ẋ†∥ ≲ ∆tn
(

sup
Tn

∥x−X∥+ ∆tSn
)
. (6.48)

To handle this inequality appropriately, we re-introduce the hidden constant C > 0,

∫
Tn

∥ẋ− ẋ†∥ ≤ C∆tn
(

sup
Tn

∥x−X∥+ ∆tSn
)
. (6.49)

Substituting this bound into (6.43b),

sup
Tn

∥x−X∥ ≤ ∥x(tn)−X(tn)∥+ C∆tn
(

sup
Tn

∥x−X∥+ ∆tSn
)

+
∫

Tn

∥ẋ† − Ẋ∥. (6.50)

Since C is independent of ∆tn, with a sufficiently small timestep C∆tn < 1,

(1− C∆tn) sup
Tn

∥x−X∥ ≤ ∥x(tn)−X(tn)∥+ C∆tS+1
n +

∫
Tn

∥ẋ† − Ẋ∥. (6.51)

Restricting further to C∆tn ≤ 1
2 , we note that (1− C∆tn)−1 ≤ 1 + 2C∆tn ≤ 2,

sup
Tn

∥x−X∥ ≤ (1 + 2C∆tn)∥x(tn)−X(tn)∥+ 2C∆tS+1
n + 2

∫
Tn

∥ẋ† − Ẋ∥. (6.52)

Removing the constant C leaves the asymptotic bound

sup
Tn

∥x−X∥− ∥x(tn)−X(tn)∥ ≤ ∆tn∥x(tn)−X(tn)∥+ ∆tS+1
n +

∫
Tn

∥ẋ†− Ẋ∥. (6.53)
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Proceeding to the latter term
∫

Tn
∥ẋ† − Ẋ∥,∫

Tn

∥ẋ† − Ẋ∥ ≤ ∆tn sup
Tn

∥ẋ† − Ẋ∥. (6.54)

Since ẋ† and Ẋ are related by the identity In[M(ẋ† − Ẋ,y†)] = 0 for all y† ∈ Ẋn,∫
Tn

∥ẋ† − Ẋ∥ ≲ ∆tnεn(Ẋ) ≲ ∆tS+1
n , (6.55)

where in the first inequality we apply Lemma 6.11, and in the second we apply

Lemma 6.10 through the assumed regularity of Ẋ. Substituting this bound into (6.53)

we obtain the desired result (6.41).

Example (Poisson & gradient-descent systems)

Assuming Assumption 6.12 holds, then for a sufficiently small timestep ∆tmax,

the discrete solution x to (6.11) satisfies the error estimate

(0 ≤) sup
Tn

∥x−X∥ − ∥x(tn)−X(tn)∥ ≲ ∆tn∥x(tn)−X(tn)∥+ ∆tS+1
n . (6.56)

Iterating this bound over multiple timesteps, we obtain the following global

convergence result.

Corollary 6.15 (Global convergence). Assume Assumption 6.12. Then for sufficiently

small ∆tmax, there exists a uniform constant C > 0 such that x −X is bounded in Tn =
[tn, tn+1] by

sup
Tn

∥x−X∥ ≲ ∆tSmaxtn+1 exp(Ctn+1). (6.57)

Proof. Let us first re-introduce certain hidden constants, writing (6.41) in the form

sup
Tn

∥x−X∥ ≤ (1 + C∆tn)∥x(tn)−X(tn)∥+D∆tS+1
n , (6.58)

for C,D > 0. This constant C is that which features in the exponent in (6.57); the

constant D is then the hidden constant in ≲, such that

∥x(t)−X(t)∥ ≤ D∆tSmaxtn+1 exp(Ctn+1). (6.59)

The proof is then a standard exercise in induction on (6.41) over timesteps. The base

case t ∈ T0 = [0, t1] is trivial. For the inductive case, assume that the identity (6.57)
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holds for all t ∈ Tn−1; we consider then t ∈ Tn:

∥x(t)−X(t)∥ ≤ (1 + C∆tn)∥x(tn)−X(tn)∥+D∆tS+1
n (6.60a)

≤ (1 + C∆tn)D∆tSmaxtn exp(Ctn) +D∆tSmax∆tn (6.60b)

≤ D∆tSmax[(1 + C∆tn)tn exp(Ctn) + ∆tn] (6.60c)

≤ D∆tSmax[tn exp(Ctn+1) + ∆tn exp(Ctn+1)] (6.60d)

≤ D∆tSmaxtn+1 exp(Ctn+1), (6.60e)

where in the fourth inequality we use the bound (1 +C∆tn) ≤ exp(C∆tn). The given

error bound (6.57) then holds after removing the constant D.

Example (Poisson & gradient-descent systems)

Assuming Assumption 6.12 holds, then for a sufficiently small global timestep

∆tmax, there exists a uniform constant C > 0 such that the discrete solution x to

(6.11) satisfies the error estimate

sup
Tn

∥x−X∥ ≲ ∆tSmaxtn+1 exp(Ctn+1). (6.61)

6.2 General conservative systems: Conservation of ar-
bitrary invariants

We consider now general conservative ODE systems with arbitrarily many in-

variants of interest.

Let f : Rd → Rd induce the general ODE system

ẋ = f(x), (6.62)

with IC x(0) = x0. Suppose this system is conservative in P (< d) independent

invariants (Np : Rd → R)P
p=1, such that in the continuous case ∇Np(x)⊤f(x) = 0 for

each p = 1, . . . , P . Analogous to the conservation of H in Section 6.1, each Np can

then be seen to be conserved over Tn by testing (6.62) with ∇Np.

We plan to introduce AVs for each∇Np, and to use those AVs in the RHS of (6.62).

However, as written, (6.62) does not appear to depend on each ∇Np. Lemma 6.16

demonstrates that f may be rewritten to make its dependence on (∇Np) explicit,
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thereby enabling the introduction of AVs. This result is fully constructive, relying on

the definition of a certain alternating form, i.e. a multilinear map F : V n → R over a

vector space V such that F [v1, . . . , vn] = 0 whenever vi = vj for some i ̸= j. We denote

the space of alternating n-forms over V by Altn V , and define the alternatisation

AltF ∈ Altn V of an n-multilinear map by

AltF [v1, . . . , vn] :=
∑

σ∈Sn

sgnσ F [vσ1 , . . . , vσn ], (6.63)

where Sn denotes the permutation group of degree n, and sgnσ ∈ {±1} the sign

of σ ∈ Sn [Tu10].

Lemma 6.16 (Identification of alternating forms). For the general conservative system

(6.62) there exists F̃ : Rd → AltP +1 Rd such that ∀x,y ∈ Rd,

y⊤f(x) = F̃ (x)[∇N1(x), . . . ,∇NP (x),y]. (6.64)

Proof. We demonstrate the existence of F̃ by construction. Through the indepen-

dence of (Np), the gradients (∇Np) are linearly independent almost everywhere.

Consequently, we may define a dual basis (mq : Rd → Rd)P
q=1 such that almost

everywhere ∇Np(x)⊤mq(x) = δpq. For each x ∈ Rd, define then the multilinear map

G̃(x) : (Rd)P +1 → R,

G̃(x)[n1, . . . ,nP ,y] := (n⊤
1 m1(x)) · · · (n⊤

P mP (x))(y⊤f(x)). (6.65)

We observe then by the orthogonality property∇Np(x)⊤mq(x) = δpq that

G̃(x)[∇N1(x), . . . ,∇NP (x),y] := y⊤f(x); (6.66)

furthermore, by the orthogonality ∇Np(x)⊤f(x) (inherent in the conservation of Np)

this evaluates to 0 under any (non-trivial) permutation of the arguments. Now

define F̃ (x) := Alt G̃(x) ∈ AltP +1 Rd to be the alternatisation of G̃(x) (6.63). This

F̃ (x) is alternating for all arguments by construction, and coincides with G̃(x) when

evaluated at [∇N1(x), . . . ,∇NP (x),y] for any y since all but the trivial permutation

evaluate to zero in the alternatisation (6.63) Hence (6.64) holds.

Since the proof here is constructive, one may potentially use it directly when seek-

ing to define such an F̃ . In simpler cases however, such an F̃ can often be found sim-

ply by inspection, as we will demonstrate for the Kepler problem in Subsection 6.2.1.
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With Lemma 6.16 established and F̃ defined, we may apply our framework to

construct an integrator for (6.62) that preserves all conservation laws.

Application of framework (Framework 3.5)

A. Taking U := Rd, we again define X as in (6.5). We then arrive at our semi-

discrete problem: find x ∈ X such that

M(ẋ,y) = F (x; y) (6.67)

at all times t ∈ R+ and for all y ∈ U = Rd, where M , F are defined

M(ẋ,y) := y⊤ẋ, F (x; y) := y⊤f(x). (6.68)

B. Over the timestep Tn, this is cast into a fully discrete form using our choice

of In: find x ∈ Xn, for Xn defined again as in (6.2), such that

In[M(ẋ,y)] = In[F (x,y)], (6.69)

for all y ∈ Ẋn.

C. Considering the conservation of (Np), since M is simply the ℓ2 inner product,

the associated test functions for the conservation of (Np) are (∇Np).
D. We introduce AVs (∇̃Np) ∈ ẊP

n , approximating (∇Np) and defined as in (3.19)

such that

In[∇̃N⊤
p yp] =

∫
Tn

∇Np(x)⊤yp, (6.70)

for all (yp)P
p=1 ∈ ẊP

n .

E. We may define F̃ as in Lemma 6.16, such that by (6.64) it coincides with F

when each ∇̃Np = ∇Np, and by the alternating property of F̃ (x) it preserves each

of the conservation structures.

F. The final SP scheme is then as follows: find (x, (∇̃Np)) ∈ Xn × ẊP
n such that

In[y⊤ẋ] = In[F̃ (x)[∇̃N1, . . . , ∇̃NP ,y]], (6.71a)

In[∇̃N⊤
p yp] =

∫
Tn

∇Np(x)⊤yp, (6.71b)

for all (y, (yp)) ∈ Ẋn × ẊP
n .
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Theorem 6.17 (Universal stability of the integrator for conservative systems). The

integrator (6.71) conserves all invariants considered, with Np(x(tn+1)) = Np(x(tn)) for all

p.

Proof. For each p, by considering respectively ỹ = ẋ and yp = ∇̃Np in (6.11),

Np(x(tn+1))−Np(x(tn)) =
∫

Tn

Ṅp =
∫

Tn

∇Np(x)⊤ẋ

= In

[
∇̃N

⊤
p ẋ
]
= In

[
F̃ (x)[∇̃N1, . . . , ∇̃NP , ∇̃Np]

]
= 0, (6.72)

where the final equality holds by the alternating property of F̃ (x).

6.2.1 The Kepler problem: Energy, angular momentum & Runge–
Lenz stability

As a numerical demonstration of the scheme (6.71) we discretise the (nondimen-

sionalised) two-body Kepler problem,

ẋ = v, v̇ = − 1
∥x∥3 x, (6.73)

for x,v : R+ → Rd with d ∈ {2, 3} representing the position and velocity respectively,

and ∥ · ∥ denoting the ℓ2 norm. Trajectories of (6.73) preserve the energy H , angular

momentum L, and Runge–Lenz vector A, defined

H(x,v) := 1
2∥v∥

2 − 1
∥x∥

, L(x,v) := x× v, A(x,v) := v× L(x,v)− 1
∥x∥

x, (6.74)

where × denotes the cross product. Roughly speaking, H and L encode within

them the shape of the orbit and the plane to which it is restricted, whereas the

orientation of the orbit within that plane is encoded in A (see Taff [Taf85]). These

invariants are not independent, as ∥A∥2 = 1+2H∥L∥2, while A and L are necessarily

perpendicular; these 3 invariants thus represent 2d − 1 independent constants of

motion, the maximum possible number of conserved quantities (i.e. the system

is maximally superintegrable).

For our numerical demonstration, we consider the two-dimensional case d = 2. In

such a case, if H and A = (A1, A2) are conserved, then the scalar angular momentum

L will be conserved automatically, since ∥A∥2 = 1 + 2HL2. We may therefore

construct a fully constructive numerical integrator for d = 2 using our scheme (6.71)

by conserving H , A1, A2, i.e. P = 3.
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To apply (6.71) we must construct some F̃ : R2×2 → Alt4 R2×2 satisfying the

conditions of (6.64), i.e. such that ∀(x,v), (y,w) ∈ R2×2,

y⊤v−w⊤ 1
∥x∥3 x = F̃

((
x
v

))[(
∇xH
∇vH

)
,

(
∇xA1
∇vA1

)
,

(
∇xA2
∇vA2

)
,

(
y
w

)]
, (6.75)

where ∇x, ∇v denote partial derivatives with respect to x, v respectively. Instead

of using the constructive proof in Lemma 6.16, we may more simply note the space

Alt4 R4 merely has dimension 1; any alternating n-form in n dimensions is in fact

some multiple of the determinant map on the n-by-n square matrix formed by the

n argument vectors, allowing us to vastly reduce the space of potential maps F̃ to

consider. Noting the gradients in our QoIs,

∇xH = 1
∥x∥3 x, ∇xA = 1

∥x∥3 x⊗2 − v⊗2 +
(
∥v∥2 − 1

∥x∥

)
I, (6.76a)

∇vH = v, ∇vA = 2x⊗ v− v⊗ x− (x · v)I, (6.76b)

where ⊗ denotes the outer product and x⊗2 := x ⊗ x, we may see by inspection

that, for all (x,v), (y,w) ∈ R2×2,

1
2L(x,v)H(x,v) det

[
y ∇xH ∇xA⊤

w ∇vH ∇vA⊤

]
= y⊤v−w⊤ 1

∥x∥3 x, (6.77)

where det : R4×4 → R denotes the determinant map. We may define therefore

F̃ : R2×2 → Alt4 R2×2 as

F̃

((
x
v

))∇̃xH

∇̃vH

,
∇̃xA1

∇̃vA1

,
∇̃xA2

∇̃vA2

,(y
w

)
:= 1

2L(x,v)H(x,v) det
y ∇̃xH ∇̃xA1 ∇̃xA2

w ∇̃vH ∇̃vA1 ∇̃vA2

, (6.78)

which we see to be an alternating form by the alternating properties of det, and

we see to satisfy (6.64) by (6.77).

Through (6.71) we then arrive at our fully conservative integrator for the two-

dimensional Kepler problem: find ((x,v), (∇̃xH, ∇̃vH), (∇̃xA, ∇̃vA)) ∈ Xn×Ẋn×Ẋ2
n

(with Xn defined as in (6.2) for d = 2 × 2) such that

In

[
y⊤ẋ + w⊤v̇

]
= In

 1
2L(x,v)H(x,v) det

y ∇̃xH ∇̃xA
⊤

w ∇̃vH ∇̃vA
⊤

, (6.79a)

In

[
∇̃xH

⊤
yH + ∇̃vH

⊤
wH

]
=
∫

Tn

∇H(x,v)⊤yH +∇H(x,v)⊤wH , (6.79b)

In

[
tr
(
∇̃xAYA + ∇̃vAWA

)]
=
∫

Tn

tr (∇xA(x,v)YA +∇vA(x,v)WA), (6.79c)
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for all ((y,w), (yH ,wH), (YA,WA)) ∈ Ẋn × Ẋn × Ẋ2
n, where tr denotes the trace.

We test the fully conservative integrator (6.79) numerically on a standard set of

ICs (inspired by [HLW06, Sec. I.2.3]) x(0) = (0.4, 0), v(0) = (0, 2). In each of these

tests, we take In to be an S-stage GL quadrature method, such that the scheme (6.79)

is an SP modification of a Gauss method of equal order.

6.2.1.1 Comparison test

To illustrate the qualitative benefits afforded by our fully conservative scheme, Fig. 6.1

simulates our Kepler IVP with timestep ∆tn = 0.1 and final time t = 100, using

various classical 1-stage, 2nd-order implicit geometric integrators: IM, the mean-value

(or averaged-vector-field) discrete-gradient (MV–DG) method of McLachlan, Quispel

& Robidous [MQR99], LB–G [LG74], and our scheme (6.79) at S = 1.

In those cases where they are not conserved, Fig. 6.2 shows the evolution of the

invariants H , L, θ up to time t = 50, where θ := arg A.

As a symplectic method, IM conserves the quadratic invariant L (up to quadrature

error, solver tolerances and machine precision) but neither H nor θ; it therefore

conserves neither the orbit shape nor its orientation, since trajectories in the Kepler

problem should be precession-free. IM gives unphysical solutions over this duration

with this timestep. The MV–DG scheme conserves H , but neither L nor θ. LB–G

conserves H and L by design, and so conserves the orbit shape, but not its orientation

θ. In contrast, our scheme (6.79) conserves all three invariants, thereby restricting

the discrete solution to the same ellipse traced out by the exact solution.

These results illustrate the potential importance of conserving invariants in

Hamiltonian (and non-Hamiltonian) systems: while symplectic methods are likely

preferable for e.g. capturing the statistical behaviour of chaotic systems, conservative

discretisations may give more physically reasonable results for individual trajectories

at coarser timesteps.

6.2.1.2 Convergence test

Fig. 6.3 shows the convergence of (6.79) for our model IVP through the error in

the position of the orbital body after the true orbital period (2π for these ICs) at

varying timesteps ∆tn and stages S. We observe convergence with rate 2S before

round-off errors dominate.
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Figure 6.1: Trajectories of the Kepler problem.

6.2.2 The Kovalevskaya top: Energy, angular momentum, normality
& Kovalevskaya invariant stability

As a further example, we consider the (nondimensionalised) Kovalevskaya [Kov89]

top,

ṅ = n× Jl, l̇ = n× e1 + l× Jl, (6.80)

for n, l : R+ → R3 representing the orientation vector (i.e. the z-components of

the principal axes) and the angular momentum (i.e. the components of the angular

momentum along those principal axes) respectively, × denoting the cross product,
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Figure 6.2: Error in scalar invariants of the Kepler problem: H , L and θ.
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Figure 6.3: Error in the position of the orbital body at t = 2π for varying timesteps ∆t ∈ 2π ·2k,
k ∈ {−5, . . . ,−12} and stages S ∈ {1, . . . , 4}. The convergence curve for S ∈ {3, 4} flattens
out at smaller timesteps due to round-off error and solver tolerances. Triangles demonstrate
observed convergence rates of 2S.

e1 denoting the basis vector (1, 0, 0), and J denoting the matrix

J :=

1 0 0
0 1 0
0 0 2

 . (6.81)

Trajectories of this system have 4 invariants: the energyH := 1
2 l⊤Jl, the (square) norm

of the orientation vector ∥n∥2, the angular momentum in the z direction L = l · n,

and the Kovalevskaya invariant K = |ξ|2 where ξ = (l1 + il2)2 − 2(n1 + in2) (i is the



6. ODEs 98

imaginary unit). While H , ∥n∥2 and l · n are quadratic, K is quartic.

Unlike the Kepler problem (Subsection 6.2.1) it is not immediately clear from

inspection how one might define an F̃ : R6 → Alt5 R6 satisfying the conditions

of Lemma 6.16 to conserve all 4 of these invariants; we therefore find such an F̃

using a construction similar to that used in the proof of Lemma 6.16. Define the

multilinear map G̃((n, l)) : (R6)5 → R,

G̃

((
n
l

))[(
a1
b1

)
,

(
a2
b2

)
,

(
a3
b3

)
,

(
a4
b4

)
,

(
m
k

)]
:= det[b1 b2 b3](n · a4)

[
m⊤(n× Jl) + k⊤(n× e1) + k⊤(l× Jl)

]
. (6.82a)

Considering the alternatisation Alt G̃((n, l)) ∈ Alt5 R6, we apply Alt G̃((n, l)) to the

gradients of the invariants H , K, L, 1
2∥n∥

2 respectively, we see

Alt G̃
((

n
l

))[(
e1
Jl

)
,

(
∇nK
∇lK

)
,

(
l
n

)
,

(
n
0

)
,

(
m
k

)]
= 6 det[Jl ∇lK n]∥n∥2

[
m⊤(n× Jl) + k⊤(n× e1) + k⊤(l× Jl)

]
. (6.82b)

We therefore define F̃ ((n, l)) ∈ Alt5 R6,

F̃

((
n
l

))[(
a1
b1

)
,

(
a2
b2

)
,

(
a3
b3

)
,

(
a4
b4

)
,

(
m
k

)]

:= 1
6 det[Jl ∇lK n]∥n∥2 Alt G̃

((
n
l

))[(
a1
b1

)
,

(
a2
b2

)
,

(
a3
b3

)
,

(
a4
b4

)
,

(
m
k

)]
. (6.82c)

This satisfies (6.64); we may then use such F̃ in (6.71) to define a fully conservative

integrator for the Kovalevskaya top.

6.2.2.1 Numerical test

Fig. 6.4 shows numerical simulations of the Kovalevskaya top with IM and the fully

conservative modification of 1-stage CPG (6.71) using F̃ as in (6.82c) with the same

ICs n(0) = (0.8, 0.6, 0), l(0) = (2, 0, 0.2) and timestep ∆t = 0.1 until final time 300.

Fig. 6.5 shows the evolution and drift of the Kovalevskaya invariant K within the IM

scheme. In each figure, colouring indicates error in the Kovalevskaya invariant K:

green for |K −K(0)| ≤ 1
2 , orange for |K −K(0)| ∈ (1

2 , 1], red for |K −K(0)| > 1.

All invariants, including K, are conserved by the trajectory of the SP scheme (up

to quadrature error, solver tolerances and machine precision). As a quartic invariant,

K is not conserved by the IM scheme; we see that the resulting drift in K allows the

IM numerical simulation to admit unphysical trajectories after a sufficient duration

(approximately 18 rotations of the top for these ICs).
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(a) IM (b) Our modification of CPG

Figure 6.4: Trajectories in n, l of the Kovalevskaya top, with IM (left) and our proposed
modification of CPG (right).
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Figure 6.5: Error K −K(0) within the IM simulation of the Kovalevskaya top.

6.2.3 Analysis: Uniqueness & convergence

We conclude our discussion of the general conservative integrator (6.71) by consider-

ing the existence of unique solutions, and their convergence as ∆tmax := maxn ∆tn →
0 through the results of Subsection 6.1.1.

For uniqueness we refer to Theorem 6.6.
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Example (General conservative systems)

The universally stable integrator for conservative systems (6.71) satisfies both

the following uniqueness results:

• Assume (Np) are globally Lipschitz differentiable, and F̃ is globally

Lipschitz in x. There then exists a unique solution on sufficiently small

timesteps ∆tn.

• Assume (Np) are locally Lipschitz differentiable, and F̃ is locally Lipschitz

in x, each on a neighbourhood of x(tn). For sufficiently small δ > 0,

there then exists a unique solution satisfying supTn
∥x − x(tn)∥ ≤ δ on

sufficiently small timesteps ∆tn.

The latter result holds for the Kepler integrator (Section 6.2.1) provided

both the energy H and the angular momentum L are non-zero,a and for the

Kovalevskaya integrator (Section 6.2.2) provided det[Jl ∇lK n]|t=tn is non-zero.

aWe require also that x(tn) ̸= 0, however this is necessary for the continuous system even
to be well defined. Similarly, a non-zero angular momentum is sufficient for the existence of
exact solutions for all time t > 0.

For convergence we refer to Corollary 6.15.

Example (General conservative systems)

Assuming Assumption 6.12 holds, in particular such that F̃ is either globally of

locally Lipschitz in x. Then for a sufficiently small timestep ∆tmax, there exists

a uniform constant C > 0 such that the discrete solution x to (6.71) satisfies the

error estimate on Tn = [tn, tn+1]

sup
Tn

∥x−X∥ ≲ ∆tSmaxtn+1 exp(Ctn+1). (6.83)

The final condition in Assumption 6.12 holds for both the Kepler (Section 6.2.1)

and Kovalevskaya (Section 6.2.2) integrators, provided again in the former

case that neither H nor L is zero, and in the latter that det[Jl ∇lK n] remains

non-zero along all discrete trajectories x as ∆tmax → 0.
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6.3 GENERIC formalism: Energy & entropy stability

We consider now systems of ODEs deriving from the GENERIC formalism [GÖ97;

ÖG97] which we refer to as GENERIC ODEs. A GENERIC ODE can be most simply

interpreted as a combination of a Poisson and gradient-descent ODE (6.3),

ẋ = B(x)∇E(x) +D(x)∇S(x), (6.84)

where B(x), D(x) ∈ Rd×d are skew-symmetric and positive semidefinite respec-

tively (the Poisson and friction matrices) and E(x), S(x) ∈ R are conserved and

non-decreasing respectively (the energy and entropy). For these conservation and

dissipation structures to hold, the additional orthogonality constraints

∇S(x)⊤B(x) = 0, ∇E(x)⊤D(x) = 0 (6.85)

are imposed. In the construction of our SP scheme, we rely on the following assump-

tion.

Assumption 6.18 (Characterisation of GENERIC matrix compatibility). Assume the

existence of B̃, D̃ : (Rd)2 → Rd×d such that the following hold:

1. B̃, D̃ coincide with B,D: for all x ∈ Rd,

B̃(x,∇S(x)) = B(x), D̃(x,∇E(x)) = D(x). (6.86a)

2. B̃, D̃ are skew-symmetric and positive semidefinite respectively for all arguments.

3. B̃, D̃ preserve the compatibility conditions (6.85) for all arguments: for all x,yE,yS ∈
Rd,

y⊤
S B̃(x,yS) = 0, y⊤

ED̃(x,yE) = 0. (6.86b)

Remark 6.19 (Validity of assumption on GENERIC operator compatibility). While

we are unable to guarantee this assumption is true in full generality, we find it to hold in all

typical cases.

With Assumption 6.18 established, we may apply our framework to construct an

integrator for (6.84) that preserves both the conservation law in E and dissipation

inequality in S. The argument being very similar to that in Sections 6.1 & 6.2,
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we omit the details here and state only the final scheme: find (x, (∇̃E, ∇̃S)) ∈
Xn × (Ẋ2

n) such that

In[y⊤ẋ] = In[y⊤B̃(x, ∇̃S)∇̃E + y⊤D̃(x, ∇̃E)∇̃S], (6.87a)

In[∇̃E⊤
yE] =

∫
Tn

∇E(x)⊤yE, (6.87b)

In[∇̃S⊤
yS] =

∫
Tn

∇S(x)⊤yS, (6.87c)

for all (y, (yE,yS)) ∈ Ẋn × Ẋ2
n.

Theorem 6.20 (Energy & entropy stability of the GENERIC ODE integrator). The inte-

grator (6.71) is energy and entropy stable, with E(x(tn+1)) = E(x(tn)) and S(x(tn+1)) ≥
S(x(tn)).

Proof. By considering respectively ỹE = ỹS = ẋ and yE = ∇̃E, yS = ∇̃S in (6.87),

E(x(tn+1))− E(x(tn)) S(x(tn+1))− S(x(tn))

=
∫

Tn

Ė =
∫

Tn

Ṡ (6.88a)

=
∫

Tn

∇E(x)⊤ẋ =
∫

Tn

∇S(x)⊤ẋ (6.88b)

= In

[
∇̃E

⊤
ẋ
]

= In

[
∇̃S

⊤
ẋ
]

(6.88c)

= In

∇̃E⊤
B̃(x, ∇̃S)∇̃E

+ ∇̃E⊤
D̃(x, ∇̃E)∇̃S

 = In

∇̃S⊤
B̃(x, ∇̃S)∇̃E

+ ∇̃S⊤
D̃(x, ∇̃E)∇̃S

 (6.88d)

= 0, ≥ 0, (6.88e)

where the final equality and inequality hold by Assumption 6.18.

6.3.1 A simple thermodynamic engine

Inspired by the classical thermodynamic systems considered by e.g. Ottinger [Ött05,

Ex. 3] or Gay-Balmaz & Yoshimura [GY17, Sec. 3.1], we consider as an example a

(nondimensionalised) model for an idealised, unpowered, C-cylinder thermody-

namic engine with thermal dissipation,

θ̇ = ω, Ṡc = 1
Tc

[T0 − Tc], (6.89a)

ω̇ =
C∑

c=1
Pc sin

(
θ − 2πc

C

)
, Ṡ0 = 1

T0

C∑
c=1

[Tc − T0]. (6.89b)
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Here, θ represents the engine phase and ω its rate of change. The thermodynamic vari-

ables (Sc)C
c=1, (Pc)C

c=1 and (Tc)C
c=1 represent the entropies, pressures and temperatures

respectively within each piston, satisfying the fluid’s equation of state at volumes

(Vc := Vp − cos(θ − 2πc
C

))c for a constant, uniform reference volume Vp > 1; similarly,

the thermodynamic variables S0 and T0 represents the entropy and temperature

respectively of the surrounding environment, the latter of which being constant.

Example (Ideal fluid)

For an ideal fluid, (Pc), (Tc) can be related to (Sc), (Vc := Vp − cos(θ − 2πc
C

)) by

Pc(Sc, Vc) = exp
(
Sc

CV

)
V −γ

c , Tc(Sc, Vc) = Pc(Sc, Vc)Vc, (6.90)

where CV is the nondimensionalised heat capacity at constant volume and

γ = 1 + 1
CV

is the adiabatic index (3
2 and 5

3 respectively for a monatomic gas).

Define a state variable x := (θ, ω, (Sc), S0) accordingly, with total energy E and en-

tropy S,

E(x) := 1
2ω

2 +
∑

c

Uc + U0, S(x) :=
∑

c

Sc + S0, (6.91)

where (Uc)C
c=1 denote the internal energies within each piston and U0 the energy dissi-

pated to the surrounding environment, again satisfying the fluid’s equation of state.

Example (Ideal fluid)

For an ideal fluid, (Uc) can be related to (Sc), (Vc) and U0 to S0 by

Uc(Sc, Vc) = CV Tc(Sc, Vc), U0(S0) = T0S0. (6.92)

Observing the gradients in E, S,

∇E(x) :=


−∑c Pc sin

(
θ − 2πc

C

)
ω

(Tc)c

T0

, ∇S(x) :=


0
0
1
1

, (6.93)
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where the former identity may be derived by the fundamental thermodynamic rela-

tions

dUc = TcdSc − PcdVc = TcdSc − Pc sin
(
θ − 2πc

C

)
dθ, dU0 = T0dS0. (6.94)

The system (6.89) can then be written under the GENERIC formalism (6.84) for

B(x) :=



0 1 0 · · · 0 0
−1 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0


, D(x) :=



0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 T0

T1
· · · 0 −1

...
...

... . . . ...
...

0 0 0 · · · T0
TC

−1
0 0 −1 · · · −1 ∑

c
TC

T0


. (6.95)

For B,D as defined in the thermodynamic engine model (6.95), B̃ may simply

be defined as B to satisfy the conditions of Assumption 6.18 (as it is constant)

while D̃ may be defined

D(x,∇E) :=



0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 ∂S0 E

∂S1 E
· · · 0 −1

...
...

... . . . ...
...

0 0 0 · · · ∂S0 E

∂SC
E

−1
0 0 −1 · · · −1 ∑

c
∂Sc E

∂S0 E


, (6.96)

where ∂Sc denotes the partial derivative with respect to Sc. Through (6.87) we

then construct the following energy- and entropy-stable integrator for (6.89): find

((θ, ω, (Sc), S0), (P̃ , ω̃, (T̃c))) ∈ XC+3
n ×ẊC+2

n (with Ẋn defined as in (6.2) for d = 1) such

that

In[θ̇η] = In[ω̃η] (6.97a)

In[ω̇ψ] = −In[P̃ψ] (6.97b)

In[ṠcRc] = In

[
1
T̃c

(T0 − T̃c)Rc

]
(6.97c)

In[Ṡ0R0] = In

[
1
T0

∑
c

(T̃c − T0)R0

]
(6.97d)

In[P̃ Q̃] = −
∫

Tn

∑
c

Pc(Sc, Vc) sin
(
θ − 2πc

C

)
Q̃ (6.97e)

In[ω̃ψ̃] =
∫

Tn

ωψ̃ (6.97f)

In[T̃cW̃c] =
∫

Tn

Tc(Sc, Vc)W̃c (6.97g)
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for all ((η, ψ, (Rc), R0), (Q̃, ψ̃, (W̃c))) ∈ ẊC+3
n × ẊC+2

n , where again each Vc := Vp −
cos(θ− 2πc

C
). Specifically, P̃ , ω̃, (T̃c) are the AVs for energy conservation, approximating

−∑c Pc sin
(
θ − 2πc

C

)
, ω, Tc(Sc, Vc) respectively.6

One may observe in fact that the scheme (6.97) may be simplified, as the RHSs of

(6.97a, 6.97b) identify with the LHSs of (6.97f, 6.97e) respectively: find ((θ, ω, (Sc), S0), (T̃c)) ∈
XC+3

n × ẊC
n such that

In[θ̇η] =
∫

Tn

ωη (6.98a)

In[ω̇ψ] =
∫

Tn

∑
c

Pc(Sc, Vc) sin
(
θ − 2πc

C

)
Q̃ (6.98b)

In[ṠcRc] = In

[
1
T̃c

(T0 − T̃c)Rc

]
(6.98c)

In[Ṡ0R0] = In

[
1
T0

∑
c

(T̃c − T0)R0

]
(6.98d)

In[T̃cW̃c] =
∫

Tn

Tc(Sc, Vc)W̃c (6.98e)

for all ((η, ψ, (Rc), R0), (W̃c)) ∈ ẊC+3
n × ẊC

n .

6.3.2 Analysis: Uniqueness & convergence

We conclude our discussion of the integrator for GENERIC ODEs (6.87) by consider-

ing the existence of unique solutions, and their convergence as ∆tmax := maxn ∆tn →
0 through the results of Subsection 6.1.1.

For uniqueness we refer to Theorem 6.6.

Example (GENERIC ODEs)

The universally stable integrator for conservative systems (6.71) satisfies both

the following uniqueness results:

• Assume E, S are globally Lipschitz differentiable, and B̃, D̃ are globally

Lipschitz. There then exists a unique solution on sufficiently small

timesteps ∆tn.

• Assume E, S are locally Lipschitz differentiable on a neighbourhood

of x(tn), and B̃, D̃ are locally Lipschitz on a neighbourhood of x(tn),

6We do not require an AV approximating T0 as it constant, nor do we need those approximating
the gradients in S for the same reason.
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∇E(x(tn)), ∇S(x(tn)). For sufficiently small δ > 0, there then exists a

unique solution satisfying supTn
∥x − x(tn)∥ ≤ δ on sufficiently small

timesteps ∆tn.

In particular, assuming the constitutive relations determining the pressure P

and temperature T as functions of the entropy S and volume V are locally

Lipschitz, the latter result holds for our integrator for the thermodynamic

engine (6.97).

For convergence we refer to Theorem 6.14 and Corollary 6.15.

Example (GENERIC ODEs)

Assuming Assumption 6.12 holds, in particular such that B̃, D̃ are either

globally of locally Lipschitz in x, ∇̃E, ∇̃S. Then for a sufficiently small timestep

∆tmax, there exists a uniform constant C > 0 such that the discrete solution x to

(6.71) satisfies the error estimate on Tn = [tn, tn+1]

sup
Tn

∥x−X∥ ≲ ∆tSmaxtn+1 exp(Ctn+1). (6.99)

The final condition in Assumption 6.12 holds in particular for our thermo-

dynamic engine integrator (6.97), provided the exact solution is uniformly

(2S − 1)-times continuously differentiable, and that the constitutive relations

determining P , T in terms of S, V are also (2S − 1)-times continuously

differentiable (albeit not necessarily uniformly).
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This chapter continues the discussion of applications by considering geometric

PDE systems. In contrast to Chapter 6, these schemes will be presented without

analysis; none of the PDEs considered in this chapter fall under the class of AD

systems analysed in 3.3 while, as discussed earlier, the results in Subsection 6.1.1

for the analysis of SP discretisations for ODE systems do not give meaningful

results in PDE settings.

The rest of this chapter proceeds as follows. In Section 7.1, we begin similarly

to Section 6.1 by considering the application of our framework to a simple Poisson

or gradient-descent system (7.1), deriving a discretisation that is energy-stable,

i.e. conserves the energy over timesteps in the former case and dissipates it in the

latter. We consider as an example system the BBM equations. In Section 6.3, similarly

107
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to Section 7.2 we consider systems of PDEs deriving from the GENERIC formalism

[GÖ97; ÖG97]. As a canonical dissipative thermodynamic PDE, we consider the

Boltzmann equation, deriving novel integrators that simultaneously preserve both

the conservation of energy and generation of entropy. In Section 7.3, we conclude by

considering the compressible NS equations, deriving novel integrators that are mass-,

momentum-, energy- and entropy-stable (i.e. conserve each of these invariants) in the

inviscid Euler case, and conserve mass, momentum and energy and are necessarily

non-decreasing in the entropy in the viscous case.

7.1 Poisson & gradient-descent systems: Energy stability

As an introductory PDE example, we begin similarly to Section 6.1 by considering

either a general Poisson or gradient-descent system, with a single QoI, the energy

H(u) ∈ R, either conserved or dissipated respectively.

Unlike the ODE system (6.3) this is most conveniently stated for our purposes

in a variational form over some space U : find u ∈ C1(R+;U) satisfying known

initial data, such that

M(u; u̇, v) = B(u;wH(u), v) (7.1)

at all times t ∈ R+ and for all v ∈ U , where the operators M,B : U × U × U → R

are linear in their final two arguments, with the latter furthermore either skew-

symmetric, in the case of a general Poisson system, or negative semidefinite, in the

case of a general gradient-descent system. The functional wH : U → U is such that

M(u; ·, wH(u)) = H ′(u; ·), the Fréchet derivative of H , i.e. it is the associated test

function for H as defined in Step C of our framework. It is straightforward then to

see the behaviour of H over Tn by considering v = wH(u):

H(u(tn+1))−H(u(tn)) =
∫

Tn

Ḣ =
∫

Tn

H ′(u; u̇) =
∫

Tn

M(u; u̇, wH(u))

=
∫

Tn

B(u;wH(u), wH(u))

= 0, Poisson,
≤ 0, gradient-descent,

(7.2)

with the final result holding by either the skew-symmetry of negative semidefi-

niteness of B(u; ·, ·) respectively.
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Remark 7.1 (Poisson & gradient-descent PDEs without M ). The Poisson or gradient-

descent PDE (7.1) can be stated without the choice of M by considering test functions in the

dual space U∗ of U : find u ∈ C1(R+;U) satisfying known initial data, such that

L[u̇] = B∗(u;H ′(u), L) (7.3)

at all times t ∈ R+ and for all L ∈ U∗, whereB : U×U×U → R andB∗ : U×U∗×U∗ → R

are related by

B∗(u;M(u; ·, w),M(u; ·, v)) = B(u;w, v). (7.4)

However, as our framework requires the test space and solution space to be identical, this

more general, abstract form is less useful for our purposes.

We may now apply our framework to construct an energy-stable integrator for

the Poisson or gradient-descent PDE (7.1).

Application of framework (Framework 3.5)

A. Taking U to be a finite-dimensional function space U, the system (7.1) defines

our semi-discrete form.1

B. Over the timestep Tn, this is cast into a fully discrete form using our choice

of In: find x ∈ Xn (for Xn defined as in (3.10)) such that

In[M(u; u̇, v)] = In[B(u;wH(u), v)], (7.5)

for all v ∈ Ẋn.

C. As established earlier, the associated test function for the evolution of H is

wH(u) satisfying H ′(u; ·) = M(u; ·, wH(u)).
D. We introduce an AV w̃H ∈ Ẋn, approximating wH(u), and defined as in (3.19)

such that

In[M(u; vH , w̃H)] =
∫

Tn

H ′(u; v)
(

=
∫

Tn

M(u; vH , wH(u))
)
, (7.6)

for all vH ∈ Ẋn.

E. To introduce w̃H into the RHS of (7.5) in a way to preserve the behaviour of

H , we propose the modified discrete form,2

In[M(u; u̇, v)] = In[B(u; w̃H , v)]. (7.7)
1In the language of Section 3.1, F : U× U→ R is defined F (u; v) := B(u;wH(u), v)
2In the language of Section 3.1, F̃ : U× U× U→ R is defined F̃ (u, w̃H ; v) := B(u; w̃H , v).
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F. The final SP scheme is then as follows: find (u, w̃H) ∈ Xn × Ẋn such that

In[M(u; u̇, v)] = In[B(u; w̃H , v)], (7.8a)

In[M(u; vH , w̃H)] =
∫

Tn

H ′(u; vH), (7.8b)

for all (v, vH) ∈ Ẋn × Ẋn.

Theorem 7.2 (Energy stability of the Poisson & gradient-descent PDE integrator). The

integrator (7.8) is energy-stable, with

H(x(tn+1))−H(x(tn))

= 0, Poisson,
≤ 0, gradient-descent.

(7.9)

Proof. By considering respectively v = u̇ and vH = w̃H in (6.11),

H(x(tn+1))−H(x(tn)) =
∫

Tn

Ḣ =
∫

Tn

H ′(u; u̇) = In[M(u; u̇, w̃H)]

= In[B(u; w̃H , w̃H)]

= 0, Poisson,
≤ 0, gradient-descent,

(7.10)

with the final result holding by either the skew-symmetry of negative semidefinite-

ness of B(u; ·, ·) respectively, and the sign-preserving property of In.

7.1.1 The Benjamin–Bona–Mahony equation

As a motivating example, consider the BBM equation [BBM97] in u : R+ × Ω → R

over an interval Ω ⊂ R,

u̇− ∂2
xu̇ = −∂xu− u∂xu, (7.11)

where ∂x denotes the partial derivative with respect to the spatial coordinate x. We

shall assume periodic BCs. The BBM equation is a Poisson3 system with energy

H(u) :=
∫

Ω

1
2u

2 + 1
6u

3. (7.12)

To apply the scheme (7.8) to construct an energy-stable integrator for (7.11), we must

first show (7.11) may be written in the form (7.1).

3Hamiltonian, in fact.
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A typical semi-discrete variational form of (7.11) can be found by testing in L2

against some test function v: find u ∈ U satisfying known ICs such that

(u̇− ∂2
xu̇, v) = −(∂xu+ u∂xu, v) (7.13a)

(u̇, v) + (∂xu̇, ∂xv) = −(∂x[u+ 1
2u

2], v) (7.13b)

(u̇, v)H1 = (u+ 1
2u

2, ∂xv) (7.13c)

at all times t ∈ R+ and for all v ∈ U , implying M is simply the H1 inner product.

The associated test function wH(u) for H must then satisfy

(δu, wH(u))H1 = H ′(u; δu) (7.14a)

(δu, wH(u)− ∂2
xwH(u)) = (u+ 1

2u
2, δu), (7.14b)

implying wH(u) is defined in strong form implicitly to satisfy

wH(u)− ∂2
xwH(u) = u+ 1

2u
2. (7.15)

We may write our semi-discrete variational form (7.13c) in terms ofwH(u) therefore as,

(u̇, v)H1 = (wH(u)− ∂2
xwH(u), ∂xv) (7.16a)

= 1
2[(wH(u), ∂xv) + (∂xwH(u), ∂2

xv)

− (∂xwH(u), v)− (∂2
xwH(u), ∂xv)], (7.16b)

= 1
2[(wH(u), ∂xv)H1 − (∂xwH(u), v)H1 ]. (7.16c)

Defining skew-symmetric B(w, v) := 1
2 [(w, ∂xv)H1 − (∂xw, v)H1 ] therefore, this aligns

with the variational form for general Poisson PDEs (7.1).

We may therefore use our general SP integrator (7.8) for Poisson PDEs to derive

the following energy-conserving scheme: find (u, w̃H) ∈ Xn × Ẋn such that

In[(u̇, v)H1 ] = 1
2In[(w̃H , ∂xv)H1 − (∂xw̃H , v)H1 ], (7.17a)

In[(vH , w̃H)H1 ] =
∫

Tn

(u+ 1
2u

2, vH), (7.17b)

for all (v, vH) ∈ Ẋn×Ẋn. Again, taking (v, vH) = (w̃H , u̇) confirms that (7.17) conserves

H .
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7.1.1.1 Soliton test

To numerically verify and motivate these conservation properties, we consider the do-

main Ω = (−50, 50). Up to projection, the following ICs form a soliton4 of speed 1+
√

5
2 :

u(0) = 3
√

5− 3
2 sech

(√
5− 1
4 x

)2

, (7.18)

where sech is the hyperbolic secant function. Over an interval mesh of uniform mesh

width 2, we take U to be the (degree-3) Hermite space (see Ern & Guermond [EG21a,

Chap. 5]); in time, we take a uniform timestep ∆tn = 1. Under these conditions, we

compare the results from a 2-stage (symplectic) Gauss method as applied to (7.13c)

with that of the scheme (7.17) with In the exact integral5 and S = 2.

Fig. 7.1 shows the evolution of the energy H(u) under each scheme. Artificial

dissipation in the energy under the Gauss method causes the value to decrease from

its initial value of around 11.1 to around 6.2 at the final time t = 2 · 104.

0 0.5 1 1.5 2
·104

6

7

8

9

10

11

t

Gauss
our proposed scheme

Figure 7.1: Evolution of the energy H(u) when solving the BBM equations with a Gauss
method and our proposed scheme.

Fig. 7.2 shows u under each scheme at various times along the simulation. The

dissipation in H(u) under the Gauss method correlates with a reduction in the

amplitude of u, causing the speed of the discrete soliton to decrease. At t = 2× 104,

the discrete soliton in the Gauss simulation has speed approximately 1.45; compare

with the exact value of approximately 1.618, and that of the numerical solution from

our proposed scheme of approximately 1.617.
4The appropriate notion of a nonlinear wave under periodic BCs is not a soliton, but a cnoidal

wave (see Ablowitz & Segur [AS81, Sec. 2.3]). The value the ICs at the boundary x = ±50 however
are approximately 2× 10−13, implying this distinction on this domain is negligible, especially after
projection into the discrete space U.

5We are able to compute this exactly, as all terms in the discretisation (7.17) are polynomial.
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2 Gauss
our proposed scheme

exact solution

(a) t = 0

−40 −20 0 20 40
0

1

2

(b) t = 1 · 104

−40 −20 0 20 40
0

1

2

(c) t = 2 · 104

Figure 7.2: Plots of u(x) in the BBM simulations using a Gauss method and our proposed
scheme at times t ∈ {0, 1 · 104, 2 · 104}. The exact solution is included for comparison.

Of note is the conservation of the H1 norm ∥u∥H1 , a further invariant of the BBM

equation. Fig. 7.1 shows the evolution of ∥u∥H1 under our proposed scheme. While

the construction of the scheme (7.17) does not guarantee the discrete conservation

of ∥u∥H1 , we find numerically that ∥u(tn)∥H1 oscillates within the small interval

(15.9660, 15.9667) over the simulation duration; this is reminiscent of the approxi-

mate conservation of energy exhibited by symplectic integrators (see Fig. 6.2a or

e.g. [HLW06, Chap. I, Fig 4.1]). The proof of this property remains an open problem.

7.2 GENERIC formalism: Energy & entropy stability

We consider now systems of PDEs deriving from the GENERIC formalism [GÖ97;

ÖG97] which we refer to the as GENERIC PDEs. A combination of (7.1) and (6.84),

these are most conveniently stated in a variational form over some space U : find
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Figure 7.3: Evolution of the H1 norm ∥u∥H1 when solving the BBM equations with our
proposed scheme.

u ∈ C1(R+;U) satisfying known initial data, such that

M(u; u̇, v) = B(u;wE(u), v) +D(u;wS(u), v) (7.19)

at all times t ∈ R+ and for all v ∈ U , where the operators M,B,D : U × U ×
U → R are each linear in their final two arguments, with B (the Poisson operator)

furthermore skew-symmetric and D (the friction operator) furthermore positive

semidefinite. For our purposes, this system (7.19) has two relevant QoIs: E, S : U →
R, with E(u) (the energy) conserved and S(u) (the entropy) non-decreasing; similarly

to (7.1) the functionals wE, wS : U → U are such that M(u; ·, wE(u)) = E ′(u; ·),
M(u; ·, wS(u)) = S ′(u; ·), i.e. they are the associated test functions for E, S. For these

conservation and dissipation structures to hold, the GENERIC formalism imposes

the additional orthogonality constraints

B(u; ·, wS(u)) = 0, D(u; ·, wE(u)) = 0. (7.20)

are required. It is straightforward then to see the conservation and generation

structures by considering v = wE(u), wS(u) respectively.

Remark 7.3 (GENERIC PDEs without M ). Similarly to Remark 7.1, the GENERIC PDE

(7.19) can be stated without the choice of M by considering test functions in the dual space

U∗ of U : find u ∈ C1(R+;U) satisfying known initial data, such that

L[u̇] = B∗(u;H ′(u), L) +D(u;S ′(u), L) (7.21)
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at all times t ∈ R+ and for all L ∈ U∗, whereB : U×U×U → R andB∗ : U×U∗×U∗ → R

are related by

B∗(u;M(u; ·, w),M(u; ·, v)) = B(u;w, v), (7.22a)

and D : U × U × U → R and D∗ : U × U∗ × U∗ → R are related by

D∗(u;M(u; ·, w),M(u; ·, v)) = D(u;w, v). (7.22b)

Similar to Assumption 6.18, in the construction of our SP scheme we rely on

the following assumption.

Assumption 7.4 (Characterisation of GENERIC operator compatibility). Assume the

existence of B̃, D̃ : U× U× U× U→ R, linear in their final two arguments, such that the

following hold:

1. B̃, D̃ coincide with B,D: for all u,

B̃(u,wS(u); ·, ·) = B(u; ·, ·), D̃(u,wE(u); ·, ·) = D(u; ·, ·). (7.23a)

2. B̃, D̃ are skew-symmetric and positive semidefinite respectively in their final two

arguments.

3. B̃, D̃ preserve the compatibility conditions (7.20) for all arguments: for all u, w̃E, w̃S ∈
U ,

B̃(u, w̃S; ·, w̃S) = 0, D̃(u, w̃E; ·, w̃E) = 0. (7.23b)

Remark 7.5 (Validity of assumption on GENERIC operator compatibility). We find this

assumption to be somewhat more restrictive than its ODE counterpart (Assumption 6.18).

For instance, Subsection 7.2.1 treats the Boltzmann equation with the Boltzmann collision

operator in the role of the friction operator D; we show therein that this collision operator

admits a natural place for w̃E (7.39). By contrast, we find this construction to be less

straightforward with other operators, such as the Fokker–Planck collision operator.

With Assumption 7.4 established, we may apply our framework to construct an

integrator for (7.19) that preserves both the conservation law in E and dissipation

inequality in S. Both the stages in the application of the framework and the resultant

scheme are largely similar to a combination of the SP integrators for GENERIC ODEs

(6.87) and Poisson & gradient-descent PDEs (7.8), again relying on the introduction
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of chosen LHS operator M : U3 → R. For brevity therefore, we state only the

final scheme: find (u, (w̃E, w̃S)) ∈ Xn × Ẋ2
n (for Xn defined as in (3.10)) such that

for all (v, (vE, vS)) ∈ Ẋn × Ẋ2
n,

In[M(u; u̇, v)] = In[B̃(u, w̃S; w̃E, v) + D̃(u, w̃E; w̃S, v)], (7.24a)

In[M(u; vE, w̃E)] =
∫

Tn

E ′(u; vE), (7.24b)

In[M(u; vS, w̃S)] =
∫

Tn

S ′(u; vS). (7.24c)

By (7.23a) we see (7.24a) identifies with the original weak formulation (7.19) when

(w̃E, w̃S) = (wE(u), wS(u)).

Theorem 7.6 (Energy & entropy stability of the GENERIC ODE integrator). The inte-

grator (6.71) is energy and entropy stable, with E(u(tn+1)) = E(u(tn)) and S(u(tn+1)) ≥
S(u(tn)).

Proof. By considering respectively vE = vS = u̇ and vE = w̃E , vS = w̃S in (7.24),

E(u(tn+1))− E(u(tn)) S(u(tn+1))− S(u(tn))

=
∫

Tn

Ė =
∫

Tn

Ṡ (7.25a)

=
∫

Tn

E ′(u; u̇) =
∫

Tn

S ′(u; u̇) (7.25b)

= In[M(u; u̇, w̃E)] = In[M(u; u̇, w̃S)] (7.25c)

= In

B̃(u, w̃S; w̃E, w̃E)

+ D̃(u, w̃E; w̃S, w̃E)

 = In

B̃(u, w̃S; w̃E, w̃S)

+ D̃(u, w̃E; w̃S, w̃S)

 (7.25d)

= 0, ≥ 0, (7.25e)

where the final equality and inequality hold by Assumption 7.4.

7.2.1 The Boltzmann equation

Inspired by [Ött05, Chap. 7] we consider as a key example application the (nondi-

mensionalised) Boltzmann equation in d dimensions,

ḟ = −v · ∇xf +∇xϕ · ∇vf + 1
KnC(f). (7.26)

Here, f(x,v, t) ∈ R represents the particle density function in the position and

velocity x,v ∈ Rd, ∇x and ∇v denote the partial derivatives with respect to x and
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v, ϕ(x) ∈ R represents a potential energy density, and Kn is the Knudsen number.

The term C denotes the Boltzmann collision operator, defined by

C(f) :=
∫

v∗,n∈Sd−1
β(n, ∥v− v∗∥)(f †f ∗† − ff ∗) dv∗dn, (7.27)

where β(n, ∥v− v∗∥) ≥ 0 is the collision kernel, ∥ · ∥ denotes the ℓ2 norm, Sd−1 ⊂ Rn

is the unit (d − 1)-sphere, and f ∗, f †, f ∗† are shorthand for

f ∗ = f |v=v∗ , f † = f |v=v† , f ∗† = f |v=v∗† , (7.28a)

where in turn v†,v∗† are the unique post/pre-collision velocities satisfying

v + v∗ = v† + v∗†,
1
2∥v∥

2 + 1
2∥v

∗∥2 = 1
2∥v

†∥2 + 1
2∥v

∗†∥2,
v− v†

∥v− v†∥
= n. (7.28b)

We assume periodic BCs in x, and a vanishing asymptotic BC in v of f → 0 as

∥v∥ → ∞. The Boltzmann equation (7.26) has a conserved energy E and non-

decreasing entropy S,

E :=
∫

x,v

(1
2∥v∥

2 + ϕ
)
f, S :=

∫
x,v

(1− log f)f. (7.29)

To apply the scheme (7.24) to construct an energy- and entropy-stable integrator

for (7.26), we must first show (7.26) fits within the GENERIC formalism, i.e. may

be written in the form (7.19).

To first handle the asymptotic BCs in v, let us parametrise f as

f(t; x,v) = f0(v) exp(u(t; x,v)) (7.30)

for u ∈ U . The function f0 > 0 characterises the asymptotic behaviour in v, with

f0 → 0 and u = o[log f0] as ∥v∥ → ∞. Note then that ḟ = fu̇.

We now cast (7.26) into a variational form. By testing against some v ∈ U and

after some classical manipulation of the collision term, we arrive at the following:

find u ∈ C1(R+;U) satisfying known initial data, such that∫
x,v
fu̇v =

∫
x,v

(∇xϕ · ∇vv − v · ∇xv)f

+ 1
4Kn

∫
x,v,v∗,n

β(f †f ∗† − ff ∗)(v + v∗ − v† − v∗†) (7.31)

at all times t ∈ R+ and for all v ∈ U , where v∗, v†, v∗† are defined analogously to f ∗,

f †, f ∗† (7.28a). This induces the choice of the LHS operator M : U3 → R,

M(u;w, v) :=
∫

x,v
fwv =

∫
x,v
f0 exp(u)wv. (7.32)
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Now, consider the energy E and entropy S (7.29) as functions in u. These QoIs

have Fréchet derivatives

E ′(u; δu) =
∫

x,v

(1
2∥v∥

2 + ϕ
)
fδu, S ′(u; δu) = −

∫
x,v
f log fδu, (7.33)

where again f is defined in terms of u by (7.30). Seeking wE(u), wS(u) such that

M(u; ·, wE(u)) = E ′(u; ·), M(u; ·, wS(u)) = S ′(u; ·), the solution is immediate:

wE(u) = 1
2∥v∥

2 + ϕ, wS(u) = − log f. (7.34)

Define then the Poisson B and friction D operators,6

B(u; w̃E, v) :=
∫

x,v
(∇xw̃E · ∇vv −∇vw̃E · ∇xv)f, (7.35a)

D(u; w̃S, v) := 1
4Kn

∫
x,v,v∗,n

β(exp(−w̃†
S − w̃

∗†
S )− exp(−w̃S − w̃∗

S))

(v + v∗ − v† − v∗†), (7.35b)

where w̃∗
S , w̃†

S , w̃∗†
S are again defined analogously to f ∗, f †, f ∗† (7.28a) and v∗, v†,

v∗†. The skew-symmetry of B is immediate, while the positive-definiteness of D

relies on the observation that (e−x − e−y)(y − x) ≥ 0. The GENERIC compatibility

condition B(u; ·, w̃S) = 0 holds immediately, while D(u; ·, w̃E) = 0 can be seen from

the conservation of energy condition 1
2∥v∥

2 + 1
2∥v

∗∥2 = 1
2∥v

†∥2 + 1
2∥v

∗†∥2 (7.28b). With

M , B, D as defined, the Boltzmann equation is a GENERIC PDE of the form (7.19);

we can thus apply (7.24) to preserve the energy and entropy stability.

We must define B̃, D̃ : U4 → R satisfying Assumption 7.4. Take w̃E, w̃S to be

approximations to wE(u), wS(u). The incorporation of w̃S into B is simple, with B̃ de-

fined

B̃(u, w̃S; w̃E, v) :=
∫

x,v
(∇xw̃E · ∇vv −∇vw̃E · ∇xv) exp(−w̃S). (7.36)

Considering w̃S = wS(u) = − log f , we see this identifies with B as exp(−w̃S) =
exp(log f) = f ; we see B̃ evaluates to 0 for v = w̃S by the substitution exp(−w̃S)∇w̃S =
−∇[exp(−w̃S)] and IBP in x, v noting the periodic BCs and assuming w̃S → ∞ as

∥v∥ → ∞ such that exp(−w̃S) → 0.

The incorporation of w̃E into D is somewhat more involved. Let Σ ⊂ R3 ×
(R3)4 × Sd−1 denote the (3d-dimensional) manifold of tuples (x, (v,v∗,v†,v∗†),n)

6Technically speaking, this friction operator D is not linear in w̃S , a requirement that was imposed
on D in our definition to align with the typical GENERIC formalism. However, this has no effect on
the SP properties of our discretisation.
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satisfying the relations (7.28b), which we endow with the metric induced from Σ ⊂
R3 × (R3)4 × Sd−1. The friction operator D can then be written as an integral over Σ,

D(u; w̃S, v) := 1
4Kn

∫
Σ
β(exp(−w̃†

S − w̃
∗†
S )− exp(−w̃S − w̃∗

S))

(v + v∗ − v† − v∗†). (7.37)

We may similarly define an auxiliary (3d-dimensional) manifold Σ̃ ⊂ R3×(R3)4×Sd−1

of tuples (x, (v,v∗,v†̃,v∗†̃),n) satisfying the auxiliary relations

v + v∗ = v†̃ + v∗†̃, w̃E|v=v + w̃E|v=v∗ = w̃E|v=v†̃ + w̃E|v=v∗†̃ ,
v− v†̃

∥v− v†̃∥
= n,

(7.38a)

again with the metric induced from Σ ⊂ R3 × (R3)4 × Sd−1. Similarly to f ∗, f †, f ∗†

(7.28a) we take ψ∗, ψ†̃, ψ∗†̃, for an arbitrary function ψ in v, as shorthand for

ψ∗ := ψ|v=v∗ , ψ†̃ := ψ|v=v†̃ , ψ∗†̃ := ψ|v=v∗†̃ . (7.38b)

We may then introduce w̃E implicitly into the definition of D̃ implicitly through Σ̃:

D̃(u, w̃E; w̃S, v) := 1
4Kn

∫
Σ̃
β(exp(−w̃†̃

S − w̃
∗†̃
S )− exp(−w̃S − w̃∗

S))

(v + v∗ − v†̃ − v∗†̃). (7.39)

Considering w̃E = wE(u) = 1
2∥v∥

2 + ϕ(x), we see this identifies with D as the condi-

tions on v∗, v†̃, v∗†̃ (7.38a) align with those on v∗, v†, v∗† (7.28b); we see D̃ evaluates to

0 for v = w̃E as the conditions on v∗, v†̃, v∗†̃ (7.38a) imply w̃E +w̃∗
E−w̃

†̃
E−w̃

∗†̃
E = 0 on Σ̃.

We finally derive the following SP scheme for the Boltzmann scheme (7.26): find

(u, (w̃E, w̃S)) ∈ Xn × Ẋ2
n such that for all (v, (vE, vS)) ∈ Ẋn,

In

[∫
x,v
fu̇v

]
= In

[∫
x,v

(∇xw̃E · ∇vv −∇vw̃E · ∇xv)f̃

+ 1
4Kn

∫
Σ̃
β(f̃ †̃f̃ ∗†̃ − f̃ f̃ ∗)(v + v∗ − v†̃ − v∗†̃)

]
, (7.40a)

In

[∫
x,v
fw̃EvE

]
=
∫

Tn

∫
x,v
f
(1

2∥v∥
2 + ϕ(x)

)
vE, (7.40b)

In

[∫
x,v
fw̃SvS

]
= −

∫
Tn

∫
x,v
f log fvS, (7.40c)

where again f is defined as in (7.30), the auxiliary density function f̃ is shorthand for

f̃ := exp(−w̃S), the functions f̃ ∗, f̃ †̃, f̃ ∗†̃ and v∗, v†̃, v∗†̃ are defined via (7.38b) for v∗, v†̃,

v∗†̃ defined as in (7.38a), and Σ̃ ⊂ R3 × (R3)4 × Sd−1 is the auxiliary (3d-dimensional)

manifold (x, (v,v∗,v†̃,v∗†̃),n) satisfying (7.38a).

The conservation of H and non-dissipation of S can then be shown by testing

with (v, vE) = (w̃E, u̇) and (v, vS) = (w̃S, u̇) respectively.
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7.3 The compressible Navier–Stokes equations: Mass,
momentum, energy & entropy stability

We now consider SP schemes for the compressible NS equations. We seek a scheme

that will conserve the mass, momentum and energy, and preserve the behaviour

of the entropy; specifically, we would like the entropy to be conserved in the ideal

limit, and non-decreasing otherwise. The non-dissipation of entropy is a crucial

aspect in the analysis and behaviour of solutions to the compressible NS equations

[Fei+21] with quantitative implications on the regularity of solutions and qualitative

implications on the dissipation rate; it is therefore essential we preserve this.

The compressible NS equations can be written in the following nondimension-

alised form over a bounded Lipschitz domain Ω ⊂ Rd:

ρ̇ = − div[ρu], (7.41a)

ρu̇ = −ρu · ∇u−∇p+ div
[ 2
Reρτ [u]

]
, (7.41b)

ε̇ = − div[εu]− p div u + 2
Reρυ[u,u] + div

[ 1
RePrρ∇θ

]
. (7.41c)

Here, ρ, p, u, ε and θ are the density, pressure, velocity, internal energy density and

temperature respectively, Re > 0 and Pr > 0 are the Reynolds and Prandtl numbers

(potentially functions of ρ and ε) the deviatoric strain τ : Rd → Rd
sym is defined

τ [u] := 1
2∇u + 1

2∇u⊤ − 1
3(div u)I, (7.42a)

trace-free when d = 3, and the bilinear form υ : Rd × Rd → R is defined

υ[u,v] :=
(1

2∇u + 1
2∇u⊤

)
:
(1

2∇v + 1
2∇v⊤

)
− 1

3(div u)(div v) = τ [u] : ∇v. (7.42b)

The positive semidefinite-ness of υ can easily be verified by observing that υ[u,v] =
τ [u] : τ [v] + 3−d

9 (div u)(div v). We assume the Stokes hypothesis, that the bulk

viscosity is zero [Sto45]. This is for brevity only and is not necessary; the ideas

we present in this section readily extend to more complex stress tensors. Lastly,

we assume periodic BCs.

The system (7.41) is completed by constitutive relations relating two of ρ, θ,

p, ε to the others.
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Example (Ideal fluid)

The constitutive relations for a nondimensionalised ideal fluid can be written

as

p = ρθ, ε = CV p, (7.43)

where CV is the nondimensionalised heat capacity at constant volume (3
2 for a

monatomic gas).

It will be convenient for our purposes to further define the inverse temperature

β := θ−1. We also define the specific entropy s, corresponding to the total entropy∫
Ω ρs, satisfying the (intensive) fundamental thermodynamic relation

βdε = d[ρs]− gdρ. (7.44a)

Here, g = s − (ε + p)β/ρ is the negation of the specific free energy, or Gibbs free

energy per unit mass, per unit temperature. Taking differentials gives the second

thermodynamic relation,

ρdg + εdβ + d[pβ] = 0. (7.44b)

Example (Ideal fluid)

For an ideal gas, s and g evaluate as

s = log
(
θCV

ρ

)
, g = s− (CV + 1). (7.45)

We now apply the framework to construct a FE discretisation for (7.41) with

the desired SP properties.

Application of framework (Framework 3.5)

A. To define the semi-discrete form, we must first choose a convenient parametri-

sation. Many options are available here, such as primitive or conservative variables.

We shall choose σ = ρ
1
2 , µ = ρ

1
2 u, and ζ = log(ε). This parametrisation is chosen with
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some hindsight. The choice of µ ensures the energy is independent of the density,

limiting the number of AVs that must be introduced; the choice of σ balances this in

a way that later simplifies the conservation of momentum; the choice of ζ ensures

the internal energy remains positive. Writing (7.41) in terms of σ, µ, ζ yields

(ρ̇ =) 2σσ̇ = − div[ρu], (7.46a)

σµ̇ = −1
2(ρu · ∇u + div[ρu⊗2])−∇p+ div

[ 2
Reρτ [u]

]
, (7.46b)

(ε̇ =) εζ̇ = − div[εu]− p div u + 2
Reρυ[u,u] + div

[ 1
RePrρ∇θ

]
, (7.46c)

where ρ = σ2, u = σ−1µ, ε = exp(ζ), u⊗2 denotes the outer product u ⊗ u, and it is

assumed that known constitutive relations determine p, θ as functions of ρ, ε. For

some continuous,7 spatially periodic FE space V ⊂ C(Ω), we define the mixed FE

space U := V1+d+1; we use the same space for each variable both for simplicity, and as

it will help in ensuring momentum conservation. We may then define a semi-discrete

variational problem: find (σ,µ, ζ) ∈ U, for U defined as in (3.3), such that

M((σ, ζ); (σ̇, µ̇, ζ̇), (vρ,vm, vε)) = F ((σ,µ, ζ); (vρ,vm, vε)) (7.47)

at all times t ∈ R+ and for all (vρ,vm, vε) ∈ U, where M , F are defined

M :=
∫

Ω
2σσ̇vρ +

∫
Ω
σµ̇ · vm +

∫
Ω
εζ̇vε, (7.48a)

F :=
∫

Ω
ρu · ∇vρ

+
∫

Ω

1
2ρu · (∇vm · u−∇u · vm) + p div vm −

2
Reρυ[u,vm]

+
∫

Ω
(εu · ∇vε + pvε div u) + 2

Reρυ[u,u]vε −
1

RePrρ∇θ · ∇vε. (7.48b)

Example (Ideal fluid)

Writing the equations of state for an ideal fluid (7.43) in terms of ρ = σ2 and

ε = exp(ζ) yields

p = ε

CV

, θ = p

ρ
. (7.49)

7Discontinuous spaces V ̸⊂ C(Ω) are often preferred for discretisation. This necessitates the
introduction of facet and penalty terms to handle the non-conformity; such an extension is possible,
but omitted here for brevity.
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B. Two of the AVs proposed by our framework, in particular for mass, momen-

tum and energy conservation, will be uniform and constant, i.e. 1; with regard to

the argument in Subsection 4.2.2 therefore, we choose In to be the exact integral∫
Tn

, eliminating the need to introduce corresponding AVs into our discretisation.

Over the timestep Tn therefore, we cast (7.47) into a fully discrete form (i.e. a CPG

discretisation): find (σ,µ, ζ) ∈ Xn such that∫
Tn

M((σ, ζ); (σ̇, µ̇, ζ̇), (vρ,vm, vε)) =
∫

Tn

F ((σ,µ, ε); (vρ,vm, vε)), (7.50)

for all (vρ,vm, vε) ∈ Ẋn, with Xn defined as in (3.10). We assume henceforth that it

is possible for us to take a sufficiently small timestep and fine mesh that σ remains

positive, implying the constitutive relations remain well defined.

C. Including each component of the momentum, we have 3 + d QoIs,

Q1 :=
∫

Ω
σ2, Q2 :=

∫
Ω
σµ, Q3 :=

∫
Ω

1
2∥µ∥

2 + ε, Q4 :=
∫

Ω
ρs, (7.51)

the mass, momentum, energy and entropy respectively, where ∥ · ∥ denotes the L2(Ω)
norm, s is a function of ρ = σ2 and ε = exp(ζ). By evaluating the Fréchet derivatives,

we identify these with the respective associated test functions

(1,0, 0), (1
2ui, ei, 0) for each i, (0,u, 1), (g,0, β), (7.52)

where ei denotes the i-th basis vector, (ui) denote the components of u = ∑
i uiei,

and again β = θ−1 is the inverse temperature. The associated test functions for

Q4 are found from (7.44a).

D. We introduce AVs for each of the associated test functions in (7.52) according

to (3.19), where they are required according to the argument in Subsection 4.2.2,

i.e. when they are not equal to 1 or 0. Those remaining associated test functions

include two for u, and one each for g, β. Furthermore, we can see that the variational

relations (3.19) satisfied by each of the AVs for u are identical, so these two AVs are

identical. This leaves three AVs, (g̃, ũ, β̃) ∈ Ẋn satisfying∫
Tn

M((σ, ζ); (vg,vu, vβ), (g̃, ũ, β̃)) =
∫

Tn

M((σ, ζ); (vg,vu, vβ), (g,u, β)), (7.53)

for all (vg,vu, vβ) ∈ Ẋn, where again β = θ−1, g are functions of ρ = σ2, ε = exp(ζ),
and u = σ−1µ. Like β, we assume that β̃ > 0.
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Example (Ideal fluid)

Recall (7.45). The negative specific free energy per unit temperature g can be

defined for an ideal fluid in terms of ρ = σ2, ε = exp(ζ),

g = log
(
εCV

ρCV +1

)
− (CV logCV + CV + 1). (7.54)

E. We now introduce g̃, β̃ into F . The primal variables ρ = σ2, p(σ, ζ), ε = exp(ζ)
were defined to be functions of σ, ζ, with p determined by the fluid’s constitutive

relations; in contrast, let ρ̃(β̃, g̃), p̃(β̃, g̃), ε̃(β̃, g̃) denote an auxiliary density, pressure,

energy density determined by the fluid’s constitutive relations as functions of the

auxiliary inverse temperature β̃ and auxiliary negative specific free energy per unit

temperature g̃. Crucially, in this sense ρ̃ differs from ρ = σ2, p̃ from p(σ, ζ), and ε̃ from

ε = exp(ζ). By inspection, we define F̃ ((σ,µ, ζ), (g̃, ũ, β̃); (vρ,vm, vu)) to be

F̃ :=
∫

Ω
ρ̃ũ · ∇vρ

+
∫

Ω

1
2 ρ̃ũ · (∇vm · ũ−∇ũ · vm) + p̃ div vm −

2
Reρυ[ũ,vm]

+
∫

Ω
(ε̃ũ · ∇vε − p̃vε div ũ) + 2

Reρυ[ũ, ũ]vε + 1
RePrρθ

2∇β̃ · ∇vε. (7.55)

Substituting (vρ,vm, vε) for each set of AVs for each QoI,

F̃ (. . . ; (1,0, 0)) = 0, (7.56a)

F̃ (. . . ; (1
2 ũ, I, 0)) = 0, (7.56b)

F̃ (. . . ; (0, ũ, 1)) = 0, (7.56c)

F̃ (. . . ; (g̃,0, β̃)) = 1
Re

∫
Ω
ρβ̃υ[ũ, ũ] + 1

Prρθ
2∥∇β̃∥2 ≥ 0. (7.56d)

These identities are immediate by evaluation of the LHS. The evaluation of (7.56d)

includes the integral ∫
Ω

ũ ·
(
ρ̃∇g̃ + ε̃∇β̃ +∇[p̃β̃]

)
. (7.57)

Any set of intensive thermodynamic quantities satisfying a valid constitutive law

must satisfy the thermodynamic relation (7.44b). As ρ̃, g̃, ε̃, β̃, p̃ are constructed

to satisfy such a law, we see ρ̃∇g̃ + ε̃∇β̃ +∇[p̃β̃] = 0 everywhere by construction,

and (7.57) must evaluate to zero.
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Example (Ideal fluid)

The auxiliary ρ̃, p̃, ε̃ can be written in g̃, β̃ as

ρ̃ = β̃−CV exp(−g̃ − (CV + 1)), p̃ = ρ̃

β̃
, ε̃ = CV p̃. (7.58)

F. The final SP scheme is as follows: find ((σ,µ, ζ), (g̃, ũ, β̃)) ∈ Xn × Ẋn such that

∫
Tn

M((σ, ζ); (σ̇, µ̇, ζ̇), (vρ,vm, vε)) =
∫

Tn

F̃ ((σ,µ, ζ), (g̃, ũ, β̃); (vρ,vm, vε)), (7.59a)∫
Tn

M((σ, ζ); (vg,vu, vβ), (g̃, ũ, β̃)) =
∫

Tn

M((σ, ζ); (vg,vu, vβ), (g,u, β)), (7.59b)

for all ((vρ,vm, vε), (vg,vu, vβ)) ∈ Ẋn × Ẋn.

Theorem 7.7 (Mass, momentum, energy and entropy stability of the compressible NS

integrator). The integrator (7.59) is mass, momentum, energy and entropy stable, with each

of Q1, Q2, Q3 conserved across timesteps Tn, and Q4 generated at a rate

Q4|t=tn+1 −Q4|t=tn = 1
Re

∫
Tn

∫
Ω
ρβ̃υ[ũ, ũ] + 1

Prρθ
2∥∇β̃∥2 ≥ 0. (7.60)

Proof. Each of these results holds from the results (7.56) by testing in (7.59) respec-

tively against

vρ = 1, (7.61a)

(vρ,vm,vu) = (1
2 ũi, ei, σ̇ei) for each i, (7.61b)

(vm, vε,vu) = (ũ, 1, µ̇), (7.61c)

(vρ, vε, vg, vβ) = (g̃, β̃, σ̇, ζ̇), (7.61d)

where (ũi) denotes the components of ũ.

To numerically verify the stability results, we run two tests for an ideal gas

with CV = 2.5 (typical for air at room temperature) over a unit square domain

Ω = (0, 1)2. We take V to be the lowest order, degree-1 CG (or Lagrange) space (see

Ern & Guermond [EG21a, Sec. 6 & 7]) comparing the scheme (7.59) at S = 1 (i.e. at

lowest order in time) with an IM discretisation of (7.46).
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7.3.1 Shockwave test

We consider first a supersonic perturbation in the velocity field, with Pr = 0.71
(typical for air) and Re = 27. ICs are

σ(0) = 1, (7.62a)

µ(0) = 23 exp(cos(2πx) + cos(2π(y − 0.5))− 2)e1, (7.62b)

ζ(0) = 0, (7.62c)

up to projection. The FE space V is defined over a grid of square cells of uniform

width 2−8; we take a uniform timestep ∆t = 2−11.

Fig. 7.4 shows plots of the velocity, density, temperature, and specific entropy at

various times in the SP scheme.8 The shockwave is clearly visible at the final time.

We use continuous approximations to all variables, causing oscillations in ρ and s;

this could potentially be improved with a non-conforming DG spatial discretisation

(see Ern & Guermond [EG21a, Sec. 6 & 7]).

Fig. 7.5 shows the error in the mass Q1, momentum Q2, and energy Q3 for each

simulation. Each is conserved (up to quadrature error, solver tolerances and machine

precision) for the scheme (7.59) while only the mass is conserved for the IM scheme.9

The error in the energy increases exponentially in the IM scheme from the point of

formation of the shockwave, rising from a value of around 4.046 to around 4.059.

7.3.2 Euler test

To better illustrate the preservation of the entropy structure, we consider an adiabatic

(uniform s) perturbation in the state functions σ, ζ, with Re = ∞, i.e. discarding

viscous and thermally dissipative terms. We take the ICs to be

σ(0) = exp
(1

2 sin(2πx) sin(2πy)
)
, (7.63a)

µ(0) = 0, (7.63b)

ζ(0) =
(

1 + 1
CV

)
sin(2πx) sin(2πy), (7.63c)

again up to projection. The FE space V is defined over a uniform grid of triangular

cells of width 2−5; we take a uniform timestep ∆t = 2−7.

8The results from the IM scheme exhibit no visible visual difference.
9One can verify that any order of Gauss method applied to (7.46) will be mass-conserving.
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u

ρ

θ

s

t = 0 t = 1 · 2−4 t = 2 · 2−4

Figure 7.4: Contours of the velocity magnitude ∥u∥, density ρ, temperature θ, and specific
entropy s at times t ∈ {0, 1 · 2−4, 2 · 2−4} in the SP simulation of the supersonic test
(Subsection 7.3.1).

With Re = ∞, entropy Q4 should be conserved both in an exact solution, and

in the scheme (7.59). Fig. 7.6 shows the error in the entropy for each simulation.
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Figure 7.5: Errors in different invariants over time within the supersonic test (Subsection 7.3.1)
for IM and our proposed scheme.

The lines terminate when the nonlinear solver fails to converge, potentially due to a

solution to the scheme no longer existing; we observe that the SP scheme fails after

515 timesteps, whereas the IM scheme fails after 392. Our scheme (7.59) conserves

entropy throughout (up to quadrature error, solver tolerances, and machine precision)

whereas IM does not, introducing spurious (unphysical) entropy decrease.
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Figure 7.6: Error in the entropy |Q4 − Q4(0)| over time within the inviscid test (Subsec-
tion 7.3.2) for IM and our proposed scheme.
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“A Globetrotter always saves the good algebra for the
final minutes.”

— Ethan ‘Bubblegum’ Tate (Phillip ‘Phil’
LaMarr) [Kee01]
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With various simple example applications discussed in Part II, we now turn our

attention to two extensions that go beyond the framework as presented in Part I.

Adiabatic invariants & the Lorentz problem

The first of these extensions lies in adiabatic invariants [Hen93; AKN06], quantities

that are neither conserved nor dissipated, but exhibit rapid, bounded oscillations

about a certain more slowly changing value. Since these adiabatic invariants remain

within a bounded interval, this property can have many of the same implications

for the dynamic behaviour of solutions as typical conservation structures. However,

they fall outside the remit of the framework presented in Chapter 3.

Chapter 9 concerns how we may extend our framework to the preservation of

adiabatic invariants. In place of considering the preservation of general adiabatic

invariants, we consider the Lorentz problem, modelling the motion of a charged

particle in a strong, non-uniform magnetic field.

Within such systems, the magnetic moment µ is adiabatically invariant. In

combination with the conservation of energy ε, this implies particle trajectories
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are confined to regions where the magnetic field strength does not exceed a thresh-

old value determined by ε and µ. This behaviour is critical for charged particle

dynamics; as a key astrophysical example, it is in part the adiabatic invariance of µ

that enforces a planetary magnetosphere (e.g. the Earth’s Van Allen belts) keeping

particles away from the planetary surface where the magnetic field is stronger. This

bounding behaviour is enforced by an effective magnetic mirror force, acting in

the direction opposing the gradient of the magnetic field strength; devices that

exploit the magnetic field bound induced by the adiabatic invariance of µ are hence

referred to as magnetic mirrors. Such devices offered one of the earliest options

for magnetic confinement fusion.

Through a different notion of associated test functions in Step C, we are able

to preserve the adiabatic invariance of µ discretely. Crucially, this property holds

independently of the timestep ∆tn.

The trajectories of charged particles in strong magnetic fields can be seen as

fast, low-amplitude cyclotron oscillations around a guiding centre ξ. This centre ξ

moves parallel to the magnetic field lines, with slight slow perpendicular drifts due

to magnetic field gradients and curvature. Modern toroidal magnetic confinement

fusion devices, such as tokamaks and stellarators, aim to utilise this behaviour by

confining particles to closed, nested magnetic flux surfaces, presenting an effective

alternative to the adiabatic invariance of µ for magnetic confinement.

We do not, in Chapter 9, preserve these drifts in ξ. It is our hope however that

the ideas we develop for the asymptotic preservation of µ may be extended further

to preserve these guiding centre drifts in the future, just as our general framework

allows us equivalently to preserve both conservation and dissipation structures. In

particular, the generalised notion of associated test function we use to preserve the

behaviour of µ can readily be extended to ξ; it is not yet clear, however, where to

re-introduce the associated AVs in Step E to preserve these drifts (see Remark 9.3).

FEEC, simplification & reparametrisation

Our second extension relates to FEEC [Hip01; AFW06; AFW09; Arn18; Hu25]. FEEC

arguably represents a generally different style of thinking within SP to that presented

in this thesis, as those structures that FEEC has historically considered have generally

been geometric and topological properties from exterior calculus (e.g. complex
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exactness and cohomologies). These structures are generally local/pointwise, such

as exact divergence-free conditions, and not global, such as those we consider here.

However, these ideas do not exist independently; Stern, Zampa & McLachlan [MS20;

SZ25] for example have established connections between FEEC and symplecticity

(or more specifically multisymplecticity) while Hu et al. [HLX21; LHF23; He+25]

have used FE de Rham complexes from FEEC to derive energy- and helicity-stable

integrators in MHD.

Chapter 10 concerns how FEEC may be applied to our SP discretisations, in partic-

ular in creating equivalent but more computationally practical schemes. In particular,

after re-assessing in Section 10.3 the energy- and helicity-stable incompressible NS

integrator (3.28) of Chapter 3, we consider two new sets of structures for PDE systems.

Enstrophy & stabilisation on under-resolved meshes.

While we studied the incompressible NS equations in Chapter 3 from the perspective

of energy and helicity stability, they exhibit further structures, especially in 2D. In

particular, we highlight the enstrophy Q3(u) := 1
2∥∇u∥2, where ∥ · ∥ denotes the

L2 norm. Just as the energy Q1(u) := 1
2∥u∥

2 is dissipated in the incompressible NS

equations as Q̇1 = 1
Re∥∇u∥2, the enstrophy is dissipated as Q̇3 = 1

Re∥∆u∥2 when

d = 2 and assuming appropriate BCs, where ∆ denotes the Laplacian.

In Section 10.4, we derive energy- and enstrophy-stable integrators for the incom-

pressible NS equations, i.e. schemes that necessarily dissipate energy and preserve

the evolution, or dissipation when d = 2, of enstrophy. Through FEEC, we are able to

reparametrise our scheme into an approachable velocity–vorticity formulation.

Typical H1-conforming methods for the incompressible NS equations that are

solely energy-stable struggle on under-resolved meshes, i.e. when h2Re ≫ 1 for a

given mesh size h. Namely, they exhibit instability: large, spurious oscillations

in the velocity field.

While many explanations can be offered for this phenomenon (see Moura et

al. [Mou+22]), we can attribute it to the lack of a meaningful H1 energy estimate

holding on the discrete solution. To clarify this reasoning, consider the energy

estimates provided by energy stability alone in the continuous case:

sup
t≥0
∥u∥2 ≤ ∥u(0)∥2,

∫ ∞

0
∥∇u∥2 ≤ Re

2 ∥u(0)∥2. (8.1a)
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Ostensibly, we have both an L2 and H1 bound on our solution, that would both be

inherited by an energy-stable discretisation. However, the issue is as follows: in finite

dimensions, one may recall that all norms are equivalent; an L2 bound implies an H1

bound, up to some constant of proportionality. For the H1 bound provided by energy

stability to have any impact in the discrete setting, it must be stronger than what this

norm equivalence already provides. Crucially, however, the H1 bound scales with Re;

as Re→∞, this H1 bound becomes weaker, and ultimately vacuous. In particular,

when h2Re ≫ 1, the H1 bound no longer constrains the discrete solution beyond

what is already implied by the L2 bound. The H1 bound then provided by energy

stability has no impact on the regularity of discrete solutions, tending H1-conforming

schemes towards instability on coarse meshes and at high Re. This argument is even

clearer in the inviscid Euler case Re =∞, where no H1 bound is available at all.

What is required then is a Re-robust H1 bound, i.e. one that is independent of

Re. In two dimensions, and again under suitable BCs, such a bound arises from

enstrophy dissipation. In the continuous case, we have

sup
t≥0
∥∇u∥2 ≤ ∥∇u(0)∥2,

∫ ∞

0
∥∆u∥2 ≤ Re

2 ∥∇u(0)∥2. (8.1b)

In particular, this provides a Re-robust H1 bound (alongside an H2 bound that scales

with Re). In constrast to the energy-based H1 estimate, that which is provided by

enstrophy stability remains meaningful as Re→∞, even in the inviscid Euler limit

Re =∞. This motivates the use of enstrophy-stable schemes, as they are expected

to offer improved stability over solely energy-stable ones on under-resolved 2D

meshes. We demonstrate this improved stability in the inviscid Euler case Re =∞
in Subsection 10.4.4.

MHD, topology, helicity & perturbation analysis

MHD equations govern the dynamics of electrically conducting fluids, particularly

plasmas. Various systems of equations are studied throughout MHD, each exhibiting

similar and important structures; the preservation of these structures have proven

generally critical for accurate computation.

In Section 10.5, we consider how our framework may be used to preserve these

structures, in particular within the incompressible Hall MHD equations (10.69),

and how FEEC may be used to simplify the structure and application of the re-

sulting discretisations.
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Arguably most crucial among these structures is the dissipation of an energy

functional, either 1
2∥B∥

2 (where B is the magnetic field) or this value featuring an

additional hydrodynamic contribution, e.g. 1
2∥u∥

2 (where u is the fluid velocity

field). Brackbill & Barnes [BB80] observed in 1980 that pointwise violation of the

magnetic Gauss law div B = 0 can imply instability in the energy, making it of

equal importance; see also Dai & Woodward [DW98]. We circumvent this issue

in our discretisation by working with a formulation in the magnetic potential A,

with B = curl A defined implicitly such that div B = 0 is enforced naturally by the

complex condition div ◦ curl = 0. We are then able to use FEEC to reparametrise our

discretisation in the more traditional magnetic field B; since this reparametrisation is

equivalent, it necessarily inherits the pointwise div B = 0 property. Energy stability

is then enforced through the introduction of AVs approximating the current curl B
and flow velocity u.

Beyond energy stability, an important aspect of MHD systems in the ideal setting

is Alfvén’s theorem [Alf43], or the frozen-in flux theorem, on the preservation of

the topology of magnetic fields (see Choudhuri [Cho98, Chap. 15]). Similarly to the

advection of vortex lines for the ideal incompressible NS equations as discussed in

Chapter 2, this states that the magnetic fields in ideal MHD are convected by the flow;

the ideal conservation of the magnetic helicity 1
2(A,B) then serves a similar role to

the ideal conservation of the fluid helicity in the NS equations. Violation of Alfvén’s

theorem in the non-ideal, resistive case is referred to as magnetic reconnection (again,

see Choudhuri [Cho98, Sec. 15.2]). Through reconnection, the distribution of helicity

across length scales satisfies an inverse cascade (see Frisch et al. [Fri+75]) with small-

scale structures merging to form larger, more coherent ones that are stable over long

time periods; as such, the magnetic helicity generally dissipates at a much slower

rate than the energy, which satisfies a typical forward cascade. Through Arnold’s

inequality (see Arnold & Khesin [AK08, p. 122]) the helicity serves as a lower bound

for the energy. These two results together have a profound impact, as the energy is

prevented from decaying to zero at a rate it otherwise would by the lower bound

of the slowly decaying helicity; in essence, the magnetic field is prevented from

decaying through large knotted structures that persist over long time periods, even in

the non-ideal case. On the discrete level, failure to accurately preserve the evolution of

the magnetic helicity allows the numerical solution to violate this topological barrier,

with solutions decaying at an unphysically high rate. Through the introduction of
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an AV approximating the magnetic field B, we are able to preserve the evolution of

the magnetic helicity discretely. Further discussion on the helicity and the roles of

knottedness in plasma physics can be found in the works of Arnold & Khesin [AK08],

Berger & Field [BF84], Moffatt & Tsinober [Mof81; MT92; Mof14], and Smiet [Smi17].

For the Hall MHD equations, a further ideal invariant is found in the hybrid

helicity 1
2(A + au,B + b curl u) where certain conditions hold on a, b. This can be

viewed as a linear combination of the magnetic helicity, fluid helicity as considered

in Chapter 3, and cross helicity 1
2(u,B) (see Mininni, Gomez & Mahajan [MGM03]).

Similarly to the magnetic and fluid helicities, in the case a = b the hybrid helicity

quantifies the knottedness of streamlines in B + b curl u, showing a global topological

conservation of the knottedness of these lines in the ideal case. Moreover, similar to

the Arnold inequality, the hybrid helicity serves as a lower bound for both the energy

and enstrophy 1
2∥ curl u∥2. In the non-Hall case, the cross helicity takes the place of

the hybrid helicity as the third QoI (see e.g [PB09]). We are able to preserve these

final structures through the introduction of an AV approximating the vorticity curl u.

In magnetic confinement fusion, reversed-field pinch (RFP) devices rely heavily

on plasma currents to generate and sustain their magnetic fields. Unlike tokamaks,

where externally imposed magnetic fields play a dominant role in shaping the

configuration, RFP field structures emerge largely through self-organisation governed

by the MHD equations. This makes accurate numerical discretisation of the MHD

system particularly important for RFP design. In particular, preserving magnetic

helicity is crucial, as many RFP concepts rely on Taylor’s theory, which posits that

plasmas relax to minimum energy states consistent with helicity conservation.

A significant portion of fusion reactor design and plasma modelling focuses

on stability analysis, particularly the behaviour of small perturbations, such as

kink, ballooning, tearing, and Alfvénic modes. Among these, instabilities driven by

incompressible dynamics, such as internal kink modes which have been linked to

sawtooth relaxations, are typically those that require the least free energy. Accord-

ingly, linearised MHD, particularly in its incompressible form, is widely used in the

design and analysis of magnetic confinement fusion devices, with NIMROD [Sov+03]

and JOREK [HC07; Hoe+21] representing two of the more widely used codebases

(see also the comparative review article of Artola et al. [Art+21]).

Due to the symmetry of the (non-Hall) MHD equations in the sign of B, the

dominant nonlinear terms guiding the behaviour of small perturbations are not
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quadratic, but cubic, leading to long-lived but sudden, violent transitions. As

such, while linearised MHD may capture the initial stability of perturbations well,

accurate transient simulations require a proper handling of the nonlinearities, further

motivating the need for stable SP discretisations for the nonlinear MHD equations.

For further reading on the use of MHD in fusion plasma modelling, we refer

the reader to formal analysis of Goedbloed, Keppens & Poedts [GKP19]. With

relation to the above, we highlight Chapters 16 (on axisymmetric equilibria and

background magnetic fields in tokamaks), 18 (on linearised MHD in similar axisym-

metric settings), and in particular 19 (on the full incompressible MHD equations

including helicity preservation).

8.1 Related literature

Asymptotic-preserving integrators for the Lorentz problem

One of the most commonly applied integrators for the charged particle problem (9.1)

is a modified Störmer–Verlet method, referred to as the Boris method [Bor70]. Under

a general magnetic field, this can exhibit a drift or random walk in the energy [HL18].

In [HL20] the authors propose a further modification of the Störmer–Verlet method

based on a Lagrangian interpretation of the system, which they show to conserve

both the energy and magnetic moment as adiabatic invariants over long timescales;

this however relies on the use of timesteps much smaller than the oscillation period.

On longer timesteps, much of the research into asymptotic-preserving schemes

for charged particles has focused on the problem of capturing guiding centre drifts,

typically through the introduction of a fictitious force [BF85; VB95], fictitious velocity

[Coh+07] or both [GCW10]. As a Hamiltonian system, exactly energy-conserving

schemes for charged particles in magnetic fields on arbitrary timesteps are well

established [MQR99; CH11]. In [RC20] the authors propose a modification of the

scheme of Brackbill, Forslund and Vu [BF85; VB95] with exact energy conservation,

using an adaptive timestepping scheme to transition between regions of high and

low gyration radius.

Typically, one of the fictitious forces introduced to preserve the asymptotic

behaviour in such schemes resembles the fictitious mirror force −µb∥ · ∇B. This

is observed numerically to improve the preservation of the adiabatic invariance of

µ [RC20, Fig. 10] however these results are typically hard to prove or quantify in
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comparison to our schemes (9.11, 9.15). In particular, the mirror force implicitly

appears in our discrete solutions as a consequence of the adiabatic invariance of µ,

with no fictitious terms needed in the formulation.

Energy- & enstrophy-stable integrators for the incompressible Navier–
Stokes equations

Mixed stream function–vorticity semi-discretisations for the incompressible NS

equations were proposed by Liu & E [LE01] in 2001, in both 2 and 3 dimensions.

These differ from ours (10.35) in the definition of the vorticity: while we define ω to

be a projection of −∆ψ under the H1 seminorm in 2D, and ω to be a projection

of curl2ψ under the H(curl) seminorm in 3D, the authors define both of these

projections in L2. In 2D, the resultant scheme dissipates an auxiliary enstrophy

Q̃3(ω) := 1
2∥ω∥

2 defined on the AV ω; this differs from the enstrophy stability we

show for our 2D integrator (10.35), which holds for the enstrophy Q3(ψ) := 1
2∥∆ψ∥

2

defined on the primal variable ψ.

In 2D, this discretisation has been well studied in the literature. See for example

the convergence analysis of Liu & Shu [LS00] using non-conforming discontinuous

elements, or the recent review article of Cotter [Cot23, Sec. 7.2] which in particular

presents a reparametrisation as a mixed velocity–vorticity discretisation through a

discrete de Rham complex; this is analogous to the velocity–vorticity reparametri-

sation (10.45) we present in Subsection 10.4.2. Adopting the terminology of Zhang

et al. [Zha+24], wherein the authors extend the discretisation to a more general

class of BCs, we refer to this as the mass-, energy-, enstrophy-, vorticity-conserving

(MEEVC) scheme. It is not yet clear in what ways these primal (on Q3 in our scheme)

and auxiliary (on Q̃3 in the MEEVC scheme) forms of enstrophy stability might be

equivalent. It is further unclear if this scheme can in some way be derived from

our framework; the similarities are striking, however we believe this not to be

the case, as the enstrophy stability in the MEEVC scheme holds in this alternative

auxiliary form only. A numerical comparison of our scheme in 2D to the MEEVC

scheme is shown in Subsection 10.4.4.

In its stream function–vorticity formulation, the 2D MEEVC scheme was recently

considered by Lombardi & Pagliantini [LP24] in the context of metriplectic systems.

In 3D, a mixed velocity–vorticity discretisation for the incompressible NS equations



8. Introduction 138

was recently proposed and analysed by Hanot [Han23]; simlarly to the comparison

presented by Cotter [Cot23, Sec. 7.2] in 2D, this can be seen to be equivalent to a

reparametrisation of the MEEVC scheme.

In 2017, Palha & Gerritsma [PG17] proposed a dual-field velocity–vorticity dis-

cretisation for the 2D incompressible NS equations. This dual-field concept resembles

that used in the energy- and helicity-stable discretisation later proposed by Zhang et

al. [Zha+22], as discussed in Section 2.1. While this scheme is not an instance of our

framework—the discrete vorticity ω therein is not a projection of a function of the

discrete velocity u, but evolves according to its own coupled equation—we note that

the spaces occupied by ω, u, and the pressure p are required in their work to satisfy

the same FE complex relations as those identified in Subsection 10.4.2. The authors

also observe the stabilisation properties of their scheme on under-resolved meshes,

using as a numerical demonstration the roll-up of a shear layer with Re = ∞.

An alternative approach to enstrophy stability comes in vorticity formulations of

the NS equations. Here, one begins with a vorticity parametrisation, and discretises

the vorticity equation

ω̇ = ω · ∇u− u · ∇ω + 1
Re∆ω. (8.2)

As the square norm of ω, it is then simple to preserve the dissipation of enstrophy

assuming an appropriate handling of the nonlinear advective term (see the schemes

of Charnyi et al. [Cha+17]). However, the issue lies then not in preserving enstrophy

stability, but in preserving energy stability.

Stabilisation for the incompressible Navier–Stokes equations on
under-resolved meshes

Typical approaches to stabilisation have not focused on enstrophy stability, the most

common approach for H1-conforming schemes being the introduction of an artificial

viscosity. Spectral vanishing viscosity (SVV) methods, one such example originally

proposed by Maday & Tadmor [MT89] in 1989, allow the viscous term to act only

on the high-order modes; the motivation for this approach lies in how traditional

schemes accumulate energy in the finer length scales, which are in turn associated

with the higher-order polynomials. With appropriate tuning, Tadmor [Tad90; Tad93]

showed this to yield entropy solutions in the convergent limit, however the selective
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damping of high-order modes is known to reduce the effective resolution of the

discrete solution; the approximation power of the highest order polynomials is lost.

Continuous interior penalty (CIP)/gradient jump penalisation (GJP) methods, pro-

posed by Douglas & Dupont [DD76] in 1976, aim to tackle the fine-scale oscillations

by penalising the jump on the solution gradient across facets. An analysis of these

methods for AD systems including the NS equations at high Re was done by Burman,

Hansbo & Fernández [BH04; BFH06; BF07]. At moderate polynomial orders e.g. p ≈ 3
(where there are few high-order terms to penalise) CIP/GJP methods are known to

outperform SVV methods (see Moura et al. [Mou+22]). We note, however, that the

introduction of artificial dissipation terms renders these schemes to be irreversible in

the Euler case Re =∞, i.e. they introduce energy dissipation when it should not exist.

In contrast, DG methods (see Cockburn, Karniadakis & Shu [CKS00]) offer

intrinsic upwind stabilisation, which is biased towards these finer scales, as discussed

by Moura et al. [MSP15; Mou+17]. The stability properties of DG methods are similar

to those of CIP/GJP methods, however it can be argued they introduce a significant

overhead, with more DoFs for the same order on the same mesh.

Finite element Stokes complexes & their implementation

Conforming schemes for (10.42, 10.45) require the knowledge and implementation

of FE Stokes complexes.

In 2D, such FE complexes are well known. For example, the Scott–Vogelius (SV)

[SV85a; SV85b] complex (as considered in Subsection 10.4.3) takes U to be the Morgan–

Scott (MS) [MS75] space. Outside the workaround presented in Subsection 10.4.3

inspired by Ainsworth & Parker [AP24a] the MS element is not implemented in

general purpose FE software. Over Alfeld-split [Alf84] (or barycentrically refined)

meshes, the MS space becomes the Hsieh–Clough–Tocher (HCT) [CT65] space; the

HCT space, on the other hand, is relatively well supported, e.g. in GetFem++ (see

Renard & Poulios [RP20]), FreeFEM++ (see Hecht [Hec12]), libMesh (see Stogner

& Carey [SC07]), and Firedrake through FIAT (see Brubeck & Kirby [BK25]).

Non-conforming elements pose an alternative approach. A commonly considered

non-conforming 2D Stokes complex is constructed via the Morley [Mor68] and vector-

valued Crouzeix–Raviart [CR73] elements, both relatively widely implemented,

concluding with the degree-0 DG space (see Gillette, Hu & Zhang [GHZ20]). These
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non-conforming complexes are particularly relevant on domains with re-entrant

corners, i.e. those with reflex interior angles. Navier–slip BCs, as considering

throughout Section 10.4, admit non-zero velocity fields at such corners. While non-

conforming elements for H1 (such as the aforementioned Crouzeix–Raviart [CR73]

element) can take non-zero values at re-entrant corners, H1-conforming elements

can not, leading to unphysical solutions.

FE Stokes complexes in 3D are less common. The first FE Stokes complexes on

arbitrary tetrahedral meshes were proposed by Neilan [Nei15], further generalised by

Chen & Huang [CH24] to de Rham complexes of arbitrary smoothness; these spaces

required elements of very order, namely polynomials degrees 9, 8, 7 and 6 respectively

along the complex. Over split meshes, this degree can be reduced. We refer the reader

to the works of Fu, Guzmán & Neilan [FGN20] and Hu, Zhang & Zhang [HZZ22]

for such complexes on Alfeld-split meshes, and Guzman, Lischke & Neilan [GLN22]

on Worsey–Farin splits. The Guzmán–Neilan [GN18] element, the H1-conforming

element in certain such complexes on Alfeld splits, is available in Firedrake,

however as far as we are aware, none of the above proposed H(grad curl)- or H1(curl)-

conforming spaces are yet supported in any publicly available FE software.

In the consideration of biharmonic-like equations, Ainsworth & Parker [AP24a;

AP24b] propose reparametrisation systems by which one may effectively use H2-

conforming scalar FEs while only requiring FEs with at most H1 conformity to be

implemented. The schemes (10.57, 10.61) are very similar and heavily inspired

by their construction.

Energy- & helicity-stable integrators in MHD

After the application of FEEC, our final energy- and helicity-scheme for the incom-

pressible Hall MHD equations is equivalent at lowest order in time (S = 1) to that

proposed by Laakmann, Hu & Farrell [LHF23]. Our intention is not to claim the

scheme is novel, but to show how it may be derived through our framework; for

these reason, we do not demonstrate any numerical simulations, instead referring

the reader to those done by the authors above.

The scheme as presented by Laakmann, Hu & Farrell builds upon the earlier

work of Hu, Lee & Xu [HLX21] in the non-Hall case; our framework as applied
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to this form of the MHD equations similarly derives their energy- and helicity-

scheme. Equivalently, we re-derive the scheme of He et al. [He+25] when applying

our framework to the magneto-frictional equations.

8.2 Overview

In Chapter 9, we consider an application of our framework to the Lorentz problem,

modelling the motion of a charged particle in a strong, non-uniform magnetic field.

We show that, with a certain different notion of associated test functions (see 3.1),

we are able to preserve the adiabatic invariance [Hen93; AKN06] of the magnetic

moment, i.e. ensure its oscillations remains bounded against a certain value.

In Chapter 10, we consider how we may use results from FEEC to simplify our SP

discretisations. In particular, we show how the satisfaction of certain compatibility

conditions between the FE spaces allows us to both eliminate certain LM-like terms

from our discretisations, and reparametrise our discretisations in terms of spaces

of lower regularity. To apply these ideas, we revisit the energy- and helicity-stable

integrator (3.28) of Chapter 3; we consider as further examples an energy- and (in

the 2D case) enstrophy-stable integrator for the incompressible NS equations, and an

energy- and helicity-stable integrators for the incompressible Hall MHD equations.
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We consider in this chapter an SP scheme for the Lorentz problem, governing the

motion of a charged particle in a magnetic field. In particular, we consider strong,

non-uniform, stationary magnetic fields, within which particles oscillate over length

scales much smaller than the characteristic length scale of the magnetic field. We

seek an SP integrator that will both conserve the energy, and preserve the adiabatic

invariance of the magnetic moment. Combined, these structures have important

impacts on the long-term dynamics of solutions. These adiabatic invariants fall

outside the scope of our framework as stated in Framework 3.5. We find, however,

that we are able to preserve the adiabatic invariance structure through a generalised

notion of the associated test function presented in Step C.

Consider then the nondimensionalised Lorentz problem,

ẋ = v, v̇ = 1
ρ

v×B(x), (9.1)

where, x(t),v(t) ∈ R3 represent the particle’s position and velocity respectively,

B(x) ∈ R3 represents the magnetic field, × denotes the cross product, and ρ≪ 1 is

the dimensionless gyroradius, representing the ratio of a characteristic gyroradius to

142
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the characteristic length scale of variations in the magnetic field. Through nondimen-

sionalisation, the magnetic field B, its spatial derivatives, and the velocity v are all

assumed to be on the order of 1. Solutions to (9.1) then have characteristic trajectories,

with high-frequency (O[ρ−1]) oscillations, compounding into medium-frequency

(O[1]) motion parallel to the field lines B, and low-frequency (O[ρ]) perpendicular

drifts (see Fig. 9.1).

−1 0 1

−1

0

1

x

y

0 10 20 30 40
z

Figure 9.1: Trajectories of a charged particle moving in a magnetic field according to the
Lorentz system (9.1) with B = (0, 0, x2 + y2), ρ = 2−3 and ICs x(0) = (1, 0, 0), v(0) = (0, 1, 1).
Both the high-frequency (O[ρ−1]) oscillations and low-frequency (O[ρ]) drifts (in this case
grad-B drift manifesting as a further circular motion) are visible in either figure.

Remark 9.1 (Negible electric field and constant magnetic field). In the Lorentz model

(9.1) we both neglect to include an electric field, and consequently assume the magnetic field

to be constant. This is done simply to ensure the adiabatic invariance of µ on the continuous

level. As desired, one may simply assume a varying magnetic field directly in our SP scheme,

or introduce an electric field through e.g. a splitting, using our SP integrator for the magnetic

field component.

For ease of notation, define the magnetic field strength B(x) := ∥B(x)∥, where

∥ · ∥ denotes the ℓ2 norm, and the normalised magnetic field b∥(x) := 1
B(x)B(x).

Of unit length and perpendicular to b∥, define b⊥(x) ∈ R3 implicitly through the

expansion v = v∥b∥ + v⊥b⊥; this in turn defines the parallel and perpendicular

velocities v∥(x), v⊥(x) ∈ R respectively. The basis (b∥,b⊥,b∗) for R3 is completed

by b∗(x) := b∥(x) × b⊥(x).

As state above, we consider two QoIs: the energy ε(v) := 1
2∥v∥

2, and magnetic

moment µ := µ(x,v) := 1
2B(x)v

2
⊥. The conservation of energy ε is trivial to prove,

whereas the adiabatic invariance of the magnetic moment µ is more involved; simply
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evaluating µ̇ we find it to be O[1], implying very little. The typical approach for prov-

ing the adiabatic invariance of µ is through gyro-averaging i.e. by averaging µ̇ over

the rapid oscillation and confirming the result to be negligible. We refer the reader

to Northrop [Nor63] for a classical text on adiabatic invariants and gyroaveraging

methods for charged particles (in particular Section 3.A on the magnetic moment) or

more recently Hazeltine & Meiss [HM03, Sec. 2.4]. Regardless, this proof is difficult

to preserve on discretisation; we therefore seek an alternative.

Let us define a µ-correction term ∆µ(x,v) ∈ R,

∆µ := 1
B3

[1
4v

2
∥v⊥b⊥ ⊗ b∗ + 1

4v
2
∥v⊥b∗ ⊗ b⊥ + 1

2v
3
⊥b∥ ⊗ b∗ + v2

∥v⊥b∗ ⊗ b∥

]
: ∇B, (9.2)

where ⊗ denotes the outer product, such that e.g. b⊥ ⊗ b∗ : ∇B = (b∗ · ∇B) · b⊥

with (b∗ · ∇B) denoting the convective derivative in the direction of b∗. We may

observe by careful direct calculation that

ρv · ∇xµ+ (v×B) · ∇v[µ+ ρ∆µ] = 0, (9.3)

where ∇x denotes the partial derivatives with respect to x. Denoting by ∂t the

partial derivative with respect to t, we may then evaluate the scale of the change

in µ + ρ∆µ over the timestep Tn in terms of ρ, as

[µ+ ρ∆µ]|t=tn+1 − [µ+ ρ∆µ]|t=tn

=
∫

Tn

∂t[µ+ ρ∆µ] (9.4a)

=
∫

Tn

∇x[µ+ ρ∆µ] · ẋ +∇v[µ+ ρ∆µ] · v̇ (9.4b)

=
∫

Tn

∇x[µ+ ρ∆µ] · v +∇v[µ+ ρ∆µ] · 1
ρ

(v×B) (9.4c)

=
∫

Tn

1
ρ

(ρ∇xµ · v +∇v[µ+ ρ∆µ] · (v×B)) +O[ρ] (9.4d)

=
∫

Tn

O[ρ] (9.4e)

= O[ρ∆tn], (9.4f)

where in the fourth equality we know∇x∆µ is on the order of 1, as it is a function

of B, its spatial derivatives, and v only. Thus, we may bound the change in µ

over TN as µ|t=tn+1 − µ|t=tn+1 = O[ρ](1 + O[∆tn]). Plotting µ + ρ∆µ for an example

trajectory, we see the introduction of the correction ρ∆µ balances the high-frequency

oscillations in µ (see Fig. 9.2 below) demonstrating a smoother time derivative. The
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proof (9.4) offers an alternative option for conserving the adiabatic invariance of µ. In

particular, the fourth variational equality (9.4d) requires the Lorentz system (ẋ, v̇) =
(v, 1

ρ
(v × B)) to hold when tested against test functions (∇xµ,∇v[µ + ρ∆µ]). This

informs our general strategy for the preservation of the adiabatic invariant structure:

interpret this gradient tuple (∇xµ,∇v[µ + ρ∆µ]) as the associated test function for

the preservation of the adiabatic invariance of µ in Step C; define AVs approximating

(∇xµ,∇v[µ+ρ∆µ]) in Step D; introduce these AVs into the RHS of the variational form

of (9.1) in Step E such that it evaluates to 0 when testing against these AVs, as in (9.3).

Application of framework (Framework 3.5)

A. We define X as in (6.5) for d = 3,

X :=
{
x ∈ C1(R+)3 : x(0) satisfies known initial data

}
. (9.5)

We then arrive at our semi-discrete formulation for (9.1): find (x,v) ∈ X2 such that

y · ẋ = y · v, w · v̇ = 1
ρ

w · (v×B). (9.6)

at all times t ∈ R+ and for all (y,w) ∈ U2.

B. Over the timestep Tn, this is cast into a fully discrete form using our choice

of In, over Xn defined as in (6.2),

Xn :=
{
x ∈ PS(Tn)3 : x(tn) satisfies known initial data

}
. (9.7)

find (x,v) ∈ X2
n such that

In[y · ẋ] = In[y · v], In[w · v̇] = 1
ρ
In[w · (v×B)], (9.8)

for all (y,w) ∈ Ẋ2
n.

C. Following the argument above regarding the proof of adiabatic invariance

of the magnetic moment µ, its associated test functions are α(x,v) := ∇xµ and

β(x,v) := ∇v[µ+ρ∆µ]. For the conservation of energy ε, the associated test functions

are simply 0 (which can be ignored) and v.

D. We introduce AVs (ṽ, α̃, β̃) ∈ Ẋ3
n, approximating (v,α(x,v),β(x,v)), and

defined as in (3.19) such that

In[ṽ · w̃] =
∫

Tn

v · w̃, (9.9a)

In[α̃ · ζ̃] =
∫

Tn

∇xµ(x,v) · ζ̃, (9.9b)

In[β̃ · η̃] =
∫

Tn

∇v[µ(x,v) + ρ∆µ(x,v)] · η̃, (9.9c)
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for all (w̃, ζ̃, η̃) ∈ Ẋ3
n.

E. We must now introduce (ṽ, α̃, β̃) into the RHS of (9.8) such that it evaluates to 0
when considering (y,w) as either (0, ṽ) or (α̃, β̃). It was shown in Lemma 6.16 (when

constructing universally stable integrators for general conservative ODE systems

in Section 6.2) that this can assuredly always be done, even when no immediate

solution presents itself. Indeed, through a construction as in the proof of Lemma 6.16

we arrive at the following modified form of (9.8): find (x,v) ∈ X2
n such that

In[y · ẋ] = In

[
1
∥α̃∥2 (α̃× y) · (α̃× ṽ)− 1

ρ∥α̃∥2 (β̃ · (ṽ×B))(α̃ · y)
]
, (9.10a)

In[w · v̇] = 1
ρ
In[w · (ṽ×B)], (9.10b)

for all (y,w) ∈ Ẋ2
n. We see first that this RHS coincides with that of (9.8) when

(ṽ, α̃, β̃) = (v,α(x,v),β(x,v)) by noting the classical vector identity ∥X∥2Y · Z =
(X×Y) · (X× Z) + (X ·Y)(X · Z) alongside the relation (9.3) between α(x,v) and

β(x,v). We see then that it preserves the conservation of energy ε and the adiabatic

invariance of the magnetic moment µ by considering the test function (y,w) to be

(0, ṽ) and (α,β) respectively, cancelling like terms, and using the orthogonality

of the cross product.

F. The final SP integrator is then as follows: find ((x,v), (ṽ, α̃, β̃)) ∈ X2
n × Ẋ3

n such

that

In[y · ẋ] = In

[
1
∥α̃∥2 (α̃× y) · (α̃× ṽ)− 1

ρ∥α̃∥2 (β̃ · (ṽ×B))(α̃ · y)
]
, (9.11a)

In[w · v̇] = 1
ρ
In[w · (ṽ×B)], (9.11b)

In[ṽ · w̃] =
∫

Tn

v · w̃, (9.11c)

In[α̃ · ζ̃] =
∫

Tn

∇xµ(x,v) · ζ̃, (9.11d)

In[β̃ · η̃] =
∫

Tn

∇v[µ(x,v) + ρ∆µ(x,v)] · η̃. (9.11e)

for all ((y,w), (w̃, ζ̃, η̃)) ∈ Ẋ2
n × Ẋ3

n.

Theorem 9.2 (Energy and magnetic moment stability of the particle pusher). The

integrator (9.11) conserves ε exactly, and µ+ ρ∆µ up to order O[ρ∆tn],

ε|tn+1 − ε|tn = 0, [µ+ ρ∆µ]|tn+1 − [µ+ ρ∆µ]|tn = O[ρ∆tn]. (9.12)
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The latter result quantifies the preserved adiabatic invariance of µ.

Proof. By considering respectively w̃ = v̇ in (9.11c) and w = ṽ in (9.11b),

ε|tn+1 − ε|tn =
∫

Tn

ε̇ =
∫

Tn

v · v̇ = In[ṽ · v̇] = 1
ρ
In[ṽ · (ṽ×B)]= 0, (9.13)

with the final equality holding by the orthogonality of the cross product. By consider-

ing respectively (ζ̃, η̃) = (ẋ, v̇) in (9.11d, 9.11e) and (y,w) = (α̃, β̃) in (9.11a, 9.11b),

[µ+ ρ∆µ]|tn+1 − [µ+ ρ∆µ]|tn (9.14a)

=
∫

Tn

∂t[µ+ ρ∆µ] (9.14b)

=
∫

Tn

∇x[µ+ ρ∆µ] · ẋ +∇v[µ+ ρ∆µ] · v̇ (9.14c)

=
∫

Tn

∇xµ · ẋ +∇v[µ+ ρ∆µ] · v̇ +O[ρ] (9.14d)

= In[α̃ · ẋ + β̃ · v̇] +O[ρ∆tn] (9.14e)

= In

[
1
∥α̃∥2 (α̃× α̃) · (α̃× ṽ)− 1

ρ∥α̃∥2 (β̃ · (ṽ×B))(α̃ · α̃)

+1
ρ
β̃ · (ṽ×B)

]
+O[ρ∆tn] (9.14f)

= O[ρ∆tn], (9.14g)

where in the third equality we assert that∇x∆µ = O[1] similarly to (9.4), and in the

final equality we again use the orthogonality of the cross product. As intended, this

mimics the earlier proof (9.4) of the adiabatic invariance of µ.

While this scheme is effective for preserving the conservation and adiabatic

invariance structures, we find the reciprocal 1
∥α∥2 terms can lead to some numerical

instability. For this reason, we propose the following slightly modified form: find

((x,v), (ṽ, α̃, β̃)) ∈ X2
n × Ẋ3

n such that

In[∥∇xµ∥ẋ · y] = In

[
∥∇xµ∥(α̃× ỹ) · (α̃× v)− 1

ρ
(β̃ · (ṽ×B))(α̃ · y)

]
, (9.15a)

In[v̇ ·w] = 1
ρ
In[∥α̃∥2w · (ṽ×B)], (9.15b)

In[ṽ · w̃] =
∫

Tn

v · w̃, (9.15c)

In[∥∇xµ∥α̃ · ζ̃] =
∫

Tn

∇xµ(x,v) · ζ̃, (9.15d)

In[β̃ · η̃] =
∫

Tn

∇v[µ(x,v) + ρ∆µ(x,v)] · η̃. (9.15e)
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for all ((y,w), (w̃, ζ̃, η̃)) ∈ Ẋ2
n × Ẋ3

n. Here, the AV α̃ is instead a discrete approx-

imation to the normalised 1
∇xµ
∇xµ. The proofs of energy and magnetic moment

stability are identical.

As discussed in Subsection 4.2.1, the AVs (ṽ, α̃, β̃) in (9.11) can be eliminated on

the computational level. In particular, when In is the midpoint rule with S = 1, we

derive the following MV–DG-style method: find (xn+1,vn+1) ∈ R3 such that

1
∆tn
∥α̃n∥2(xn+1 − xn) = (α̃n × vn+ 1

2
)× α̃n −

1
ρ

(β̃n · (vn+ 1
2
×B(xn+ 1

2
))) α̃n, (9.16a)

1
∆tn

(vn+1 − vn) = 1
ρ

(vn+ 1
2
×B(xn+ 1

2
)), (9.16b)

where xn+ 1
2

:= 1
2(xn + xn+1), vn+ 1

2
:= 1

2(vn + vn+1), and α̃n, β̃n are defined

α̃n :=
∫ 1

0
∇xµ((1− τ)xn + τn+1xn+1, (1− τ)vn + τn+1vn+1) dτ, (9.17)

β̃n :=
∫ 1

0
∇vµ((1− τ)xn + τn+1xn+1, (1− τ)vn + τn+1vn+1)

+ ρ∇v∆µ((1− τ)xn + τn+1xn+1, (1− τ)vn + τn+1vn+1) dτ ; (9.18)

we may interpret these as adiabatic discrete gradients.

Remark 9.3 (Preservation of guiding centre drifts). A further QoI for (9.1) is the guiding

centre ξ(x,v) ∈ R3,

ξ := x + ρ
1
B2 v×B, (9.19)

evolving, up to oscillations, according to transport a combination of (O[1]) transport parallel

to the field lines, and a slow (O[ρ]) drift term

ξ̇ ≈ v∥b∥ + ρ

 v2
⊥

2B3 B×∇B︸ ︷︷ ︸
grad-B drift

+
v2

∥

B2 B× (B · ∇b∥)︸ ︷︷ ︸
curvature drift

− v2
⊥

2B4 (B · curl B)B︸ ︷︷ ︸
polarisation drift

. (9.20a)

We can formalise this structure through the definition of a certain guiding centre correction

∆ξ(x,v) ∈ R3 such that

ξ̇ + ρ2∆̇ξ = v∥b∥ + ρ

 v2
⊥

2B3 B×∇B︸ ︷︷ ︸
grad-B drift

+
v2

∥

B2 B× (B · ∇b∥)︸ ︷︷ ︸
curvature drift

− v2
⊥

2B4 (B · curl B)B︸ ︷︷ ︸
polarisation drift

+O[ρ2].

(9.20b)

A similar argument to the above on the adiabatic invariance of µ may then be applied, to

preserve the guiding centre drifts, motivating in Step D the introduction of AVs approxi-

mating ∇xξ and ∇v[ξ + ρ2∆ξ]; it remains unclear in Step E, however, where these AVs
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should be introduced in the RHS of (9.8) to preserve this structure. In its current state, the

scheme (9.15) does not necessarily preserve guiding centre drifts; artificial drifts can be seen,

for example, in Fig. 9.3 below, with the discrete trajectories under our scheme (9.15) drifting

away from the z axis.

9.1 Magnetic mirror test

Inspired by [RC20, Fig. 1] we test the integrator (9.15) using a magnetic mirror

induced by two circular currents loops of radius r, oriented normal to the z-axis

and centred at z = ±L,

B(x) = [r2 + L2] 3
2

2
∑
±

1
[r2 + (z ± L)2] 3

2

3
2 ·

z ± L
r2 + (z ± L)2

xy
0

+

0
0
1


. (9.21)

We take r = 22, L = 23, ρ = 2−5, and ICs x = (0, ρ, 0), v = (1, 0, 2.1). Under these

conditions, the particle has insufficient energy to pass the magnetic mirror induced

by the current loop at z = 23 due to the bounds on B(x) over the particle imposed

by the conservation of ε and adiabatic invariance of µ; in the exact trajecory, the

particle should be reflected back to the plane z = 0.

Using a timestep ∆t = 2−4 (i.e. on the order of O[ρ]) we compare our scheme

(9.15) with In =
∫

Tn
to a simple IM method. Fig. 9.2 shows the evolution of the

magnetic moment µ and the corrected magnetic moment µ+ ρ∆µ in either case; both

schemes conserve energy up to solver tolerances. We see that, for our scheme (9.15)

µ is restricted to the interval [0.5000, 0.5004], whereas with IM µ drops from its initial

value of 0.5 to a minimum value of around 0.12.

Fig. 9.3 shows the trajectories in either case. The particle in our scheme 9.15

is fully reflected by the mirror, whereas under IM the particle breaks through the

mirror, due to the lack of preservation of the adiabatic invariance of µ; this occurs

approximately when µ attains its lowest value, at around t ≈ 3.9. Under these ICs in

fact, among timesteps ∆t ∈ 2Z we require a timestep as low as ∆t = 2−9 (i.e. on the

order of O[ρ2]) before we observe successful mirroring in the IM scheme.



9. The Lorentz problem 150

0.5000

0.5002

0.5004

0 2 4 6 8

0.2

0.4

0.6

t

µ
µ+ ρ∆µ

time crossing mirror

Figure 9.2: Magnetic moment µ and corrected magnetic moment µ+ ρ∆µ for the magnetic
mirror test, using our scheme (9.15) (above) and IM (below). Note the differing scales on
each y axis.
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Figure 9.3: Numerical trajectories for the magnetic mirror test, using our scheme (9.15)
(above) and IM (below).
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We consider now two ways in which FEEC [Hip01; AFW06; AFW09; Arn18]

may be applied to simplify schemes deriving from our framework in Chapter 3.

We shall apply this to the energy- and helicity-stable integrator (3.28) presented

in Chapter 3, alongside a novel energy- and enstrophy-stable integrator for the

151
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incompressible NS equations, and an energy- and helicity-stable integrators for

the incompressible Hall MHD equations. Both of the novel integrators represent

AD systems (Assumption 3.11) allowing us to apply the existence and uniqueness

results from Section 3.3.

The rest of this chapter proceeds as follows. In Section 10.1, we begin by overview-

ing the notation from exterior calculus that will be used throughout this chapter.

In Section 10.2, we highlight the two ways in which we shall use FEEC to simplify

schemes deriving from our framework, the first involving the elimination of LMs

induced in the definition of AVs, and the second involving the reparametrisation

of our schemes along FE complexes. In Section 10.3, we revisit the energy- and

helicity-stable integrator (3.28) of Chapter 3. We show that, when U is defined as in

(3.7b) and the spaces Q, V satisfy a certain compatibility condition, the LM required

to enforce the divergence-free condition on the auxiliary vorticity ω (denoted θ

in (3.32)) can be eliminated.

In Section 10.4, we again consider the incompressible NS equations, which, under

appropriate BCs, dissipate both the energy 1
2∥u∥

2 and, in the 2D case, the enstrophy
1
2∥ curl u∥2; we apply our framework to construct FE integrators that preserve both

these structures. Applying the analytic results of Section 3.3, we prove similar

existence and uniqueness results for this discretisation. These integrators initially

use a stream function–vorticity parametrisation; provided the FE spaces in which

these functions are defined derive from certain FE complexes, we are then able to

reparametrise this into a more traditional velocity-vorticity formulation. To illustrate

the stability properties offered by enstrophy stability, we consider a numerical test

in the Euler case Re = ∞.

In Section 10.5, we consider the incompressible Hall MHD equations, which

conserve an energy, magnetic helicity, and hybrid helicity in the ideal limit, with

the first of these dissipated in the nonideal case. We apply our framework to

construct FE integrators that preserve each of these structures, for which we again

show the existence and uniqueness results of Section 3.3 hold. These integrators

use an electromagnetic (EM) potential parametrisation; similarly to Section 10.4,

provided the FE spaces in which these functions are defined derive from certain

FE complexes, we are able to reparametrise this into a more traditional EM field

formulation. Moreover, similarly to Section 10.3, this FE complex compatibility
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condition allows us to eliminate a certain LM enforcing the discrete divergence-free

criteria on the introduced AVs.1

10.1 Notation & preliminaries

We begin by introducing various relevant notation and preliminaries from exterior cal-

culus.

10.1.1 Primal complexes

We consider general Hilbert complexes

· · · Vr−1 Vr Vr+1 Vr+2 · · ·
dr−1 dr dr+1

, (10.1)

along sequences (Vr, (·, ·)Vr) of Hilbert spaces.2 We shall denote the nullspace of

(bounded) dr : Vr → Vr+1 by Ndr ⊆ Vr, and its range by Rdr ⊆ Vr+1.

We make broad use of the de Rham complex, which we write for simplicity

with familiar vector proxies. For a general operator d, define the Hilbert space

H(d) := {u ∈ L2 : du ∈ L2}, using boldface when it is vector-valued. In 3D the

Hilbert de Rham complex then takes the form

H1 H(curl) H(div) L2
grad curl div

. (10.2a)

In 2D we write it as

H1 H(div) L2curl div
. (10.2b)

The 2D curl, mapping from scalars to vectors, is defined curlϕ := (∂x2ϕ,−∂x1ϕ).

In Section 10.4, when considering the preservation of enstrophy in the incompress-

ible NS equations, we require Stokes complexes in 3D and 2D (see Chen & Huang

1As noted in Section 8.1, the resulting scheme identifies with that proposed by Laakmann, Hu &
Farrell [LHF23]. The authors’ analysis proceeds similarly to ours, with theirs offering a more careful
handling of the function spaces that extends to the non-discrete setting, and ours extending to higher
order in time.

2These are typically closed subspaces of the Hilbert space H(dr) := {vr ∈ L2 : drvr ∈ L2}.
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[CH24]) i.e. certain de Rham complexes (10.2) with enhanced regularity. While

different forms for the Stokes complex exist in 3D,3 we consider the form

H1 H(grad curl) H1 L2
grad curl div

. (10.3a)

In 2D, the spaces in the Stokes complex are generally more familiar:

H2 H1 L2curl div
. (10.3b)

Considering a bounded Lipschitz domain Ω ⊂ Rd, denote the boundary by ∂Ω
with outward-facing unit normal n on ∂Ω. We define then the following Hilbert

subspaces with natural zero Dirichlet BCs:

H1
0 := {u ∈ H1 : u = 0 on ∂Ω}, (10.4a)

H0(div) := {u ∈ H(div) : u · n = 0 on ∂Ω}, (10.4b)

H0(curl) := {u ∈ H(curl) : u× n = 0 on ∂Ω}. (10.4c)

In the final case, × denotes the cross product. In 3D, this induces a de Rham

complex (10.2) with zero BCs

H1
0 H0(curl) H0(div) L2

grad curl div
, (10.5a)

while in 2D this induces the complex

H1
0 H0(div) L2curl div

. (10.5b)

Exactness is especially important to us, required in particular for the conditions

of Lemma 10.4 below. In Sections 10.3 & 10.5, the periodic BCs under consideration

cause exactness to fail, due to the presence of constant harmonic forms. To remedy

this, let the subscript U# denote the restriction of a general space U to those functions

u ∈ U with zero mean
∫

Ω u = 0. When Ω is a rectangular domain with full periodic

BCs (i.e. topologically equivalent to a d-torus) we may take zero means on each space

to ensure exactness; this is equivalent to removing the harmonic forms. In 3D for

3The term Stokes complex is more usually used to refer to the complex H2 → H1(curl)→ H1 → L2.
However, we neither consider nor use this complex here.
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example, whereas the typical de Rham (10.2) and Stokes (10.3) complexes are not

exact on periodic domains, the following is:

H1
# H#(curl) H#(div) L2

#
grad curl div

. (10.6)

In Section 10.4, we consider the intersection of the Stokes complexes (of enhanced

regularity) (10.3), and the standard de Rham complexes (or reduced regularity) with

zero Dirichlet BCs (10.5). In 3D we consider the complex

H1
0 H(grad curl) ∩H0(curl) H1 ∩H0(div) L2

grad curl div
, (10.7a)

while in 2D we consider the complex

H2 ∩H1
0 H1 ∩H0(div) L2curl div

. (10.7b)

Lemma 10.1 (Exactness of the Stokes complexes with zero BCs). When substituting the

final space L2 for its zero-averaged counterpart L2
#, the Stokes complexes in 3D and 2D with

zero BCs (10.7) are exact over contractible Lipschitz domains.

Proof. In the 3D case (10.7a), exactness atH1
0 , H(grad curl)∩H0(curl) and H1∩H0(div)

can be inherited from the exactness of the de Rham complex (10.5a). For exactness at

L2
# we refer the reader to Girault & Raviart [GR12, Cor. 2.4]. Similar arguments hold

in the 2D case (10.7b).

10.1.2 Dual complexes

Denote by d∗
r : Vr+1 → Vr the Hilbert adjoint of dr : Vr → Vr+1, defined for ϕr+1 ∈ Vr+1

such that (d∗
rϕr+1, θr)Vr = (ϕr+1, drθr)Vr+1 for all θr ∈ Vr. The associated Hilbert

dual complex of (10.1) is then

· · · Vr−1 Vr Vr+1 Vr+2 · · ·
d∗

r−1 d∗
r d∗

r+1

. (10.8)

Our interaction with these adjoint operators is generally restricted to considering

their kernels Nd∗
r, e.g. in Lemma 10.3 & 10.4 below.
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There are many similar ideas of dual complexes in the literature. To fix ideas

with the Hilbert dual (10.8), consider the 3D de Rham complex with zero BCs (10.5a);

under our definition, this has a dual

H1
0 H0(curl) H0(div) L2

grad∗ curl∗ div∗

. (10.9)

The dual operators grad∗, curl∗, div∗ can be defined implicitly as

[id− div grad] grad∗ u = − div u, grad∗ u = 0 on ∂Ω, (10.10a)

[id + curl2] curl∗ u = curl u, curl∗ u× n = 0 on ∂Ω, (10.10b)

[id− grad div] div∗ u = − gradu, div∗ u · n = 0 on ∂Ω, (10.10c)

where id is the identity map, i.e. the Riesz maps of the traditional adjoint operators.

While the these dual operators may seem unusual, we see immediately that the

dual kernels Nd∗
r still take the familiar forms,

N grad∗ = {v ∈ H0(curl) : −(v, gradϕ) = 0 for all ϕ ∈ H1
0}, (10.11a)

N curl∗ = {v ∈ H0(div) : (v, curlϕ) = 0 for all ϕ ∈ H0(curl)}, (10.11b)

N div∗ = {v ∈ L2 : −(v, divϕ) = 0 for all ϕ ∈ H0(div)}, (10.11c)

with these variational definitions holding similarly on discrete subcomplexes.

10.2 Outline of techniques from FEEC

We highlight here the two systems by which we may apply FEEC to simplify

the schemes deriving from our framework (Framework 3.5) without affecting the

underlying scheme.

Method 1: Elimination of LMs The first idea we present involves the elimination of

LMs. Typically, when we consider DAEs in our framework, we enforce the algebraic

structures through a restriction on the solution space U; in practical implementation,

these restrictions then manifest as LMs.
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Example (Incompressible NS)

In the energy- and helicity-stable incompressible NS integrator (3.28) presented

in Chapter 3, we enforced the divergence-free condition as a discrete condition

on U (3.7). For practical implementation, this divergence-free restriction is

implemented via a LM, analogous to the pressure p (3.32).

Each AV we introduce therein is then a projection into this same restricted U

space, and induces its own LM.

Example (Incompressible NS)

The AV ω represents the vorticity. As it lies in U, it requires its own LM. This is

denoted by θ in (3.32).

FEEC can alleviate the need to introduce certain auxiliary LMs. When the spaces

in the definition of U satisfy specific complex compatibility conditions, these auxiliary

LMs can simply be removed, with no effect on the discrete solution. To fix this idea,

we introduce the following two lemmas.

Lemma 10.2 (Elimination of LMs: primal). Suppose ϕr+1 ∈ Vr+1 is defined, for some

φr ∈ Vr, by the projection

(ϕr+1, θr+1)Vr+1 = (drφr, θr+1)Vr+1 , (10.12)

for all θr+1 ∈ Vr+1. Then we may equivalently seek ϕr+1 ∈ Ndr+1 ⊂ Vr+1 (i.e. the nullspace

of dr+1) such that (10.12) holds for all θr+1 ∈ Ndr+1.

Proof. It suffices to show that, for ϕr+1 as defined by (10.12), ϕr+1 ∈ Ndr+1, i.e. dr+1ϕr+1 =
0. As drφr ∈ Vr automatically, the projection is trivial, i.e. ϕr+1 = drφr. The result

then holds immediately by the complex property.

Lemma 10.2 has an important analogue in the dual complex, Lemma 10.3.

Lemma 10.3 (Elimination of LMs: dual). Let Vr+1 be continuously embedded in some

larger space V̂r+1 ←↩ Vr+1. Suppose ϕr ∈ Vr is defined, for some φ̂r+1 ∈ V̂r+1, by the

projection

(ϕr, θr)Vr = (φ̂r+1, drθr)V̂r+1
, (10.13)
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for all θr ∈ Vr. Then we may equivalently seek ϕr ∈ Nd∗
r−1 ⊂ Vr (i.e. the nullspace of the

dual of dr−1) such that (10.13) holds for all θr ∈ Nd∗
r−1.

Proof. It suffices to show that ϕr ∈ Nd∗
r−1, i.e. d∗

r−1ϕr = 0. Equivalently we may show

that for all ϑr−1 ∈ Vr−1,

(ϕr, dr−1ϑr−1)Vr = 0. (10.14)

Considering θr = dr−1ϑr−1 in (10.13) this holds immediately by the complex property.

Notably, this dual result is stronger, in so far as it holds for all φ̂r+1 ∈ V̂r+1 ←↩ Vr+1,

whereas the primal result only necessarily holds for φr ∈ Vr.

Example (Incompressible NS)

Under certain conditions, we are able to appeal to Lemma 10.3 to show the LM

θ may be eliminated from our discrete scheme, without affecting the solution.

This is discussed in detail in Section 10.3.

Method 2: Reparametrisation along complexes The second idea we present in-

volves the reparametrisation of a PDE discretisation in terms of certain function’s

derivative. In particular, we highlight that we seek to use FEEC to reparametrise

our discretisations exactly, i.e. such that, despite using different variables, the FE

scheme and its discrete solutions remain necessarily unchanged.

In certain applications of our framework, we arrive at a discretisation in which a

certain quantity appears solely in terms of a certain derivative, e.g. its curl. Often, this

derivative may in fact be a more physically meaningful quantity, e.g. the magnetic

field instead of the magnetic potential. We may consider then those situations

where our discretisation may be equivalently rewritten in terms of this derivative,

to be defined in more traditional variables. This is of further interest from the

perspective of computational complexity, as the spaces later in a FE complex are

typically of lower regularity, leading to discrete problems that are generally easier

to solve and precondition.4 FEEC gives sufficient conditions where we may make

this reparametrisation, detailed in the following lemma.

4Consider for example hybridisation, which in its typical form can only be performed on H(div)-
conforming spaces.
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Lemma 10.4 (Reparametrisation along complexes). Suppose the complex is exact at Vr

and Vr+1. The operator dr then defines an isomorphism from Nd∗
r−1 ⊂ Vr (the nullspace of

the dual of dr−1) to Ndr+1 ⊂ Vr+1 (the nullspace of dr+1).

Proof. To show dr is an isomorphism, we must show surjectivity and injectivity.

For surjectivity, noting Ndr+1 = Rdr = dr[Vr] by exactness, it suffices to show

dr[Nd∗
r−1] = dr[Vr]. By the Hodge decomposition (see Arnold [Arn18, Sec. 4.2]) Vr

may be decomposed as Vr = Ndr ⊕Nd∗
r−1; evaluating then dr[Vr],

dr[Vr] = dr[Ndr ⊕Nd∗
r−1] = dr[Nd∗

r−1]. (10.15)

For injectivity, it suffices to show that if ϕr ∈ Nd∗
r−1, satisfies drϕr = 0, then ϕr = 0.

For ϕr ∈ Nd∗
r−1 = Rd∗

r, there exists φr+1 ∈ Vr+1 such that ϕr = d∗
rφr+1, i.e. for all

θr ∈ Vr

(ϕr, θr) = (φr+1, drθr). (10.16a)

In particular, considering θr = ϕr,

∥ϕr∥2 = (ϕr, ϕr) = (φr+1, drϕr). (10.16b)

When drϕr = 0 we must have ϕr = 0.

Under such conditions, if we have in our discretisation a quantity ϕr ∈ Nd∗
r−1

that appears only through its derivative drϕr, then we may equivalently parametrise

and implement our scheme in φr+1 = drϕr with φr+1 ∈ Ndr+1.

10.3 Energy- & helicity-stable integrators for the incom-
pressible Navier–Stokes equations (revisited): Elim-
ination of the Lagrange multiplier

We revisit the energy- and helicity-stable integrator (3.28) proposed in Chapter 3

for the incompressible NS equations, again with periodic BCs. For simplicity, we

shall assume In to be an S-node GL quadrature rule, such that, as observed in

Section 4.3, this is equivalent to an S-stage Gauss collocation method applied to

the following semi-discretisation: find (u,ω) ∈ U2 (for discretely divergence-free

U defined as in either (3.7a) or (3.7b)) such that

(u̇,v) = (u× ω,v)− 1
Re(curl u, curl v), (10.17a)

(ω,χ) = (curl u,χ), (10.17b)
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for all (v,χ) ∈ U2. Note, the elimination of the auxiliary velocity ũ in the case of In

being a GL quadrature rule is simple, as ũ simply becomes the interpolant of u at the

GL points in Tn, and is therefore effectively equivalent. We elect also to rewrite the

dissipative term (∇u,∇v) in the form (curl u, curl v), equivalent in the continuous

setting for exactly divergence-free functions u, as it better aligns with the regularity

assumptions when applying FEEC in the following subsection.5

10.3.1 Application of FEEC

Expanding out the LMs in (10.17) yields a 4-field discretisation (excluding the LMs

enforcing the zero-mean conditions
∫

Ω u = 0 and
∫

Ωω = 0). Through the use of FE

spaces compatible with FEEC, we may eliminate one of these LMs, the one enforcing

the discrete divergence-free condition on ω.

Let us first apply IBP to rewrite (10.17b) in the form

(ω,χ) = (u, curlχ). (10.18)

We take then U to be defined as in (3.7b),

U :=
{

u ∈ V : − (u,∇q) = 0 for all q ∈ Q and
∫

Ω
u = 0

}
, (10.19)

and suppose the spaces V, Q exist as part of a subcomplex of the periodic de

Rham complex (10.6):

H1 H#(curl) H#(div) L2

Q V V Q

grad curl div

grad curl div
. (10.20)

Exactness is ensured at the vector-valued spaces V and V by eliminating the harmonic

forms.6 The space U may be identified as the nullspace N grad∗ ⊂ V of the dual

operator grad∗ : V→ Q. Lemma 10.3 implies then that the projection (10.18) defining

the auxiliary vorticity ω ∈ U may equivalently be written as a projection in the larger

5It may readily be confirmed that, under the assumptions in the following section (and again
restricting our attention to functions of zero mean), the H(curl) seminorm u 7→ ∥ curl u∥ defines a
norm on U. Accordingly, this modification does not affect the existence and uniqueness results of
Section 3.3.

6We do not eliminate the harmonic forms at Q and Q, as exactness there is not required.
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space V. Thus, the integrator (10.17) may be written equivalently as follows: find

(u,ω) ∈ U× V such that (10.17) holds for all (v,χ) ∈ U× V. Expanding the LMs in

U gives the final equivalent semi-discretisation: find (u, p,ω) ∈ V×Q× V such that

(u̇,v) = (u× ω,v)− (∇p,v)− 1
Re(curl u, curl v), (10.21a)

0 = (u,∇q), (10.21b)

(ω,χ) = (curl u,χ), (10.21c)

for all (v, q,χ) ∈ V×Q×V. Discretising in time with a Gauss method, energy Q1 and

helicity Q2 stability may be shown directly in (10.21) by considering (v, q) = (u, p)
and (v,χ) = (ω, u̇ + ∇p) respectively.

10.4 Energy- & enstrophy-stable integrators for the in-
compressible Navier–Stokes equations: Stream function–
to–velocity reparametrisation

We now reconsider the incompressible NS equations (3.1) through the perspective

of enstrophy stability, in place of helicity stability. We intend to construct a stable

integrator that preserves the behaviour of the energy and enstrophy, i.e. dissipation

and ideal conservation of energy and, in the 2D case, enstrophy. Each subsection

herein will first consider the 3D case, for which the differential operators are generally

more familiar and we are able to at least preserve the equation governing the

evolution of enstrophy even if it is not (necessarily) dissipative; we shall consider

then the 2D case, for which the enstrophy evolution equation becomes a stronger

dissipation result.

3D In place of periodic BCs, we shall assume Navier-slip BCs

u · n = 0, curl u× n = 0. (10.22a)

We have then two QoIs,

Q1(u) := 1
2∥u∥

2, Q3(u) := 1
2∥ curl u∥2, (10.22b)

the energy (as defined in (3.15)) and enstrophy respectively. For an exact solution

u of the incompressible NS equations (3.1), Q1 and Q3 satisfy

Q̇1 = − 1
Re∥ curl u∥2(≤ 0), Q̇3 = −

∫
Ω

u · (curl u · ∇ curl u)− 1
Re∥ curl2 u∥2.

(10.22c)
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Remark 10.5 (Alternate forms of the no-tangential-stress BC). The more common

(and physically meaningful) form for the no-tangential-stress BC in the NS equations is

n · (∇u +∇u⊤) · t = 0, for any tangential vector t on ∂Ω such that n · t = 0. However,

it may readily be shown that this is equivalent to the condition curl u × n = 0 under the

no-flux condition u · n = 0, which will be a more convenient form for our purposes.

2D In 2D, the BCs (10.22a) become

u · n = 0, rot u = 0, (10.23a)

where rot u := ∂x1u2−∂x2u1 for u = (u1, u2). The energyQ1 and enstrophyQ3 are then

defined

Q1(u) := 1
2∥u∥

2, Q3(u) := 1
2∥ rot u∥2. (10.23b)

These evolve, for an exact solution u, according to

Q̇1 = − 1
Re∥ rot u∥2(≤ 0), Q̇3 = − 1

Re∥ rot curl u∥2(≤ 0). (10.23c)

In particular, both of these quantities are dissipated, and conserved in the ideal case.

Proceeding with our framework similarly to the energy- and helicity-stable

FE integrator in Chapter 3 would motivate in Step D the introduction of AVs

approximating the velocity u and its Laplacian curl2 u in 3D or curl rot u in 2D.

This poses an issue in Step E; when substituting in the AVs on the RHS of (3.8),

there is no clear place for the second AV.

To circumvent this issue, we first pass to a stream function ψ formulation of

(3.1). This has the consequence that the introduced AVs for energy and enstrophy

stability respectively in Step D will instead approximate the stream function ψ

and vorticity curl2ψ in 3D or curl rotψ in 2D respectively; these will have clear

places in the RHS of (3.8) in Step E.

Remark 10.6 (Assumption of contractible domain). To transfer to the stream function

formulation, we shall assume a contractible domain Ω. Taking care to handle the domain

cohomology appropriately, there exist stream function formulations of the incompressible

NS equations on non-contractible domains through the inclusion of appropriate harmonic

functions, however we assume contractibility here for simplicity, and defer the analysis of

topological non-trivial domains to future work.
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3D In 3D, with a contractible domain Ω, the Hodge (or in this case Helmholtz)

decomposition (see Arnold [Arn18, Sec. 4.2]) indicates that, up to regularity, any

divergence-free function with zero normal component on the boundary may be

written as the curl of a divergence-free function with zero tangential component on

the boundary. In particular, we shall write u = curlψ, writing the BCs (10.22a) as

ψ × n = 0, curl2ψ × n = 0. (10.24)

Energy Q1 and enstrophy Q3 are defined similarly to (10.22b) on ψ as

Q1(ψ) := 1
2∥ curlψ∥2, Q3(ψ) := 1

2∥ curl2ψ∥2. (10.25)

Taking the curl of (3.1a) to eliminate the pressure, we have the incompressible NS

equations in stream function formulation,

curl2 ψ̇ = curl[curlψ × curl2ψ]− 1
Re curl4ψ, (10.26a)

0 = divψ. (10.26b)

We may now apply our framework to (10.26) to construct the desired energy- and

enstrophy-stable integrator.

Application of framework (Framework 3.5)

A. Let vector-valued V, satisfyingϕ×n = 0 on ∂Ω for allϕ ∈ V, and scalar-valued

Q, satisfying η = 0 on ∂Ω for all η ∈ Q, be suitable finite-dimensional function spaces.

Similar to in Chapter 3, define a Q-discretely divergence-free subspace U ⊂ V as in

either (3.7a) or (10.38). We then arrive at our semi-discrete form: findψ ∈ U such that

(curl ψ̇, curlϕ) = (curlψ × curl2ψ, curlϕ)− 1
Re(curl2ψ, curl2ϕ), (10.27)

at all times t ∈ R+ and for all ϕ ∈ U.

B. This is fully discretised in time over Xn defined as in (3.10) with In. As in

Section 10.3, let us again assume for simplicity that In is simply an S-node GL

quadrature rule, such that the fully discrete system is equivalent to an S-stage Gauss

collocation method applied to (10.27).

C. As stated above, the associated test functions can be identified as the stream

function ψ and vorticity curl2ψ respectively.
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D. Nominally, our framework indicates we must introduce AVs (ψ̃,ω) ∈ (Ẋn)2,

projections of (ψ, curl2ψ) into Ẋn under the H(curl) seminorm:

In[(curl ψ̃, curl ϕ̃)] =
∫

Tn

(curlψ, curl ϕ̃), (10.28a)

In[(curlω, curlχ)] =
∫

Tn

(curl2ψ, curl2χ), (10.28b)

for all (ϕ̃,χ) ∈ (Ẋn)2. With In an S-node GL quadrature rule however, this is

equivalent at each of the GL points in Tn to ψ̃ = ψ and ω ∈ U defined such that

(curlω, curlχ) = (curl2ψ, curl2χ) (10.29)

for all χ ∈ U. Note, similarly to the construction of the helicity-stable integrator in

Section 3.1, the vorticity curl2ψ should, in the continuous case, satisfy div[curl2ψ] = 0,∫
Ω curl2ψ = 0 and curl2ψ×n = 0 on the boundary ∂Ω; these results are analogous to

the restrictions on U, and as such it is appropriate to approximate curl2ψ by ω ∈ U.

E. We now introduce the AVs ψ̃, ω into the RHS of (10.27) as

(curl ψ̇, curlϕ) = (curl ψ̃ × ω, curlϕ)− 1
Re(curlω, curlϕ), (10.30)

where ψ̃ may be substituted for ψ at the GL points.

F. The final SP scheme is then any S-stage Gauss collocation method applied to

the following semi-discrete system: find (ψ,ω) ∈ U2 such that

(curl ψ̇, curlϕ) = (curlψ × ω, curlϕ)− 1
Re(curlω, curlϕ), (10.31a)

(curlω, curlχ) = (curl2ψ, curl2χ), (10.31b)

for all (ϕ,χ) ∈ U2.

Theorem 10.7 (Energy & enstrophy stability of the incompressible NS integrator).

When integrating in time using a Gauss method, the incompressible NS integrator (10.31) is

energy- and enstrophy-stable, with discrete analogues of the following results holding across

each timestep Tn:

Q̇1 = − 1
Re∥ curl2ψ∥2 ≤ 0, (10.32a)

Q̇3 = −
∫

Ω
curlψ · (ω · ∇ω) + 1

Re∥ curlω∥2. (10.32b)

Proof. The former energy stability result (10.32a) holds by considering (ϕ,χ) = (ψ,ψ)
while the latter enstrophy stability result (10.32b) holds by considering (ϕ,χ) =
(ω, ψ̇) and using the vector calculus identity ω × curlω = 1

2∇[∥ω∥2]− ω · ∇ω.



10. Simplification of discretisations through FEEC 165

2D In 2D, with a contractible domain, the Hodge decomposition similarly indicates

that any sufficiently regular divergence-free function with zero normal component

on the boundary may be written as the curl of a function that is zero on the boundary.

We therefore write u = curlψ, with BCs (10.23a) taking the form

ψ = 0, ∆ψ = 0. (10.33)

The analogous stream function formulation to (10.26) in 2D is then

∆ψ̇ = rot[∆ψ∇ψ]− 1
Re∆2ψ. (10.34)

Applying our framework (with In a GL quadrature) gives a scheme equivalent

to a Gauss method applied to the following energy- and enstrophy-stable semi-

discretisation: find (ψ, ω) ∈ U2 such that

(∇ψ̇,∇ϕ) = − (ω∇ψ, curlϕ)− 1
Re(∇ω,∇ϕ), (10.35a)

(∇ω,∇χ) = (∆ψ,∆χ), (10.35b)

for all (ϕ, χ) ∈ U2, where U is a finite-dimensional function space such that ϕ = 0 on

∂Ω for all ϕ ∈ U, and the 2D scalar-to-vector curl is defined curlϕ := (∂x2ϕ,−∂x1ϕ).
The stability results for (10.35) hold identically to those of Theorem 10.7, with energy

Q1 and enstrophy Q3 defined on ψ as

Q1(ψ) := 1
2∥∇ψ∥

2, Q3(ψ) := 1
2∥∆ψ∥

2; (10.36)

in the 2D case however, both of these quantities are conserved in the ideal limit

Re = ∞, and dissipated otherwise.

10.4.1 Analysis: Existence & uniqueness

Before proceeding to the application of FEEC to simplify our energy- and enstrophy-

stable integrators (10.31, 10.35) we discuss certain preliminary existence and unique-

ness results, using the results for AD systems from Section 3.3.

We can see this to be a compatible SP discretisation of an AD system (Assump-

tion 3.11) by interpreting the energy Q1 as the dissipated type-B QoI, and the

enstrophy Q3 as the sole additional type-A QoI; this requires a slight but equivalent

rewriting of the dissipative term of (10.31) as: find (ψ,ω) ∈ U2 such that

(curl ψ̇, curlϕ) = (curlψ × ω, curlϕ)− 1
Re(curl2ψ, curl2ϕ), (10.37a)

(curlω, curlχ) = (curl2ψ, curl2χ), (10.37b)
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for all (ϕ,χ) ∈ U2; the modification to the 2D equations (10.35) is similar. Since

all operators in this scheme are smooth, most required regularity results (i.e. those

in Assumption 3.11, Theorem 3.18 and Assumption 3.22) hold immediately. The

only result that requires some new analysis is that the dissipative term defines

an inner product on U; equivalently, we require that a norm is defined by either

ψ 7→ ∥ curl2ψ∥ in the 3D case, or ψ 7→ ∥∆ψ∥ in 2D.

For the former, 3D case, this can be shown by assuming some compatibility

between V and Q. Namely, we require U to be defined similarly to (10.19),

U := {u ∈ V : − (u,∇q) = 0 for all q ∈ Q} , (10.38)

and that V, Q exist as part of a subcomplex of the Stokes complex (10.7a), exact

over contractible domains (Lemma 10.1):

H1
0 H(grad curl) ∩H0(curl) H1 ∩H0(div) L2

Q V V Q

grad curl div

grad curl div
. (10.39)

In such a case, define the divergence-free subspace U ⊂ V similarly to (3.7a),

U := {u ∈ V : (div u, q) = 0 for all q ∈ Q}. (10.40)

Observing that U = N div ⊂ V, while U = N grad∗ ⊂ V, Lemma 10.4 implies

curl : U→ U defines an isomorphism. Writing u = curlψ, it is then sufficient to show

that u 7→ ∥ curl u∥ defines a norm on U, a result that holds over sufficiently regular

domains by the (generalised) Gaffney inequality (see He, Hu & Xu [HHX19]).

The latter, 2D case is immediate. If ∆ψ = 0 on Ω, with the Dirichlet BC ψ = 0 on

∂Ω, solving the associated Laplace equation asserts that ψ = 0 on Ω.

For existence we refer to Theorem 3.18.

Example (Incompressible NS: energy- and enstrophy-stable case)

If d = 3, assume that V, Q form part of a discrete Stokes complex (10.39)

and that we define U as in (10.38). Then solutions to our proposed energy-

and enstrophy-stable integrators for the NS equations (10.31, 10.35) exist on
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arbitrary timesteps ∆tn in either the viscous (Re <∞) or lowest-order-in-time

(S = 1) case.

For uniqueness we refer to Theorem 3.26.

Example (Incompressible NS: energy- and enstrophy-stable case)

If d = 3, assume again that V, Q form part of a discrete Stokes complex (10.39)

and that we define U as in (10.38). Then the integrators (10.31, 10.35) are

well posed with a unique solution for either sufficiently small Re, or in the

lowest-order-in-time case (S = 1) with sufficiently small ∆tn.

10.4.2 Application of FEEC

One immediate observation about the schemes (10.31, 10.35) is that all terms except

the vorticity feature only through their gradient. In particular in the case of the

stream function ψ, this gradient is its curl, i.e. the velocity u = curlψ; this represents

a far more typical field over which to pose the NS equations. We may therefore

consider those circumstances under which we may equivalently reparametrise (10.31,

10.35) in the velocity u (and vorticity ω). To do so, we require that there exists a FE

parametrisation of u = curlψ (or curlψ in the 2D case).

3D In the 3D case, we require the same FE compatibility conditions between V, Q

as proposed in the analysis above, namely that we define U as in (10.38) and suppose

V, Q come from a discrete Stokes complex (10.39). As shown in the analysis, by

Lemma 10.4, curl : U→ U defines an isomorphism, where U is defined as in (10.40).

In the case where V, Q come from such a complex, and U is defined as in (10.38),

the semi-discretisation (10.31) may then be equivalently written as follows: find

(u,ω) ∈ U × U such that

(u̇,v) = (u× ω,v)− 1
Re(curlω,v), (10.41a)

(curlω, curlχ) = (curl u, curl2χ), (10.41b)

for all (v,χ) ∈ U × U. Energy and enstrophy stability may be similarly shown by

testing against (v,χ) = (u,ψ) and (v,χ) = (curlω, ψ̇) respectively, where ψ ∈ U is
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the stream function as above such that curlψ = u. Similar to (3.32), we may define

the scheme (10.41) in a more familiar way amenable to implementation by extracting

the LMs contained in U, U: find (u, p,ω, θ) ∈ V × Q × V × Q such that

(u̇,v) = (u× ω,v) + (p, div v)− 1
Re(curlω,v), (10.42a)

0 = (div u, q), (10.42b)

(curlω, curlχ) = (curl u, curl2χ) + (∇θ,χ), (10.42c)

0 = (ω,∇η), (10.42d)

for all (v, q,χ, η) ∈ V × Q × V × Q. Energy and enstrophy stability can be seen by

testing against (v, q,χ) = (u, p,ψ) and (v,χ) = (curlω, ψ̇) respectively.

2D In 2D, suppose U comes from a discrete Stokes complex (10.7b),

H2 ∩H1
0 H1 ∩H0(div) L2

U V Q

curl div

curl div
, (10.43)

similarly exact over contractible domains (Lemma 10.1). Defining the Q-discretely

divergence-free subspace U ⊂ V as in (10.40), Lemma 10.4 similarly implies curl :
U→ U defines an isomorphism. In such a case, the semi-discretisation (10.35) may

be equivalently written as follows: find (u, ω) ∈ U × U such that

(u̇,v) = (ωu⊥,v)− 1
Re(curlω,v), (10.44a)

(∇ω,∇χ) = − (rot u,∆χ), (10.44b)

for all (v, χ) ∈ U× U, where for u = (u1, u2) we denote the perpendicular velocity

u⊥ := (−u2, u1). Energy and enstrophy stability may be shown by testing against

(v, χ) = (u, ψ) and (v, χ) = (curlω, ψ̇) respectively. We may then extract the LM

contained in U with the following: find (u, p, ω) ∈ V × Q × U such that

(u̇,v) = (ωu⊥,v) + (p, div v)− 1
Re(curlω,v), (10.45a)

0 = (div u, q), (10.45b)

(∇ω,∇χ) = − (rot u,∆χ), (10.45c)

for all (v, q, χ) ∈ V×Q×U. Energy and enstrophy stability may be shown by testing

against (v, q, χ) = (u, p, ψ) and (v, χ) = (curlω, ψ̇) respectively.
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Remark 10.8 (Application of analysis after reparametrisation). Note, provided all

the discrete Sokes complex criteria (10.39, 10.43) hold, this reparametrisation is equivalent,

i.e. the velocity–vorticity schemes (10.42, 10.45) are equivalent to the original stream function–

vorticity schemes (10.31, 10.35). Consequently, both the existence and uniqueness results

from Subsection 10.4.1 hold after reparametrisation.

Again, in either case (10.42, 10.45) we require a Gauss method for the time

integration to ensure energy and enstrophy stability.

10.4.3 Usage without implementation of discrete Stokes complexes:
Interior penalty methods & a conforming workaround

As established, the integrators (10.42, 10.45) are necessarily both energy- and enstrophy-

stable, satisfying our SP requirements. However, for numerical implementation they

require discrete de Rham complexes of enhanced regularity, i.e. they require discrete

Stokes complexes (10.39, 10.43). While some such discrete Stokes complexes do exist

in the FEEC literature (see the literature review in Section 8.1) they are uncommon,

and implementations remain even rarer.

In this subsection therefore, we discuss two practical options for the implementa-

tion of these schemes (10.42, 10.45): non-conforming interior penalty methods (IPMs)

that rely on (reduced regularity) discrete de Rham complexes (10.5) only, and a tech-

nique for implementing equivalent schemes without requiring the implementation

of either of the high-regularity spaces V or Q.

10.4.3.1 Interior penalty methods with reduced regularity

Our first approach is the use of IPMs for non-conforming discretisations.

3D Beginning with the 3D case, suppose we do not have computational access

to a discrete Stokes complex (10.39), but we do to a discrete de Rham complex

(10.5a) of reduced regularity,

H1
0 H0(curl) H0(div) L2

Q V V Q

grad curl div

grad curl div
. (10.46)
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We must first introduce some notation. Letting K denote a mesh, i.e. a set of cells

K ∈ K, over Ω, let F denote the set of its facets F ∈ F . On F , let v± indicate the

value of some vector-field v, discontinuous across F , on either side of the facet; let n±

similarly denote the outward-pointing normals in either cell (such that n+ = −n−).

Define the jumps [[v×n]] := v+×n+ + v−×n− and [[v]]∗ := v+−v−. Define the mean

{{curl v}} := 1
2(curl v+ + curl v−). Lastly, let hF := 1

2(h+ + h−) denote the mean mesh

size on a facet F ∈ F , where h± denote the size of the cells on either side of F .

With this notation, define C∗[·, ·], a broken H(curl) bilinear form on V,

C[u,v] :=
∑

K∈K

∫
K

curl u · curl v

+
∑

F ∈F

∫
F

[
σ

hF

[[u]]∗ ·[[v]]∗ − [[u× n]] · {{curl v}} − {{curl u}} · [[v× n]]
]
, (10.47)

where σ > 0 is a sufficiently large interior penalty (IP) parameter (see Ern &

Guermond [EG21a, Chap. 18] and [EG21b, Chap. 38]). We propose the following IP

semi-discretisation: find (u, p,ω, θ) ∈ V × Q × V × Q such that

(u̇,v) = (u× ω,v) + (p, div v)− 1
Re(curlω,v), (10.48a)

0 = (div u, q), (10.48b)

(curlω, curlχ) = C∗[u, curlχ] + (∇θ,χ), (10.48c)

0 = (ω,∇η), (10.48d)

for all (v, q,χ, η) ∈ V × Q × V × Q. Defining the broken enstrophy Q∗
3,

Q∗
3(u) := C∗[u,u] ≥ 0, (10.49)

we see by similar arguments that, assuming the de Rham complex criteria (10.46)

holds, (10.48) satisfies the semi-discrete structures

Q̇1 = − 1
ReC

∗[u,u] ≤ 0, Q̇∗
3 = −

∫
Ω

u · (ω · ∇ω)− 1
Re∥ curlω∥2, (10.50)

with the fully discrete analogues holding in time when using a Gauss method for

the time discretisation.
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2D In the 2D case, we suppose again we have access only to discrete de Rham

complex (10.2a) of reduced regularity,

H1
0 H0(div) L2

U V Q

curl div

curl div
. (10.51)

We must first extend the notation from above. Letting t denote the unit clockwise-

facing tangential vector on ∂Ω, define the jump [[v · t]] := v+ · t+ + v− · t− over F .

Define the mean {{rot v}} := 1
2(rot v+ + rot v−) similarly.

We then redefine C∗[·, ·] in the 2D case to be a broken H(rot) bilinear form on V,

C∗[u,v] :=
∑

K∈K

∫
K

rot u rot v

+
∑

F ∈F

∫
F

[
σ

hF

[[u]]∗ ·[[v]]∗ − [[u · t]]{{rot v}} − {{rot u}}[[v · t]]
]
. (10.52)

We propose then the following IP semi-discretisation: find (u, p, ω) ∈ V×Q×U such

that

(u̇,v) = (ωu⊥,v) + (p, div v)− 1
Re(curlω,v), (10.53a)

0 = (div u, q), (10.53b)

(∇ω,∇χ) = C∗[u, curlχ], (10.53c)

for all (v, q, χ) ∈ V×Q× U. We see then by similar arguments that, assuming the

de Rham complex criteria (10.51) holds, (10.53) satisfies the semi-discrete structures

(10.50) with the broken enstrophy defined as in (10.49); the fully discrete analogues

then hold in time when using a Gauss method for the time discretisation.

10.4.3.2 Workaround for implementation with enhanced regularity

Looking in the 3D case (10.42) (with the argument in 2D (10.45) being similar),

assuming one could compute the inverse curl−1 : U→ U of curl : U→ U exactly, the

scheme (10.41) could be written as one entirely in U: find (u,α) ∈ U2 such that

(u̇,v) = (u× curl−1α,v)− 1
Re(α,v), (10.54a)

(α,β) = (curl u, curlβ), (10.54b)



10. Simplification of discretisations through FEEC 172

for all (v,β) ∈ U2. This is simply a re-writing of (curlω, curlχ) 7→ (α,β). Introducing

LMs for numerical implementation would then give a problem over V and Q only.

While full 3D FE Stokes complexes (10.39) are often not implemented numerically,

spaces V and Q (i.e. such that divV = Q) often are, in particular the SV [SV85a;

SV85b] pair: V = [CGp+1]3, the CG (or Lagrange) space of degree p+ 1, and Q = DGp,

the DG space of one lower degree p over a simplicial mesh (see Ern & Guermond

[EG21a, Sec. 6 & 7]).7 This offers immediate appeal: if, for any α ∈ U, one were able

to find some discretely divergence-free ω such that curlω = α, and this map could be

computed efficiently and without the use of any high-regularity spaces, then we could

use this map in (10.54) to implement a conforming energy- and enstrophy-stable

scheme, even in cases when spaces of more refined regularity than H1 are unavailable.

3D To demonstrate that this can often be done in 3D, suppose that the FE software

in question does feature a discrete 3D de Rham complex (as in (10.46)) of standard

reduced regularity,

H1
0 H0(curl) H0(div) L2

Q̂ V̂ V̂ Q̂

grad curl div

grad curl div
. (10.55)

Define then Û and Û similarly to (10.38) and (10.40) respectively. By Lemma 10.4,

curl : Û→ Û defines an isomorphism, which can furthermore be inverted numerically

as follows: for α ∈ Û, find ω ∈ Û such that

(curlω, curlχ) = (α, curlχ) (10.56)

for all χ ∈ Û; it is straightforward to confirm this is well posed, and that curlω = α.

In fact, if we further assume the inclusion V ⊂ V̂, we see U ⊂ Û,8 implying that simply

by restricting our attention to α ∈ U ⊂ Û the above variational map (10.56) defines a

right-inverse of curl on U with a discretely divergence-free image, as required.

7Note, to ensure divV = Q and inf-sup stability, we require certain conditions on the mesh and the
order p (see Farrell, Mitchell & Scott [FMS24] for a recent review of these conditions).

8We may see this by noting Û is the exactly divergence-free subspace of V̂, and U the exactly
divergence-free subspace of V.
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Combining (10.54, 10.56) then and eliminating LMs, our final scheme is as follows:

find ((u,α), (p, r),ω, θ) ∈ V2 × Q2 × V̂ × Q̂ such that

(u̇,v) = (u× ω,v) + (p, div v)− 1
Re(α,v), (10.57a)

0 = (div u, q), (10.57b)

(α,β) = (curl u, curlβ) + (r, divβ), (10.57c)

0 = (divα, s), (10.57d)

(curlω, curlχ) = (α, curlχ)− (∇θ,χ), (10.57e)

0 = − (ω,∇η) (10.57f)

for all ((v,β), (q, s),χ, η) ∈ V2 ×Q2 × V̂× Q̂. One may then see energy stability by

taking (v,β, q) = (u,u, p− 1
Rer) and enstrophy stability by taking (v,β, s) = (α, u̇, p).

An example set of compatible FE spaces for this scheme are

Q̂ = CGp+3, V̂ = Nedcurl
p+2, V = [CGp+1]3, Q = DGp, (10.58)

with Nedcurl
p+2 being the degree-(p + 2) curl-conforming Nédélec [Néd86] element

of the second kind.

The new scheme (10.57) is equivalent to solving the original scheme (10.42) over

the discrete Stokes complex (10.39)

H1
0 H(grad curl) ∩H0(curl) H1 ∩H0(div) L2

Q̂ grad Q̂⊕ curl−1 U V Q

grad curl div

grad curl div
, (10.59)

where curl−1 maps to the discretely divergence-free space Û. While we are implicitly

using the finite-dimensional function space grad Q̂⊕ curl−1 U, we have no guarantee

it is a FE space in the traditional sense, even if V and Q are FE spaces, as we can

not guarantee it has a local basis. Regardless, this observation ensures that both the

existence and uniqueness results from Section 10.4.1 hold for this scheme (10.57).
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2D The same ideas in the construction of the conforming workaround (10.57) may

be applied also to the 2D scheme (10.45) albeit with fewer introduced AVs. We

require computational access to a discrete 2D de Rham complex (as in (10.46)) again

of standard reduced regularity,

H1
0 H0(div) L2

Û V̂ Q

curl div

curl div
, (10.60)

such that V ⊂ V̂. Our scheme is then as follows: find ((u,α), (p, r), ω) ∈ V2 ×
Q2 × Û such that

(u̇,v) = (ωu⊥,v) + (p, div v)− 1
Re(α,v), (10.61a)

0 = (div u, q), (10.61b)

(α,β) = (rot u, rotβ) + (r, divβ), (10.61c)

0 = (divα, s), (10.61d)

(curlω, curlχ) = (α, curlχ), (10.61e)

for all ((v,β), (q, s), χ) ∈ V2 × Q2 × Û. It is again a simple exercise to confirm that

(10.61e) ensures curlw = α exactly.

Natural FE spaces here are

Û = CGp+2, V = [CGp+1]2, Q = DGp, (10.62)

with similar degree p and mesh structure constraints for the SV pair (V,Q) =
([CGp+1]2,DGp).

The new scheme (10.61) is equivalent to solving the original scheme (10.45)

implicitly over the discrete Stokes complex

H2 ∩H1
0 H1 ∩H0(div) L2

curl−1 U V Q

curl div

curl div
. (10.63)

For the spaces proposed above (10.62), the space curl−1 U ⊂ H2∩H1
0 is the MS [MS75]

space.
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10.4.4 2D vortex test

To demonstrate and motivate our scheme’s SP properties numerically, we conclude

by considering the numerical behaviour of a vortex in a 2D box Ω = (0, 1)2 at Re =∞

under our enstrophy-stable scheme.

To set up the ICs, define the Weierstrass elliptic function ℘ : C → C over the

complex plane C (see Fig. 10.1a)

℘(z) := 1
z2 +

∑
(m,n)∈

Z2\{(0,0)}

1
(z − 2m− 2ni)2 −

1
(2m+ 2ni)2 ; (10.64)

this is analytic and doubly periodic with period 2 in both the real and imaginary axes.

Up to projection onto U, the ICs ψ(0) are defined for x = (x, y) ∈ Ω as proportional to

ψ(0) ∝ R{log[℘(x+ iy)− ℘(x0 + iy0)]− log[℘(x+ iy)− ℘(x0 − iy0)]}, (10.65)

where R : C → R denotes the real component (see Fig. 10.1e) and x0, y0 ∈ (0, 1).

The initial velocity u(0) ∈ U is then defined from ψ(0) by u(0) = curlψ(0), with the

constant of proportionality chosen such that Q1(u) = 1.9 These ICs are designed to

model a vortex initially at x0 = (x0, y0) ∈ Ω while preserving each of the BCs; the

no-flux BC u · n = 0 holds by the symmetries of ℘, while the construction of ψ(0)

as the real part of an analytic function ensures rot u = −∆ψ = 0 outside the vortex

(x0, y0), in particular enforcing the BC rot u = 0 on ∂Ω.

Remark 10.9 (Motivation for construction of 2D vortex). Fig. 10.1 offers physical

intuition for this definition of ψ(0) (10.65). In each subfigure, the upper plot shows a broader

view of the function, with Ω = [0, 1]2 marked by a dashed white square; the lower plot focuses

on Ω. We write z = x+ iy, z0 = x0 + iy0:

• Figs. 10.1a & 10.1b visualise argument with hue, and modulus by shade with darker

values at higher moduli; roots are indicated in white, poles in black, and a general

checkerboard illustrates the conformality. In Fig. 10.1b, the subtraction of ℘(z0) moves

the root to z0.

9We note that, in the continuous case, these ICs (10.65) do not have a well-defined enstrophy, i.e. the
velocity u(0) = curlψ(0) is not H(curl)-conforming. After projection into U however, this ceases to be
an issue.
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• Figs. 10.1c, 10.1d & 10.1e visualise real functions through contour stripes, with

negative poles indicated in red, and positive in cyan; each of these functions is harmonic

outside the poles, and can be viewed as an irrotational stream function with clockwise

(red) and counterclockwise (cyan) vortices. In Fig. 10.1c, the log map turns the poles

and roots of ℘(z)− ℘(z0) into vortices. In Fig. 10.1d, we consider a similar function,

constructed to have opposing vortices along the grid (2Z)2, but differing poles outside

(2Z)2. In Fig. 10.1e, we see that summing these functions returns a stream function

satisfying the no-flux BCs, and with a solitary vortex within Ω at z0.

In the continuous case, the incompressible NS equations under ICs given by

(10.65) have very specific dynamics. In the Euler/inviscid case Re =∞, the vortex

will retain its shape, orbiting clockwise around the perimeter of the domain Ω. To

test the discrete replication of this behaviour, we consider in our numerical tests

Re = ∞, guaranteeing the mesh is under-resolved.

Assuming the mesh to be triangular, let CGp+2 and DGp denote the continuous

and DG spaces of degree p + 2 and p respectively over this mesh (see Ern & Guer-

mond [EG21a, Sec. 6 & 7]). Defining the degree-(p + 1) Brezzi–Douglas–Marini

[BDM85] space BDMp,

BDMp := [DGp]2 ∩H(div), (10.66)

we note that, for p ≥ 0, this induces a discrete de Rham complex (10.51),

CGp+2 BDMd
p+1 DGp

curl div
. (10.67)

We take therefore (U,V,Q) = (CG3,BDM2,DG1) (i.e. with p = 1) observing that this

complex is non-conforming (BDMp ̸⊂ H(curl)) and so will necessitate the use of

our non-conforming scheme (10.53). Taking the mesh K to be triangular of uniform

width 2−5, we compare 3 different 1-stage integrators: a classical energy-stable IPM

with no auxiliary velocity10 with (uniform) timestep ∆tn = 2−10;11 the comparable

10In particular, we consider an IM discretisation of the following semi-discretisation: find (u, p) ∈
V×Q such that

(u̇,v) =
∑

K∈K

∫
K

(rot u)(u⊥ · v)−
∑
F ∈F

∫
F

[[u · t]]({{u⊥}} · {{v}}) + (p,div v), (10.68a)

0 = (div u, q) (10.68b)

for all (v, q) ∈ V×Q, where {{u}} := 1
2 (u+ + u−) with {{u⊥}} defined similarly.

11We take the timestep ∆tn = 2−10 for the classical integrator to be shorter than that of the MEEVC
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(a) ℘(z) (10.64) (b) ℘(z)− ℘(z0)

(c) R{log[℘(z)− ℘(z0)]} (d) R{− log[℘(z)− ℘(z0)]} (e) ψ(0) (10.65)

Figure 10.1: Step-by-step illustration of the construction of (10.65) with z0 = 0.6 + 0.7i,
i.e. x0 = (0.6, 0.7).

MEEVC scheme of Liu & E [LE01] (see our discussion in Section 8.1) with timestep

scheme and our discretisation ∆tn = 2−8, as the discretisation under the classical integrator failed to
converge on the longer timestep.
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∆tn = 2−8; our non-conforming scheme (10.53) with IP parameter σ = 25 and timestep

∆tn = 2−8. We ensure the vortex is not initially aligned with the mesh by taking

x0 = (3−
√

5)(1
2 , 1) and scale the ICs (10.65) such that the initial energy Q1(u(0)) = 1.

Fig. 10.2 shows plots of the stream function ψ (i.e. ψ ∈ U such that curlψ = u) at

various (exponentially increasing) times in each of the schemes. The vortex in the

numerical results from the classical integrator dissipates after relatively few iterations,

despite the shorter timestep; the results from the auxiliary enstrophy–stable MEEVC

scheme and our enstrophy-stable discretisation (10.53) remain stable until the final

time t = 24, after performing between 2 and 3 circuits of the domain Ω.

Fig. 10.3 shows the evolution of the enstrophy within each of the simulations, up

to time t = 2; we need not plot the energies for each simulation, as each scheme is

energy-stable. Since we are using a non-conforming discretisation, there are various

notions of enstrophy available. Fig. 10.3a illustrates both the broken enstrophy Q∗
3(u)

(10.49) with σ = 25 (thick upper line) and an internal enstrophy 1
2
∑

K∈K
∫

K(rot u)2,

the component of the broken enstrophy on the cell interiors only (thin lower line); the

upper line for the broken enstrophy in the classical scheme is not visible on the figure,

as it reaches and fluctuates around a value of approximately 5× 105. The MEEVC

scheme is constructed not to conserve, not the broken enstrophy, but an auxiliary

enstrophy Q̃3(ω) := 1
2∥ω∥

2 evaluated on the auxiliary vorticity.12 Fig. 10.3b illustrates

the evolution of the auxiliary enstrophy Q̃3(ω) for the MEEVC scheme and our

scheme (10.53) only; this is ill defined for the classical scheme, as ω is not specified.

12In the FET interpretation, this requires ω to be interpreted as a projection into Xn, continuous in
time, as opposed to Ẋn, discontinuous in time. Both projections are equivalent when In is an S-node
GL rule, i.e. one discretises in time using an S-stage Gauss method.
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t = 0

t = 2−4

t = 20

t = 24

classical MEEVC [LE01] our scheme (10.53)

Figure 10.2: Contours, from red at ψ = −1 to light blue at ψ = 0, in the stream function
ψ at times t ∈ {0, 2−4, 20, 24} for 3 different 1-stage integrators in the 2D vortex test
(Subsection 10.4.4).
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Figure 10.3: Evolution in different forms of the enstrophy for 3 different 1-stage integrators
in the 2D vortex test (Subsection 10.4.4). Fig. 10.3a shows the broken Q∗

3(u) (10.49) (thick
upper line) and internal 1

2
∑

K∈K ∥ curl u∥2 (thin lower line) enstrophies; Fig. 10.3b shows the
auxiliary enstrophy Q̃3(ω) := 1

2∥ω∥
2.

10.5 Energy- & helicity-stable integrators in MHD: Elim-
ination of Lagrange mutipliers & electromagnetic
potential–to–field reparametrisation

We now consider the incompressible Hall MHD equations. This system may be

written in the following nondimensionalised potential form:

u̇ = u× curl u−∇p+ 2
β

curl2 A× curl A− 1
Re curl2 u, (10.69a)

0 = div u, (10.69b)

Ȧ = u× curl A−∇φ− RH curl2 A× curl A− 1
Rem

curl2 A, (10.69c)

0 = div A. (10.69d)

Here (as ever) u and p denote the velocity and total pressure respectively, and Re > 0
is the (fluid) Reynolds number; the new variables A and φ denote the magnetic and

electric potential, and Rem, β,RH > 0 are the magnetic Reynolds number, plasma

beta, and Hall coefficients. Similarly to Chapter 3, we consider a cuboid domain Ω
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with periodic BCs, alongside the additional constraints on the ICs

∫
Ω

u(0) = 0,
∫

Ω
A(0) = 0. (10.70)

Define the energy Q1, magnetic helicity Q2, and modified fluid/cross helic-

ity Q3 respectively,

Q1(u,A) := 1
2

[
∥u∥2 + 2

β
∥ curl A∥2

]
, (10.71a)

Q2(u,A) := 1
2(A, curl A), (10.71b)

Q3(u,A) := 1
2

[
(u, curl u) + 4

βRH
(u, curl A)

]
. (10.71c)

Note for a, b satisfying 4ab = βRH(a+ b), the hybrid helicity [MGM03] can be written

as a combination of these QoIs as

1
2(A + au, curl[A + bu]) = Q2 + abQ3. (10.72)

Preserving the behaviour ofQ2 andQ3 is therefore sufficient to preserve the behaviour

of the hybrid helicity. Under periodic BCs, Q1, Q2, Q3 are each conserved in solutions

of the formal ideal limit Re = Rem =∞, with Q1 necessarily dissipated for Re <∞;

we wish to construct an energy- and helicity-stable timestepping scheme for the

incompressible Hall MHD equations (10.69) i.e. one that preserves these behaviours.

The application of our framework (Framework 3.5) is largely similar to that in

Section 3.1 & 10.4; we therefore omit the details for brevity, and move directly to

the final energy- and helicity-stable integrator. Assuming for simplicity we take In

to be an S-node quadrature rule, our SP scheme is equivalent to an S-stage Gauss

collocation method applied to the following semi-discretisation: for a discretely

divergence-free space U, find (u,A, j,H,ω) ∈ U5 such that

(u̇,v) = (u× ω,v) + 2
β

(j×H,v)− 1
Re(curl u, curl v), (10.73a)

(Ȧ,D) = (u×H,D)− RH(j×H,D)− 1
Rem

(curl A, curl D), (10.73b)

(j,k) = (curl A, curl k), (10.73c)

(H,G) = (curl A,G), (10.73d)

(ω,χ) = (curl u,χ), (10.73e)



10. Simplification of discretisations through FEEC 182

for all (v,D,k,G,χ) ∈ U5. The AV H approximates the magnetic field curl A,13 while

j approximates the current curl2 A; the AV ω similarly approximates the vorticity

curl u.

Theorem 10.10 (Energy & helicity stability of the incompressible Hall MHD inte-

grator). When integrating in time using a Gauss method, the MHD integrator (10.73) is

energy- and helicity-stable, with discrete analogues of the following results holding across

each timestep Tn:

Q̇1 = − 1
Re∥ curl ũ∥2 − 2

βRem
∥j∥2 ≤ 0, (10.74a)

Q̇2 = − 1
Rem

(j,H), (10.74b)

Q̇3 = − 1
Re(curl ũ, curlω)− 2

βRHRe(curl ũ, curl H)− 2
βRHRem

(j,ω), (10.74c)

Proof. Each of these results holds by testing respectively against

(v,D,k) = (u, 2
β

j,
2
β

Ȧ), (10.75a)

(D,G) = (H, Ȧ), (10.75b)

(v,D,G,χ) = (ω + 2
βRH

H,
2

βRH
ω,

2
βRH

u̇, u̇ + 2
βRH

Ȧ). (10.75c)

10.5.1 Analysis: Existence & uniqueness

Similarly to our analysis of the energy- and enstrophy-stable integrators (10.42, 10.45)

in Subsection 10.4.1, we discuss certain preliminary existence and uniqueness results

for the energy- and helicity-stable integrator (10.73) using the results for AD systems

derived in Section 3.3, before proceeding to the application of FEEC.

We can see this to be a compatible SP discretisation of an AD system (Assump-

tion 3.11) by interpreting the energy Q1 as the dissipated type-B QoI, and the

helicities Q2, Q3 as the additional type-A QoIs. Since all operators in this scheme

are smooth, most required regularity results hold immediately, with the only result

requiring some analysis being that the dissipative term defines an inner product on U;

equivalently, it is sufficient to show that the map (u,A) 7→ (∥ curl u∥2 + ∥ curl A∥2) 1
2

defines a norm on U2. Similarly to Subsection 10.4.1, this can be shown under

13We avoid calling this AV B, as a variable which we call B will be introduced in the following
subsection.
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compatibility conditions from FEEC. In particular, we assume the following: take

U to be defined as in (10.19),

U :=
{

u ∈ V : − (u,∇q) = 0 for all q ∈ Q and
∫

Ω
u = 0

}
, (10.76)

and assume V, Q come form a discrete periodic de Rham complex as in (10.20)

H1 H#(curl) H#(div) L2

Q V V Q

grad curl div

grad curl div
. (10.77)

Similarly to Subsection 10.3.1, we ensure exactness at V and V by eliminating the

harmonic forms. In such a case, defining the Q-discretely divergence-free subspace

U ⊂ V as in (3.7a),

U :=
{

u ∈ V : (div u, q) = 0 for all q ∈ Q and
∫

Ω
u = 0

}
, (10.78)

we see as in Subsection 10.4.1 that curl : U → U defines an isomorphism by

Lemma 10.4, implying immediately that (u,A) 7→ (∥ curl u∥2 + ∥ curl A∥2) 1
2 de-

fines a norm on U2.

For existence we refer again to Theorem 3.18.

Example (Incompressible Hall MHD)

Assuming that V, Q form part of a discrete de Rham complex (10.77) and that

we define U as in (10.76), solutions to our proposed energy- and helicity-stable

integrator for the incompressible Hall MHD equations (10.73) exist on arbitrary

timesteps ∆tn in either the viscous (Re,Rem < ∞) or lowest-order-in-time

(S = 1) case.
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For uniqueness we refer to Theorem 3.26.

Example (Incompressible Hall MHD)

Assuming that V, Q form part of a discrete de Rham complex (10.77) and that

we define U as in (10.76), the integrators (10.31, 10.35) are well posed with a

unique solution for either sufficiently small Re and Rem, or in the lowest-order-

in-time case (S = 1) with sufficiently small ∆tn.

10.5.2 Application of FEEC

We now consider the ways in which FEEC may be used to simplify the scheme (10.73).

This involves both the elimination of LMs and an equivalent reparametrisation in

the more approachable EM field B = curl A, E = −Ȧ − ∇φ.

10.5.2.1 Elimination of Lagrange multipliers

The first observation is similar to that on the energy- and helicity-stable integra-

tor in Section 10.3.1.

Expanding out the LMs in (10.73) would yield a 10-field discretisation, with 5

LMs. Through the use of FE spaces compatible with FEEC, we may eliminate 3 of

these LMs: those enforcing the discrete divergence-free conditions on H, j, ω. This is

very similar in practice to the elimination of LMs in the energy- and helicity-stable

NS integrators in Section 10.3.

Let us first apply IBP to write (10.73c–10.73e) in the form

(j,k) = (curl A, curl k), (10.79a)

(H,G) = (A, curl G), (10.79b)

(ω,χ) = (u, curlχ). (10.79c)

We suppose then (aligning with the requirements in the analysis above) that the

spaces V, Q exist as part of a discrete periodic de Rham complex (10.77), and that the

Q-discretely divergence-free subspace U ⊂ V is defined as in (10.76). Identifying the

space U may be identified as the nullspace N grad∗ ⊂ V of the dual operator grad∗ :
V → Q. Lemma 10.3 then implies that the projection (10.18) defining the auxiliary

current, magnetic field, and vorticity j,H,ω ∈ U may equivalently be written as
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projections in the larger space V. The integrator (10.73) may be written equivalently

as: find ((u,A), (j,H,ω)) ∈ U2×V3 such that (10.73) holds for all ((v,D), (k,G,χ)) ∈
U2 × V3. Expanding the LMs in U gives then the equivalent, partially simplified,

7-field semi-discretisation: find ((u,A, j,H,ω), (p, φ)) ∈ V5 × Q2 such that

(u̇,v) = (u× ω,v)− (∇p,v) + 2
β

(j×H,v)− 1
Re(curl u, curl v), (10.80a)

(Ȧ,D) = (u×H,D)− (∇φ,D)− RH(j×H,D)− 1
Rem

(j,D), (10.80b)

(j,k) = (curl A, curl k), (10.80c)

(H,G) = (curl A,G), (10.80d)

(ω,χ) = (curl u,χ), (10.80e)

0 = (u,∇q), (10.80f)

0 = (A,∇ϕ), (10.80g)

for all ((v,D,k,G,χ), (q, ϕ)) ∈ V5 × Q2.

10.5.2.2 Electromagnetic potential–to–field reparametrisation

The second observation is similar to that on the energy- and enstrophy-stable in-

tegrator in Section 10.4.2.

One immediate observation about the scheme (10.80) is that, except in (10.80g),

the EM potentials A, φ only feature in the forms of their derivatives B = curl A,

E = −Ȧ − ∇φ, the magnetic and electric field respectively. These fields represent

far more typical fields over which to pose the MHD equations. We may therefore

consider those circumstances under which we may equivalently reparametrise (10.80)

in the EM fields B, E.

Similarly to Section 10.4, with V, Q coming from the above discrete de Rham

complex (10.77), Lemma 10.4 implies curl : U → U defines an isomorphism, with

the divergence-free subspace U ⊂ V defined as in (10.78). We may then introduce

B = curl A ∈ U as an additional variable through the projection

(Ḃ,C) = (curl Ȧ,C) (10.81a)

for all C ∈ U, and the IC B = curl A at t = 0; one may see this is sufficient to

ensure Ḃ = curl Ȧ exactly by taking C = Ḃ − curl Ȧ. By the complex property

curl ◦ grad = 0, this may be written identically as

(Ḃ,C) = (curl[Ȧ +∇φ],C). (10.81b)
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Lemma 10.2 then implies we may equivalently define this as the projection onto V in

place of U (provided the IC on B lies in U) yielding the 8-field semi-discretisation:

find ((u,A, j,H,ω),B, (p, φ)) ∈ V5 × V × Q2 such that

(u̇,v) = (u× ω,v)− (∇p,v) + 2
β

(j×H,v)− 1
Re(curl u, curl v), (10.82a)

0 = (u×H,D)− (Ȧ +∇φ,D)− RH(j×H,D)− 1
Rem

(j,D), (10.82b)

(j,k) = (B, curl k), (10.82c)

(H,G) = (B,G), (10.82d)

(ω,χ) = (curl u,χ), (10.82e)

(Ḃ,C) = (curl[Ȧ +∇φ],C), (10.82f)

0 = (u,∇q), (10.82g)

0 = (A,∇ϕ), (10.82h)

for all ((v,D,k,G,χ),C, (q, ϕ)) × V5 × V × Q2.

Since Ȧ spans U = N grad∗ and∇φ spans∇Q = R grad, by the Hodge decompo-

sition −Ȧ −∇φ spans N grad∗⊕R grad = V. We may therefore reparametrise our

semi-discretisation (10.82) through a variable E = −Ȧ − ∇φ ∈ V in place of both

A and φ: find ((u,E, j,H,ω),B, p) ∈ V5 × V × Q such that

(u̇,v) = (u× ω,v)− (∇p,v) + 2
β

(j×H,v)− 1
Re(curl u, curl v), (10.83a)

0 = (u×H,D) + (E,D)− RH(j×H,D)− 1
Rem

(j,D), (10.83b)

(j,k) = (B, curl k), (10.83c)

(H,G) = (B,G), (10.83d)

(ω,χ) = (curl u,χ), (10.83e)

(Ḃ,C) = − (curl E,C), (10.83f)

0 = (u,∇q) (10.83g)

for all ((v,D,k,G,χ),C, q) ∈ V5×V×Q. This is our final semi-discretisation, which,

as noted in Section 8.1, aligns precisely with that proposed by Laakmann, Hu &

Farrell [LHF23] at lowest order in time S = 1.

Using the EM field reparametrisation (10.83) ICs must be posed on B ∈ U,

i.e. must be exactly divergence-free in V. Each of the structures in Theorem 10.10
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can then be seen (again, when using a Gauss method for the time discretisation)

by testing respectively against

(v,D,k, q) = (u, 2
β

j,
2
β

E, p), (10.84a)

(D,G) = (H,E), (10.84b)

(v,D,G,χ) = (ω + 2
βRH

H,
2

βRH
ω,

2
βRH

u̇ + 2
βRH

∇p, u̇ +∇p− 2
βRH

E), (10.84c)

noting (10.83f) implies Ḃ = − curl E holds exactly.

Remark 10.11 (Application of analysis after reparametrisation). Similarly to Re-

mark 10.8, provided all the FE complex criteria hold, this reparametrisation (10.83) is exactly

equivalent to the original scheme (10.73), and both the existence and uniqueness results from

Subsection 10.5.1 still necessarily hold.



References

[AS81] M. J. Ablowitz and H. Segur. Solitons and the Inverse Scattering Transform. SIAM,
Jan. 1981.

[Aca18] J. W. Acaster. “Recognise”. James Acaster: Repertoire, episode 1. Distributor: Netflix.
Mar. 2018.

[AP24a] M. Ainsworth and C. Parker. “Computing H2-conforming finite element
aproximations without having to implement C1-elements”. In: SIAM Journal on
Scientific Computing 46.4 (Aug. 2024), A2398–A2420.

[AP24b] M. Ainsworth and C. Parker. “Two and three dimensional H2-conforming finite
element approximations without C1-elements”. In: Computer Methods in Applied
Mechanics and Engineering 431 (Nov. 2024), p. 117267.

[Alf84] P. Alfeld. “A trivariate Clough–Tocher scheme for tetrahedral data”. In:
Computer Aided Geometric Design 1.2 (Nov. 1984), pp. 169–181.

[Alf43] H. Alfvén. “On the existence of electromagnetic-hydrodynamic waves”. In:
Arkiv for matematik, astronomi och fysik 29B.2 (1943), pp. 1–7.

[And25] B. D. Andrews. Software used in ‘Geometric numerical integration via auxiliary
variables’. GitHub pre-release. July 2025. URL: https:
//github.com/BorisAndrews/thesis_code/releases/tag/v1.0.

[AF25] B. D. Andrews and P. E. Farrell. Enforcing conservation laws and dissipation
inequalities numerically via auxiliary variables. arXiv manuscript. Apr. 2025.

[Ara66] A. Arakawa. “Computational design for long-term numerical integration of the
equations of fluid motion: Two-dimensional incompressible flow. Part I”. In:
Journal of Computational Physics 1.1 (1966), pp. 119–143.

[AL77] A. Arakawa and V. R. Lamb. Computational design of the basic dynamical processes
of the UCLA general circulation model. Tech. rep. Jan. 1977.

[Arn18] D. N. Arnold. Finite Element Exterior Calculus. CBMS-NSF Regional Conference
Series in Applied Mathematics. Society for Industrial and Applied Mathematics,
2018.

[AFW06] D. N. Arnold, R. S. Falk, and R. Winther. “Finite Element Exterior Calculus,
Homological Techniques, and Applications”. In: Acta Numerica 15 (May 2006),
pp. 1–155.

[AFW09] D. N. Arnold, R. S. Falk, and R. Winther. “Finite Element Exterior Calculus:
From Hodge Theory to Numerical Stability”. In: Bulletin of the American
Mathematical Society 47 (June 2009).

[Arn14] V. I. Arnold. “The asymptotic Hopf invariant and its applications”. In: Vladimir I.
Arnold - Collected works: Hydrodynamics, bifurcation theory, and algebraic geometry
1965-1972. Berlin, Heidelberg: Springer, 2014, pp. 357–375.

[AK08] V. I. Arnold and B. A. Khesin. Topological Methods in Hydrodynamics. Springer
Science & Business Media, Jan. 2008.

188

https://github.com/BorisAndrews/thesis_code/releases/tag/v1.0
https://github.com/BorisAndrews/thesis_code/releases/tag/v1.0


References 189

[AKN06] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical Aspects of Classical
and Celestial Mechanics. 3rd ed. Vol. 3. Encyclopaedia of Mathematical Sciences.
Springer, 2006.

[Art95] W. Arter. “Numerical simulation of magnetic fusion plasmas”. In: Reports on
Progress in Physics 58.1 (1995).

[Art23] W. Arter. Equations for EXCALIBUR/NEPTUNE Proxyapps. Tech. rep.
CD/EXCALIBUR-FMS/0021-1.32-M1.2.1. UKAEA, Oct. 2023. URL:
https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0021-1.31-M1.2.1.pdf.

[Art+21] F. J. Artola et al. “3D simulations of vertical displacement events in tokamaks: A
benchmark of M3D-C1, NIMROD, and JOREK”. In: Physics of Plasmas 28.5 (May
2021), p. 052511.

[AP98] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Philadelphia, PA, United States:
SIAM, Jan. 1998.

[Bal+24] S. Balay et al. PETSc/TAO users manual. ANL-21/39 - Revision 3.21. 2024.
[BBM97] T. B. Benjamin, J. L. Bona, and J. J. Mahony. “Model equations for long waves in

nonlinear dispersive systems”. In: Philosophical Transactions of the Royal Society of
London. Series A, Mathematical and Physical Sciences 272.1220 (Jan. 1997),
pp. 47–78.

[BGL05] M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle point
problems”. In: Acta Numerica 14 (May 2005), pp. 1–137.

[BF84] M. A. Berger and G. B. Field. “The topological properties of magnetic helicity”.
In: Journal of Fluid Mechanics 147 (Oct. 1984), pp. 133–148.

[BS00a] P. Betsch and P. Steinmann. “Conservation properties of a time FE
method—part I: time-stepping schemes for N-body problems”. In: International
Journal for Numerical Methods in Engineering 49.5 (2000), pp. 599–638.

[BS00b] P. Betsch and P. Steinmann. “Inherently energy conserving time finite elements
for classical mechanics”. In: Journal of Computational Physics 160.1 (May 2000),
pp. 88–116.

[BS01] P. Betsch and P. Steinmann. “Conservation properties of a time FE method—part
II: time-stepping schemes for non-linear elastodynamics”. In: International
Journal for Numerical Methods in Engineering 50.8 (2001), pp. 1931–1955.

[BC17] S. Blanes and F. Casas. A Concise Introduction to Geometric Numerical Integration.
Boca Raton, FL, United States: CRC Press, Nov. 2017.

[Bob75] A. V. Bobylev. “Exact solutions of the Boltzmann equation”. In: Akademiia Nauk
SSSR Doklady 225 (Dec. 1975), pp. 1296–1299.

[BPS95] A. V. Bobylev, A. Palczewski, and J. Schneider. “On approximation of the
Boltzmann equation by discrete velocity models”. In: Comptes rendus de
l’Académie des sciences. Série I, Mathématique 320.5 (1995), pp. 639–644.

[BV08] A. V. Bobylev and M. C. Vinerean. “Construction of discrete kinetic models with
given invariants”. In: Journal of Statistical Physics 132.1 (July 2008), pp. 153–170.

[Bor70] J. P. Boris. “Relativistic plasma simulation-optimization of a hybrid code”. In:
Proc. Fourth Conf. Num. Sim. Plasmas. 1970, pp. 3–67.

[BB80] J. U Brackbill and D. C Barnes. “The effect of nonzero∇ ·B on the numerical
solution of the magnetohydrodynamic equations”. In: Journal of Computational
Physics 35.3 (May 1980), pp. 426–430.

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.31-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.31-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.31-M1.2.1.pdf


References 190

[BF85] J. U. Brackbill and D. W. Forslund. “Simulation of low-frequency,
electromagnetic phenomena in plasmas”. In: Multiple time scales. Ed. by
J. U. Brackbill and B. I. Cohen. Academic Press, Jan. 1985, pp. 271–310.

[BDM85] F. Brezzi, J. Douglas, and L. D. Marini. “Two families of mixed finite elements
for second order elliptic problems”. In: Numerische Mathematik 47 (1985),
pp. 217–235.

[BHM00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. 2nd ed.
SIAM, July 2000.

[BK25] P. D. Brubeck and R. C. Kirby. FIAT: enabling classical and modern macroelements.
arXiv manuscript. Jan. 2025.

[BFI19] L. Brugnano, G. Frasca-Caccia, and F. Iavernaro. “Line integral solution of
Hamiltonian PDEs”. In: Mathematics 7.3 (Mar. 2019), p. 275.

[BI12] L. Brugnano and F. Iavernaro. “Line integral methods which preserve all
invariants of conservative problems”. In: Journal of Computational and Applied
Mathematics 236.16 (Oct. 2012), pp. 3905–3919.

[BI16] L. Brugnano and F. Iavernaro. Line Integral Methods for Conservative Problems.
Boca Raton, FL, United States: CRC Press, Mar. 2016.

[BEH24] A. Brunk, H. Egger, and O. Habrich. “A second-order structure-preserving
discretization for the Cahn-Hilliard/Allen-Cahn system with cross-kinetic
coupling”. In: Applied Numerical Mathematics 206 (Dec. 2024), pp. 12–28.

[BE25] A. Brunk and M. F. P. ten Eikelder. A simple, fully-discrete, unconditionally
energy-stable method for the two-phase Navier-Stokes Cahn-Hilliard model with
arbitrary density ratios. arXiv manuscript. Apr. 2025.

[BF25a] A. Brunk and M. Fritz. Analysis and structure-preserving approximation of a
Cahn-Hilliard-Forchheimer system with solution-dependent mass and volume source.
Apr. 2025.

[BF25b] A. Brunk and M. Fritz. “Structure-preserving approximation of the
Cahn-Hilliard-Biot system”. In: Numerical Methods for Partial Differential
Equations 41.1 (Nov. 2025).

[BGL25] A. Brunk, J. Giesselmann, and M. Lukáčová-Medvid’ová. “A posteriori error
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