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Abstract

The elasticity differential complex associated with a 2- or 3-dimensional
domain is a sequence of function spaces connected by differential oper-
ators, which together encode topological properties of the domain. As-
sociated with any complex is a sequence of partial differential equations,
known as the Hodge Laplace equations, which include and generalise many
important elliptic equations arising in continuum mechanics. This thesis
addresses the discretisation of the Sobolev spaces and Hodge Laplacian
problems associated with the elasticity complex using finite elements. We
demonstrate the broad utility of such efforts via applications to linear
elasticity, linear irreversible thermodynamics, and defect elasticity.

First, we address the classical problem of enforcing the symmetry
and div-conformity of the elastic stress tensor. The exactly symmetric
Arnold–Winther elements were one of the key early breakthroughs of the
finite element exterior calculus, but have never been systematically im-
plemented, as their dual bases are not preserved by the Piola pullback;
we develop abstract transformation theory which enables the first robust
and composable implementations of these exotic elements. We then apply
these tensor-valued elements to discretise the viscous stress in the com-
pressible Stokes equations, a crucial coupling variable for the incorporation
of convection into modelling the molecular diffusion of multicomponent
single-phase fluids. We derive a novel variational formulation, called the
Stokes–Onsager–Stefan–Maxwell system, with appropriate finite element
discretisations which represent the first ever rigorous numerics for the cou-
pling of non-ideal multicomponent diffusion with compressible convective
flow. Finally, we turn our attention to the discretisation of the strain
space in the elasticity complex, and analyse the incompatibility operator
acting on strain tensor fields; the Hodge Laplacian boundary value prob-
lem we study comprises initial steps towards a canonical well-posed model
of linearised defect elasticity.
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Notation

Spaces and sets
Ω an open, bounded, and polytopal (polygo-

nal or polyhedral) subset of Rd∈{2,3} with
Lipschitz boundary

M the space Rd×d of d× d matrices
S its symmetric subspace Rd×d

sym

K its skew-symmetric subspace Rd×d
skw

T its deviatoric (traceless) subspace ker(tr)

W k,p(Ω;X) (Lp(Ω;X) when k = 0) the standard Sobolev space with domain Ω
and codomain the vector space X

L2
0(Ω) {f ∈ L2(Ω) | −

∫
Ω
f dx = 0}

Hk W k,2

H(op;X) or H(op,Ω;X) {f ∈ L2(Ω;X) | op(f) ∈ L2}
HΓ(op;X) {f ∈ H(op;X) | T (f) = 0 on Γ}, where

Γ ⊆ ∂Ω and T is the trace operator asso-
ciated with op[1]

H0(op;X) H∂Ω(op;X)

C∞c (Ω;X) the space of smooth X-valued functions
with compact support in Ω

D′(Ω;X) the space of X-valued distributions[2]

Pk(Ω;X) the space of X-valued polynomials of total
degree at most k ≥ 0 on Ω

Th a triangulation of Ω with mesh size h
CGk the continuous Lagrange element space

{p ∈ C0(Ω) | p|K ∈ Pk(K) ∀ K ∈ Th}
DGk the discontinuous Lagrange element space

{p ∈ L∞(Ω) | p|K ∈ Pk(K) ∀ K ∈ Th}
dom(·) domain of an unbounded linear operator
ker(op;V ), im(op;V ) kernel and image of op when defined on

domain V
Quantities
h small characteristic mesh size

[1] This space is well-defined for Γ, ∂Ω of sufficient regularity. In general, H0(op;X) may be defined

as C∞0 (Ω;X)
‖·‖op , in analogy to the space W k,p

0 .
[2] This is the dual of D(Ω;X) = C∞c (Ω;X) with respect to the locally convex topology induced

by the family of seminorms {supK ‖∂α · ‖}K,α indexed by compact subsets K ⊆ Ω and multiindices
α.
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F. R. A. Aznaran Notation

n the outward-pointing unit normal to ∂Ω

I the identity matrix Id×d ∈M
Relations
. domination up to a constant which may

depend on mesh regularity but not on h
� surjection
kH direct sum, orthogonal with respect to the

Hilbert space H
Operators and functionals
sym 1

2
(·+ ·>), the symmetric part of a matrix

sph tr(·)
d
I, the spherical part of a matrix

dev · − sph(·), the deviator (traceless part) of
a matrix

div, curl, rot classical divergence, curl, and rotation op-
erators, defined row-wise for higher-order
tensor fields

∇2 Hessian
oph operator applied element-wise
(·, ·)H inner product of the Hilbert space H
PX the H-orthogonal projection onto the

closed subspace X ⊆ H

‖ · ‖ `2-norm on X
‖ · ‖k,Ω or ‖ · ‖k (/ | · |k,Ω or | · |k) canonical graph norm (/seminorm) on

Hk(Ω;X)

‖ · ‖op,Ω or ‖ · ‖op canonical graph norm on H(op;X),
‖ · ‖2

op := ‖ · ‖2
0 + ‖op(·)‖2

0

−
∫

Ω
the integral mean 1

|Ω|

∫
Ω

〈·, ·〉Γ the (H−1/2 × H
1/2
00 )(Γ;X) dual pair-

ing[11], p. 13
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Chapter 0

Introduction

0.1 The elasticity complex

The unifying theme of this thesis is the discretisation of the linear elasticity complex,
and the simulation of continuum mechanics problems thus enabled.

A complex is a sequence of vector spaces connected by linear operators, such that
the image of each map lies in the kernel of the next. Over the last twenty years, com-
plexes of function spaces have played an increasingly central role in the development
of structure-preserving numerical methods in the framework of the finite element ex-
terior calculus (FEEC) [19]. For example, the de Rham complex associated with a
bounded Lipschitz domain Ω ⊆ R3 is well-known in computational electromagnetism:

0 R C∞(Ω) C∞(Ω;R3) C∞(Ω;R3) C∞(Ω) 0,
⊆ ∇ curl div

(0.1.1)
or with Sobolev regularity (the ‘L2 de Rham complex’)

0 R H1(Ω) H(curl) H(div) L2(Ω) 0.
⊆ ∇ curl div (0.1.2)

For the finite element simulation of continuum mechanics problems which require
discretisation of these various spaces, it is natural to consider discrete analogues
of (0.1.2). The central insight of the FEEC is that, by identification of these spaces of
vector calculus with spaces of differential forms on Ω, viewed as a Riemannian mani-
fold, the resulting finite element methods are able to preserve much of the topological
and algebraic structure encoded in the complexes.

The most elementary example of this phenomenon is as follows. Notice that the
composition of adjacent operators in (0.1.1) vanishes; the sequence is called exact if
the kernel of each operator is precisely the image of the previous. It can be shown
that (0.1.1), (0.1.2) are exact if and only if Ω is contractible, a structure which is

1



F. R. A. Aznaran Elasticity complexes

desirable to preserve with a finite element subcomplex; if one can construct a finite
element subcomplex which is also exact, and can be connected to the original (0.1.2)
via appropriate interpolants or projections to form a commuting diagram, then typi-
cally a wealth of information results. Such structure-preservation is rewarded by, for
example, simplified proofs of error estimates and unisolvency of dual bases, clarifi-
cation of links between different finite elements (providing clues to construct new or
more regular elements), the inheritance at the discrete level of Hodge decompositions
(which generalise the classical Helmholtz decomposition of vector fields), inf-sup con-
ditions, and generalised Poincaré inequalities for each operator. The characterisation
of discretised differential operators also plays a role in the construction of robust
multigrid smoothers, as we shall detail in §1.6.2 and §1.7.

Elasticity has been a particular success story of the FEEC via the study of the
elasticity complexes, which arise in several areas of continuum mechanics, as well as
general relativity [11]; for now, we write them down without reference to differen-
tial forms, but will consider such geometric identifications in §1.6.1. The elasticity
complex with Sobolev regularity in 3D is given by

0 RM
rigid

motions

H1(Ω;R3)
displacement

H(inc;S)
strain

H(div; S)
stress

L2(Ω;R3)
load

0,
⊆ ε inc div

(0.1.3)
where ε denotes the symmetric gradient and inc := curl ◦> ◦ curl denotes the incom-
patibility operator, which in 2D is scalar-valued as inc := rot rot.[3] In 2D, one has the
stress complex

0 P1(Ω) H2(Ω)
potentials

H(div; S)
stress

L2(Ω;R2)
load

0.
⊆ airy div (0.1.4)

Here airy denotes the formal adjoint to scalar-valued inc in 2D, which assigns to a
scalar potential φ its matrix-valued Airy stress function, the cofactor of its Hessian,

airy φ := curl curlφ =




∂2φ

∂y2
− ∂2φ

∂x∂y

− ∂2φ

∂x∂y

∂2φ

∂x2


 , (0.1.5)

which is identically symmetric and divergence-free.
Taking the adjoint of a complex of Sobolev spaces in practice ‘adds’ (or by duality,

removes) boundary conditions. Modulo such boundary conditions, the formal adjoint

[3]The d(d+1)
2 -dimensional space RM of infinitesimal rigid body motions of linear elasticity is given

in 2D by {x 7→ a + bx⊥ | a ∈ R2, b ∈ R} and in 3D by {x 7→ a + b× x | a,b ∈ R3}.

2



F. R. A. Aznaran The abstract Hodge Laplace PDE

to (0.1.4) is the strain complex

0 RM
rigid

motions

H1(Ω;R2)
displacement

H(inc;S)
strain

L2(Ω)
incompatibility

/curvature

0.
⊆ ε inc

(0.1.6)

0.2 The abstract Hodge Laplacian

Before motivating the study of the Hodge Laplacian problems associated with a se-
quence, we require the following abstract definition.

Definition 0.2.1. [12, p. 33][50] A closed Hilbert complex is a sequence of Hilbert
spaces (called base spaces)

. . . W k−1 W k W k+1 . . .
dk−1 dk

(dk−1)∗

dk+1

(dk)∗ (dk+1)∗
(0.2.1)

connected by closed, densely defined linear operators dk with the property that
im(dk) ⊆ ker(dk+1). Denoting by V k := dom(dk) the dense subspace of W k on
which dk is defined (the domain space), we define the associated domain complex as

. . . V k−1 V k V k+1 . . . ,
dk−1 dk

(dk−1)∗

dk+1

(dk)∗ (dk+1)∗
(0.2.2)

on which each dk is bounded linear. Each V k is then Hilbert with graph norm
‖ · ‖2

V k
:= ‖ · ‖2

Wk + ‖dk · ‖2
Wk+1 .

For example, the domain complex (0.1.3) has

0 RM L2(Ω;R3) L2(Ω;S) L2(Ω;S) L2(Ω;R3) 0
⊆ ε inc div

(0.2.3)
as base complex; typically, the roles of the domain and base spaces are played by the
Sobolev and ambient Lebesgue spaces respectively.

Associated with any closed Hilbert complex is a sequence of canonical partial
differential equations, each associated with a space in the complex. Define the Hodge
Laplacian operator

Lk := (dk)∗dk + dk−1(dk−1)∗ (0.2.4)

with domain

dom(Lk) = {u ∈ V k ∩ V ∗k | dku ∈ V ∗k+1, (d
k−1)∗u ∈ V k−1}, (0.2.5)

3
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where V ∗k := dom((dk−1)∗). The Hodge Laplace (HL) problem

Lku = f (0.2.6)

for given data f ∈ W k is a far-reaching generalisation of the classical Poisson problem
which encompasses many famous PDEs of continuum mechanics, or their linearisa-
tions, within a single abstract framework. In addition to the strong form (0.2.6),
one may also consider the equivalent primal weak form: seek u ∈ V k ∩ V ∗k such that
(dropping superscripts for clarity)

(du, dv)W + (d∗u, d∗v)W = (f, v)W ∀ v ∈ V k ∩ V ∗k , (0.2.7)

or the equivalent mixed weak form, employing the dual variable σ = d∗u ∈ V k−1: seek
(σ, u) ∈ V k−1 × V k such that

(σ, τ)W −(u, dτ)W = 0 ∀ τ ∈ V k−1,

(dσ, v)W +(du, dv)W = (f, v)W ∀ v ∈ V k.
(0.2.8)

The HL problem is well-posed provided the complex is exact, and otherwise only up
to the kernel of the HL operator, the harmonic forms ker(dk;W k)/ im(dk−1;W k−1) '
ker(dk;W k)∩ker((dk−1)∗;W k) [12, p. 39]. It may be shown that the classical Poisson
problem with homogeneous Dirichlet boundary conditions is precisely the HL problem
associated with the final space L2(Ω) of (0.1.2), while the Poisson problem with
Neumann conditions is that associated with H1(Ω).

The numerical solution of HL problems is a central topic of the FEEC. Bearing in
mind the classic phenomenon of justifying or motivating a framework entirely using
terminology from said framework, it is a natural problem to consider because, for
example, it may be viewed as computing the Hodge decomposition (d∗d + dd∗)u of
the data f .

0.2.1 Some less abstract Hodge Laplacians

We exhibit some further examples.

• The mixed form (0.2.8) of the Poisson problem is well-known to be equivalent
to Darcy’s law for porous media flow, up to the identification of the symmetric
positive definite permeability tensor with the identity.

• The HL associated with H(curl) in (0.1.2), when f ∈ curlH0(curl), gives rise to
the curlcurl problem with magnetic boundary conditions of electromagnetics [12,
p. 47].

4
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• The Einstein–Bianchi formulation of general relativity linearised about Minkowski
space may be obtained as the mixed weak form of the HL associated with
H0(curl;S) in the Hessian complex with boundary conditions in 3D [162],

0 H2
0 (Ω) H0(curl;S) H0(div;T) L2(Ω;R3)/RT0 0,∇2 curl div

(0.2.9)
where RT0 denotes the lowest-order Raviart–Thomas element.[4]

• The HL of the space H2
0 (Ω) in (0.2.9) is the biharmonic problem of plate elas-

ticity [161].

• The Navier–Lamé displacement formulation of linear elasticity, whose
displacement-pressure formulation is well-known to be formally equivalent to
the Stokes equations of fluid dynamics in the incompressible limit, may be re-
covered as the primal formulation of the HL of the displacement spaceH1(Ω;Rd)

in (0.1.3) or (0.1.6).

• The Hellinger–Reissner mixed stress-displacement formulation of linear elastic-
ity may be viewed as the HL of the load space L2(Ω;Rd) in (0.1.3) or (0.1.4);
we study this case in §1.

• The Stokes complex is a smoothing of the de Rham complex (0.1.2); in 3D with
boundary conditions, this is given by

0 H2
0 (Ω) H1

0 (curl) H1
0 (Ω;R3) L2

0(Ω) 0,∇ curl div (0.2.10)

whereH1
0 (curl) := {f ∈ H1

0 (Ω;R3) | curl f ∈ H1(Ω;R3), f×n = 0 on ∂Ω} [152].
If (0.2.10) is taken to be its own base complex and H1

0 (Ω;R3) is endowed with
norm | · |1, then the incompressible Stokes equations are the mixed weak form
of the HL associated with L2

0(Ω). Discrete preservation of the complex prop-
erty divH1

0 (Ω;R3) ⊆ L2
0(Ω) is well-known to be a starting point for exactly

divergence-free velocity fields, implying mass conservation and pressure robust-
ness [127].

• A remarkable example of the relevance of HL problems was recently found
in [56], where the authors showed that the linear Cosserat elasticity model
arises as the HL of a ‘twisted’ de Rham complex; a smoothed de Rham com-
plex has also been found to arise naturally in relaxed micromorphic continuum
models [173].

[4]Note that the sequence ending . . . −→ X/Y −→ 0 may be equivalently be written as . . . −→ X
PY−→ Y −→ 0.

5



F. R. A. Aznaran Summary

Motivated by the physical relevance which many HL problems enjoy, and the
utility of the (comparatively understudied) elasticity complex in several areas of con-
tinuum mechanics, the overarching theme of this thesis is the discretisation of the
Sobolev spaces and HL problems arising in the elasticity complex. Rather than ex-
plore the discretisation of the elastic HL problem in its abstract generality, we provide
in-depth studies of three concrete instantiations:

• §1: the classical Hellinger–Reissner stress-displacement linear elasticity prob-
lem, which is the HL associated with the load space in the 2D stress com-
plex (0.1.4);

• §2: stress-velocity-pressure compressible Stokes flow (corresponding to the same
HL) and its coupling with molecular diffusion;

• returning to solid mechanics in §3[5]: the essentially unstudied HL arising from
the strain space in the 2D strain complex (0.1.6) ‘from scratch’, which corre-
sponds to a candidate linearised strain-displacement model of defect elasticity.

0.3 Contributions and structure

The work of this thesis is cleanly divided into three subtopics:

(i) In §1, we develop the generalised Piola transformation theory necessary to im-
plement nonstandard elements discretising H(div;S), prototypically the con-
forming and nonconforming Arnold–Winther elements [24, 25]. These famously
solved an open problem in numerical elasticity by providing exactly symmetric
approximations to the Cauchy stress tensor in the Hellinger–Reissner stress-
displacement formulation of linear elasticity; this is precisely the mixed weak
form of the Hodge Laplacian arising from the final (load) space L2(Ω;R2) in
the 2D stress elasticity complex (0.1.4), of which the Arnold–Winther elements
form exact subcomplexes. We verify the correctness of this so-called zany trans-
formation theory via numerical experiments with our implementations of these
elements in the Firedrake finite element library [164]. We also demonstrate
the effectiveness of appropriate multigrid smoothers for this system, prove con-
vergence of Nitsche’s method for the weak enforcement of traction conditions,

[5]as well as ‘taking the adjoint and then one step to the right’ in the 2D stress complex
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F. R. A. Aznaran Summary

and provide a uniform construction of all standard reference-to-physical Piola
pullback maps using FEEC machinery.[6]

(ii) As is well-known, the equations of linear elasticity are essentially equivalent to
the Stokes equations of fluid dynamics. In §2, we are therefore able to employ
the Arnold–Winther elements to discretise compressible Stokes flow, for which
a H(div; S)-conforming viscous stress tensor is shown to be a crucial coupling
variable for the incorporation of convection into the Stefan–Maxwell model of
multicomponent diffusion in the Onsager framework of linear irreversible ther-
modynamics. Thus, our abstract transformation theory for the discrete stress
complex studied in §1 plays a role in enabling among the first rigorous computa-
tional coupling of convective fluid flow with multicomponent molecular diffusion,
modelled by what we christen the (Navier–)Stokes–Onsager–Stefan–Maxwell
system; for a general non-ideal fluid consisting of n species, this complex nonlin-
ear model requires us to solve for 2n+ 3 fields over Ω. This chapter details the
formulation of this physical model, and of corresponding finite element schemes,
which are provably consistent with the fundamental laws of thermodynamics.
Practical applications include the microfluidic mixing of hydrocarbons.[7][8]

(iii) Finally in §3, we consider the discretisation of the Hodge Laplacian associated
with the strain space in (0.1.3). This necessitates the discretisation of H(inc;S),
a task more subtle even than for H(div; S) due to the high-order operators at
play and very sparse existing work. Intriguingly, this problem draws connections
between the FEEC and Kröner’s classical theory of defects and incompatibility;
we carry out the foundational functional and numerical analysis, in particular
discontinuous Galerkin FEM, necessary for the eventual goal of a candidate
well-posed linearised model of defect elasticity.[9]

We draw conclusions and indicate potential avenues of further research in §4.

[6]An abridged version of §1, but which includes similar theory enabling the implementation
of and smoothers for the pressure-robust, H(div)-conforming (and H1-nonconforming) Mardal–Tai–
Winther element for Navier–Stokes–Darcy flow and (locking-free) primal linear elasticity [145], which
discretises a 2D Stokes complex (0.2.10), has been accepted to the SMAI Journal of Computational
Mathematics, with P. E. Farrell and R. C. Kirby [28].

[7]This chapter is drawn from a manuscript with A. J. Van-Brunt, P. E. Farrell, and C. W. Mon-
roe [29].

[8]Concerning authorship. The work of §2 was carried out in collaboration with a peer, fellow
DPhil candidate Alexander J. Van-Brunt. Where possible/practical, I have indicated the presence
of any material and work attributable solely to him.

[9]This chapter is drawn from a manuscript currently in preparation with K. Hu [30].
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Chapter 1

Finite elements for symmetric stress
tensors

We consider the 2D stress complex (0.1.4) with, in general, mixed boundary condi-
tions:

0 H2
ΓN

(Ω)
potentials

HΓN (div;S)
stress

L2(Ω;R2)
load

0,
airy − div (1.0.1)

which is exact on simply connected domains (as follows from [160, Theorem. 3.8]).
Here ∂Ω = ΓD t ΓN , and ΓD,ΓN are each relatively open and Lipschitz with 0 <

|ΓD|, |ΓN | < |∂Ω|. In the case |ΓN | = 0, we replace (1.0.1) with

0 P1(Ω) H2(Ω)
potentials

H(div; S)
stress

L2(Ω;R2)
load

0,
⊆ airy − div (1.0.2)

and when |ΓD| = 0 with

0 H2
0 (Ω)

potentials
H0(div;S)

stress
L2(Ω;R2)/RM

load
0.

airy − div (1.0.3)

The base stress space L2(Ω;S) is endowed with energy norm induced by the compliance
tensor A [12, p. 107]; in dimension d and for fixed Lamé parameters λ, µ with λ+ 2µ

d
>

0, this is a symmetric, bounded, positive definite, 4th-order tensor A : S→ S defined
by

Aσ :=
1

2µ

(
σ − λ

2µ+ dλ
(trσ)I

)
. (1.0.4)

In general λ(x), µ(x) can vary spatially within Ω, hence also can A = A(x) provided
that it is uniformly positive definite, but we consider the homogeneous isotropic case
here, in which it is the above constant.
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F. R. A. Aznaran Chapter 1. Finite elements for symmetric stress tensors

Writing down the Hodge Laplacian boundary value problem associated with the
load space L2(Ω;R2) in mixed weak form in (1.0.1), we obtain: for given f ∈
L2(Ω;R2), seek (σ, u) ∈ HΓN (div; S)× L2(Ω;R2) satisfying

∫

Ω

Aσ : τ + (div τ) · u dx = 0 ∀ τ ∈ HΓN (div; S),
∫

Ω

(div σ) · v dx =

∫

Ω

f · v dx ∀ v ∈ L2(Ω;R2),

(1.0.5)

which is precisely the classical Hellinger–Reissner principle, a formulation of linear
elasticity which solves for the Cauchy stress σ and the displacement u.

The Hellinger–Reissner variational formulation of linear elasticity is successfully
discretised by the Arnold–Winther (AW) elements [24, 25]; their development was one
of the key early breakthroughs of the finite element exterior calculus. Despite their
great utility, they are not available in standard finite element software, because their
dual bases are not preserved under the Piola push-forward. In this chapter, we apply
the novel transformation theory recently developed by Kirby [130] to devise the correct
map for transforming their bases on a reference cell to a generic physical triangle.
This enables the use of the AW elements, both conforming and nonconforming, in
the widely-used Firedrake finite element software [164], composing with its advanced
symbolic code generation and geometric multigrid functionality.

This chapter is structured as follows. In the next section, we describe the broad
motivations of this chapter. Then in §1.2, we review the theory of linear elasticity,
in particular stress-displacement formulations, and make note of existing efforts at
the finite element approximation of such problems, before defining the AW families
of elements in 2D. In §1.3, we provide notation used to define geometry and Piola
mappings, summarise how different tensor components are transformed, and moti-
vate and survey abstract transformation theory for general Piola-mapped elements.
Afterwards in §1.4, we work this out in detail for the AW elements, by studying what
the Piola transforms do to their dual spaces. A discussion of the application of the
AW elements to linear elasticity follows in §1.5; in particular, we prove convergence of
Nitsche’s method for the imposition of traction boundary conditions. Then §1.6 pro-
vides a uniform construction of all standard Piola pullbacks using differential forms,
and reviews the role of FEEC in the development of multigrid preconditioners, as
discussed in §1.7, in which we apply patch-based multigrid algorithms to precondi-
tion the canonical Hellinger–Reissner system for the AW elements. We briefly discuss
the implementation within the Firedrake code stack in §1.8 and exhibit numerical
examples for our newly-enabled elements which verify the correctness of our theory.
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F. R. A. Aznaran Motivations

1.1 Motivations: continuum mechanics and finite el-
ement transformation theory

Classically, the 2nd-order Cauchy stress tensor acts as a measure of the force imposed
on a body per unit area [63], but various notions of stress are also used to, for example,
prove thermodynamical consistency of rate-type models in viscoelasticity [143], as a
coupling field for electrical propagation in cardiac biomechanics [66], and for the
experimental study of the Poynting effect in finite strain theory [43, 148].

The component matrix of the elastic stress tensor in solid mechanics is sym-
metric, but the preservation of symmetry is notoriously difficult to enforce in finite
element discretisations, and so many methods initially proposed in the literature
enforce symmetry only approximately, or as a postprocessing step. After decades
of effort by many researchers, tensor-valued polynomial shape spaces for the stress-
displacement formulation of linear elasticity which do strongly enforce symmetry and
result in a stable and convergent discretisation were eventually discovered by Arnold
and Winther [24, 25], but in the two decades since then, their implementations have
either required the explicit element-by-element construction of the basis [61], or have
been for one-off numerical experiments, such as for stress reconstruction or the de-
sign of error indicators [98, 148, 153, 167]. The FIAT library [129] has had partial
support for this element, but the lack of reference mappings has prevented its use in
practice [140, Ch. 3].

Indeed, the use of an abstract reference element is critical in the evaluation of finite
element basis functions and their derivatives. One constructs, by some means, the
basis functions on a particular fixed element only once, and obtains the basis functions
on an arbitrary cell through a mapping. Moreover, this is not merely a theoretical
consideration because this approach is faster than any alternative when assembling
the enormous finite element matrices in the simulations offered by many modern code
libraries [8, 33, 35, 140, 164, 184]. For scalar-valued function spaces, this mapping is
usually a simple pullback (change of coordinates). However, vector-valued elements
discretising H(div) or H(curl), as well as their tensor-valued counterparts, typically
use instead the Piola transformations in order to facilitate enforcing appropriate
continuity of only normal or tangential components.

The reference element paradigm is typically employed for elements that satisfy a
kind of equivalence, where the reference element basis functions map directly to the
physical element basis functions under the coordinate change. However, for many el-
ements both classical and modern, including the AW elements, this is not the case, as

10
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the degrees of freedom (DOFs) are ‘mixed up’ by the associated (Piola) push-forward
in a cell-dependent manner. In [130], Kirby developed a general theory for obtaining
the correct basis on each physical cell, in the case of affinely mapped cells. This ap-
proach gives the correct nodal basis as a linear combination of the mapped reference
element basis functions. This linear combination turns out to be sparse, meaning
that applying the theory incurs only a small additional cost during the finite element
computation, ensuring that the use of these more exotic elements composes neatly
with existing high-level automatic code generation software. Kirby and Mitchell [132]
generalised the Firedrake [164] code stack to generate and employ this transforma-
tion, giving results for Morley, Hermite, Argyris, and Bell elements. The basis on the
reference cell for each of these elements is constructed using FIAT [129]. We aim to
extend this framework, colloquially called the zany transformation theory by its origi-
nators, to Piola-mapped H(div;S) elements, with the conforming and nonconforming
AW elements as representative examples.[10]

1.2 The stress tensor in linear elasticity

1.2.1 Continuum-mechanical context and problem formulation

The variational formulation of the linear theory of static elasticity is obtained by
linearising with respect to the displacement in the equilibrium equations given by
Cauchy’s theorem, a fundamental result proved in 1823 [63]. As a result, no distinc-
tion is made between the Eulerian and Lagrangian configurations, and we assume
the absence of nonlinearities both geometric and constitutive. This approximation
is reasonable and provides acceptably accurate numerical models in many areas of
engineering and design, from the placement of tiny springs in car suspensions [118,
p. 380] to the structural analysis of massive offshore oil rigs [13, p. 4]. Moreover, this

[10]In some sense, these motivations are in reverse order. To discretise the elastic stress, FEEC-
based elements which strongly enforce symmetry are so complicated that they merit their own
tailored transformation theory to be properly implemented. On the other hand, we should clarify
that structure-preservation (in the sense of enforcing symmetry) for linear elasticity is but a single
application of a much broader story of research, which concerns the automatic and efficient generation
of finite element codes which are themselves efficient, hidden behind high-level interpreted interfaces
(such as the Unified Form Language [1]) which are flexible and do not require expertise to use, hence
are concretely useful to the modern applied scientist. Such work is carried out in, among others, the
communities of Firedrake [164] and FEniCS [140], who employ notions of software ‘composability’
and graph-theoretic mesh topology to efficiently automate the FEM within a unified framework. The
transformation theory described here is but a small step near the end of this more elaborate process,
in order that a user can perform simulations with the desirable property of exactly symmetric stresses.
For details of these more advanced and far-reaching research agendas, see for example [129, 136, 164].
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regime at least gives the basis on which to study nonlinear elastic models, for example
via their Newton or Picard linearisations.

Apart from volumetric forces, such as gravity or those arising from the presence of
an electromagnetic field, an external force can only be transmitted to a solid through
its boundary [118, p. 7]. Given a subdomain of the solid with sufficiently smooth
boundary, the Cauchy stress is a priori a vector quantity T = T(x,n), also called
traction, defined as the infinitesimal force per unit area applied at a point x on the
boundary of said subdomain, which depends also on the outward-pointing unit normal
n [45, p. 250]. Assuming T is spatially continuous, part of the statement of Cauchy’s
theorem gives the existence of the Cauchy stress tensor σ, which satisfies

T(x,n) = σ(x)n. (1.2.1)

In §1.6.1, we will see how this informs the interpretation of σ as a differential form.
For practical applications, one is often interested in computing this stress tensor

with at least as much accuracy as the displacement [45, p. 297][40, p. 16], and hence, in
mixed stress-displacement formulations in which the stress is computed directly rather
than, for example, via numerical differentiation after the fact. The mixed dual stress-
displacement formulation (1.0.5) on which we focus is a classical way to alleviate
the well-known numerical phenomenon of volumetric locking in the incompressible
limit [34, p. 354], which arises in both mixed and unmixed primal formulations.
Finally, we note that in this small-strain regime, most other notions of elastic stress
coincide with the Cauchy stress.

Remark 1.2.1. Having emphasised that the stress is a primary variable of interest,
one may also consider an unmixed dual formulation in which the stress is the only
unknown, but then compatibility conditions on the resulting strain formulated by
Saint Venant [97, p. 84] have to be enforced: denoting by E the strain tensor computed
from the stress tensor, these require incE = 0. Typically, this condition is impractical
to impose in the variational formulation for finite element computations [185, p. 20],
but will be discussed at greater length in §3.

Let Ω ⊆ Rd be a polytopal elastic body; we focus on the planar case d = 2. Given
an external body force f ∈ L2(Ω;Rd), displacement data u0 ∈ H

1/2
00 (ΓD;Rd), and

traction data g ∈ H−1/2(ΓN ;Rd), we consider the minimisation of the complementary
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energy [11]

J (σ) =
1

2

∫

Ω

Aσ : σ dx− 〈σn, u0〉ΓD (1.2.2)

among all stresses σ ∈ H(div;S) satisfying

σn = g on ΓN in the trace sense, (1.2.3)

constrained by the equilibrium equation

div σ = f. (1.2.4)

The displacement field u ∈ L2(Ω;Rd) may be thought of as the Riesz representative of
the Lagrange multiplier for this equilibrium constraint, so equivalently, we seek stress-
displacement pairs (σ, u) ∈ H(div;S)×L2(Ω;Rd) with traction condition (1.2.3) which
are critical points of the Hellinger–Reissner functional

H(σ, u) = J (σ) +

∫

Ω

(div σ − f) · u dx. (1.2.5)

A stationary point (σ, u) satisfies
∫

Ω

Aσ : τ + (div τ) · u+ (div σ) · v dx =

∫

Ω

f · v dx+ 〈τn, u0〉ΓD
∀ (τ, v) ∈ HΓN (div;S)× L2(Ω;Rd),

(1.2.6)

i.e. the saddle point system

Aσ = ε(u) in Ω, (constitutive relation) (1.2.7a)

div σ = f in Ω, (conservation of linear momentum) (1.2.7b)

u = u0 on ΓD, (prescribed displacement) (1.2.7c)

σn = g on ΓN , (prescribed surface traction) (1.2.7d)

sometimes called the Navier–Lamé equations. Here ε(u) := sym(∇u) represents the
linearised strain. Well-posedness follows from uniform positive definiteness of A, an
appropriate inf-sup condition, and the standard Brezzi theorem, as long as |ΓD| >
0 [40, p. 541]. The pure traction problem arising when |ΓD| = 0 can also be treated
subject to a compatibility condition on the data (see §1.5).

[11]Here as usual, the trace space H−1/2(Γ) for Γ ( ∂Ω has as predual the trace space

H
1/2
00 (Γ) :=

{
w|Γ

∣∣∣ w ∈ H1
∂Ω\Γ(Ω)

}
=

{
v ∈ H1/2(Γ)

∣∣∣∣
the extension of v to ∂Ω
by zero lies in H1/2(∂Ω)

}
( H1/2(Γ).
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Note that the constitutive relation (1.2.7a) may be formally inverted to give the
stress in terms of certain derivatives of the displacement (i.e. “Hooke’s law”):

σ = Cε(u) = 2µε(u) + λ(trε(u))I. (1.2.8)

Here C = A−1 is the stiffness (or elasticity) tensor. Note that the primal displacement
formulation of linear elasticity is precisely the weak form of the unmixed HL equa-
tion associated with the displacement space H1(Ω;R2) in the strain complex (0.1.6)
dual to the stress complex (0.1.4). Philosophically, this primal formulation uses the
stress-displacement equation (1.2.8) as a constitutive equation to define (and thus
eliminate) the stress, while using the equilibrium equation (1.2.7b) to characterise
minimisation of an associated quadratic Hookean strain-energy potential; by con-
trast, the mixed stress-displacement saddle point formulation (of which the primal
displacement formulation is the displacement Schur complement) uses (1.2.7a) as an
optimality condition which is equivalent to the stress-displacement relation (1.2.8),
and the equilibrium equation (1.2.7b) and traction condition (1.2.7d) are used to re-
strict the class of admissible stresses. It is with this consideration that the Hellinger–
Reissner principle was first proposed [97, p. 223][166].

1.2.2 Stress components and the incompressible limit

Observe that we may write

A =
1

2µ
dev +

1

2µ+ dλ
sph, (1.2.9)

where the spherical part is also known as the mean normal stress and its deviator as
the isochoric or shear stress. This orthogonal decomposition is useful in that, roughly
speaking, the deviatoric component of the Cauchy stress is responsible for distorting
the shape of the elastic body, while the spherical component is responsible for changes
in volume [102, p. 94]. Moreover, since the trace of a tensor is independent of the
coordinate system, this representation is the most coordinate-free description of the
tensor field. In particular, passing to the incompressible regime in which λ � µ (or
equivalently the Poisson ratio ν ↗ 1

2
), we have

A λ→∞−−−→ 1

2µ
dev, (1.2.10)

so that the use of the compliance tensor is in some sense advantageous since it at least
admits a limit as λ → ∞, unlike the elasticity tensor (1.2.8) which blows up, so our
stress-strain relation (1.2.7a) remains valid in this limit. Since dev is not invertible,
stress is no longer uniquely determined by strain in this regime.
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Remark 1.2.2. For some classes of materials, it is not possible to write the stress
explicitly in terms of the (linearised) strain as in (1.2.8), giving rise to the theory
of implicitly-constituted solids. Our formulation (1.2.7a) is at least a starting point
for such problems, since (as just explained) such a situation arises by passing to the
incompressible limit.

Considering instead the spherical component by formally taking the trace of the
constitutive equation (1.2.7a) and applying the parameter relation λ = 2µν

1−2ν
, we find

div u =
trσ

2µ

(
1− dλ

2µ+ dλ

)
=

d

2µ(1 + (d− 2)ν)
(1− 2ν)

trσ

d
, (1.2.11)

so the infinitesimal volume change, measured by the divergence of the displacement,
is proportional to the first principal invariant of the Cauchy stress, which measures
the arithmetic average of the principal stresses, the mean stress, but this dependence
is removed in the incompressible limit ν ↗ 1

2
.

Finally, we note that in the case where the deformation is purely spherical, it is
useful to identify the scale factor by which the Cauchy stress is a multiple of the
identity tensor; this gives one way to define the pressure p := − trσ

d
. In the case of

pure displacement conditions (|ΓN | = 0) which are moreover clamped (u0 ≡ 0), we
have, using (1.2.11),
∫

Ω

trσ dx =
2µ(1 + (d− 2)ν)

1− 2ν

∫

Ω

div u dx =
2µ(1 + (d− 2)ν)

1− 2ν

∫

∂Ω

u · n ds = 0

(1.2.12)

[45, p. 269], i.e. σ ∈ H(div;S)/R, which comprises a compatibility condition on the
stress space, clearly equivalent to

∫
Ω
p dx = 0 which is familiar from the classical

Stokes problem.

1.2.3 Numerical enforcement of symmetry

That the Cauchy stress field σ is symmetric is equivalent to the conservation of angu-
lar momentum, and is called Cauchy’s second law of motion. It is highly desirable but
notoriously difficult to preserve in finite element discretisations; a further challenge
arises from the requirement of H(div;M)-conformity as explained in the next sec-
tion. Before defining the H(div;S)-discretising, exactly symmetric Arnold–Winther
elements, we briefly review other approaches to the numerical enforcement of sym-
metry; for further references, see [40, Ch. 9.3–9.4].
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Conventionally, symmetry is enforced weakly via L2(Ω;M)-orthogonality to a
skew-symmetric subspace:

∫

Ω

σ : q dx = 0 ∀ q ∈ Q, (1.2.13)

where Q denotes some K-valued Sobolev space; this is equivalent to symmetry at
the continuous level, and so replacing Q with some finite element space constitutes
a weak enforcement of symmetry. This approach encapsulates, for example, the
PEERS element [16], and is typically incorporated into the formulation by a Lagrange
multiplier, interpreted as the skew-symmetric rotation tensor ω = skw∇u.

Years after developing the AW elements, Arnold, Falk, and Winther [17] developed
a new method in 3D in which symmetry is not imposed on the stress space directly,
but weakly, as above. These elements were of lower order, and are based on the longer
elasticity complex with weak symmetry, of which the weak imposition scheme is a HL
problem; they identify these elements as somehow ‘just the right’ mixed elements
for elasticity. Nevertheless, we still regard the original AW elements as of significant
interest due to the exact imposition of symmetry.

Weak imposition of symmetry also fits naturally into the FOSLS (first order system
least-squares) method by penalisation of asymmetry [54, 151]. Certainly, any tensor
field σ satisfying (1.2.7a) must in particular be symmetric, but in fact, the paper [54]
explicitly proves a bound on the skew-symmetric part in terms of the constitutive
residual: for arbitrary τ ∈ L2(Ω;M) and v ∈ H1(Ω;Rd), we have

‖ skw τ‖0 ≤ 2µ‖Aτ − ε(v)‖0, (1.2.14)

so that enforcing the constitutive equation in the least-squares functional penalises
asymmetry at the continuous level, even without the term ‖ skw σ‖2

0 in the functional;
this was demonstrated numerically in [53]. We remark however that the elementary
estimate (1.2.14) may be crude for many common materials – for example, iron has
shear modulus µ = O(1010) in SI units. Practitioners of this method also suggest
simply replacing the computed discrete stress with its symmetric part as a postpro-
cessing step [54]: given an only weakly symmetric σh, use instead the projection
σh ←− sym(σh).

A classical alternative is the use of composite elements [95], for which the stress is
approximated on a mesh which is more refined than that used for the displacement –
for example, the former may be obtained by barycentric refinement of triangles, or by

16



F. R. A. Aznaran Symmetry-enforcement

‘Union-Jack’ refinement of quadrilateral elements. Such equilibrium methods require
that for a given pair (Σh, Vh), we have

τh ∈ Σh and (div τh, vh)L2 = 0 ∀ vh ∈ Vh =⇒ div τh = 0 in Ω, (1.2.15)

and that there exists a suitable interpolant πh such that for all τ ,

(div πhτ, vh)L2 = (div τ, vh)L2 (1.2.16)

[128]; these conditions can be used to prove inf-sup stability.
A very significant contribution are the TDNNS elements due to Schöberl and Pech-

stein (née Sinwel) [170]; We mentioned in §1.2.1 that the primal stress-displacement
mixed formulation (L2 −H1) can lead to locking; on the other hand, the dual mixed
formulation we have used thus far (H(div) − L2) is complicated by the enforcement
of symmetry, and also of H(div)-conformity as described in the next section. The
TDNNS approach attempts to seek an intermediate formulation between these, using
for the stress {τ ∈ L2(Ω;S) | div div τ ∈ H−1(Ω)}, and for the displacement H(rot)

in 2D or H(curl) in 3D. This choice of displacement space arises naturally because
taking the Lagrange multiplier associated with (1.2.13) to be ω ∈ Q := L2(Ω;K),
then (in 2D)

ω =
1

2

(
1

−1

)
rotu, (1.2.17)

and hence u ∈ H(rot); an analogous calculation holds in 3D. The corresponding weak
form necessitates an appropriate interpretation of the dual pairing “〈div τ, v〉”. These
elements can be demonstrated numerically to avoid locking, and work well for plate
models and curved geometries, at the cost of the more complicated variational formu-
lation. The discrete stress space consists of the symmetric tensor-valued polynomials
of degree k ≥ 1 whose normal-normal component (n>τn) is continuous across each
edge, paired with a displacement space of the same degree whose tangential compo-
nent is continuous; schematics are provided in Figure 1.1.

Figure 1.1: The Tangential-Displacement and Normal-Normal-Stress mixed ele-
ment [170]. Thin arrows on the tensor diagram refer to a single tensor component in
the given direction (e.g. n>τn).
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Another exactly symmetric element is the Hellan–Herrmann–Johnson (HHJ) el-
ement, discretising L2(Ω;S) and used classically for Kirchhoff plates. It consists of
symmetric matrix-valued polynomials of degree k ≥ 0, again with continuity of the
normal-normal components. A schematic is provided in Figure 1.2.

Figure 1.2: The Hellan–Herrmann–Johnson element [108, 109, 128].

This element is more natural for approximating the elastic strain, and will be discussed
along with the related Regge symmetric finite element in §3.

The TDNNS elements are implemented in Netgen/NGSolve, while the HHJ ele-
ment was introduced into FEniCS in [106] and later into Firedrake; as we will see, it
follows from their type of DOFs that the Piola mapping works in the standard way
for these elements, hence their implementations were possible without the theory we
develop in this chapter.

Finally, we make note of the beautiful observation due to Gopalakrishnan and
Guzmán [103] that for matrix polynomials of high enough degree, and with a mesh
which either has a minimal angle condition, or is obtained via barycentric refinement
of a quasiuniform mesh, one can define a stable method in which the skew-symmetric
test space in (1.2.13) can be taken to be of the same degree as the stress trial space,
i.e. weak symmetry happens to imply exact symmetry. The latter hypothesis is in
obvious analogy to the exactly divergence-free Scott–Vogelius element used for in-
compressible fluid flow, and is proved using a result pertaining to that element.

1.2.4 The Arnold–Winther elements

Arnold and Winther proposed two exactly symmetric elements discretising H(div; S)

in 2D, one div-conforming (AWc) [24] and the other nonconforming (AWnc) [25]. We
first consider the conforming element. Let K denote a generic triangle, with edges
{ek}3

k=1 and vertices {xk}3
k=1.
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In the lowest-order case, the space is locally the symmetric matrix-valued
quadratic polynomials, augmented by solenoidal cubic bubbles:

AWc(K) = {τ ∈ P3(K;S) | div τ ∈ P1(K;R2)}
= P2(K;S) + {τ ∈ P3(K;S) | div τ = 0}.

(1.2.18)

This is 24-dimensional, with DOFs

• the values of the three unique components of τ at each vertex of K,

• the moments of degree 0 and 1 of the normal-normal and normal-tangential
components of τ on each edge,

• the constant moments of the three unique components of τ over K.

The associated local displacement space is Vh(K) = P1(K;R2) which is 6-dimensional,
with DOFs given by, for example, the values of the 2 components at 3 non-collinear
points interior to K. Element diagrams for this lowest-order case which we consider
are provided in Figure 1.3.

Figure 1.3: The conforming Arnold–Winther element [24], and the discontinuous
Lagrange element for displacement with which it is paired. Thick arrows refer to
both components of a tensor in a given direction (e.g. τn or τt). A clutch of circles
either indicates internal moments of each unique component or evaluation of each
component at a point.

The global stress space Σh is then defined as the space of all tensor fields which
belong element-wise to AWc(K), subject to the continuity conditions that the two
lowest-order moments of the normal components are continuous across mesh edges,
and that all components are continuous at mesh vertices; these DOFs associated to
an edge and its endpoints uniquely determine the full normal component on that
edge, so that when the local spaces are patched together in this manner, a globally
H(div,Ω;S)-conforming space results. The global displacement space Vh is simply
defined as the piecewise linear vector fields with respect to the triangulation, subject
to no interelement continuity conditions: Vh = DG1(Th;R2).
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We require some further technical definitions. For m ≥ 0 let {µi}mi=0 denote a
hierarchical basis for the polynomial space Pm[0, 1] – that is, such that the first i+ 1

entries form a basis for Pi[0, 1]. Some examples are the monomials or the Legendre
polynomials, and the definition is extended to higher-dimensional domains in the
obvious manner. Assume in addition that µ0 ≡ 1. Given an edge ek of a triangle K,
let f : [0, 1]→ ek be a diffeomorphism, and let µki be the mapping of µi from the unit
interval to ek by the ‘standard pullback’ µki := µi ◦ f−1 (see equation (1.3.3) below).

To introduce notation for the stress DOFs, we let

`k,i,j(τ) = τi,j(xk) (1.2.19)

denote evaluation of a particular component of the input τ at one of the vertices of
triangle K. We define the boundary moments by

`n,s,i,k(τ) =

∫

ek

(n · τ(s)s)µki (s) ds, (1.2.20)

where s ∈ {n, t}; for the HHJ element, we thus have nodes {`n,n,i,k}1
i=0 for each edge

ek of the triangle.
For the interior nodes, denoting by {φi}i a hierarchically ordered basis over K

(e.g. the bivariate monomials or Dubiner basis) with φ0 ≡ 1, we let τn,i,j denote the
tensor with φn in the i, j entry and 0 elsewhere – a natural injection into the space
of tensor-valued orthogonal polynomials. We let

`n,i,j(τ) =

∫

K

τ(x) : τn,i,j(x) dx. (1.2.21)

Thus, DOFs for the AWc space are given in full by {`k,1,1, `k,1,2, `k,2,2}3
k=1,

{`n,n,i,k, `n,t,i,k}1, 3
i=0,k=1, {`0,1,1, `0,1,2, `0,2,2}.

The nonconforming stress element introduced in [25] avoids the somewhat unusual
feature of vertex degrees of freedom and gives a cheaper (though slightly less accurate)
method based on the space

AWnc(K) = {τ ∈ P2(K; S) | nk · τnk ∈ P1(ek), 1 ≤ k ≤ 3} . (1.2.22)

This space, consisting of symmetric tensors of quadratic polynomials subject to a
degree reduction in the normal-normal component on each edge, is 15-dimensional,
and is determined by {`n,n,i,k, `n,t,i,k}1, 3

i=0,k=1, {`0,1,1, `0,1,2, `0,2,2}, i.e.

• the constant and linear moments of both the normal-normal and normal-
tangential components on each edge,
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• the constant moments of the three unique components on the interior.

It is again paired with the displacement space Vh(K) = P1(K;R2); element diagrams
are provided in Figure 1.4.

Figure 1.4: The nonconforming Arnold–Winther mixed element [25].

As for the AWc element, the global stress space is then defined by agreement of
the DOFs associated with each edge across that edge; these determine the normal-
normal component on that edge, but not the full normal component, so that the
resulting global space will be div-nonconforming. The global displacement space is
again subject to no interelement continuity conditions, Vh = DG1(Th;R2).

The Arnold–Winther elements were one of the first products of the then embry-
onic finite element exterior calculus [19]. Their novelty is that they form an exact
subcomplex of the 2D stress complex (0.1.4), with commuting cochain projections:

0 P1(Ω) H2(Ω) H(div;S) L2(Ω;R2) 0

0 P1(Ω) Qh Σh Vh 0.

⊆

id

airy

Ih

div

Πh Ph

⊆ airyh divh

(1.2.23)

Here, if (Σh, Vh) are either the conforming or nonconforming AW elements, Qh is
either the Argyris space (another element requiring nonstandard transformations) or
a certain nonconforming approximation of H2(Ω) respectively, Ih,Πh are appropriate
densely defined interpolants, and Ph is the L2-projection, then it is proved in [24, 25]
(see also [185]) that the above diagram is commuting, with exact rows whenever Ω is
simply connected. Writing (1.2.16) as divh πh = PVh div, we see that the commutativ-
ity of (1.2.23) and the surjectivity of divh : Σh → Vh are simply modern restatements
of the conditions (1.2.15)–(1.2.16) defining classical equilibrium methods.

In the next section, we discuss how finite element spaces are actually implemented,
and see why this task has proved so difficult for the AW elements.
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1.3 Piola transformation theory

1.3.1 Domain geometry and pullbacks

Let K̂ ⊂ R2 be a reference triangle with vertices {x̂i}3
i=1 and let K be a typical cell

with vertices {xi}3
i=1. We assume the diffeomorphism F : K̂ → K to be affine, as

shown in Figure 1.5:
F (x̂) = J x̂ + b, (1.3.1)

which of course depends on K, though highly structured meshes correspond to, for
example, many maps differing only by the translation b.

x̂1 x̂2

x̂3

x1

x2

x3

F : K̂ → K

K̂

K

Figure 1.5: Affine mapping from a reference cell K̂ to a typical cell K.

We now discuss the geometry of the physical and reference cells; this will make
more precise some notation already used in the definition of the AW elements in §1.2.4.
For local choices of indexing and orientation, we follow the convention in [168] as
follows. Edge i of any triangle excludes the vertex i and is oriented from the lower-
numbered vertex to the higher-numbered one. Each edge e is a column vector running
between two vertices of a triangle, and is also used to denote the edge as a set. We
define the unit tangent to edge e as t = e

‖e‖ , and to each edge associate its normal
n = Rt, where

R =

(
1

−1

)
(1.3.2)

is clockwise rotation. Quantities and differential operators with ̂ are defined analo-
gously for the reference element. Now clearly, the following statements are mutually
exclusive:

• that all element boundaries have the same orientation as the reference boundary,
and the unit normal is always outward-pointing, or

• that triangles sharing an edge will automatically agree on its direction (so that
local and global direction coincide).
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With the above convention, we have chosen the latter. In particular, F may reverse
orientation. This greatly simplifies the required logic for assembly of finite element
DOFs involving normal components. This convention can be extended to simplices
of any dimension [21, 168].

The diffeomorphism (1.3.1) between the elements induces a map between corre-
sponding function spaces in the obvious manner – to evaluate on the physical cell, we
pull back to the reference cell and evaluate there: given a function φ̂ defined on K̂,
we define its pullback by

φ := F−∗(φ̂) := φ̂ ◦ F−1, (1.3.3)

so that given a point x = F (x̂), we can evaluate φ there as

φ(x) = φ̂(x̂). (1.3.4)

For scalar-valued spaces, the pullback provides an isomorphism between Hm(K̂) and
Hm(K) form ∈ Z≥0; its use is very natural in the context of affine equivalent elements
such as Lagrange or Crouzeix–Raviart. One can define their basis functions on a fixed
reference element K̂ and obtain the basis functions on any K by pullback. This can
be adapted, with some technicalities, when affine equivalence fails [130]. Other shape
spaces, such as the globally defined Rannacher–Turek quadrilateral element [163,
Remarks 2 and 5], do not fall under the reference element paradigm.

When working with vector or tensor finite elements discretising Sobolev spaces
such as H(div) or H(curl), it is helpful to work with the Piola mappings. As already
used implicitly in §1.2, we note that elements of H(div) have a well-defined normal
trace, which moreover lies in H−1/2(∂Ω), and there is a corresponding Green’s for-
mula [40, Lemma 2.1.1]. A consequence is that piecewise polynomial vector fields will
lie in H(div) if and only if they have continuous normal traces across interfaces [40,
Prop. 2.1.2]; applying this row-wise gives an analogous statement for H(div;M) and
H(div; S). Hence, finite elements forH(div)-based spaces tend to include normal com-
ponents as degrees of freedom, and these will be preserved by using the appropriate
mapping.

This is seemingly a technicality at the level of function spaces, but also has a
natural physical interpretation for the stress: H(div;M)-conformity means that the
traction forces on a mesh face shared between two elements are in equilibrium.

Definition 1.3.1. (Vector and tensor contravariant Piola transforms). Let K̂,K ⊆
Rd, let F : K̂ → K be a diffeomorphism, and let J(x̂) = ∇̂F (x̂) be its Jacobian. The
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contravariant Piola map takes Φ̂ : K̂ → Rd to Φ : K → Rd defined by

Fdiv(Φ̂) := 1
det J

JΦ̂ ◦ F−1. (1.3.5)

The (double) contravariant Piola map takes τ̂ : K̂ → S to τ : K → S by

Fdiv,div(τ̂) := 1
(det J)2J

(
τ̂ ◦ F−1

)
J>. (1.3.6)

The Piola transforms Fdiv : H(div, K̂) → H(div, K),Fdiv,div : H(div, K̂;S) →
H(div, K;S) are well-defined and isomorphisms. Analogous considerations hold for
H(rot), H(rot;S), H(curl), H(curl;S), tangential traces, and the covariant Piola map-
pings:

Definition 1.3.2. (Vector and tensor covariant Piola transforms). The covariant
Piola map takes Φ̂ : K̂ → Rd to Φ : K → Rd by

F curl(Φ̂) := J−>Φ̂ ◦ F−1. (1.3.7)

The (double) covariant Piola map takes τ̂ : K̂ → S to τ : K → S by

F curl,curl(τ̂) := J−>
(
τ̂ ◦ F−1

)
J−1. (1.3.8)

Unlike in the usual definition of the Piola map, the absolute value of the determinant
is not taken in (1.3.5); this is explained in [168], which gives a thorough exposition
of transforming and assembling vector finite elements in the case that the spaces
and degrees of freedom are exactly preserved under the Piola mappings. The central
contribution of this chapter is to adapt the techniques of [130] to handle H(div; S)

elements that are not exactly preserved under contravariant Piola mapping. This
occurs, for example, when elements use degrees of freedom involving edge tangents
or vertex values in addition to edge/face normals and internal ones, as in the case of
the AWc and AWnc elements. This enables us to develop general and robust software
implementations of these elements.

1.3.2 Transformation of components and their moments

We now review the relationship between the reference and physical element normals
and tangents when F is affine. Suppose i, j ∈ {1, 2, 3}, j < i, so that the edge
e = xi − xj joins vertices i and j of the physical element. Since F (x̂i) = xi, we have

e = xi − xj = J(x̂i − x̂j) = J ê, (1.3.9)
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so
‖e‖t = ‖ê‖J t̂. (1.3.10)

For the normal component, we use the identity RJR> = (det J)J−> (for all 2 × 2

matrices) to obtain

‖e‖n = ‖e‖Rt = Re = RJ ê = (det J)J−>Rê = (det J)J−>‖ê‖Rt̂ = (det J)J−>‖ê‖n̂.
(1.3.11)

It follows that the Jacobian maps reference tangents to physical ones (up to scale
factor), but a slightly different map (1.3.11) is needed to obtain the physical normal
from the reference one.

We can now deduce what the Piola map does to the various components of a
tensor field. Let τ̂ : K̂ → S and τ = Fdiv,div(τ̂). At a point x on an edge e ⊆ ∂K,
the normal-normal component is preserved:

‖e‖2n>τ(x)n =
(
(det J)J−>‖ê‖n̂

)>
(

1

(det J)2
Jτ̂(x̂)J>

)(
‖ê‖(det J)J−>n̂

)

= ‖ê‖2n̂>τ̂(x̂)n̂.

(1.3.12)

On the other hand, the normal/tangential and double tangential components are not
preserved, as direct calculations verify:

‖e‖2n>τ(x)t =
(
(det J)J−>‖ê‖n̂

)>
(

1

(det J)2
Jτ̂(x)J>

)(
‖ê‖J t̂

)
=
‖ê‖2

det J
n̂>τ̂(x̂)J>J t̂,

(1.3.13)

and

‖e‖2t>τ(x)t =
(
‖ê‖2J t̂

)>
(

1

(det J)2
Jτ̂(x̂)J>

)(
‖ê‖J t̂

)
=
‖ê‖2

(det J)2
t̂>J>Jτ̂(x̂)J>J t̂.

(1.3.14)

The tangential-normal component ‖e‖2t>τ(x)n follows from (1.3.13) by symmetry.
Evidently, it will be useful to further resolve J>J t̂ in terms of reference normal and
tangential components. Define the orthogonal matrix

Ĝ =
(
n̂ t̂

)
. (1.3.15)

Then, using I = ĜĜ>,

J>J t̂ = Ĝ Ĝ>J>J t̂︸ ︷︷ ︸
:=

(
α̃

β̃

)
= α̃n̂ + β̃t̂. (1.3.16)
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Defining α = α̃
det J

and β = β̃
det J

, then

‖e‖2n>τ(x)t = ‖ê‖2n̂>τ̂(x̂)
(
αn̂ + βt̂

)
= ‖ê‖2

(
αn̂>τ̂(x̂)n̂ + βn̂>τ̂(x̂)t̂

)
, (1.3.17)

and

‖e‖2t>τ(x)t = ‖ê‖2

(
1

det J
J>J t̂

)>
τ̂(x̂)

(
1

det J
J>J t̂

)

= ‖ê‖2
(
αn̂ + βt̂

)>
τ̂(x̂)

(
αn̂ + βt̂

)

= ‖ê‖2
(
α2n̂>τ̂(x̂)n̂ + 2αβn̂>τ̂(x̂)t̂ + β2t̂>τ̂(x̂)t̂

)
.

(1.3.18)

Remark 1.3.1. The tangential and tangential-tangential traces are well-defined at
least on polynomial subspaces, and are included here for completeness.

We also wish to consider the transformation of integral moments against some
function µ(x) = µ̂(F−1(x)), where µ̂ ∈ L2(ê) will typically be a polynomial. Along
an edge, the change of variables introduces a Jacobian factor ‖e‖‖ê‖ , so by (1.3.12),

‖e‖
∫

e

(
n>τ(s)n

)
µ(s) ds = ‖ê‖

∫

ê

(
n̂>τ̂(ŝ)n̂

)
µ̂(ŝ) dŝ. (1.3.19)

Similarly,

‖e‖
∫

e

(
n>τ(s)t

)
µ(s) ds = ‖ê‖

(
α

∫

ê

(
n̂>τ̂(ŝ)t̂

)
µ̂(ŝ) dŝ+ β

∫

ê

(
n̂>τ̂(ŝ)t̂

)
µ̂(ŝ) dŝ

)
,

(1.3.20)
and

‖e‖
∫

e

(
t>τ(s)t

)
µ(s) ds = ‖ê‖

(
α2

∫

ê

(
n̂>τ̂(ŝ)n̂

)
µ̂(ŝ) dŝ + 2αβ

∫

ê

(
n̂>τ̂(ŝ)t̂

)
µ̂(ŝ) dŝ

+β2

∫

ê

(
t̂>τ̂(ŝ)t̂

)
µ̂(ŝ) dŝ

)
.

(1.3.21)

It follows that bases for tensor-valued elements with boundary DOFs involving
only normal-normal components can be directly mapped by the Piola transform; this
is for example true of the TDNNS and HHJ elements. Since the AW elements also
have boundary DOFs of other kinds, application of the Piola map alone will not result
in the correct dual basis on each physical cell.

Remark 1.3.2. Many methods proposed after the seminal papers of Arnold and
Winther [24, 25] were, in essence, attempts to construct improved versions of the AW
elements. Among these, perhaps the most efficient are the Hu–Zhang elements [119–
121], which strongly and stably enforce symmetry in any dimension; Arnold him-
self [12, p. 111] refers to these elements as “[m]ore efficient . . . [and] applicable in any
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dimension”, and in the 2D conforming case, they have 18 local DOFs in comparison
to AWc’s 24. The same authors recently provided a unified analysis of methods which
strongly impose symmetry [114], using a generalised 4-field formulation of which both
the Hu–Zhang and AW elements, among many others, are special cases. These el-
ements also admit an interpretation in terms of the FEEC [71]. The Hu–Zhang
elements employ tangential DOFs, and the Piola transformation theory which they
therefore require would be very similar to that for the AW elements which we present
here.

Remark 1.3.3. We briefly comment on the covariant case for H(curl) elements. As is
well-known, in 2D, H(rot) and H(div) are isomorphic by simple rotation, although
the spaces are quite different in 3D; indeed, in dimensions strictly greater than 2,
the analogous identification is always impossible for the vector-valued spaces [138,
Prop. 4.1]. It follows that the transformation theory for H(rot;S) and H(curl;S)

elements, at least in 2D, may be similar mutatis mutandis to what we present in this
chapter.

1.3.3 Transforming Piola-inequivalent elements

Recall that, given an FE space V with dimV = n and a set of degrees of freedom
(or nodes) {li}ni=1 ⊆ V ∗, there exists a unique nodal basis {ψi}ni=1 ⊆ V [48, p. 70] to
which the {li} are a cobasis, i.e. satisfying the Kronecker property

li(ψj) = δij. (1.3.22)

We remark that this notion coincides with that of Riesz representative only when
both bases are orthonormal.

It follows from identities such as (1.3.20) and (1.3.21) that FE spaces for H(div; S)

involving tangential degrees of freedom will not map nicely under the contravariant
Piola transform – the reference element nodal basis will not map to the physical
element one. In [130], Kirby developed abstract theory to address the simpler but
analogous situation with the standard pullback. The broad strokes of the theory go
through essentially unchanged if one replaces the regular pullback (1.3.3) with a Piola
pullback; for self-containment, we summarise the key ideas here.

We let Φ̂ be a (column) vector of elements of a function space V̂ over K̂. Let
F∗ : V̂ → V denote some linear pullback operator (such as one of the Piola maps)
taking V̂ into a function space V defined on K. Define F∗(Φ̂) componentwise, i.e.

(
F∗(Φ̂)

)
j

:= F∗(Φ̂j). (1.3.23)
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Then, if we take Ψ̂ to contain the nodal basis functions of V̂ on the reference element
and Ψ to contain the nodal basis of V defined on K, then it follows from identities
such as (1.3.20) that

F∗(Ψ̂) 6= Ψ, (1.3.24)

and note that equality still fails to hold up to permutation or scaling. If the pullback
operator preserves the function space, providing an isomorphism between the instan-
tiations V and V̂ , then in particular it preserves linear independence, so F∗(Ψ̂) will
be a basis – just not the nodal one. Consequently, there must exist a (cell-dependent)
invertible matrix M such that

Ψ = MF∗(Ψ̂). (1.3.25)

Hence, the correct physical nodal basis is simply obtained by computing the pullback
of the reference basis, and then multiplying by M . If M is sparse, then applica-
tion of this principle incurs only a small additional cost to the overall finite element
computation.[12]

However, as we see from §1.3.2, it is natural to consider the effect of the pullback
on the DOFs, rather than directly on the nodal basis. To consider instead how the
dual spaces are transformed, denote by N = {`i}i and N̂ = {ˆ̀i}i (row) vectors of
functionals on V and V̂ respectively, and define the dual or push-forward F∗ : V ∗ →
V̂ ∗ associated with F∗ by

F∗(`) := ` ◦ F∗. (1.3.26)

Now identifying an n-vector Φ ∈ V n with its componentwise image Φ∗∗ ∈ (V ∗∗)n

under the canonical embedding into the bidual, it induces an evaluation operator on
vectors of dual functionals via the ‘outer product’ NΦ := Φ∗∗ ⊗N , where

(Φ∗∗ ⊗N)i,j := Φ∗∗j (`i) = `i(Φj). (1.3.27)

This allows us to extend the push-forward (1.3.26) to vectors of functionals compo-
nentwise either in a manner analogous to (1.3.23), or equivalently as

F∗(N) := NF∗ = F∗(·)∗∗ ⊗N. (1.3.28)

Choosing N, N̂ to be the DOFs, then the Kronecker property (1.3.22) by which they
are characterised is then simply expressed as

Ψ∗∗ ⊗N = I = Ψ̂∗∗ ⊗ N̂ . (1.3.29)

[12]With some effort, the theory can be extended to handle the situation when the pullback does
not send V̂ onto V , but none of our examples in the present work require this.
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Moreover, this clarifies the transformation of the primal basis: expanding the desired
physical basis in terms of the mapped reference basis, we have

Ψj =
n∑

k=1

θ
(j)
k F∗(Ψ̂k), j = 1, . . . , n, (1.3.30)

so it follows from the Kronecker property (1.3.22) that

QΘ = I, (1.3.31)

where
Q = F∗(Ψ̂)∗∗ ⊗N =

(
`i(F∗(Ψ̂k))

)n
i,k=1

(1.3.32)

can be interpreted as a generalised Vandermonde matrix and

Θ = Q−1 =
(
θ

(j)
k

)n
k,j=1

(1.3.33)

has the vector of coefficients for Ψj with respect to {F∗(Ψ̂k)}k in column j.
Now by (1.3.24) and unisolvency of N , we have

F∗(Ψ̂)∗∗ ⊗N 6= Ψ∗∗ ⊗N = I, (1.3.34)

so
F∗(N)(Ψ̂) = F∗(Ψ̂)∗∗ ⊗N 6= I = Ψ̂∗∗ ⊗ N̂ = N̂Ψ̂, (1.3.35)

so in particular,
F∗(N) 6= N̂ , (1.3.36)

but as before, there must be an invertible P with

N̂ = PF∗(N). (1.3.37)

An important result of [130, Theorem 3.1] is that

M = P> (1.3.38)

(as matrices of numbers). In other words, it is sufficient to relate the physical nodes
and their push-forwards. As we will see in our examples, it can be more natural to
find P−1 and then invert it by hand.

Remark 1.3.4. Proponents of the FEEC employ a refinement of the notion of DOFs
in the classical Ciarlet triplet defining a finite element [19, Section 4][21][138, p. 11].
Rather than specifying a basis of the dual V ∗ of the shape space V , one can specify
maps from V into subspaces of the duals of function spaces on arbitrary-codimensional
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facets of the cell. Arguably, it is this geometric decomposition of V ∗, rather than any
particular basis for it, which is useful for defining the global FE space, since it makes
more explicit the fact that the basis functions are associated with subsimplices, in
order that interelement continuity conditions can be applied to patch together the
local spaces on a mesh during the assembly process.[13]

1.4 Piola-mapped tensor elements

The general approach of the transformation theory developed in [130] is to build the
nodal basis on K out of a linear combination of the mapped reference element basis
functions. As explained in the previous subsection, for us the transformation of basis
functions works by duality, considering instead the push-forward of nodes. It will
be natural to begin with the nonconforming case, and then consider the inclusion of
vertex DOFs for the conforming element. The existing implementations of these ele-
ments [58, 61] require a separate construction of the basis functions for each element,
by inverting the Vandermonde matrix arising from the Piola pullback of the primal
basis, as in equation (1.3.31).

1.4.1 The nonconforming AW element

We employ block notation to define vectors of the DOFs. For the nonconforming
element, we define the vector of nodes associated with edge ek by

N1,k =
(
`n,n,0,k `n,t,0,k `n,n,1,k `n,t,1,k

)>
. (1.4.1)

That is, we store the normal and tangential moments of order 0, followed by those of
order 1. We collect the three internal DOFs in the vector

N2 =
(
`0,1,1 `0,1,2 `0,2,2

)>
, (1.4.2)

so that the nonconforming element has degrees of freedom N =(
N1,1 N1,2 N1,3 N2

)>
, with an analogous definition and ordering of refer-

ence element degrees of freedom N̂1,k, N̂2, N̂ . Note that we have added superscripts
of 1 and 2 to indicate the topological dimension associated with the DOFs.

[13]An alternative refinement is given by the notion of finite element systems due to Chris-
tiansen [68], which consist of, for each subsimplex T , a complex of spaces Ak(T )

d−→ Ak+1(T )
d−→ . . .

indexed by form degree and connected by the exterior derivative d; together with restriction maps
to further subsimplices which commute with d, these complexes can be interpreted as a presheaf on
the category of subsimplices [72, Remark 9]. However, we remark that typically, the existence and
description of the ‘next’ space in such a sequence is itself a research question.
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Now, we need to compute the Piola push-forward (denoted F∗) of these nodes in
terms of the reference element nodes, and thus build up sub-blocks of the matrix P−1,
where P is the change-of-basis matrix defined in (1.3.37).

So let τ̂ be defined over K̂, 1 ≤ k ≤ 3, and i = 0 or 1. Then by (1.3.19),

F∗(`n,n,i,k)(τ̂) = `n,n,i,k(Fdiv,div(τ̂)) =

∫

ek

(n · Fdiv,div(τ̂)(s)n)µi(s) ds

=
‖êk‖
‖ek‖

∫

êk

(n̂ · τ̂(ŝ)n̂)µ̂i(ŝ) dŝ

=
‖êk‖
‖ek‖

ˆ̀̂n,n̂,i,k(τ̂).

(1.4.3)

So, normal-normal moment nodes are pushed forward exactly to the corresponding
reference normal-normal modes. For the normal-tangential moments, (1.3.20) can be
rewritten as

‖ek‖F∗(`n,t,i,k)(τ̂) = ‖êk‖
(
αk ˆ̀̂n,n̂,i,k(τ̂) + βk ˆ̀̂n,t̂,i,k(τ̂)

)
, (1.4.4)

where the superscript k indicates association with edge k. It follows that

F∗(N1,k) = W kN̂1,k, (1.4.5)

where

W k =
‖êk‖
‖ek‖




1
αk βk

1
αk βk


 , (1.4.6)

which easily inverts to

(
W k
)−1

=
‖ek‖
‖êk‖




1

−αk

βk
1
βk

1

−αk

βk
1
βk


 . (1.4.7)

Applying now the push-forward to an internal DOF (recalling that φ0 ≡ 1):

F∗(`0,i,j)(τ̂) =

∫

K

Fdiv,div(τ̂) : τ0,i,j dx =

∫

K̂

1

det J

(
Jτ̂J>

)
ij

dx̂. (1.4.8)

Expanding out Jτ̂J> gives
(
J2

11τ̂11 + 2J11J12τ̂12 + J2
12τ̂22 J11J21τ̂11 + (J11J22 + J12J21)τ̂12 + J12J22τ̂22

∗ J2
21τ̂11 + 2J21J22τ̂12 + J2

22τ̂22

)
,

(1.4.9)

31



F. R. A. Aznaran Piola-mapped tensors

where the asterisk indicates equality due to symmetry. Using this in (1.4.8) gives

F∗(`0,1,1) =
1

det J

(
J2

11
ˆ̀0,1,1 + 2J11J12

ˆ̀0,1,2 + J2
12

ˆ̀0,2,2
)
,

F∗(`0,1,2) =
1

det J

(
J11J21

ˆ̀0,1,1 + (J11J22 + J12J21)ˆ̀0,1,2 + J12J22
ˆ̀0,2,2

)
,

F∗(`0,2,2) =
1

det J

(
J2

21
ˆ̀0,1,1 + 2J21J22

ˆ̀0,1,2 + J2
22

ˆ̀0,2,2
)
,

(1.4.10)

so that with

W̃ =




J2
11 2J11J12 J2

12

J11J21 J11J22 + J12J21 J12J22

J2
21 2J21J22 J2

22


 (1.4.11)

and W̌ = 1
det J

W̃ , we have
F∗(N2) = W̌ N̂2. (1.4.12)

Hence, overall,

P−1 =




W 1

W 2

W 3

W̌


 , (1.4.13)

which is readily inverted blockwise to find P . As a remark, the W̌ block is dense, but
denoting its dependence on J by W̌ = W̌J , it is then easily checked that W̌−1

J = W̌J−1 ,
i.e. the inverse can be found by reversing the roles of K and K̂.

1.4.2 The conforming AW element

We now turn to the fully conforming Arnold–Winther element. It has the same edge
and internal nodes as the nonconforming element, but also includes vertex values.
However, these transform in a very similar fashion to the internal moments just
discussed. We collect the pointwise evaluation functionals for each vertex xk into a
small vector:

N0,k =
(
`k,1,1 `k,1,2 `k,2,2

)>
, (1.4.14)

and as for AWnc, collect together the DOFs for the opposite edge:

N1,k =
(
`n,n,0,k `n,t,0,k `n,n,1,k `n,t,1,k

)>
. (1.4.15)

The internal DOFs are collected in

N2 =
(
`0,1,1 `0,1,2 `0,2,2

)>
. (1.4.16)

Again we order DOFs by topological dimension:

N =
(
N0,1 N0,2 N0,3 N1,1 N1,2 N1,3 N2

)>
. (1.4.17)
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The edge and internal degrees of freedom are handled exactly as for the previous
element. The Piola push-forward of a vertex functional gives

F∗(`k,i,j)(τ̂) = `k,i,j(Fdiv,div(τ̂)) =

(
1

(det J)2
Jτ̂(x̂k)J

>
)

ij

. (1.4.18)

This suggests that (except for very special geometry), the Piola transform will not
send vertex-oriented basis functions on the reference element to their physical counter-
part. However, using the expansion of Jτ̂J> given in (1.4.9), a very similar calculation
as for the internal moments shows that (1.4.18) gives for each vertex

F∗(N0,k) = W̆ N̂0,k, (1.4.19)

where now W̆ = 1
(det J)2 W̃ , for which again W̆−1

J = W̆J−1 . Combining all of these
push-forwards gives

F∗(N) =




W̆

W̆

W̆
W 1

W 2

W 3

W̌




N̂ . (1.4.20)

Again, the block-diagonal structure of the matrix makes it straightforward to invert
and find P .

Remark 1.4.1. On near-degenerate cells, the analogues of blocks W k such as (1.4.6)
may be ill-conditioned, which could affect the accuracy with which basis functions
are evaluated.

1.4.3 Scale-invariance and conditioning

For both elements considered, scale factors in the transformations do not matter for
construction of the local space because a nonzero scaling of a unisolvent set remains
unisolvent, but they are important for the global space due to the required continuity
of DOFs between cells which share them. We remark that, in this sense, the AW
internal DOFs (1.2.21) require no special treatment after being Piola-mapped, as
they do not need to be shared between adjacent elements; as a result, replacing W̌
with any nonsingular matrix in (1.4.13) or (1.4.20) would suffice for implementation.

It is natural to divide moment DOFs by some power of the facet measure; for
example, replacing the internal DOF (1.2.21) by an integral mean would do away
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with factors of det J in the transformation matrix. Such scale-invariance is implicit
in the treatment of AWc by Carstensen et al. [61], the Morley–Wang–Xu elements,
and related H3-nonconforming elements due to Wu and Xu [186] and would give
a slightly different transformation matrix. Contravariant rescaling of DOFs gives
neater expressions in the transformation theory but, more concretely, can improve
the conditioning of the discrete system, as we now show; this extends [130, Section
5.1] to the AW elements.

Consider an AWc basis function dual to a vertex DOF; it is unity at one vertex
in one component and zero at other vertices, hence O(1) over the cell. An internal
basis function integrates to unity over the cell, hence must be of size O(h−2); between
these cases, a normal moment basis function over an edge must have size O(h−1) over
that edge. Integrating the inner products which populate the global mass matrix, we
obtain some entries (corresponding to pairs of vertex basis functions) of size O(h2),
others (corresponding to pairs of internal basis functions) of size O(h−2), and others
in between. This leads to an O(h−4) condition number of the mass matrix; for AWnc,
this difference is O(h−2). By contrast, for Lagrange mass matrices, the condition
number is O(1) under refinement.[14]

Instead of redefining the canonical AW DOFs, we propose post hoc rescaling of
the DOFs (and hence the basis functions to which they are dual) on the physical cell;
this is equivalent to postmultiplying the local transformation matrix P by a diagonal
matrix whose diagonal entries are 1, hK , or h2

K as appropriate, where hK denotes a
local averaged cell diameter on whose value the cells sharing the DOF agree. This
rescaling is necessary to give an O(1) condition number for the mass matrix and
prevent conditioning worse than O(h−2) for our overall system.

1.4.4 Preservation of the constraints

Our two spaces of interest can be characterised as standard polynomials of certain
total degree, but subject to linear constraints. For example, shape functions in the
local AWnc space (1.2.22) are quadratic, but constrained to have linear normal-normal
components on cell edges. For each such condition, we may consider linear functionals
on polynomials of total degree which vanish precisely on the subspace satisfying the

[14]When derivative DOFs are also present, as for example in the Hermite, Argyris, and Bell
elements, one can use inverse inequalities to deduce analogous deterioration of conditioning [130];
in general, a basis function dual to an unnormalised moment of an sth order derivative over a
r-dimensional facet will scale as O

(
h−(s+r)

)
.
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constraint; the finite element space is therefore characterised as the intersection of
the kernels of all these constraint functionals.

For the AWnc space, if τ ∈ P2(K;S), then n · τn ∈ P1(e) for a given edge e if
and only if it is L2(e)-orthogonal to any polynomial of degree exactly 2. Thus, within
P2(K;S), AWnc(K) has constraint functionals

`ck(τ) =

∫

ek

(n · τ(s)n)µk2(s) ds, 1 ≤ k ≤ 3, (1.4.21)

where µk2 is the quadratic Legendre polynomial on ek.
For the AWc element, if τ ∈ P3(K;S) so that v = div τ ∈ P2(K;R2), then

v ∈ P1(K;R2) if and only if v is L2(K)-orthogonal to any choice of six vector-valued
orthogonal polynomials of degree exactly 2. With respect to P3(K;S), AWc(K) has
constraint functionals

`ci(τ) =

∫

K

(div τ(x)) · φi,j,k(x)dx, k = 1, 2, i+ j = 2, (1.4.22)

where {φi,j,k}2
k=1,i+j=2 ⊆ P2(K;R2) are the six Dubiner polynomials of degree exactly

2.
It is important to note that these constraints are preserved under Piola map-

pings; that is, if some tensor field satisfies the appropriate conditions on the reference
element, then its Piola pullback will satisfy the analogous conditions on the phys-
ical element. For the AWnc space, in light of (1.3.12), reference element quadratic
tensor fields with linear normal-normal components on edges will map to physical
element fields with the same property. Similarly, the conforming AWc element is
subject to a loss-of-degree constraint on its divergence; denoting τ = Fdiv,div(τ̂) for
some symmetric τ̂ defined on the reference element, by a direct computation we have
div τ = 1

(det J)2J d̂iv τ̂ . It follows that the Piola map preserves the constraints in both
cases.

All of the constraint functionals we use here are preserved (up to sign) under
the Piola push-forward. Hence, the physical element function space is actually con-
structed by pullback, even if the basis functions are not preserved. This need not
be the case – for example, the constraints on the C1 Bell element are not preserved
under affine pullback, requiring a fuller version of the transformation theory [130].
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1.5 Traction conditions in the Hellinger–Reissner
principle with Nitsche’s method

The Arnold–Winther discretisation of the Hellinger–Reissner problem (1.2.7) is given
by seeking the unique (σh, uh) in one of the AW pairs Σh×Vh satisfying the stationarity
condition of the discretised Hellinger–Riessner functional

Hh(σh, uh) := J (σh) +

∫

Ω

(divh σh − f) · uh dx. (1.5.1)

In the pure displacement case |ΓN | = 0, for displacement data u0, the stationarity
condition has discrete weak form[15]

∫

Ω

Aσh : τh + (divh τh) · uh dx =

∫

∂Ω

(τhn) · u0 ds ∀ τh ∈ Σh,
∫

Ω

(divh σh) · vh dx =

∫

Ω

f · vh dx ∀ vh ∈ Vh.
(1.5.2)

We now turn to the enforcement of traction conditions (1.2.3) for the Hellinger–
Reissner problem, which for the dual formulation (1.2.6) are essential (i.e. strongly
enforced); we consider a mixed boundary condition (0 < |ΓD|, |ΓN | < |∂Ω|), although
the method may be extended to the pure traction case |ΓD| = 0 subject to a quotient
of the displacement space by the rigid motions, which moreover the data should
annihilate as a compatibility condition, i.e.

∫
Ω
f · v dx+ 〈g, v〉∂Ω = 0 ∀ v ∈ RM .

The original AW papers [24, 25] only treated the case of the elastic body clamped
everywhere on the boundary, i.e. |ΓN | = 0 with homogeneous displacement data
u0 ≡ 0. For the conforming element, it is possible to set the traction boundary
conditions on an edge e using only the DOFs associated with the closure of e, since
these uniquely determine the (projection onto P1(e;R2) of the) normal trace on e.
However, Carstensen et al. [61] identified (in particular, inhomogeneous) traction
conditions as a substantial practical difficulty associated with the AW elements, due
to delicate interdependence between DOFs at the boundary, which moreover depend
on the shape of the boundary at a given boundary vertex; they were able to enforce
them using nodal interpolation [59], Lagrange multipliers [61], or elimination of the
boundary DOFs by condensation [58]. When the boundary condition is mixed but
the traction data g is zero, the relevant trial and test space for the stress is

HΓN (div,Ω;S) = {τ ∈ H(div,Ω;S) | 〈τn, v〉ΓN = 0 ∀ v ∈ H1
0,ΓD

(Ω;R2)} (1.5.3)

[15]From this subsection onwards in this thesis, we switch to the usual convention that the unit
normal n to the boundary of Ω or a cell K is outward-pointing, simplifying arguments which employ
integration by parts.
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[40, Remark 2.1.3]. Wang [185, Lemma III.1] constructed an interpolant of Scott–
Zhang type which preserves the traction-free condition on ΓN under an elliptic reg-
ularity assumption, and which was used to prove a discrete inf-sup condition for
this case, but no details of the discrete enforcement of this condition were offered in
Pasciak and Wang’s application of AWc to the homogeneous pure traction problem
in [159].

There is no clear way to enforce the traction condition in either the Arnold–
Winther spaces or the weak formulation of Hellinger–Reissner. We therefore advocate
a simpler approach, employing the classical Nitsche’s method [154] to weakly enforce
the condition. There is little literature on the application of Nitsche’s method to the
enforcement of essential boundary conditions in dual mixed problems. Our approach
is similar to [52, 133] for the mixed Poisson problem; see also [171].

Given traction data g, we augment the Hellinger–Reissner functional (1.5.1) (with
div replaced by divh) over the discrete spaces Σh × Vh with a term incorporating
the traction condition (to ensure consistency, since we do not impose the condition
on the spaces), and a consistent, quadratic penalty term, seeking the critical point
(σh, uh) ∈ Σh × Vh of

Hh,γ(σh, uh) := Hh(σh, uh)−
∫

ΓN

rh · uh ds+
γ

2
δh(rh), (1.5.4)

where h denotes the characteristic mesh size, γ > 0 is an h-independent penalty
parameter, rh = σhn− g denotes the traction residual, and

δh(rh) :=
1

h

∫

ΓN

‖rh‖2 ds (1.5.5)

may be interpreted as a least-squares term penalising deviation from the traction
condition.

The exact traction satisfies σn = g in H−1/2(ΓN ;R2), but a penalty term δh

in terms of the dual norm in H−1/2(ΓN ;R2) would not aid the analysis, nor is it
practical to equivalently penalise the Riesz representative of rh in H

1/2
00 (ΓN ;R2), or

to work with the linearisation of such penalisations. To ensure consistency of the
L2(ΓN ;R2)-penalisation (1.5.5), we assume full elliptic regularity of the stress field by
assuming that the solution (σ, u) to (1.2.6) satisfies (σ, u) ∈ H1(Ω;S) × H2(Ω;R2),
and that g ∈ L2(ΓN ;R2). The latter assumption typically holds in practice for the
traction data (or some discrete approximation thereof), while the former holds in the
homogeneous isotropic case if Ω is a convex polygon and A is smooth.
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Remark 1.5.1. As already remarked, the exact displacement u satisfies an unmixed
primal formulation of linear elasticity for which u ∈ H1(Ω;R2), precisely the unmixed
weak form of the HL equation associated with this space in the strain complex, and
moreover in fact satisfies ε(u) ∈ H(div; S) when viewed as the solution to the strong
form. However, there is no gain in regularity for the stress field by passing to an
alternative formulation.

Remark 1.5.2. The natural choice of exponent for h in (1.5.5) is +1 and not −1,
by dimensionalisation and since we expect ‖rh‖2

0,ΓN
to converge one order slower

than ‖rh‖2
−1/2,ΓN

. However, the term with negative exponent is more naturally inter-
pretable as a penalisation, and was found to be more effective in preliminary numerical
experiments. This also informs the choice of discrete norms (1.5.8) below.

Convergence will be proved only for the AWc element, but a computational ex-
ample will be included also for AWnc.

Let Th denote a quasi-uniform triangulation of Ω, E◦h the set of its internal edges,
and Λh the set of its vertices.[16] Linearising the augmented functional (1.5.4) over
the AWc pair, we seek (σh, uh) ∈ Σh × Vh satisfying

ah,γ(σh, τh) + b(τh, uh) =

∫

ΓD

τhn · u0 ds+
γ

h

∫

ΓN

g · τhn ds ∀ τh ∈ Σh,

b(σh, vh) =

∫

Ω

f · vh dx−
∫

ΓN

g · vh ds ∀ vh ∈ Vh,
(1.5.6)

where
ah,γ(σh, τh) :=

∫

Ω

Aσh : τh dx+
γ

h

∫

ΓN

σhn · τhn ds,

b(τh, vh) :=

∫

Ω

(div τh) · vh dx−
∫

ΓN

τhn · vh ds.
(1.5.7)

Define the H1(Ω;S)×H1(Ω;R2)-based mesh-dependent norms

|||τh|||2h := ‖τh‖2
0,Ω +

1

h
‖τhn‖2

0,ΓN
, ‖vh‖2

h := ‖εh(vh)‖2
0 +

1

h

∑

e∈E◦h

‖[[vh]]‖2
0,e+

1

h
‖vh‖2

0,ΓD
,

(1.5.8)
where [[·]] on an interior edge e = ∂K ∩ ∂K ′ denotes the jump [[vh]] := vh|K − vh|K′ ,
and on an exterior edge e ⊆ ∂Ω denotes the identity. We now prove well-posedness of
the augmented discrete formulation (1.5.6) using the standard Brezzi conditions [40,
Section 4.2.3]. We take γ ≥ 1.

[16]We assume the edges of Th align with the partition ΓD ∪ ΓN , so that each external edge lies
entirely in one of these.
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Proposition 1.5.1. (Discrete well-posedness). The augmented Nitsche sys-
tem (1.5.6) is well-posed, uniformly in h, with respect to the norms (1.5.8).

Proof. There exists CA > 0 with
∫

Ω
Aτ : τ dx ≤ C2

A‖τ‖2
0,Ω ∀ τ ∈ L2(Ω;S). For

σh, τh ∈ Σh, vh ∈ Vh, we have

|ah,γ(σh, τh)| ≤ max{C2
A, γ}|||σh|||h|||τh|||h, (1.5.9)

and

b(τh, vh) = −
∫

ΓN

τhn · vh ds+
∑

K∈Th

∫

Ω

(div τh) · vh dx

=
∑

K

(∫

∂K

τhn · vh ds−
∫

K

ε(vh) : τh dx

)
−
∫

ΓN

τhn · vh ds

= −
∫

Ω

εh(vh) : τh dx+
∑

e∈E◦h

∫

e

τhn · [[vh]] ds+

∫

ΓD

τhn · vh ds,

(1.5.10)

so

|b(τh, vh)| ≤ ‖εh(vh)‖0‖τh‖0 +
∑

e∈E◦h

‖τhn‖0,e‖[[vh]]‖0,e + ‖τhn‖0,ΓD‖vh‖0,ΓD . (1.5.11)

By the scaling ‖τhn‖0,e . h−
1
2‖τh‖0,K ∀ e ⊆ ∂K, we obtain

|b(τh, vh)| . |||τh|||h‖vh‖h. (1.5.12)

Clearly, ah,γ is |||·|||h-coercive on all of Σh uniformly in h, provided γ ≥ 1. Now fix
0 6= uh ∈ Vh. Define τh ∈ Σh by the AWc DOFs

τh(x) = 0 ∀ x ∈ Λh, (1.5.13a)∫

e

τhn · wh ds =
1

h

∫

e

[[uh]] · wh ds ∀ e ∈ E◦h, ∀ e ⊆ ΓD, wh ∈ P1(e;R2), (1.5.13b)
∫

e

τhn · wh ds = 0 ∀ e ⊆ ΓN , wh ∈ P1(e;R2), (1.5.13c)
∫

K

τh : qh dx = −
∫

K

ε(uh) : qh dx ∀ K ∈ Th, qh ∈ P0(K;S) = S. (1.5.13d)

Choosing wh = [[uh]] ∈ P1(e;R2) in (1.5.13b), qh = ε(uh) ∈ S in (1.5.13d) gives
∫

e

τhn · [[uh]] ds =
1

h
‖[[uh]]‖2

0,e ∀ e ∈ E◦h,
∫

e

τhn · uh ds =
1

h
‖uh‖2

0,e ∀ e ⊆ ΓD,
∫

K

τh : ε(uh) dx = −‖ε(uh)‖2
0,K ∀ K ∈ Th.

(1.5.14)
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Using (1.5.10),

b(τh, uh) = −
∑

K

(
−‖ε(uh)‖2

0,K

)
+
∑

e∈E◦h

1

h
‖[[uh]]‖2

0,e +
∑

e⊆ΓD

1

h
‖uh‖2

0,e = ‖uh‖2
h. (1.5.15)

It remains to show that ‖uh‖h & |||τh|||h. For every e ⊆ ΓN , since the DOFs associ-
ated to an edge and its endpoints determine τhn on that edge, we have τhn = 0

by (1.5.13a), (1.5.13c), so it suffices to show ‖uh‖h & ‖τh‖0,Ω. By (1.5.13b),
(1.5.13d), we have πe(τhn) = 1

h
[[uh]], πK(τh) = −ε(uh) ∀ e ∈ E◦h, e ⊆ ΓD, K ∈ Th,

where πe : L2(e;R2) → P1(e;R2), πK : L2(K;S) → S are orthogonal projec-
tions. By equivalence of norms on Σ̂h on the reference cell K̂, we have ‖τ̂h‖2

0,K̂
.∑

vertices x̂∈K̂ |τ̂h(x̂)|2 +
∑

ê⊆∂K̂ ‖πê(τ̂ n̂)‖2
0,ê + ‖πK̂ τ̂‖2

0,K̂
, so by a scaling argument we

obtain ‖τh‖2
0,K .

∑
e⊆∂K

1
h
‖[[uh]]‖2

0,e + ‖ε(uh)‖2
0,K . This shows

inf
uh∈Vh

sup
τh∈Σh

b(τh, uh)

|||τh|||h‖uh‖h
& 1. (1.5.16)

Remark 1.5.3. In analogy with the RT spaces considered in [52, 133], we have the
useful equilibrium property div Σh ⊆ Vh, but in disanalogy we in general have
(Σh|e)n 6⊆ Vh|e on edges e.

For error estimation, we employ intermediate approximants Πhσ, Phu, where
Ph : L2(Ω;R2) → Vh denotes the orthogonal projection and Πh : H1(Ω;S) →
Σh denotes the Clément-like interpolation operator constructed by Arnold and
Winther [24], which enjoy the following approximation properties for all (τ, v) ∈
H1(Ω;S) × L2(Ω;R2): (i) div Πhτ = Ph div τ (as in a smoothed variant of
the commuting diagram (1.2.23)); (ii) (Πhτ)n = πe(τn) on all edges e; (iii)
‖τ − Πhτ‖0,Ω . hm‖τ‖m,Ω, 1 ≤ m ≤ 3; (iv) ‖v − Phv‖0,Ω . hm‖v‖m,Ω, 0 ≤ m ≤ 2.

Lemma 1.5.1. (Local approximation in H1). For each K ∈ Th and τ ∈ H2(Ω;S),
we have

‖τ − Πhτ‖1,K . h‖τ‖2,SK , (1.5.17)

where SK is a patch of cells neighbouring K such that {SK}K∈Th has the finite over-
lapping property

∑
SK ,K∈Th ‖ · ‖0,SK . ‖ · ‖0,Ω.

Proof. We adapt the proof of (iii) in [24], from which we recall that the error in Πh

may be written as I −Πh = (I −Π0
h)(I −Rh), where Rh : L2(Ω;S)→ Σh ∩H1(Ω;S)

is a Clément interpolant satisfying

‖τ −Rhτ‖j,K . hm−j‖τ‖m,SK , 0 ≤ j ≤ 1, j ≤ m ≤ 3, (1.5.18)
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and SK is a patch of the required form, and Π0
h : H1(Ω;S) → Σh is the canonical

interpolation operator except at the vertices, at which (Π0
hτ)(x) := 0 ∀ x ∈ Λh. It

is easily checked that Π0
K̂
, the restriction of Π0

h to a single cell K̂, is bounded from
H1(K̂;S) to Hr(K̂;S) for all r ≥ 0; choosing r = 1, by a scaling argument we obtain
‖Π0

Kτ‖1,K . h−1‖τ‖0,K + ‖τ‖1,K , so

‖Π0
h(I −Rh)τ‖1,K . h−1‖(I −Rh)τ‖0,K + ‖(I −Rh)τ‖1,K . h‖τ‖2,SK , (1.5.19)

which gives the result when combined with (1.5.18).

We make an additional regularity assumption on the stress field for error analysis.

Proposition 1.5.2. (Convergence of stress in L2). Let (σ, u) ∈ H2(Ω;S)×H2(Ω;R2).
We have the error estimate

‖σ − σh‖0 . h(γ‖σ‖2,Ω + ‖u‖2,Ω). (1.5.20)

In particular, we expect the traction residual to converge as ‖σhn− g‖0,ΓN = O(h
1
2 ).

Proof. By the Babuška condition associated with the well-posed system (1.5.6),
applied to (σh − Πhσ, uh − Phu) ∈ Σh × Vh, there are (τh, vh) ∈ Σh × Vh with
|||τh|||h + ‖vh‖h ≤ 1 and

|||σh − Πhσ|||h + ‖uh − Phu‖h . ah,γ(σh −Πhσ, τh) + b(τh, uh − Phu) + b(σh −Πhσ, vh)

(1.5.21)
which by consistency of the system (1.5.6) is equal to

ah,γ(σ − Πhσ, τh) + b(τh, u− Phu) + b(σ − Πhσ, vh)

= ah,γ(σ − Πhσ, τh)−
∫

ΓN

τhn · (u− Phu) ds using (i), (ii)

=

∫

Ω

A(σ − Πhσ) : τh dx+
γ

h

∫

ΓN

(σ − Πhσ)n · τhn ds
︸ ︷︷ ︸

(∗)

−
∫

ΓN

τhn · (u− Phu) ds

= (†).
(1.5.22)

By (ii), the term (∗) would vanish were it not for Remark 1.5.3. Employing mul-
tiplicative trace inequalities, approximation properties of Ph, and Lemma 1.5.1, we
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have

(†) . ‖σ − Πhσ‖0‖τh‖0 + ‖τh‖0,ΓN

(γ
h
‖(σ − Πhσ)n‖0,ΓN + ‖u− Phu‖0,ΓN

)

. h2‖σ‖2,Ω + h
1
2

∑

e⊆ΓN

(γ
h
‖σ − Πhσ‖0,e + ‖u− Phu‖0,e

)

. h2‖σ‖2,Ω + h
1
2

∑

K

(γ
h
‖σ − Πhσ‖

1
2
0,K‖σ − Πhσ‖

1
2
1,K + ‖u− Phu‖

1
2
0,K‖u− Phu‖

1
2
1,K

)

. h2‖σ‖2,Ω + h
1
2

(γ
h
h‖σ‖

1
2
1,Ωh

1
2‖σ‖2,Ω + h‖u‖

1
2
2,Ωh

1
2‖u‖

1
2
2,Ω

)

= h2‖σ‖2,Ω + γh‖σ‖2,Ω + h2‖u‖2,Ω,
(1.5.23)

so

‖σ − σh‖0 ≤ ‖σ − Πhσ‖0 + ‖σh − Πhσ‖0 . h2‖σ‖2 + |||σh − Πhσ|||h + ‖uh − Phu‖h
. h2‖σ‖2 + γh‖σ‖2 + h2‖u‖2.

(1.5.24)

1.6 An exterior calculus perspective

In this section, we consider the application of FEEC to Piola transformation theory,
and to the construction of multigrid smoothers.

1.6.1 Uniform construction of the pullbacks

The Piola transforms (1.3.5)–(1.3.8) may be regarded as the analogy of the standard
pullback (1.3.3) for H(div)- and H(curl)-based spaces, but in fact the pullbacks may
be defined uniformly in a manner guided by the FEEC [138, p. 35], [12, Section 6.2.5];
we here employ terminology for which we refer the reader to [12, Ch. 6].[17]

Let us regard the physical and reference cells K, K̂ as submanifolds of dimension d
in Rd, with F : K̂ → K a diffeomorphism. Denote by Altk Rd the space of alternating
k-linear forms on Rd, and for M ∈ {K, K̂} let Λk(M) denote the space of differential
k-forms on M , of which functions in the Sobolev spaces we consider will be scalar,
vector, and tensor proxies, and the operators of vector calculus will be proxies for
the exterior derivative d : Λk → Λk+1. Scalar fields may be identified with 0-forms
or d-forms, and vector fields with 1-forms or (d − 1)-forms. We may specify L2-
integrability of differential form coefficients with L2Λk(Ω) := L2(Ω; Altk Rd); Sobolev

[17]We remark that much of the literature employing Piola transforms does little to motivate their
definition, beyond stating the consequences of the definitions.
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spaces of differential forms may be defined as HΛk := {ω ∈ L2Λk | dω ∈ L2Λk+1},
and correspond to the conventional spaces of vector calculus via HΛ0 ' H1, HΛ1 '
H(curl), HΛd−1 ' H(div), and HΛd ' L2.[18]

An elastic stress field T on M may naturally be identified with an (Altd−1 Rd)-
valued (d− 1)-form τ ∈ Λd−1(M ; Altd−1 Rd), which by the proxy of Rd for Altd−1 Rd

may be identified with Λd−1(M ;Rd), since when integrated over a codimension-1 sub-
manifold (such as the boundary of a subdomain), it should give a vector representing
force [19][96, p. 618]. Applying the Hodge star gives an element ?τ ∈ Λ1(M ;Rd),
i.e. a linear map Rd → Rd (hence, a matrix) at every point of M , which is the classi-
cal characterisation of stress. Alternatively, T may be identified with a (symmetric)
covariant 2-tensor field in Λ1(M ; Alt1 Rd), which to each point assigns a (symmetric)
bilinear form on Rd [138, p. 10].

Given ω̂ ∈ Λk(K̂), the derivative of the inverse diffeomorphism J−1(x) = (F−1)′(x)

at x ∈ K induces an element ω = J−∗ω̂ ∈ Λk(K) pointwise via (J−∗ω̂)x :=

J−1(x)∗ω̂F−1(x), the pullback of ω̂ under F−1, where ∗ denotes the algebraic pull-
back of a linear map L : Rd → Rd given by L∗η(v1, . . . , vk) := η(Lv1, . . . , Lvk) for
η ∈ ΛK(M), vi ∈ Rd. For scalar fields representing 0-forms ω̂ ∈ HΛ0(K̂) (i.e. a con-
stant map at each point), the scalar proxy for the resulting 0-form ω is easily seen to
be given simply by precomposition with F−1, because (J−∗ω̂)x = ω̂F−1(x), which for
the proxy gives exactly the standard pullback (1.3.3). For a vector field ŵ represent-
ing a 1-form ω̂ ∈ HΛ1(K̂), the canonical identification is ω̂ =

∑d
i=1 ŵidx̂i, so that

ω̂x̂(v) = ŵ(x̂) · v (i.e. ŵ is the pointwise Riesz representative of ω̂), so

(J−∗ω̂)x(v) = ω̂F−1(x)(J
−1(x)v) = ŵ(F−1(x)) · (J−1(x)v) = (J−>(x)ŵ(F−1(x))) · v,

(1.6.1)
hence the transformed proxy is given by F curl(ŵ). A vector field ŵ can alternatively
represent a (d− 1)-form via

ω̂x̂(v1, . . . , vd−1) = det[ŵ(x̂)|v1| . . . |vd−1] =:
d∑

i=1

ŵi(x̂)φi(v1, . . . , vd−1)

= ŵ(x̂) · φ(v1, . . . , vd−1),

(1.6.2)

for which

(J−∗ω̂)x(v1, . . . , vd−1) = det[ŵ(F−1(x))|J−1v1| . . . |J−1vd−1]

= det(J−1) det[Jŵ(F−1(x))|v1| . . . |vd−1]

= det[Fdiv(ŵ)(x)|v1| . . . |vd−1].

(1.6.3)

[18]We already employ Rd as a proxy for the tangent spaces {TxM}x∈M on which the alternating
forms are defined.

43



F. R. A. Aznaran Derivation of the Piola maps

The derivation of the tensor transforms are analogous; a (symmetric) covariant 2-
tensor field τ̂ ∈ Λ1(K̂; Alt1 Rd) has as proxy a (symmetric) matrix field T̂ via the iden-
tification τ̂x̂(v1, v2) = v>1 T̂ (x̂)v2, so that (J−∗τ̂)x(v1, v2) = v>1 J

−>T̂ (F−1(x))J−1v2 =

v>1 F curl,curl(T̂ )(x)v2.
We now provide a novel derivation of the double contravariant Piola map (1.3.6).

A (symmetric) matrix field T̂ may instead serve as a proxy for a (symmetric) form
τ̂ ∈ Λd−1(K̂; Altd−1 Rd) via the identification

τ̂x̂(v1, . . . , vd−1)(z1, . . . , zd−1) = φ(v1, . . . , vd−1)>T̂ (x̂)φ(z1, . . . , zd−1), (1.6.4)

where φ is defined by (1.6.2).[19] By definition of φ it is easily checked that
φ(J−1v1, . . . , J

−1vd−1) = 1
det J

J>φ(v1, . . . , vd−1), and hence

(J−∗τ̂)x(v1, . . . , vd−1)(z1, . . . , zd−1)

= φ(J−1v1, . . . , J
−1vd−1)>T̂ (F−1(x))φ(J−1z1, . . . , zd−1)

= φ(v1, . . . , vd−1)>Fdiv,div(T̂ )(x)φ(z1, . . . , zd−1).

(1.6.5)

Note that neither tensor transform is given by the row-wise application of the corre-
sponding vector transform.

We hereafter assume that J is spatially constant, so that the pullback commutes
with the exterior derivative. In this case, a crucial property is that moments of the
exterior derivatives against appropriate fields are preserved, a primary motivation for
the use of the Piola pullbacks in mixed finite elements [40, Lemmas 2.1.6, 2.1.9]. Let
ω ∈ HΛk(K), µ ∈ HΛd−k−1(K) with pullbacks ω̂, µ̂, then since the pullback respects
the exterior product and commutes with the exterior derivative,
∫

K

µ∧dω =

∫

K

J−∗µ̂∧dJ−∗ω̂ =

∫

K

J−∗µ̂∧J−∗dω̂ =

∫

K

J−∗(µ̂∧dω̂) = ±
∫

K̂

µ̂∧dω̂.

(1.6.6)
Note that since we have chosen to allow F to reverse orientation, in general the
moment preservation (1.6.6) will only be up to sign. By Stokes’ theorem, it also
follows that ∫

∂K

µ ∧ ω = ±
∫

∂K̂

µ̂ ∧ ω̂, (1.6.7)

where the boundary integrands are meant in the trace sense.
Combining these identities with the characterisation of constrained finite element

spaces by kernels of constraint functionals, as in §1.4.4, also allows for a more elegant
[19]While the paper [28] corresponding to this chapter was under review, the preprint [64] was

released, which offers a framework for identifying the (alternating-form-valued) differential forms to
which tensor-valued functions are proxy; our formula (1.6.4) for H(div;S) functions coincides (up
to signs of terms) with the identification proposed in [64, p. 18].
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verification of their preservation by the Piola maps; the constraints on the divergence
of the AWc element is preserved in light of (1.6.6), while the preservation of boundary
constraints follows from the identity (1.6.7) applied to appropriate L2(∂K)-orthogonal
polynomials, as constructed e.g. in [155, Section 3].[20]

That the pullback commutes with the exterior derivative also implies the preser-
vation of the kernel of the operators defining the spaces, a property implicit in the
classical presentation of the Piola operators (e.g. [149, Section 3.9]). For example, if
K, K̂ ⊆ R2 (respectively, R3), note that if φ̂ ∈ H1(K̂) and φ ∈ H1(K) is its stan-
dard pullback given by (1.3.3), then by the chain rule we have ∇φ = J−>∇̂φ̂. Since
rot∇ ≡ 0 (resp. curl∇ ≡ 0), certainly both ∇̂φ̂ ∈ H(rot, K̂) (resp. H(curl, K̂))
and ∇φ ∈ H(rot, K) (resp. H(curl, K)), and the covariant map (1.3.7) “transform[s]
vectors of H(curl; Ω) like gradients” [40, p. 61], which, on simply connected domains,
form the kernel of rot or curl by exactness of an appropriate de Rham sequence; hence

ker(rot) = F curl
(

ker
(

r̂ot
))

in 2D and ker(curl) = F curl
(

ker
(

ĉurl
))

in 3D.
(1.6.8)

Analogously, by a direct computation,

curlφ =
1

det J
J ĉurl φ̂, (1.6.9)

which is reflected in (1.3.5).
We now extend the discussion in [149, Section 3.9] to the tensor-valued case in

2D. For the matrix-valued curl of a vector field in 2D,

curl v :=



∂v1

∂y
−∂v1

∂x
∂v2

∂y
−∂v2

∂x


 , (1.6.10)

we have
curl v =

1

det J
ĉurl v̂ J>. (1.6.11)

Then, recalling that airy = curl curl, we have for φ̂ ∈ H2(K̂) with pullback φ ∈
H2(K) that

airy φ =
1

(det J)2
J
(

âiry φ̂
)
J> = Fdiv,div

(
âiryφ̂

)
, (1.6.12)

so by exactness of the 2D stress complex (1.2.23), we obtain that ker(div) =

Fdiv,div(ker(d̂iv)). Similarly, for the rot of a symmetric matrix field applied row-
wise, we calculate that ∇2φ = F curl,curl(∇̂2φ̂), where ∇2H2 forms the kernel of rot on
H(rot;S) by exactness of the 2D Hessian complex (e.g. [161, Remark 3.16]).

[20]The calculation for the divergence of τ̂ in the first half of §1.4.4 also reduces to the observation
that the pullback commutes with the exterior derivative and preserves polynomial degree.
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This observation of kernel preservation may also be connected to the (albeit triv-
ial) topologies of K and K̂: the pullbacks are isomorphisms between appropriate
complexes on K and K̂, which moreover commute with d, hence are cochain maps
which preserve the cohomology of each domain.[21][22]

1.6.2 Kernel-capturing and robust multigrid

It is now well-established that the characterisation of the kernels of discretised differ-
ential operators is crucial for the design of robust multigrid schemes [18, 89, 90, 169];
for AW-type elements, this is given precisely by their positions in the discrete exact
complex (1.2.23), as we now explain. We describe multigrid relaxation in the frame-
work of subspace correction methods [188]. Given a finite-dimensional Hilbert space
V of functions on a mesh, consider a decomposition

V =
∑

i

Vi, (1.6.13)

where the sum need not be direct. The variational problem to be solved over V often
takes the form of a symmetric, coercive operator, perturbed by a positive semidefinite
singular operator (such as a discretised divergence) which is scaled by some parameter
α > 0, a physical or penalty parameter which, as it increases, renders the problem
difficult to solve. The seminal work of Schöberl [169, Theorem 4.1] revealed sufficient
conditions for α-robustness of the parallel subspace correction preconditioner induced
by the decomposition (1.6.13); a key insight is that, if N denotes the kernel of the

[21]One may naïvely relate some properties of the transformation F−1 to properties of the coor-
dinate transformation from reference to deformed configurations in (hyper)elasticity. If ρ : Ω0 → Ω
denotes the deformation from current to reference configurations and σ denotes the Cauchy (or
‘true’) stress, which is over the deformed configuration, then the first Piola–Kirchhoff stress
over the reference configuration (measuring the force per unit undeformed area) is given by
T := det(∇ρ)σ(∇ρ)−>. The definition of the second Piola–Kirchhoff stress is typically motivated
by wishing to work with a symmetric tensor [9, p. 439][46, p. 283][118, p. 219]:

Σ := det(∇ρ)(∇ρ)−1σ(∇ρ)−>.

Thus, viewing F−1 as an elastic deformation from physical to reference cell, then up to scale factor,
the tensor Piola map (1.3.6) is formally equivalent to symmetrising the first Piola–Kirchhoff stress as
above. Such guesswork may have been the historical origins of the transformation formulae (1.3.5)–
(1.3.8).

[22]Identification of the tensor to which given Sobolev functions are proxy is useful for applying the
correct notion of pullback, but for the purpose of standard finite element computations, in the end,
the mesh is always a subset of standard Euclidean space, with one globally defined coordinate chart.
To the author’s knowledge, no existing FEM libraries allow for the coordinate-free construction of
finite element spaces.
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singular operator, the subspaces should satisfy the kernel-capturing property

N =
∑

i

(Vi ∩N ). (1.6.14)

For an H(div)-based space V such as the AW stress space in the elasticity com-
plex (1.2.23), one choice of relaxation method is given by the vertex star iteration [92],
which is induced by the subspaces

Vi = {v ∈ V | supp(v) ⊆ Ki}, (1.6.15)

where Ki denotes the patch of cells in the mesh sharing vertex i. In abstract notation,
given v ∈ V with div v = 0, where now V = Σh denotes one of the canonical AW
spaces, by exactness of the associated discrete complex when Ω is simply connected,
we may write Cφ = v for some potential φ ∈ W , where (W, C) = (Qh, airyh). Let
now {φi}i denote a basis for W , and write φ =

∑
i ciφi. Then a divergence-free

decomposition of v is given by vi = ciCφi, since v =
∑

i vi and vi ∈ N for each i, so
it suffices to find subspaces Vi with Cφi ∈ Vi for each i. That the vertex star (1.6.15)
fulfils this property follows from inspection of the basis functions of W .

Schöberl’s hypotheses also require that the splitting (1.6.13) be stable in the V -
norm and that the kernel splitting (1.6.14) be stable in the energy norm induced by the
Galerkin projection of the coercive form, which does not follow automatically from
the exactness of the discrete complex; typically, such bounds hold for the infinite-
dimensional spaces, and hold also for the discrete complex if bounded commuting
projections exist.

1.7 Multigrid for the Hellinger–Riessner system

To demonstrate the effectiveness of our mapping techniques in practical numerical
simulations, it is necessary to consider preconditioners for the partial differential
equations discretised by the AW elements, and to exhibit composability of our im-
plementation with the associated software stack [131]. As indicated in the previous
subsection, the application of patch-based multigrid smoothers is natural for the
H(div; S)-discretising elements we consider in this chapter.

Building on the work of Benzi and Olshanskii [37], Schöberl [169], and Hong
et al. [115, 116] among others, Farrell and coauthors have successfully developed
parameter- and mesh-robust preconditioners of augmented Lagrangian (AL) type,
with specialised multigrid algorithms, for a host of nonlinear PDEs with saddle point
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structure [86–88, 90–92, 135, 187]; we illustrate the AL method for AW elements. It
consists of augmenting the Hellinger–Reissner Lagrangian (1.5.1) with a penalty term

Hh,α(σ, u) := Hh(σ, u) +
α

2

∫

Ω

‖ divh σ − f‖2 dx (1.7.1)

for α ≥ 0. The AL term penalises deviation from the set constrained by the momen-
tum balance (1.2.7b), but does not change the exact solution. Its more significant
benefit is that it allows the control of the Schur complement of the discretised sys-
tem, as we now explain. The stationarity condition of the augmented energy (1.7.1)
gives rise to a saddle point system for the stress-displacement pair, which, by a block
factorisation, admits the well-known solution formula [36, Eq. 3.1]

(
Aα B>

B

)−1

=

(
I −A−1

α B>

I

)(
A−1
α

S−1
α

)(
I

−BA−1
α I

)
, (1.7.2)

whereA,B>, B are discrete compliance, symmetric gradient, and divergence operators
respectively, S = −BA−1B> is the (in general, dense) Schur complement, and the
subscript α denotes the same quantities but of the augmented system (so that A0 = A

etc.). We wish to precondition this system for GMRES Krylov iterations. In analogy
to the velocity-pressure Stokes problem, for which the Schur complement is spectrally
equivalent to the viscosity-weighted pressure mass matrix [172], it can be shown
(denoting by Mu the displacement mass matrix) that

S̃−1 := −αM−1
u ∼ S−1

α (1.7.3)

serves as an approximate inverse to the augmented Schur complement, at least for
fixed mesh size, with the approximation improving as α → ∞. Preconditioning
the Schur complement with (1.7.3) is however in tradeoff with the augmented stress
solve A−1

α ; the AL term in Aα has a large kernel consisting of the infinite-dimensional
affine space of tensor fields with divergence f , rendering standard multigrid relaxation
schemes ineffective. We propose the vertex star relaxation as an α-robust multigrid
algorithm for this block.

Remark 1.7.1. Both the AWc and AWnc are non-nested under uniform refinement (in
particular giving rise to non-nested bilinear forms); we employed the default prolonga-
tion operator of Firedrake, which involves (i) lossless projection of the coarse function
onto a DG space of the same degree, (ii) lossless natural injection of the coarse projec-
tion, from the coarse grid to the fine DG space, (iii) projection from the fine DG space
to the fine finite element space. Based on the success of the AL techniques described
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in §1.7, we conjecture that multigrid convergence behaviour observed in §1.8 may be
improved by the construction of specialised prolongation operators for each element
which preserve, at least approximately, the kernel of the discrete divergence, in the
style of [91, 92], this being the other component of the parameter-robust multigrid
framework of Schöberl.

Remark 1.7.2. Let τh ∈ AWc(K) denote a local AWc basis function dual to a vertex
DOF for a given cell K. Because all other nodes vanish at τh, its full normal com-
ponent vanishes along each edge, and its components have vanishing mean. Since
ε(div τh) is a constant matrix,

‖ div τh‖0,K =

∫

∂K

(τhn) · (div τh) ds−
∫

K

τh : ε(div τh)dx = 0; (1.7.4)

thus, compared to AWnc, the nodal AWc basis functions arising from the ‘extra’
vertex DOFs contribute only to the divergence-free subspace. It follows that similar
multigrid transfer operators may work well for both these elements.

1.8 Numerical examples

For the case of affine rather than Piola transformations, the inclusion of this theory
into the Firedrake code stack was described in [132], and since this stack already
understands Piola transformation the process is quite analogous. We must imple-
ment each new reference element in FIAT [129] and wrap it into FInAT [112]. The
FInAT wrapper also requires a function to construct abstract syntax for the basis
transformation in terms of callbacks provided by the form compiler to obtain sym-
bols for geometric quantities such as Jacobians, and physical and reference normal
and tangent vectors. The new elements must also be registered with UFL [1] and
tsfc [113]. We now consider several test problems to validate our implementation
and demonstrate its capabilities.

Linear systems in the manufactured solution examples, and on the coarsest grid
in the multigrid examples, were solved by sparse LU factorisation with MUMPS [3]
via PETSc [32].

1.8.1 Manufactured solutions

We now consider the canonical Hellinger–Reissner problem (1.5.2) and verify the
convergence results proved by Arnold and Winther [24, Theorem 5.1][25, Theorem
4.1], summarised in Table 1.1. The approximation order m varies because in some
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cases, higher-order convergence may be obtained if the exact solution pair admits
improved Sobolev regularity.

Variable AWc AWnc

σ 1 ≤ m ≤ 3 1
div σ 0 ≤ m ≤ 2 0 ≤ m ≤ 2
u 1 ≤ m ≤ 2 1

Table 1.1: Ranges of approximation order m by the AW elements of the elasticity
variables in the L2-norm.

Figure 1.6: A warped mesh employed to check convergence under refinement.

On the unit square Ω = (0, 1)2, we consider the displacement from Bramwell et
al. [47]: u(x, y) = (sin(πx) sin(πy), sin(πx) sin(πy))>, which satisfies an unphysical
homogeneous boundary condition, and the stress field

σ(x, y) =

(
cos(πx) cos(3πy) y + 2 cos(π

2
x)

y + 2 cos(π
2
x) − sin(3πx) cos(2πx)

)
. (1.8.1)

In order to show that the mapping techniques apply on general unstructured meshes,
we perturb the interior vertices of the coarsest mesh as pictured in Figure 1.6; further
refinements are obtained uniformly. In Tables 1.2 and 1.3, we check the experimental
orders of convergence (EOCs) of AWnc in the L2-norms in the incompressible limit
ν ↗ 1

2
:
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N u error u EOC σ error σ EOC divh(σ) error divh(σ) EOC

20 1.05×10−1 – 5.51×10−1 – 8.32×10−1 –
21 2.78×10−2 1.91 2.54×10−2 1.12 2.68×10−1 1.64
22 7.07×10−3 1.98 1.18×10−1 1.10 7.15×10−2 1.91
23 1.77×10−3 2.00 5.76×10−2 1.04 1.82×10−2 1.98
24 4.43×10−4 2.00 2.85×10−2 1.02 4.56×10−3 1.99
25 1.11×10−4 2.00 1.42×10−2 1.00 1.14×10−3 2.00

Table 1.2: Errors and convergence rates in the L2-norms using AWnc for the model
problem (1.5.2), with ν = 0.25, µ = 1. Here and below, N denotes the uniform
refinement factor with respect to the original mesh.

N u error u EOC σ error σ EOC divh(σ) error divh(σ) EOC

20 1.05×10−1 – 6.53×10−1 – 8.32×10−1 –
21 2.78×10−2 1.91 3.07×10−1 1.09 2.68×10−1 1.64
22 7.05×10−3 1.98 1.49×10−1 1.04 7.15×10−2 1.91
23 1.77×10−3 2.00 7.38×10−2 1.02 1.82×10−2 1.98
24 4.42×10−4 2.00 3.66×10−2 1.01 4.56×10−3 1.99
25 1.11×10−4 2.00 1.83×10−2 1.00 1.14×10−3 2.00

Table 1.3: Errors and convergence rates with AWnc near the incompressible limit
ν = 0.4999999, µ = 1.

Note that the observed order of convergence in the displacement is one higher than
proved, but 2nd-order convergence for the displacement is proved for the 3D analogue
of AWnc, the nonconforming Arnold–Awanou–Winther element [15], by applying a
duality argument in the case of full elliptic regularity (σ, u) ∈ H1(Ω;S)×H2(Ω;Rd).

Tables 1.4–1.5 exhibit convergence behaviour of the AWc element, applied to
u(x, y) = (−esin(π

2
y), 3 cos(πx))>, and exact stress σ = Cε(u).

N u error u EOC σ error σ EOC div(σ) error div(σ) EOC

20 1.50×10−1 – 1.16×101 – 1.47×100 –
21 3.81×10−2 1.97 1.60×10−2 2.85 3.75×10−1 1.97
22 9.57×10−3 1.99 2.09×10−3 2.94 9.44×10−2 1.99
23 2.40×10−3 2.00 2.65×10−4 2.98 2.36×10−2 2.00
24 5.99×10−4 2.00 3.34×10−5 2.99 5.91×10−3 2.00
25 1.50×10−4 2.00 4.19×10−6 3.00 1.48×10−3 2.00

Table 1.4: Errors and convergence rates using AWc with ν = 0.25, µ = 1.
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N u error u EOC σ error σ EOC div(σ) error div(σ) EOC

20 1.49×10−1 – 1.70×10−1 – 1.47×100 –
21 3.81×10−2 1.97 1.99×10−2 3.09 3.75×10−1 1.97
22 9.57×10−3 1.99 2.31×10−3 3.12 9.44×10−2 1.99
23 2.40×10−3 2.00 2.80×10−4 3.05 2.36×10−2 2.00
24 5.99×10−4 2.00 3.46×10−5 3.01 5.91×10−3 2.00
25 1.50×10−4 2.00 4.32×10−6 3.00 1.48×10−3 2.00

Table 1.5: AWc near the incompressible limit ν = 0.4999999, µ = 1.

We manifestly see robustness in the incompressible regime for both elements. The
comparative magnitudes of the errors show that the AWc element provides a markedly
more accurate approximation to the stress field. Note also that convergence behaviour
in the divergence of the stress is the same for both elements, since their divergences
have the same degree; this is also consistent with the ‘extra’ AWc vertex basis func-
tions being solenoidal as observed in Remark 1.7.2.

1.8.2 Li, 2018

Having validated both AW elements, we consider a more complex example, which
moreover includes traction conditions, from the PhD thesis of Li [138, p. 111], who
proposed and implemented the generalised Regge element which we shall study in §3.
The domain, pictured in Figure 1.7, consists of the rectangle Ω = [0, 3] × [0, 1] with
three disks removed, occupied by a material assumed to be isotropic and homogeneous
with ν = 0.2 and Young’s modulus E = 10:

Figure 1.7: Domain with a coarser initial mesh than that employed in [138] so that
multigrid may be performed.
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Figure 1.8: A traction-free condition, except at both ends.

The prescribed displacement is fixed (0, 0)> at the left-hand end and compressed
(−1, 0)> at the right end, which together form ΓD, with a stress-free condition σn = 0

on ΓN = ∂Ω \ ΓD given by the top, bottom, and the boundaries of the holes; there is
no external force f . We combine the Nitsche and augmented Lagrangian penalties,
seeking critical points (σh, uh) of

Hh,γ,α(σh, uh) := Hh,γ(σh, uh) +
α

2

∫

Ω

‖ divh σh‖2dx. (1.8.2)

This was carried out with residual `2-norm tolerance 10−9 for the outermost Krylov
iterations.[23] Table 1.6 exhibits the behaviour of GMRES for AWc, with multi-
grid for the augmented stress block employing vertex star relaxation with Cheby-
shev smoother on each multigrid level, with fixed Nitsche and AL parameters
γ = 100, α = 1. We verify in Figure 1.8, which is coloured by the size of the shear
stress ‖ dev σh‖, that the AWc solution on the finest mesh, with almost five million
degrees of freedom, is free from numerical artifacts. Figure 1.9 shows convergence
of the traction residual to zero in L2(ΓN ;R2) as h → 0 using AWc with α = 1,
and AWnc (using LU factorisation) with α = 0 respectively, for various values of the
Nitsche parameter γ. Although we have proved convergence of the Nitsche penalty
for any γ ≥ 1, in practice we find the solver most effective at γ = O(100), and that
increasing γ further will enforce the traction condition more strongly (if desired), at
the cost of a more ill-conditioned system. Note that due to the equilibrium relation
div Σh ⊆ Vh for both AW elements, the unpenalised AW method (1.5.2) will exactly
enforce a divergence-free stress in the absence of an external force; this is no longer
the case for the Nitsche scheme (1.5.6), but the divergence of the stress fields was
found to be acceptably small even for α = O(1).

[23]Due to the Nitsche boundary terms, which at time of writing cannot be treated with the
PCPATCH [89] implementation of the vertex star relaxation, the application of the vertex star neces-
sitated the use of PCASM.
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N DOFs Krylov iterations

21 2.01×104 12
22 7.90×104 12
23 3.13×105 12
24 1.25×106 12
25 4.98×106 11

Table 1.6: Moderate and approximately constant outer Krylov iteration counts for
the solution of (1.2.7) with the AWc element, after preconditioning via the vertex star
relaxation described in §1.6.2.
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Figure 1.9: Convergence to the traction-free condition in L2(ΓN ;R2) for the conform-
ing and nonconforming AW elements, with and without AL penalisation respectively.

The observed order of convergence for the traction residual in Figure 1.9 is higher
than that predicted by Proposition 1.5.2, which itself makes an artificial regularity
assumption on the stress field, and which we therefore conjecture could be improved,
for example via duality arguments.

Remark 1.8.1. The unpenalised Hodge Laplace problem (1.0.5) is ill-posed on the
choice of Ω in Figure 1.7, which is not simply connected, implying nonexactness of the
stress complex and nontriviality of the kernel of the HL operator, the harmonic forms
L2(Ω;R2)/(divHΓN (div;S)) ' ker(ε;H1

ΓD
(Ω;R2); this is consistent with (unreported)

divergent numerical results in the case γ = α = 0. The Nitsche penalisation (1.5.5)
thus has the incidental effect of regularising the problem to exclude this nullspace.
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The conforming and nonconforming Arnold–Winther elements, with the modifi-
cations suggested by §1.4.3, were incorporated into the main branch of the publicly
available Firedrake library as part of this work.[24][25]

How did you find this?

[24]For reproducibility, the exact software versions used to generate the numerical results in this
chapter are archived at https://zenodo.org/record/5596313 [191]; the code, and scripts for the
associated plots, are available at https://bitbucket.org/FAznaran/piola-mapped.

[25]Acknowledgements. The author is grateful to Kaibo Hu for comments on §1.6.1, and to the
two anonymous referees of [28] for their valuable suggestions.
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Chapter 2

Application to linear irreversible
thermodynamics

In the previous chapter, our emphasis was on abstract transformation theory and
the broader goals of software automation and composability; the actual linear elas-
tic PDE (1.2.7) solved was of importance, but decidedly classical. However, recall
that one of our motivations was the fact that symmetric stress tensor fields often
arise in continuum mechanics not only as variables of interest in their own right,
but as coupling variables for other physical phenomena. We now demonstrate this
in thorough detail by applying our stress element implementations to the nonlin-
ear Onsager–Stefan–Maxwell (OSM) equations governing the molecular diffusion of
single-phase multicomponent fluids, which we couple with compressible Stokes flow
in stress-velocity-pressure form, in order to incorporate momentum into multicompo-
nent flow in the steady state. The compressible Stokes system is essentially equivalent
to the load Hodge Laplacian (1.0.5) in mixed weak form, by replacing the elastic dis-
placement field with the fluid velocity and the full Cauchy stress with the viscous
stress.

This chapter is structured as follows. In §2.1 we discuss the thermodynamic
framework, the coupling, and relevant literature. In §2.2, we derive a novel variational
formulation of the fully coupled nonlinear Stokes–Onsager–Stefan–Maxwell system,
for which a linearisation is proposed and proved to be well-posed under physically
reasonable assumptions in §2.3. We identify a structure-preserving discretisation of
this linearisation in §2.4, and prove its convergence. The full scheme is validated
numerically in §2.5, and illustrated with the simulation of the microfluidic mixing of
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benzene and cyclohexane.[26]

2.1 Overview of the Stokes–Onsager–Stefan–
Maxwell system

It is easy to motivate the numerical simulation of molecular diffusion due to its ubiq-
uity as a mode of mass transport in physical processes on which we rely every day.
If you are reading this on a portable device, then its LCD screen is powered by the
energy differential occurring when lithium ions, migrating across a circuit in a manner
described approximately by the OSM PDEs, undergo redox reactions at the anodes
of battery cells. The broader field of battery electrochemistry plays an increasingly
central role in modern concerns about the energy industry and the sustainability of
major industrial processes. The same mathematical framework extended to incorpo-
rate thermodiffusive effects can be used to model the Haber–Bosch process for ammo-
nia synthesis, the main enabler of fertiliser manufacture, which accounts for around
2% of all energy consumption worldwide [93]. Besides such well-known applications
of molecular diffusion as battery electrochemistry and chemical reactor design, the
OSM equations for multispecies transport which we will describe, and related models,
also encompass phenomena ranging from the circulation of gaseous mixtures in the
lungs [44] and the desalination of seawater [99], to the enrichment of weapons-grade
uranium isotopes [142].

Despite the wide applicability of OSM-like systems in practical industrial appli-
cations, they do not frequently appear in the playgrounds of continuum mechanics in
which most numerical analysis is traditionally done; consequently, in this chapter we
are able (at least for our choice of formulation) to both ask and answer fundamental
questions – concerning linearisations, well-posedness, Galerkin discretisation, error
estimates, and even the correct choice of Sobolev space in which to take different
fields – for the very first time.

2.1.1 Convection-diffusion in multicomponent flows

The fluids mentioned above in our motivations are all united in consisting of mixtures
of multiple species. In many physical applications, such as the flow of air (and its many

[26]Declaration. The work of this chapter was done in collaboration with fellow DPhil candidate
A. J. Van-Brunt, who is primarily responsible for the proof of Lemma 2.3.1 and the numerical code,
plot generation, and (omitted) nondimensionalisation used for §2.5. The current author is primarily
responsible for §2.2.1, the spaces and estimates introduced in §2.2.2, and the discussion concerning
diagram (2.4.4); the rest is joint work.
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constituents) over an aircraft wing, there is no special need to track the motions of
each of these individual species. In this chapter, we are interested in scenarios where,
on the contrary, it is important to resolve the motions of individual species, whose
behaviour may in general greatly differ; we describe this situation as amulticomponent
flow, where a fluid is composed of n ≥ 2 distinct chemical species occupying a common
thermodynamic phase.

We consider multicomponent flow in the concentrated solution regime, in contrast
to the simpler and more well-known dilute solution regime. The dilute approximation
describes mixtures for which a species known as the solvent (by convention assigned
index i = n) whose concentration overwhelms that of all other n − 1 species, each
of which is called a solute; for example, a classical problem in computational fluid
dynamics (CFD) concerns the tracking of tracers, present in small proportions in a
solvent by which they are convected. Thus, if Ω ⊆ Rd, d ∈ {2, 3}, denotes the medium
across which the species are diffusing, the fluid density ρ : Ω → R is essentially
independent of the solutes, and approximately coincides with the mass density of the
pure solvent. This decouples the overall ‘flow’ (the material’s bulk motion) from the
mass transport (the motion of individual molecular constituents). One can thus solve
for the pure bulk velocity field, and then use this simply as data to solve in parallel
a system of independent advection-diffusion equations for the mass transport of each
species. A typical dilute solution problem – which, we emphasise, we do not solve in
this chapter – at low Mach number, so that the density ρ is assumed constant, is

div (ρu⊗ u)− div (2µε(u)) +∇p = ρf, (2.1.1a)

div u = 0, (2.1.1b)

div (ciu) + div Ji = ri, i = 1, . . . , n− 1, (2.1.1c)

Ji = −Di∇ci, i = 1, . . . , n− 1, (2.1.1d)

where u : Ω → Rd is the flow velocity, µ > 0 the shear viscosity, p : Ω → R the
pressure, f : Ω → Rd the body acceleration induced within Ω due to the action of
external fields, ci : Ω→ R the concentration of solute i in the solvent, Ji : Ω→ Rd its
diffusive flux, ri : Ω → R its volumetric rate of generation or depletion, and Di > 0

its Fickian diffusivity coefficient. The velocity ui : Ω→ Rd of each individual species
is given by

ui = u+
Ji
ci
, (2.1.2)

decomposing the transport of each species into a convective and a diffusive contri-
bution. The dilute solution regime is characterised by the approximation u ≈ un,
i.e. that the bulk motion of the fluid coincides with the motion of the solvent.
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This dilute solution approximation has been applied to great effect [39, 76, 78,
137], but fails for mixtures in which all of the species are present in comparable
proportions. A number of issues arise when attempting to apply dilute solution
models to concentrated solutions. For a start, the very notion of ‘flow velocity’ of
the combined fluid becomes ambiguous, as the fluid’s overall bulk motion need not
coincide with any particular species velocity, and these species velocities may all be
distinct in general. The fluid density is given by

ρ :=
n∑

i=1

Mici (2.1.3)

in which Mi > 0 is the molar mass of species i. Using (2.1.2), the species continuity
equations (2.1.1c) may be rephrased in terms of species velocities as

div(ciui) = ri, i = 1, . . . , n. (2.1.4)

The premise that homogeneous chemical reactions conserve atoms requires that∑
iMiri = 0; multiplying (2.1.4) by Mi and taking the sum over i thus gives

0 =
∑

i

Mi(div(ciui)− ri) = div

(∑

i

Miciui

)
. (2.1.5)

This equation may be seen to be consistent with a more common understanding
of mass continuity, however, because the canonical choice of flow velocity in the
concentrated solution regime was identified by Hirschfelder et al. [111, p. 454] as the
mass-average velocity

u =
∑

i

ωiui, (2.1.6)

a convex combination with coefficients the mass fractions

ωi :=
Mici
ρ

. (2.1.7)

Rewriting (2.1.5) in terms of the mass-average velocity yields

div(ρu) = 0, (2.1.8)

recovering the mass continuity equation familiar from fluid mechanics. In our for-
mulation, we will solve for both the mass-average velocity and the individual species
velocities.

A further issue to address in passing to the concentrated solution regime is the
choice of constitutive law prescribing the relation between the thermodynamic forces
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and their conjugate fluxes, whose pairwise products can be used to calculate the
local entropy generation of the system. In dilute solutions, each solute interacts at a
molecular level almost solely with solvent molecules, and so the diffusive solute fluxes
Ji can each be modelled by Fick’s law (2.1.1d) [94]. In the concentrated solution
regime, even in the case of simple diffusion (meaning u = 0 uniformly), the diffusive
flux of a given species can generally be driven by a concentration gradient of any other
species in the solution, a phenomenon known as cross-diffusion. We therefore instead
require a successor theory to Fick’s which takes into account the cross-diffusion of all
species. This will be the framework of linear irreversible thermodynamics pioneered
by Onsager [156–158], which enables the thermodynamically consistent generalisation
of Fick’s law (2.1.1d) to the concentrated solution regime. This formalism is described
in the next subsection.

2.1.2 Thermodynamic setting and the Onsager–Stefan–
Maxwell system

In systems sufficiently close to thermodynamic equilibrium, Onsager’s theory postu-
lates a linear constitutive relation between thermodynamic forces and fluxes via

di =
∑

j

Mijuj, i = 1, . . . , n, (2.1.9)

where di : Ω→ Rd denotes the diffusional driving force exerted by species i, conjugate
to the species velocities {ui}i, and M is the Onsager transport coefficient matrix. The
diffusion driving forces incorporate the effects of state variable gradients and external
forces [101, Eq. (2.5.4)].

The Stefan–Maxwell system [146, 174] with which we will concretely specify the
diffusive fluxes is given by the following constitutive law

di =
n∑

j=1
j 6=i

RTcicj
DijcT

(ui − uj), (2.1.10)

where
cT :=

∑

i

ci (2.1.11)

denotes the total concentration, R > 0 the ideal gas constant, T > 0 the absolute
temperature, and the (experimentally measured) material parameter Dij denotes the
Stefan–Maxwell diffusivity of species i through species j 6= i. In the present discussion
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we restrict attention to the case where every Dij is constant, which in turn requires
each to be positive [180].

The Stefan–Maxwell model preceded Onsager’s theory, but was later reconciled
with the latter in [139] by identifying

Mij =

{
−RTcicj

DijcT
if i 6= j,

∑n
k=1,k 6=i

RTcick
DikcT

if i = j.
(2.1.12)

Onsager’s famous reciprocal relations [157] require symmetry of M, which follows from
the Stefan–Maxwell hypothesis Dij = Dji. The resulting Onsager–Stefan–Maxwell
framework for isothermal but nonisobaric media postulates diffusion driving forces of
the form [111][39, Eq. (24.1-8)]

di = −ci∇µi + ωi∇p, (2.1.13)

where µi : Ω → R is the chemical potential of species i. The chemical potential
represents the partial derivative of the Gibbs free energy (a quantity describing the
total amount of work a system can deliver to isothermal, isobaric surroundings) with
respect to the number of moles of a given species i, and is related to the concentrations
and pressure via a constitutive law, discussed below in §2.1.5.

An important aspect of the constitutive relation (2.1.9) is that dissipation should
occur only as a result of relative motion between species, not their collective motion; if
a fluid consists of n species collectively travelling at some high velocity, but which are
in fact static relative to one another, then clearly no diffusion is occurring. Hence, the
constitutive law (2.1.9) should be ‘translation invariant at each point’, i.e. invariant
under replacing each ui by ui − u∗ for any choice of vector field u∗ : Ω → Rd; this is
easily seen to be true of the Stefan–Maxwell law (2.1.10). This physically intuitive
fact is incorporated into the spectrum of M:

∑

j

Mij = 0, i.e. (1, . . . , 1)> ∈ ker(M) a.e. (2.1.14)

Making such a shift in (2.1.9) by the mass-average velocity u, we have

di =
∑

j

Mij (uj − u) , i = 1, . . . , n, (2.1.15)

so that the transport matrix acts on terms proportional to the diffusive flux Ji.
Thus, equation (2.1.9) can be understood as an implicit constitutive relation for the
diffusive fluxes [51].
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The nullspace (2.1.14) moreover implies the thermodynamically fundamental
(isothermal, nonisobaric) Gibbs–Duhem relation

∑

i

di = 0, (2.1.16)

which is naturally interpretable as a consequence of Newton’s third law of motion, in
that the net dissipative force exerted by all species upon each other should vanish.

Due to the nullspace (2.1.14), the OSM system is a priori ill-posed unless a choice
of reference velocity is made, which one may think of as the convective velocity of the
fluid which the species collectively occupy. While it is possible to fix such a choice
by for example prescribing mass fluxes [180], we instead obtain a fuller description
of the overall convection-diffusion transport process by solving also for the unknown
reference velocity, for which we make the canonical choice of the convective velocity
which is constrained to be the molar-mass-weighted species velocity in (2.1.6). We
specify the compressible Stokes equations which it satisfies in the next subsection.

2.1.3 Stokes momentum balance

Motivated by the need for a reference velocity field to describe the convection of
the fluid collectively occupied by multiple diffusing species, and which we take to be
the mass-average velocity (2.1.6), we now describe the momentum balance which it
satisfies, with which the OSM system (2.1.10) will be coupled.

Convection describes the bulk motion of a fluid subject to external body forces
(incorporating prescribed velocity and traction conditions). In the stationary case,
this is classically governed by the Cauchy equation

div (ρu⊗ u)− div τ +∇p = ρf, (2.1.17)

where τ : Ω → S is the dissipative (viscous) stress tensor, to be specified with a
constitutive law relating it to the strain rate, which we denote by E. If Newton’s
law of viscosity is used, then (2.1.17) reduces to the Navier–Stokes momentum equa-
tion (2.1.1a).

Compressible Newtonian fluids are, in the isothermal case, characterised by a
Cauchy stress of the form [102, p. 337]

σ = τ − pI, (2.1.18)

where the viscous stress is given by

τ = 2µ

(
E − tr(E)

d
I
)

+ ζtr(E)I = CE, (2.1.19)
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where ζ > 0 is the bulk viscosity, and the strain rate is given by the standard lineari-
sation E = ε(u). We write (2.1.19) equivalently as

ε(u) = Aτ =
1

2µ
τ +

(
1

d2ζ
− 1

2µd

)
(trτ)I. (2.1.20)

Here the elasticity tensor C (2.1.19) and compliance tensor A (2.1.20) are written
with coefficients in terms of the Stokes parameters. We further consider steady-state
creeping flow, under which assumptions Stokes’ equation,

div τ −∇p = −ρf, (2.1.21)

follows from the momentum balance (2.1.17).
The Onsager constitutive equations (2.1.9) are written in force-explicit form: the

equations express the driving forces explicitly, in terms of the species velocities (fluxes)
as implicit variables. We choose also to write the Newtonian constitutive equa-
tion (2.1.19) in this manner, expressing the thermodynamic force (the linearised strain
rate) in terms of the corresponding flux (the viscous stress) [111]. Typically in CFD,
in analogy to the linear elasticity problem of the previous chapter, a flux-explicit
formulation is obtained by using explicit rheology such as (2.1.19) to eliminate the
Cauchy and viscous stresses in the first instance. For our overall coupled system
(stated later in (2.1.29)), we do not eliminate the viscous stress, but include it as an
implicit variable to be solved for. While this renders the resulting system more expen-
sive overall, there are substantial benefits; the viscous stress plays a fundamental role
in the calculation of local entropy production, but more significantly, we show in §2.2
that the resulting system of equations can be cast as a symmetric perturbed saddle
point-like system, which is conducive to both abstract analysis and (we anticipate)
efficient linear solvers.

2.1.4 Augmentation of the transport matrix and Stokes mo-
mentum balance

The variational formulation of our equations must enforce the relation (2.1.6), be-
tween the bulk (mass-average) velocity and the species velocities. We employ the
augmentation approach introduced by Helfand [82, 100, 101, 107]; we augment each
OSM equation (2.1.10) by adding the mass-average velocity constraint (2.1.6) to both
sides with prefactor γ > 0:

di + γωiu =
∑

j 6=i

RTcicj
DijcT

(ui − uj) + γωi
∑

j

ωjuj. (2.1.22)
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Define the augmented transport matrix by

Mγ := M + γ(ωi)
n
i=1 ⊗ (ωj)

n
j=1, (2.1.23)

so that (2.1.22) can be stated as di + γωiu =
∑

j 6=i M
γ
ijuj. In addition to the en-

forcement of the mass-average constraint by penalisation, this was motivated by the
computation [180, Eq. 1.14–1.17]

∑

i,j

ui ·Mγ
ijuj =

1

2

∑

j 6=i

RTcicj
DijcT

‖ui − uj‖2 + γ

∥∥∥∥∥
∑

j

ωjuj

∥∥∥∥∥

2

, (2.1.24)

showing that the augmented transport matrix is symmetric positive definite, which al-
lowed the work [180] to construct coercive bilinear forms for the pure Stefan–Maxwell
diffusion problem.

The augmentation (2.1.22) modifies a constitutive law of the system, which will
induce coercivity of a certain bilinear form below. However, this comes at the cost
of symmetry of the eventual fully coupled system. To enforce symmetry, we add a
‘dual’ augmentation to the Stokes equation (2.1.21)

div τ −∇p = −ρf + γ
∑

j

ωj(u− uj). (2.1.25)

These augmentations are principally for thermodynamic structure-preservation; the
transport matrix is a priori singular, but one can nevertheless recover the species
velocities from the driving forces by coupling with the convective constraint (2.1.6).
However, one is also ‘rewarded’ in that an important bilinear form defined later
in (2.3.3a) will be both symmetric and coercive on an appropriate kernel. This greatly
aids the continuous and discrete well-posedness analyses, as we demonstrate in §2.3.2
and §2.4.1.

2.1.5 The chemical potential and the thermodynamic equa-
tion of state

In an ideal gas, intermolecular forces can be neglected, for example between the
solutes in the dilute solution regime; the thermodynamic constitutive laws relating
pressure, concentrations, chemical potentials, and temperature have a particularly
simple mathematical form.

Our variational formulation will solve for the chemical potential µi of each species
i. This has several advantages. First, this allows for a general formula for the diffusion
driving forces (2.1.13), independent of the materials considered. The concentrations
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ci are typically the quantities of practical interest; if we were to make the (perhaps
more obvious) choice of solving for the ci as the primary variables instead, the form
of the diffusion driving forces would change in a material-dependent manner. Sec-
ond, our choice allows for a decoupling in the linearisation we employ: the primary
mixed system to solve only depends on the material via the diffusion coefficients and
viscosities, with any non-ideality confined to the computation of concentrations and
density postprocessed at every iteration using material-dependent thermodynamic
constitutive relations discussed below. Third, together with the choice to solve for
the viscous stress as described in §2.1.3, this decoupling endows the equations to solve
with a symmetric perturbed saddle point-like structure.[27]

Generally each species concentration ci can be inferred from {µi}ni=1 and p, given
thermodynamically consistent constitutive laws for the chemical potential, and the
equation of state. Within an isothermal ideal gas, this relation is given by

ci =
p	

RT exp

(
µi − µ	i
RT

)
, (2.1.26)

for some known reference pressure p	 and a set of reference chemical potentials {µ	i }i.
A general relation for non-ideal systems is

µi = µ	i +RT ln(γixi), (2.1.27)

where xi := ci/cT is the mole fraction, and γi the activity coefficient, of species i. To
obtain the concentrations, an additional equation of state for the system as a whole
is required, which may be expressed in volumetric form as

cT =
1∑
i Vixi

, (2.1.28)

in which Vi > 0 is the partial molar volume of species i. Formally, the partial molar
volume is the change in total fluid volume with respect to the number of moles of a
species i at constant temperature and pressure.

Our linearisation below is such that the concentrations, and the density (2.1.3)
and mass fractions (2.1.7) which depend on them, are postprocessed from the chemi-
cal potentials and pressure within each nonlinear iteration. This trivially guarantees
positivity of concentrations, but more significantly, the model is able to incorpo-
rate non-ideality by employing constitutive laws more general than (2.1.26), such

[27]Very extensive (but unreported) investigations into alternative tuples of fields for which to
solve, and ways to weakly formulate the resulting fully coupled system, gave rise to ill-posed or
analytically intractable Picard linearisations when the concentrations ci, or their normalisations the
mole fractions xi, were solved for as primary unknowns.

65



F. R. A. Aznaran Coupled SOSM problem statement

as (2.1.27). We intend for this choice to facilitate future research into convection-
diffusion problems with alternative equations of state, for which ci may (for example)
depend on all µj, and on temperature.

2.1.6 Coupled problem statement

Our goal is to find and analyse a variational formulation and structure-preserving
finite element discretisation of the following problem: given data f and {ri}ni=1, find
chemical potentials {µi}ni=1, viscous stress τ , pressure p, species velocities {ui}ni=1,
and convective velocity u satisfying

−ci∇µi + ωi∇p+ γωiu =
∑

j

Mγ
ijuj ∀i, (augmented OSM equations)

(2.1.29a)
Aτ = ε(u), (viscous stress constitutive law)

(2.1.29b)

div τ −∇p− γ
∑

j

ωj(u− uj) = −ρf, (augmented Stokes momentum balance)

(2.1.29c)
div(ciui) = ri ∀i, (species continuity) (2.1.29d)

div

(
u−

∑

j

ωjuj

)
= 0, (mass-average velocity constraint)

(2.1.29e)

for an augmentation parameter γ ≥ 0, where {ci, ωi}ni=1, ρ are functions of the un-
knowns via chemical potential constitutive laws such as (2.1.27) and (2.1.28) and al-
gebraic relations (2.1.3), (2.1.7). We shall introduce appropriate boundary conditions
in (2.2.2). We call the system (2.1.29) the (augmented) Stokes–Onsager–Stefan–
Maxwell (SOSM) system. When the convection term div (ρu⊗ u) is incorporated
into (2.1.29c), we call this the Navier–Stokes–Onsager–Stefan–Maxwell (NSOSM)
system.

Note that in the system we only directly enforce the divergence of the mass-
average velocity constraint (2.1.29e), which may be interpreted as the compressible
generalisation of the standard divergence constraint (2.1.1b); this choice gives rise
to a saddle point-like structure, as we show in the next section. Nevertheless, the
full constraint (2.1.6) is incorporated via the augmentations (2.1.22) and (2.1.25),
as discussed further in Remark 2.2.1. This constraint reduction, combined with the
augmentations, may be regarded as the main novelty of the system (2.1.29).

66



F. R. A. Aznaran Relation to existing numerics

2.1.7 Relation to existing numerical literature

For dilute solutions with constant solvent concentration (and no volumetric genera-
tion or the depletion of the solvent, rn = 0), the (N)SOSM equations reduce to the
incompressible (Navier–)Stokes equations, as well as convection-diffusion equations
constituted by Fick’s law for each solute. These are standard workhorses of CFD; for
an overview of their extensive existing numerical analysis, see [81, 126, 176, 179]. In
this regime, the momentum solve and the equation for the transport of concentration
are decoupled using incompressibility.

Our formulation (2.1.29) solves for the viscous stress as an unknown variable.
Of most relevance to this aspect of our approach is the work [60], which solves the
stress-velocity Stokes system, in the incompressible limit but using Carstensen’s al-
ternative implementation, described in the previous chapter, of the Arnold–Winther
stress elements which we shall use.

Numerical methods for solving the NSOSM equations have received much less
attention. The only works of which we are aware are those of Ern, Giovangigli,
and coauthors, including a monograph [82] and a series of other works [83–85, 101]
which apply multicomponent transport to combustion modelling for ideal gas mix-
tures. These schemes use sophisticated finite difference methods, with the important
exception of reference [85], which uses a finite element method with additional least-
squares terms to stabilise the formulation. We are unaware of any literature that
addresses numerical methods for SOSM or NSOSM systems in the non-ideal case.

For OSM models of isobaric ideal gases under simple diffusion, there has been
slightly more work addressing numerical approaches; these include a finite element
method proposed by McLeod & Bourgault [147], a finite volume method by Cancés
et al. [55], and a finite difference scheme by Bondesan et al. [41]. Such works typically
employ a reference velocity as prescribed data.

In particular, structure-preserving mixed FEM for the purely diffusional OSM
subsystem for an ideal phase was recently developed in [180]. This approach solved
the augmented OSM equations (2.1.22) combined with the species continuity equa-
tions (2.1.29d). We build on this work by incorporating momentum, non-ideality,
and pressure-driven diffusion. In contrast to this prior work, we are able to avoid a
generalised saddle point formulation, and in §2.3 will derive a symmetric perturbed
saddle point system to be solved at each nonlinear iteration, a far more classical linear
algebraic structure for which many solvers have been proposed [36]. However, due to
our more complex form of driving force (2.1.13), and since we do not solve directly
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for the species concentrations (to allow for non-ideality), we are not able to enforce
the Gibbs–Duhem relation (2.1.16) to machine precision, as achieved in [180].

Remark 2.1.1. We shall repeatedly emphasise the utility of the positive semidefinite
structure of the diffusion matrix (2.1.9) for the analysis, which motivates the aug-
mented Lagrangian-type approach described in §2.1.4, and lies in contrast to many
other cross-diffusion systems, for example describing multiagent systems in mathe-
matical biology [57], which admit a formal gradient flow structure associated with
an entropy (or free energy) functional; Although the Stefan–Maxwell system admits
an associated thermodynamic energy, the Gibbs free energy, we are not able to show
equivalence of the (S)OSM system to the Euler–Lagrange stationarity condition of
any energy or Lagrangian functional, and hence cannot exploit any gradient flow
structure. With our augmentations of the equations, the Picard scheme we propose
below in §2.3 nevertheless gives rise to symmetric linearised problems to solve at each
nonlinear iteration.

2.2 Variational formulation

2.2.1 Pressure regularity in the stress complex

In the isobaric, isothermal, purely diffusional problems originally considered by Ste-
fan [174] and Maxwell [146], it was sufficient to work with driving forces

di = −RT∇ci. (2.2.1)

In our nonisobaric setting, we recall that the OSM framework gives rise to driving
forces (2.1.13) of the form

di = −ci∇µi + ωi∇p. (2.2.2)

We wish to derive a variational formulation of the problem. That ωi is spatially
varying makes equation (2.2.2) difficult to integrate by parts when tested against a
test function; formally, one may ‘absorb’ ωi into a species velocity test function v

(omitting surface terms for simplicity),
∫

Ω

v · (ω∇p) dx = −
∫

Ω

div(vωi)p dx = −
∫

Ω

(ωi div v + v · ∇ωi)p dx, (2.2.3)

suggesting v be taken from a space containing at most H(div); however, seeking
species velocities only in L2(Ω;Rd) is at least consistent with the analysis of [180] in
exploiting the coercivity with respect to ‖ · ‖0 of the form induced by the augmented
Onsager transport matrix, as in (2.1.24).
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In order to rigorously incorporate the effect of pressure-driven diffusion, the an-
alyst is therefore forced to leave at least the latter term of (2.2.2) untouched and
instead consider the rather unorthodox possibility of formulating the Stokes subprob-
lem with pressure lying in H1(Ω). Looking back at the Stokes system, typically such
a fact may be available in the form of elliptic regularity results for the pressure field,
but to the author’s knowledge, the a priori square-integrability of pressure gradients
(i.e. for which, we emphasise, pressure is defined to lie in H1(Ω)) has not been con-
sidered for the Stokes system, except at the discrete level for the incompressible case
in [175].

This condition is also suggested naturally in the ideal subcase of pure Stefan–
Maxwell diffusion for nonisobaric gases, for which the driving forces are

di = −RT∇ci + ωi∇p, (2.2.4)

which suggests considering each ci (and hence cT ) to lie in H1(Ω), forcing pressure to
lie in at least the same space due to the ideal equation of state p = cTRT.

In general, one must distinguish between the thermodynamic pressure p which
we use throughout this chapter, and the mechanical pressure pm := − trσ

d
, where the

latter is related to the spherical Cauchy stress by sphσ = trσ
d
I = −pmI, and to p by

p = pm + ζ div u. (2.2.5)

(In the context of multicomponent flow, this decomposition is discussed in further
detail by Bothe & Dreyer [42].) Since no formulation of the compressible Stokes
equations (or different formulations, corresponding to different Hodge Laplacians, of
the linear elasticity problem) seek displacement with regularity greater than H1(Ω),
we see that none of the three terms in (2.2.5) need lie in H1(Ω) a priori. One is
therefore tempted to delete the offending term in (2.2.5) by passing to the incom-
pressible limit, so that thermodynamic and mechanical pressures coincide. In this
simpler setting (for which the pressure solves a Poisson-like problem, again readily
amenable to elliptic regularity results), we still cannot expect any a priori extra
regularity of ∇p = ∇pm = − div(sphσ) because H(div; S) is not closed under tak-
ing spherical parts.[28] This suggests a mild incompatibility between the standard
deviatoric-spherical decomposition of the Cauchy stress (whose physical relevance

[28]In any case, the incompressible regime, for which ρ is constant, is physically irrelevant to the
OSM framework for mass diffusion which in particular implies spatial heterogeneity of the density.
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we emphasised in §1.2.2) and its Hodge decomposition.[29] More precisely, viewing
pressure as a component of the full Cauchy stress, then provided that Ω is simply
connected, the Hodge decomposition of the base stress space [12, Theorem 4.5]

L2(Ω;S) = εH1
0 (Ω;Rd) kL2

{
airyH2(Ω), d = 2,

incH2(Ω;S), d = 3,
(2.2.6)

does not endow that component with any extra regularity.[30]

Consequently, we do not take p ∈ H1(Ω) but as a compromise consider the weaker
condition defined by the combined viscous stress-pressure space

{(τ, p) ∈ L2(Ω;S)×L2(Ω) | div τ−∇p ∈ L2(Ω;Rd)}
(
) H(div; S)×H1(Ω)

)
, (2.2.7)

and assign to it the weaker norm ‖τ‖2
0 + ‖p‖2

0 + ‖ div τ −∇p‖2
0. This space and norm

were previously employed by Manouzi & Farhloul in an analysis of monotonically-
constituted incompressible Stokes flow [144], for which τ is simply the shear stress
dev σ. Membership of (2.2.7) is naturally interpretable as the square-integrability of
the divergence of the full Cauchy stress, i.e. that σ = τ − pI ∈ H(div; S). Together
with an analogous condition for the chemical potential gradient to be detailed next
in §2.2.2, this weaker condition will account for the pressure gradient in the driving
forces.[31]

2.2.2 Fully coupled nonlinear variational formulation

In this subsection, we derive a variational formulation for the stationary problem
as a nonlinear perturbed saddle point-like system. We have found the following
statement of the problem to be a feasible tradeoff between the (often competing)
goals of: physical relevance of variables, physical realism of boundary data, regularity
assumptions, numerical implementability and effectiveness, analytic tractability of

[29]Moreover, it is heuristically clear that there can be no formulation of the stress-velocity-pressure
Stokes problem which gives p ∈ H1(Ω) and is well-posed; alternative well-posed formulations may be
formally derived from each other, trading regularities between different fields via integration by parts.
Since both the mixed-dual (Cauchy stress ∈ H(div;S), velocity ∈ L2(Ω;Rd), pressure ∈ L2(Ω)) and
mixed-primal (Cauchy stress ∈ L2(Ω;S), velocity ∈ H1(Ω;Rd),pressure ∈ L2(Ω)) formulations are
well-posed, it is not clear what ‘price we must pay’ to obtain p ∈ H1(Ω).

[30]For the domain stress space, this decomposition becomes (for example in 2D) H(div;S) =
airyH2(Ω) kL2

(
εH1

0 (Ω;R2) ∩H(div;S)
)
; functions in this right-hand summand may be taken from

ε(H2 ∩H1
0 )(Ω;R2), but (again) only in the case of elliptic regularity for the operator −div ◦ ε.

[31]One alternative approach is provided by attempting to construct a smoother analogue of the
stress elasticity complex associated with the Cauchy stress space (2.2.7), for which equation (2.2.7)
is replaced by some superspace of H(div;S) × H1(Ω), just as the Stokes complex is precisely a
smoothing of the de Rham complex, but we do not pursue this here.
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continuous and discrete well-posedness, enforcement of fundamental thermodynamic
relations and constraints, and extensibility to the transient, anisothermal, and non-
ideal settings.

We use the notation q̃ = {qi}ni=1 to denote an n-tuple of functions. For boundary
data, let Γ = ∂Ω. We prescribe mass flux and molar fluxes:

ρu = gu ∈ H1/2(ΓN ;Rd) on Γ, (2.2.8a)

ciui · n = gi ∈ H−1/2(Γ) on Γ, i = 1, . . . , n. (2.2.8b)

For consistency with the mass-average velocity constraint (2.1.6), we require the com-
patibility condition ∑

i

Migi = gu · n, (2.2.9)

with equality in H−1/2(Γ). We impose the further conditions
∫

Ω

p dx =

∫

Ω

µi dx = 0, i = 1, . . . , n. (2.2.10)

Typically, the equation of state will require or imply strict positivity of p everywhere,
in which case this condition should be understood as −

∫
Ω
p dx = p	 > 0 and that p be

shifted by the known value p	 as a postprocessing step.
Let Q = L2(Ω;Rd)n × L2(Ω;Rd) with norm ‖(ṽ, v)‖2

Q := ‖ṽ‖2
0 + ‖v‖2

0. For formal
derivation of the weak form, we assume the solution tuple (µ̃, τ, p, ṽ, v) to be smooth on
Ω. Consider choosing (w̃, s, q) from the solution-dependent potential-stress-pressure
test space

Θ :=

{
(w̃, s, q) ∈ L2

0(Ω)n × L2(Ω;S)× L2
0(Ω)

∣∣∣∣
div s−∇q ∈ L2(Ω;Rd),

−ci∇wi + ωi∇q ∈ L2(Ω;Rd) ∀i

}
.

(2.2.11)
Here it is understood that the {ci, ωi}i are computed from the solution tuple. Multi-
plying the ith continuity equation (2.1.29d) by wi, the divergence of the mass-average
velocity constraint (2.1.29e) by q, and contracting the stress constitutive law (2.1.29b)
with s, we obtain

∑

i

(div(ciui)− ri)wi + div

(
u−

∑

i

ωiui

)
q + (Aτ − ε(u)) : s = 0, (2.2.12)

and hence
∫

Ω

∑

i

(div(ciui)wi − div(ωiui)q) +Aτ : s− (s− qI) : ε(u) dx =

∫

Ω

∑

i

riwi dx.

(2.2.13)
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Integrating by parts yields
∫

Ω

Aτ : s+
∑

i

(−ci∇wi + ωi∇q) · ui + (div s−∇q) · u dx

= 〈(s− qI)n, u〉Γ +
∑

i

〈
ciui · n,−wi +

ωi
ci
q

〉

Γ

+

∫

Ω

r̃ · w̃ dx

=

〈
(s− qI)n, gu

ρ

〉

Γ

+
∑

i

〈
gi,−wi +

Mi

ρ
q

〉

Γ

+

∫

Ω

r̃ · w̃ dx.

(2.2.14)

Now for each i, we take the scalar product of vi ∈ L2(Ω;Rd) with the augmented
OSM equation (2.1.29a), and integrate over Ω to obtain
∫

Ω

(−ci∇µi + ωi∇p) · vi − vi ·
∑

j

Mijuj − γωi
∑

j

ωj(uj − u) · vi dx = 0. (2.2.15)

Taking the inner product of the augmented Cauchy momentum balance (2.1.29c) with
v ∈ L2(Ω;Rd) yields

∫

Ω

(div τ −∇p) · v − γ
(∑

j

ωj(u− uj)
)
· v dx = −

∫

Ω

ρf · v dx. (2.2.16)

We sum equation (2.2.15) over i and add equation (2.2.16) to derive
∫

Ω

∑

i

(−ci∇µi + ωi∇p) · vi + (div τ −∇p) · v

−
∑

i,j

vi ·Mijuj − γ
(∑

i

ωi(ui − u)

)
·
(∑

j

ωj(vj − v)

)
dx =

∫

Ω

−ρf · v dx.

(2.2.17)
Note that both augmentations (2.1.22) and (2.1.25) were involved in deriving this
expression.

Finally, we observe that by definition we have ωi ∈ L∞(Ω) with ‖ωi‖L∞(Ω) ≤ 1.
Moreover, we make the physically reasonable assumptions that the concentrations
associated with the solution are uniformly bounded, ci ∈ L∞(Ω), with ci ≥ κ > 0

a.e., as in [180] (which in turn implies Mγ
ij, ρ ∈ L∞(Ω), and ρ ≥ κ

∑
iMi > 0 a.e.),

and that the density gradient is uniformly bounded, ∇ρ ∈ L∞(Ω;Rd).[32]

Definition 2.2.1. (Weak solution to the SOSM equations). We define a weak solution
to the augmented Stokes–Onsager–Stefan–Maxwell system to be a (2n+ 3)-tuple

({µi}ni=1, τ, p, {ui}ni=1, u) ∈ L2
0(Ω)n × L2(Ω;S)× L2

0(Ω)× L2(Ω;Rd)n × L2(Ω;Rd)︸ ︷︷ ︸
Q

(2.2.18)
[32]A comparable condition, that ρ ∈ (H1 ∩W 1,∞)(Ω) is bounded below with ∇ρρ ∈ L∞(Ω;Rd),

was used to analyse a compressible Stokes flow in [62].
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inducing concentrations {ci}ni=1 through a constitutive law (such as (2.1.26)) implicitly
defining ci = ci({µi}ni=1, p) ≥ κ > 0 a.e. for i = 1, . . . , n, such that

‖ci‖L∞(Ω) <∞, i = 1, . . . , n, (2.2.19a)

‖∇ρ‖L∞(Ω;Rd) <∞, (2.2.19b)

‖ div τ −∇p‖2
0 <∞, (2.2.19c)

‖ − ci∇µi + ωi∇p‖2
0 <∞, i = 1, . . . , n, (2.2.19d)

and satisfying (2.2.14), (2.2.17) for all test tuples ({wi}ni=1, s, q, {vi}ni=1, v) ∈ Θ × Q,
where Θ is defined in (2.2.11).

Observe that the solution tuple does not reside in any standard Sobolev space, but
that the regularity assumptions placed on the solution tuple and test spaces ensure
that the surface terms in (2.2.14) are well-defined. Recall that condition (2.2.19c) is
the square-integrability of the Cauchy stress σ (as in [144]). The nonlinear integrabil-
ity condition (2.2.19d) is to our knowledge a novel requirement, but also has a natural
interpretation, namely the square-integrability of the diffusion driving forces:[33]

di ∈ L2(Ω;Rd). (2.2.20)

Moreover, we emphasise that this unorthodox formulation allows the rigorous incor-
poration of pressure diffusion via the pressure gradient on the left side of (2.1.29a),
despite the fact that the pressure field is not a priori H1-regular in the Stokes sub-
system. Later in §2.5 we observe convergence of the diffusion driving forces in ‖ · ‖0

and of the pressure in ‖ · ‖1, but otherwise leave this consideration, and further in-
vestigation into the yet more subtle question of the optimal nonlinear formulation of
the SOSM system, as intriguing open questions.

Remark 2.2.1. In the derivation of (2.2.12), we used the distributional divergence
of the mass-average velocity constraint (2.1.29e), which ignores the curl component
in the Helmholtz decomposition of the mass-average velocity relationship (2.1.6).
This choice ensures that the number of equations matches the number of unknown
variables, and the full constraint is nevertheless incorporated via the augmenta-
tions (2.1.22) and (2.1.25).

[33]We conjecture that one could alternatively derive a formulation of the SOSM system dual to
ours which takes di ∈ L2(Ω;Rd) as a primary unknown. We also conjecture that the integrability
assumptions in Definition 2.2.1 could potentially be relaxed, for example via Sobolev embeddings.

73



F. R. A. Aznaran Picard linearisation

2.3 Linearisation and well-posedness

2.3.1 Generalised Picard scheme

In this section we derive a variational formulation of a generalised Picard linearisation.
Given a previous estimate for the potentials µ̃k and pressure pk for k ≥ 0, we regard
these as fixed quantities which determine the concentrations c̃k via chemical potential
constitutive laws and an appropriate equation of state such as (2.1.26). This in turn
determines the density ρk, mass fractions ω̃k, total concentration ckT, and transport
matrix Mk defined via (2.1.3), (2.1.7), (2.1.11), and (2.1.12), respectively. We then
construct a linear system to solve for the next iterate ((µ̃k+1, τ k+1, pk+1), (ũk+1, uk+1)).
The heuristic behind this update strategy is that the gradients of chemical potential,
pressure, and mass-average velocity primarily drive the dynamics of multicomponent
flow; the role of the species concentrations is mostly confined to the effect of alter-
ing the drag coefficients in the transport matrix. We make the following physically
reasonable assumptions about each iterate, in analogy to Definition 2.2.1.

Assumption 2.3.1. (Uniform positivity of concentrations.) For each k ≥ 0, we
assume that cki ∈ L∞(Ω), ρk ∈ W 1,∞(Ω), and that cki ≥ κ > 0 a.e. for each i.

This again implies ρk ≥ κ
∑

iMi > 0 a.e. We also assume henceforth that γ > 0.
Given c̃k and the corresponding ω̃k, we define the iteration-dependent weighted

function space

Θk :=

{
(w̃, s, q) ∈ L2

0(Ω)n × L2(Ω;S)× L2
0(Ω)

∣∣∣∣
div s−∇q ∈ L2(Ω;Rd),

−cki∇wi + ωki∇q ∈ L2(Ω;Rd) ∀i

}
,

(2.3.1)
whose defining conditions linearise those in (2.2.11). This mixed space is Hilbert with
graph norm

‖(w̃, s, q)‖2
Θk :=

∑

i

‖wi‖2
0 + ‖s‖2

0 + ‖q‖2
0 + ‖ div s−∇q‖2

0 +
∑

i

‖ − cki∇wi + ωki∇q‖2
0.

(2.3.2)
We now formulate our linearised problem as a symmetric perturbed saddle point
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problem. Define Ak : Q→ Q∗,Λ : Θk → (Θk)∗, Bk : Θk → Q∗ by

Ak(ũ, u; ṽ, v) :=

∫

Ω

∑

i,j

ui ·Mk
ijvj dx+ γ

∫

Ω

(∑

i

ωki (ui − u)

)
·
(∑

j

ωkj (vj − v)

)
dx,

(2.3.3a)

Λ(µ̃, τ, p; w̃, s, q) :=

∫

Ω

Aτ : s dx, (2.3.3b)

Bk(µ̃, τ, p; ṽ, v) :=

∫

Ω

∑

i

(−cki∇µi + ωki∇p) · vi + (div τ −∇p) · v dx, (2.3.3c)

and the functionals

`1
k(w̃, s, q) :=

〈
(s− qI)n, gu

ρk

〉

Γ

+
∑

i

〈
gi,−wi +

Mi

ρk
q

〉

Γ

+

∫

Ω

r̃ · w̃ dx,

`2
k(ṽ, v) := −

∫

Ω

ρkf · v dx.

(2.3.4)

Note that under Assumption 2.3.1, each of the bilinear functionals is continuous; we
denote their operator norms by ‖Ak‖, ‖Λ‖, and ‖Bk‖. Our linearised problem is
posed as follows: find ((µ̃k+1, τ k+1, pk+1), (ũk+1, uk+1)) ∈ Θk ×Q such that

Λ(µ̃k+1, τ k+1, pk+1; w̃, s, q) +Bk(w̃, s, q; ũ
k+1, uk+1) = `1

k(w̃, s, q) ∀ (w̃, s, q) ∈ Θk,

Bk(µ̃
k+1, τ k+1, pk+1; ṽ, v)− Ak(ũk+1, uk+1; ṽ, v) = `2

k(ṽ, v) ∀ (ṽ, v) ∈ Q,
(2.3.5)

i.e., defining the transpose B>k : Q→ (Θk)∗ in the canonical way,






−AkBk

B>kΛ




µ̃k+1

τ k+1

pk+1

ũk+1

uk+1




=







`2
k

`1
k

. (2.3.6)

We note that the variational terms involving chemical potential and pressure gradi-
ents are precisely of the same variational form as the species continuity equations and
the divergence of the mass-average velocity constraint, which can be seen by inspect-
ing (2.2.14) and (2.2.17). This key insight is what leads to a symmetric system.

Our nonlinear iteration scheme is as follows: for an initial estimate of
the concentrations c̃0, we solve the system (2.3.5) for the updated variables
((µ̃k+1, τ k+1, pk+1), (ṽk+1, vk+1)) ∈ Θk × Q, for k = 0, 1, 2, . . .. By the relations de-
tailed in §2.1.5, these variables are used to calculate the updated concentrations c̃k+1.
This is iterated until for some set tolerance ε > 0,
(
‖(µ̃k+1, τ k+1, pk+1)− (µ̃k, τ k, pk)‖2

Θk + ‖(ũk+1, uk+1)− (ũk, uk)‖2
Q

)1/2 ≤ ε. (2.3.7)
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2.3.2 Well-posedness of the linearised system

We will now prove that the saddle point system (2.3.5) is well-posed under Assump-
tion 2.3.1. This will require the following beautiful Lemma due mostly to our collab-
orator, a Poincaré-type inequality for the following seminorm on Θk:

|(w̃, s, q)|2Θk := ‖s‖2
0 + ‖ div s−∇q‖2

0 +
∑

i

‖ − cki∇wi + ωki∇q‖2
0. (2.3.8)

Lemma 2.3.1. (Poincaré inequality for the driving force; Van-Brunt, 2021.) Let Ω

be a Lipschitz domain. Under Assumption 2.3.1, for all (µ̃, τ, p) ∈ Θk,

‖(µ̃, τ, p)‖Θk . |(µ̃, τ, p)|Θk . (2.3.9)

Proof of Lemma 2.3.1. The first step of the proof is to show that

‖p‖0 . ‖τ‖0 + ‖ div τ −∇p‖0, (2.3.10)

following and mildly generalising [144, Lemma 4]. Set θ = τ − pI − rI where r =
1
d|Ω|

∫
Ω

trτ dx. Then
‖τ − pI‖0 ≤ ‖θ‖0 + ‖rI‖0. (2.3.11)

As
∫

Ω
trθ dx = 0, we can use [40, Proposition 9.1.1] to derive

‖τ − pI‖0 . ‖ dev θ‖0 + ‖ div θ‖0 + ‖rI‖0 . ‖τ‖0 + ‖ div τ −∇p‖0, (2.3.12)

with deviator dev θ = dev τ . Now using
√
d‖p‖0 ≤ ‖τ − pI‖0 + ‖τ‖0, (2.3.13)

the result (2.3.10) follows. For the second stage of the proof, we will show that

‖µi‖0 . ‖p‖0 + ‖ − cki∇µi + ωki∇p‖0. (2.3.14)

This combined with (2.3.10) gives (2.3.9). To prove this second inequality, for each i
we take the unique zi ∈ H1

0 (Ω;Rd)/ ker(div) such that div zi = µi. Then ui := zi/c
k
i ∈

L2(Ω;Rd) with div(cki ui) = µi. With integration by parts we deduce
∫

Ω

(−cki∇µi + ωki∇p) · ui dx =

∫

Ω

|µi|2 −Mip

(
µi
ρk
− ∇ρ

k

(ρk)2
· cki ui

)
dx. (2.3.15)

Upon rearrangement, we can derive the inequality

‖µi‖2
0 ≤Mi‖p‖0

(
‖µi‖0

κ
∑

jMj

+ ‖ui‖0‖cki ‖0

∥∥∥∥
∇ρk
(ρk)2

∥∥∥∥
L∞(Ω;Rd)

)
+ ‖ − cki∇µi + ωi∇p‖0‖ui‖0

≤ κ−1‖p‖0

(
‖µi‖0 + ‖ui‖0‖cki ‖L∞(Ω)‖∇ ln ρk‖L∞(Ω;Rd)

)
+ ‖ − cki∇µi + ωi∇p‖0‖ui‖0.

(2.3.16)
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By the bounded inverse theorem, div admits a bounded left inverse, so ‖zi‖1 . ‖µi‖0

and thus
‖ui‖0 ≤ κ−1‖zi‖0 . κ−1‖µi‖0. (2.3.17)

Combining this with (2.3.16), we can divide through by ‖µi‖0 to derive

‖µi‖0 . κ−1‖p‖0

(
1 + κ−1‖cki ‖L∞(Ω)‖∇ ln ρk‖L∞(Ω)

)
+ κ−1‖ − cki∇µi + ωki∇p‖0.

(2.3.18)

Note that in particular, the two steps of this proof imply that

div τ −∇p = 0
−cki∇µi + ωki∇p = 0

}
=⇒

{
‖p‖0 . ‖τ‖0,
‖µi‖0 . ‖p‖0.

(2.3.19)

This has the physical interpretation that in the absence of (at least this linearisation
of) the driving force, one can recover the chemical potentials from the pressure. In
this sense it is a generalisation to the OSM framework of [144, Lemma 4], which is
exactly the first line of (2.3.19): that in the absence of external forces, one can recover
the pressure from the viscous stress. Since also the constant in (2.3.18) depends
unfavourably on κ (the uniform lower bound on concentrations), we see also that
such ‘recovery’ of the potentials becomes more unstable near the singular regime in
which concentrations approach zero. Provided κ (and the relative variation of the
density) are well-behaved across iterations, so will be the resulting constant.

A further intermediate lemma we need to prove well-posedness is the following.

Lemma 2.3.2. (Coercivity of a perturbation to Ak.) Under Assumption 2.3.1, there
is L = L(γ, k) s.t. for all (ũ, u) ∈ Q,

(
n+ 1

2

)
L‖u‖2

0 + Ak(ũ, u; ũ, u) ≥ L

2
‖(ũ, u)‖2

Q. (2.3.20)

Proof. Defining δi = ui − u for each i, we compute that

Ak(ũ, u; ũ, u) =

∫

Ω

∑

i,j

δiM
k,γ
ij δj dx, (2.3.21)

where Mk,γ is defined using c̃k via (2.1.23). It follows from [180, Lemma 4.1] that the
right-hand expression is a coercive bilinear form in δ̃, i.e. for some L > 0,

Ak(ũ, u; ũ, u) ≥ L

2

∑

i

‖δi‖2
0 =

∑

i

‖ui − u‖2
0, (2.3.22)
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so
(
n+ 1

2

)
L‖ũ‖2

0 + Ak(ũ, u; ũ, u) ≥ L

2

∑

i

(
‖ui − u‖2

0 + ‖u‖2
0

)
+
L

2
‖u‖2

0

≥ L

2

(∑

i

‖ui‖2
0 + ‖u‖2

0

)
=
L

2
‖(ũ, u)‖2

Q.

(2.3.23)

Despite the complexity of the original fully coupled physics problem, our
constructed formulation allows us to invoke standard Babuška theory for well-
posedness [31].

Theorem 2.3.1. (Well-posedness of the Picard linearisation). Under Assump-
tion 2.3.1, there exists a unique solution to the perturbed saddle point system (2.3.5).

Proof. We use the shorthand (p, q) := ((µ̃, p, τ), (ũ, u)), (s, v) := ((w̃, s, q), (ṽ, v)) ∈
Θk ×Q. Define the bounded bilinear form G : (Θk ×Q)2 → R by

G(p, q; s, v) := Λ(p, s) +Bk(s; q) +Bk(p; v)− Ak(q; v). (2.3.24)

We prove the Babuška condition for G, namely that there exists C > 0 such that for
each (p, q) ∈ Θk ×Q there is (s, v) ∈ Θk ×Q such that

G(p, q; s, v)

‖(s, v)‖Θk×Q
≥ C‖(p, q)‖Θk×Q, (2.3.25)

with product norm ‖(p, q)‖2
Θk×Q := ‖p‖2

Θk
+ ‖q‖2

Q. Since G is defined on the product
of a space with itself and is symmetric, only the one inf-sup condition (2.3.25) need
be verified. We show that for constants L1, L2 > 0, for each (p, q) ∈ Θk ×Q, there is
(s, v) ∈ Θk ×Q such that G(p, q; s, v) ≥ L1‖(p, q)‖2

Θk×Q with

‖(s, v)‖Θk×Q ≤ L2‖(p, q)‖Θk×Q. (2.3.26)

Fix (s, v) as the ansatz

wi = C1µi, s = C1τ + C2su, q = C1p,

vi = C3(−cki∇ui + ωki∇p)− C1ui, v = −C1u+ C4(div τ −∇p).
(2.3.27)

Here the Cj are constants to be chosen, and su is chosen (by closedness of the stress
complex (1.0.3)) as the unique element of H(div; S)/ ker(div) satisfying div su = u,
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and by the bounded inverse theorem ‖su‖div ≤ C∗‖u‖0. It is clear that (2.3.26) holds.
We compute

G(p, q; s, v) =

∫

Ω

Aτ : (C1τ + C2su) dx+ C3

∑

i

‖ − cki∇µi + ωki∇p‖2
0

+ C4‖ div τ −∇p‖2
0 + C2‖u‖2

0 − Ak(ũ, u; ṽ, v),

(2.3.28)

and observe that the final term may be written as

C1Ak(ũ, u; ũ, u)− Ak(ũ, u;C3(−cki∇µi + ωki∇p)i, C4(div τ −∇p)). (2.3.29)

With L now given by Lemma 2.3.2, we choose C2 = ‖Ak‖2(n + 1)L and assume
C1 ≥ 2‖Ak‖2. Then

C2‖u‖2
0 + C1Ak(ũ, u; ũ, u) ≥ ‖Ak‖2L‖(ũ, u)‖2

Q. (2.3.30)

The compliance tensor is uniformly positive definite: there is cA with
∫

Ω
As : s ds ≥

cA‖s‖2
0 ∀s ∈ L2(Ω;S). Together with the estimate on su and boundedness of Λ, Ak,

we bound (2.3.28) from below as

G(p, q; s, v) ≥ cAC1‖τ‖2
0 + L‖Ak‖2‖(ũ, u)‖2

Q + C3

∑

i

‖ − cki∇µi + ωki∇p‖2
0

+ C4‖ div τ −∇p‖2
0 − LC∗(n+ 1)‖Ak‖2‖Λ‖‖u‖0‖τ‖0

− ‖Ak‖‖(ũ, u)‖Q
(
C2

3

∑

i

‖ − cki∇µi + ωki∇p‖2
0 + C2

4‖ div τ −∇p‖2
0

)1/2

.

(2.3.31)
The desired bound now follows with the choice

C1 =

(
LC2
∗‖Λ‖2(n+ 1)2

cA
+ 2

)
‖Ak‖2, C3 = C4 = L, (2.3.32)

application of Lemma 2.3.1, and the weighted Young inequality:

G(p, q; s, u) ≥ 2cA‖Ak‖2‖τ‖2
0 +

L

6
‖Ak‖2

0‖(ũ, u)‖2
Q

+
L

4

(∑

i

‖ − cki∇µi + ωki ‖2
0 + ‖ div τ −∇p‖2

0

)

& |p|2Θk + ‖q‖2
Q & ‖(p, q)‖Θk×Q & ‖(p, q)‖2

Θk×Q‖(s, v)‖Θk×Q.

(2.3.33)
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2.4 Discretisation

We now assume that Ω is polytopal, and admits a quasi-uniform triangulation Th
with maximal element diameter h. Denote conforming finite element spaces for the
discrete solution tuple by

(Xn
h × Σh × Ph)︸ ︷︷ ︸

=: Θkh

× (W n
h × Vh)︸ ︷︷ ︸
=: Qh

⊂ (L2
0(Ω)n × L2(Ω;S)× L2

0(Ω))︸ ︷︷ ︸
⊇ Θk

× (L2(Ω;Rd)n × L2(Ω;Rd))︸ ︷︷ ︸
= Q

.

(2.4.1)
Here Θk

h is independent of k as a set, but inherits an iteration-dependent norm de-
scribed below; Qh inherits the norm of Q. Our discretised linear problem after k ≥ 0

nonlinear iterations therefore reads: seek ((µ̃h, τh, ph), (ũh, uh)) ∈ Θk
h ×Qh such that

Λ(µ̃h, τh, ph; w̃h, sh, qh) +Bk,h(w̃h, sh, qh; ũh, uh) = `1
k,h(w̃h, sh, qh)∀(w̃h, sh, qh) ∈ Θk

h,

Bk,h(µ̃h, τh, ph; ṽh, vh)− Ak,h(ũh, uh; ṽh, vh) = `2
k,h(ṽh, vh) ∀(ṽh, vh) ∈ Qh,

(2.4.2)
where Ak,h, Bk,h are obtained from Ak, Bk, and `1

k,h, `
2
k,h from `1

k, `
2
k, respectively, by

replacing the discretely computed concentrations cki and inverse density (ρk)−1 with
discrete approximations; we use these to define a norm ‖ · ‖Θkh

for Θk
h in analogy

to (2.3.2). In block form, the linearised discrete problem reads






−Ak,hBk,h

B>k,hΛ




µ̃h
τh
ph
ṽh
vh




=







`2
k,h

`1
k,h

. (2.4.3)

2.4.1 Structure-preservation and well-posedness

We have already emphasised that pressure is an H1-like variable, for which we there-
fore employ the continuous Lagrange element of degree t ≥ 1, Xh = CGt(Th). It
appears natural to take the chemical potential space Xh to be CG elements of at
least the same degree, Xh = CGr for r ≥ t, from the diffusion driving forces (2.1.13),
and since the chemical potentials are used to calculate the concentrations, which
one would like to approximate to high order due to their physical importance. The
mass-average velocity constraint (2.1.6) suggests that the species velocity space be
contained in the space used for convective velocity, Wh ⊆ Vh.
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For the Stokes subsystem, it is desirable that the pair (Σh × Ph, Vh) be inf-sup
compatible, for which it is sufficient to have that the full divergence (τ, p) 7→ div τ−∇p
is surjective onto Vh. By the regularity choice (2.2.7) for the pressure, it is thus natural
to apply div-conforming tensor elements such as our implemented AWc element to
discretise the viscous stress. By the decomposition (2.1.18), symmetry of the viscous
stress is equivalent to the conservation of angular momentum; we consider exactly
symmetric stress elements such as the Arnold–Winther [24] and Arnold–Awanou–
Winther elements [14], since this obviates the need for a symmetry-enforcing Lagrange
multiplier, which would add a further field to our already (2n+ 3)-field formulation.

However, if one would like to repeat at the discrete level the proof of Theorem 2.3.1,
it is necessary for div : Σh → Vh to be surjective, allowing us to construct the
discrete analogue of the tensor field su in the ansatz (2.3.27). This is stronger than
surjectivity of (τ, p) 7→ div τ − ∇p,Σh × Ph → Vh, but in practice is equivalent
because many appropriate choices of Σh are designed to discretise the full Cauchy
stress. Furthermore, the discrete analogue of the constant C∗ (and hence the resulting
inf-sup constant) will a priori depend on h; it is therefore necessary to assume that
such su can be constructed stably.

Assumption 2.4.1. (Stable right inverse for the divergence.) There exists C∗ inde-
pendent of h such that for each vh ∈ Vh and for the unique sh ∈ Σh/ ker(div) with
div sh = vh, there holds ‖sh‖div ≤ C∗‖vh‖0.

This is true for (for example) stress elements discretising a stress complex which
admits bounded commuting projections to the subcomplex, as is the case for the
Arnold–Winther elements (1.2.23) as summarised above Lemma 1.5.1 [24], and the
Arnold–Awanou–Winther elements [14]. The other relations are summarised below:[34]

Xh
chemical
potential

Wh
species
velocity

Σh × Ph
stress×pressure

Vh
convective
velocity

⊆π2

(τ,p)7→div τ

(2.4.4)

The bottom row corresponds to the load segment of a discrete stress complex such
as (1.2.23), refined for Stokes flow due to the decomposition (2.1.18). We will need the
conditions of Lemma 2.3.1 to hold exactly in the discretisation. This will in general
require that we approximate the concentrations cki , and density reciprocal (ρk)−1, in

[34]Here πi denotes projection onto the ith component.
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specific discrete function spaces. The interpolation of these terms will be denoted
by cki,h and ρk,−1

h , respectively. We now show that the discrete linear problems are
well-posed under a final condition which does not fit neatly onto (2.4.4).

Assumption 2.4.2. (Discrete driving force.) The operator given by

di,kh (wh, qh) := −cki,h∇wh + ωki,h∇qh, (2.4.5)

where ωki,h := Mic
k
i,hρ

k,−1
h , is well-defined as a map di,kh : Xh × Ph → Wh, i.e., it takes

values in Wh.

Remark 2.4.1. Note that Lemma 2.3.1 required a differentiation of ρ−1, and so ρk,−1
h

should at least be a continuous piecewise linear function. In order to minimise the
polynomial degree for Wh arising from Assumption 2.4.2, it is advantageous to in-
terpolate cki,h onto the space DG0. These coefficients do not affect the accuracy of
the discretisation, only the accuracy of the linearisation, and nonlinear convergence
appears robust regardless of this approximation.

Theorem 2.4.1. (Discrete inheritance of well-posedness.) Under Assumptions 2.4.1
and 2.4.2 and the relations specified in (2.4.4), the system (2.4.2) is well-posed, uni-
formly in h.

Proof. Due to the structural conditions demanded in the Assumptions, by inspection
the choices of test functions (2.3.27) are valid. As a consequence, we may completely
replicate the argument presented in the infinite-dimensional case, and derive the ana-
logue of condition (2.3.25) with constant independent of h.

2.4.2 Error estimates

Following [189, Theorem 2], for fixed k we infer the abstract error estimate

‖(µ̃k+1, τ k+1, pk+1)−(µ̃h, τh, ph)‖Θkh
+‖(ũk+1, uk+1)−(ũh, uh)‖Q . EΘkh

+EQh , (2.4.6)

where
EΘkh

:= inf
(w̃h,sh,qh)∈Θkh

‖(µ̃k+1, τ k+1, pk+1)− (w̃h, sh, qh)‖Θkh
,

EQh := inf
(ṽh,vh)∈Qh

‖(ũk+1, uk+1)− (ṽh, vh)‖Q.
(2.4.7)

Here the tuple ((µ̃k+1, τ k+1, pk+1), (ũk+1, uk+1)) is defined as the exact solution
to (2.3.5) but with Bk, Ak, `

1
k, `

2
k replaced with Bk,h, Ak,h, `

1
k,h, `

2
k,h, respectively – that

is, the solution of the system (2.3.5) with the estimates of the concentrations and
inverse density replaced by cki,h and ρk,−1

h , respectively.
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To derive a practical error estimate, we need to bound the quantities EΘkh
and EQh

by interpolation estimates specific to the choice of finite element spaces, by estimating
‖ · ‖Θkh

, ‖ · ‖Q in terms of standard Sobolev norms. To this end, we readily check that

EΘkh
. max

(
1,
∑

i

‖cki,h‖L∞(Ω)

)
inf

w̃h∈Xn
h

‖µ̃k+1 − w̃h‖1

+ max

(
1,
∑

i

‖ωki,h‖L∞(Ω)

)
inf
qh∈Ph

‖pk+1 − qh‖1 + inf
sh∈Σh

‖τ k+1 − sh‖div,

EQh . inf
ṽh∈Wn

h

‖ũk+1 − ṽh‖0 + inf
vh∈Vh

‖uk+1 − vh‖0.

(2.4.8)

2.4.3 Examples of suitable finite elements

Having derived abstract error estimates, we now consider two simple combinations
of finite elements satisfying the structural conditions (2.4.4) and Assumptions 2.4.1
and 2.4.2 in 2D. Denote by AWc

3 the lowest-order H(div;S)-conforming Arnold–
Winther element studied in the previous chapter, with Clément-like interpolant
Πh : H1(Ω;S)→ AWc

3(Th;S). Specifying

Xh = Ph = CG1(Th) ∩ L2
0(Ω), (2.4.9a)

Σh = AWc
3(Th;S), (2.4.9b)

Wh = Vh = DG1(Th;R2), (2.4.9c)

and further assuming that the discretely computed cki and (ρk)−1 have been interpo-
lated into DG0 and CG1, respectively, then this discretisation satisfies the structural
properties (2.4.4) and Assumptions 2.4.1 and 2.4.2, hence we deduce the error esti-
mate (2.4.6).

Let ΠCG1
h : H2(Ω) → CG1(Th) and Π

DG2
1

h : H1(Ω;R2) → DG1(Th;Rd) be the
associated interpolation operators. We then have the following interpolation rates
under sufficient regularity assumptions [40, p. 72][140, Ch. 3]:

‖µ̃− ΠCG1
h µ̃‖1 . h|µ̃|2, (2.4.10a)

‖p− ΠCG1
h p‖1 . h|p|2, (2.4.10b)

‖τ − Πhτ‖0 + h‖ div(τ − Πhτ)‖0 . h2|τ |2, (2.4.10c)

‖(ũ, u)− Π
DGd1
h (ũ, u)‖Q . h2|(ũ, u)|1, (2.4.10d)

where ΠCG1
h ,Π

DGd1
h have been applied componentwise. Using these estimates for the

interpolation operators and the error estimate (2.4.6), we can derive the error bound

‖(µ̃k+1, τ k+1, pk+1)− (µ̃h, τh, ph)‖Θkh
+ ‖(ũk+1, uk+1)− (ũh, uh)‖Q . h. (2.4.11)
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We will see in practice that the order of convergence for several fields is actually
higher, but the error in the species velocities and the driving forces remains O(h).

A higher-order class of finite elements is provided by replacing (2.4.9a) with

Xh = CG2(Th) ∩ L2
0(Ω), Ph = CG1(Th) ∩ L2

0(Ω), (2.4.12)

and leaving the others unchanged; again the structural conditions are satisfied if cki
and (ρk)−1 are interpolated into DG0 and CG1, respectively. A similar error analysis
again confers an error bound of only O(h), but shortly we will see that this is higher
in practice.

Remark 2.4.2. These estimates bound the error between the discrete solutions at
iteration k + 1, ((µ̃h, τh, ph), (ũh, uh)) and the continuous solution of the nonlin-
ear scheme ((µ̃k+1, τ k+1, pk+1), (ũk+1, uk+1)) with the same (discrete) coefficients,
but ideally one would derive error estimates against the continuous solution
((µ̃k+1, τ k+1, pk+1), (ũk+1, uk+1)) at iteration k + 1 with the exact (continuous) co-
efficients. Estimates on such consistency errors were analysed for a simpler system
in [180] and some rationale was provided as to why in practice this is not an issue,
based on the formal order of the consistency error being strictly less than the discreti-
sation error. We expect a similar (if tedious) analysis could be performed following
the strategy in [180]. In general the consistency errors are expected to be O(h2),
which will be borne out in the numerical examples.

Remark 2.4.3. In analogy to the previous chapter, we emphasise that we have aimed
to identify appropriate structural conditions between finite element spaces in order
to preserve desirable properties of the SOSM system, and in particular which allow
mimicry of well-posedness proofs from the infinite-dimensional problem, rather than
to advocate specifically for the elements used here. We expect that it is possible to
alternatively use a Lagrange multiplier to weakly enforce the symmetry of the viscous
stress as described in §1.2.3.

The system matrix of our discrete linearised system (2.4.3) has symmetric per-
turbed saddle point structure, and although indefinite, is such that both the blocks
Λ, Ak,h are symmetric positive semidefinite. These matrix properties hold indepen-
dently of the particular material considered. We expect that this structure should be
conducive to the development of fast solvers.

84



F. R. A. Aznaran Method of manufactured solutions

2.5 Numerical experiments

We now verify our scheme, implemented in Firedrake [164]. Since extensions of §1
giving software implementations of symmetry-enforcing stress elements in 3D are yet
to be carried out (see §4.1.2), we restrict ourselves to the case d = 2. Throughout
these experiments we chose the penalty parameter γ = 0.1 and constant functions for
the initial guesses.

2.5.1 Validation with manufactured solutions

We at first verify our error estimates via the method of manufactured solutions for
an ideal gas on the unit square Ω = (0, 1)2. If RT = 1, the diffusivities are given
by Dij = DiDj for Dj > 0, and g : R2 → R is smooth, then one can check that an
analytic solution to the OSM subsystem (2.1.10) is given by

ci = exp

(
g

Di

)
, vi = Di∇g, (2.5.1)

which together implicitly define every other quantity (for given shear and bulk vis-
cosities), apart from the chemical potentials which we compute by inverting the ideal
gas relation (2.1.26) with p	 = −

∫
Ω
p dx, µ	i = −

∫
Ω
ci dx ∀i. The molar mass of each

species was set to 1, and ζ, µ to 0.1. The initial guesses for the concentrations c̃0 were
set as c0

i = −
∫

Ω
ci dx, i.e. as the means of the exact concentrations.

We usedDi = 1
2
+ i

4
, i = 1, 2, 3, and g(x, y) = xy

5
(1−x)(1−y) to generate Figure 2.1,

which simultaneously demonstrates the negligible effect of the consistency error in-
duced by the discrete interpolations cki,h, ρ

k,−1
h and verifies the error estimate (2.4.11).
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Figure 2.1: Error plots for two finite element families: (2.4.9) (top) and (2.4.12)
(bottom).

The outer solver tolerance was 10−7 in the `2 norm, and took 6 nonlinear iterations
on the coarsest mesh of 4 × 4, to 7 iterations on finest mesh of 32 × 32. We have
denoted in Fig. 2.1 di,h as the discrete driving force defined by (2.4.5) at the final
iteration, and σh := τh − phI. As could be expected, the observed convergence rates
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of O(h2) in the ‖ · ‖0 norms of the chemical potential, stress, and pressure, are even
higher than those which we are able to prove in §2.4, once again suggesting that our
error estimates could be improved, for example by duality arguments.

2.5.2 Convergence of thermodynamic forces and the pressure
gradient

We also test the convergence of the thermodynamic forces underlying the SOSM
system. Due to our construction of the ‘linearised’ function space (2.3.1), it is the
norm ‖ · ‖Θkh

with respect to which we have proved convergence of the solution tuple.
It is natural to wonder whether this is an artefact of our constructed function spaces.
To answer this, we measure convergence of the chemical potential gradients ∇µi,
pressure gradient ∇p, and divergence div τ of the non-equilibrium stress to their true
values, compared to the convergence of the nonlinear diffusion driving forces, and of
the div of the full Cauchy stress. For the former quantities, there is a priori no reason
to expect any convergence at all.

2.50×10−11.25×10−16.25×10−23.12×10−21.56×10−2

h

10−5

10−4

10−3

10−2

10−1

E
rr
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O(h)

‖div(τ − τh)‖0
|p− ph|1√∑

i |µi − µi,h|21√∑
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‖div(σ − σh)‖0
O(h)2

87



F. R. A. Aznaran Microfluidic mixing of hydrocarbons
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Figure 2.3: Higher-order convergence in L2 of the divergence of the full Cauchy stress,
and driving forces, for two finite element families, (2.4.9) (top) and (2.4.12) (bottom),
providing circumstantial evidence towards their nonlinear integrability in (2.2.19c)–
(2.2.19d).

Remarkably, we observe in Figure 2.3 that not only do the components ∇µi,∇p, div τ

converge, but there is convergence of the nonlinear diffusion driving forces and di-
vergence of the full Cauchy stress, and in fact at a rate one order higher than these
individual components; this suggests that, rather than being a mathematical artefact
of our novel formulation, the conditions defining the Θk space capture the underlying
thermodynamic quantities of interest. This also provides intriguing (if circumstan-
tial) evidence towards the physical relevance of our nonlinear formulation in Defini-
tion 2.2.1.

2.5.3 Microfluidic mixing of benzene and cyclohexane

Cyclohexane is important in the petrochemical industry, where it is mainly used for
nylon synthesis. It is primarily produced through the dehydrogenation of benzene,
resulting in a benzene-cyclohexane mixture, but the extraction of cyclohexane from
this mixture is difficult due to the similar vaporisation temperatures of the two com-
ponents [183]. This provides a tractable non-ideal example for our scheme to simulate,
since its relatively high industrial importance makes most of the required material
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and thermodynamic parameter data readily available in the literature. We consider
a microfluidic chamber in which the Stokes flows of benzene and cyclohexane mix.

The transport parameters, measured at T = 298.15K, may be found in [105]; we
observe from these data that the diffusivity between the constituents, and their shear
viscosities, are essentially constant, and will be taken as D12 = 2.1 × 10−9m2/s and
µ = 6×10−4Pa ·s respectively. In the absence of accurate data for the bulk viscosities
of either chemical, we set them to essentially vanish at ζ = 10−7Pa · s. The molar
masses are taken as 0.078kg/mol for benzene and 0.084kg/mol for cyclohexane. Am-
bient pressure was taken as p	 = 105Pa. The benzene-cyclohexane mixture forms
a non-ideal solution, for which a relation between the chemical potentials is there-
fore required. We employ a Margules model [104], whose parameters were reported
in [178].

Stiffness arises in the interaction between the species velocities, since the mixtures
are almost fully separated at the inlets to the domain; we therefore employ a relax-
ation parameter of 0.1 in the update direction with respect to the concentrations,
i.e. iteration k + 1 updates the concentrations to c∗,k+1

i := 0.9cki + 0.1ck+1
i .

We consider a 2D pipe configuration bringing two inlets to a single outlet. At the
top, pure benzene enters, and at the bottom, pure cyclohexane. A parabolic axial
velocity profile is prescribed at inlets and outlet, as is consistent with planar Poiseuille
flow. Simulated results are visualised in Figures 2.4 and 2.5.

Benzene inlet

Cyclohexane inlet

Outlet

Figure 2.4: Plot of change in pressure in the mixing chamber, with streamlines com-
puted from the mass-average velocity.
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Figure 2.5: Concentrations of benzene (left) and cyclohexane (right), with streamlines
computed from their velocities.

We may observe that the pressure profile is smooth. Although the mass-average veloc-
ity exhibits rather simple, predictable behaviour, we are also able to resolve the flow
fields of the individual species, which are significantly more complex; moreover, these
three flow profiles are cleanly distinguished. We see that both species streamlines
develop convective rolls, behaviour markedly different from the convective flow.[35]

[35]For reproducibility, the exact software versions used to generate the numerical results in this
chapter are archived at https://zenodo.org/record/7017917 [192]; the code, and scripts for the
associated plots, are available at https://bitbucket.org/FAznaran/sosm-numerics/. Our imple-
mentation of the microfluids problem employs a nondimensionalisation of the SOSM system, which
may be detailed in forthcoming work.
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Chapter 3

The strain Hodge Laplacian

We now turn to the Hodge Laplacian boundary value problem arising from the strain
space H(inc;S) in the strain elasticity complex in 2D:

0 H1
ΓD

(Ω;R2)
displacement

HΓD(inc;S)
strain

L2(Ω)
incompatibility

/curvature

0.ε inc (3.0.1)

When |ΓN | = 0, this is replaced with

0 H1
0 (Ω;R2)

displacement
H0(inc;S)

strain
L2(Ω)/P1(Ω)
incompatibility

/curvature

0,ε inc (3.0.2)

and when |ΓD| = 0 with

0 RM
rigid

motions

H1(Ω;R2)
displacement

H(inc;S)
strain

L2(Ω)
incompatibility

/curvature

0.
⊆ ε inc

(3.0.3)
Here, as in §1, we assume ∂Ω = ΓD t ΓN , and ΓD,ΓN are each relatively open and
Lipschitz with 0 < |ΓD|, |ΓN | < |∂Ω|. The incompatibility operator inc := rot rot is
the linearised Gaussian curvature of the strain field, considered as a metric tensor. Of
central interest will be the characterisation of its associated Sobolev space, denoted by
H(inc) := H(inc;S) = dom(inc). Its formal adjoint in 2D is the Airy stress operator
airy := curl curl.

Note that we formally have the dualities between the stress and strain com-
plexes (1.0.1)←→(3.0.1), (1.0.2)←→(3.0.2), and (1.0.3)←→(3.0.3), except that the
trace operator associated with H(inc) is yet to be clarified – one of the contribu-
tions made by this chapter. We therefore focus on the sequence without boundary
conditions (3.0.3).
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In primal strong form, for given S-valued data f , the strain HL of (3.0.3) seeks a
tensor field E, in a space we shall specify, such that

airy incE − ε(divE) = f in Ω. (3.0.4)

We denote by dom(airy) := H(airy) the domain of the Airy operator. Clearly
H(airy) = H2(Ω) by the classical Poincaré inequality for ∇, with the equivalence
‖ · ‖2

airy ≡ ‖ · ‖2
0 + | · |22 ' ‖ · ‖2

2, but we now retain the former notation in order to
emphasise the duality with inc.

In this chapter, we propose a discretisation of the mixed weak form of (3.0.4),
based on the adaptation of discontinuous Galerkin FEM (DGFEM) to the incompat-
ibility operator using the symmetric-tensor-valued Regge finite element. This strain-
displacement formulation serves as a simple candidate model problem for intrinsic
linear elasticity in the presence of defects.

First, we describe our motivations, before writing down the problem (3.0.4) pre-
cisely in §3.2. Then §3.3 studies the scalar incompatibility operator, clarifying why
most results of this chapter do not follow automatically from any existing FEEC
framework. In §3.4, we discuss discrete analogues of inc in a DGFEM context and
motivate the use of the Regge element, before describing a well-posed DG method
in §3.5, providing among the first nonconforming discretisations of the inc operator.

3.1 Motivations: Kröner’s theory of defect elasticity

The sequence (3.0.1) in particular encodes as a complex property the differential
identity

inc ◦ ε = 0, (3.1.1)

and in fact if Ω is simply connected then (3.0.1) is exact at H(inc), giving the inte-
grability condition

ker(inc;H(inc)) = εH1(Ω;Rd). (3.1.2)

This is precisely a restatement (with Sobolev regularity) of the classical St Venant
compatibility condition of linear elasticity, derived in 1860, which models (compatible)
strain fields as symmetric gradients: that a tensor field E is inc-free if and only if it
is a symmetric gradient. The inc operator is thus sometimes denoted sven.

The pioneering work of Kröner [134] took this further by modelling the presence
of defects and dislocations at the microscopic scale precisely by the violation of St
Venant compatibility by the strain field, formally deriving incE = curl

(
Λ− trΛ

2
I
)
,
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where Λ is the (in general, tensor-valued) density of dislocations ; the presence of
defects is therefore formally incorporated into the PDE (3.0.4) by violation of the St
Venant compatibility condition, i.e.

incE 6= 0. (3.1.3)

Indeed, the elasticity complex is sometimes called the Kröner complex.
Due to its interpretation as a linearised notion of curvature, the inc operator also

arises naturally in the Einstein equations of general relativity [138] and the Ricci
flow [182]. The inc operator and its discretisation with finite elements have not
been studied widely, but extensive functional analysis has been carried out for the
3D, matrix-valued operator inc := curl ◦> ◦ curl by van Goethem and coauthors [4–
6, 141]. The same authors propose linearised models of defect elasticity and elasto-
plastic behaviour, to be discussed in §3.2.2, based on the incompatibility concept in
Kröner’s framework, and the models recover standard compatible linear elasticity in
a parameter limit; they have observed these models to produce physically realistic
simulations at least in academic examples [7].

Such models are intrinsic in the sense of solving for the strain tensor, rather
than (just) the displacement, as a primary unknown. This perspective goes back to
Ciarlet [73, p. 115], who modelled strain fields as identically compatible, incE =

0 [74], and who identifies the strain field as inducing a Riemannian metric on the
reference configuration of the elastic body, the displacement field as an immersion,
and the incompatibility tensor as a linearisation of the Riemannian curvature [5].

This chapter is thus motivated by the observation that several other formulations
of elasticity arise as Hodge Laplacians from other points in the complexes (1.0.1)–
(3.0.1), a canonical example being the Hellinger–Reissner Hodge Laplacian on which
we focused in §1, in addition to the pure primal displacement formulation arising
from the displacement space H1(Ω;Rd). Many important PDEs (or their linearisa-
tions) arise as the HL problem from a space in an appropriately chosen complex, as
emphasised in §0.

However, there is no consensus in the literature on a canonical PDE model of
linear elasticity in the presence of defects, and we shall mostly regard this application
as downstream from this work. We do not claim that (3.0.4) will accurately model
defects but only that we are discretising the appropriate operators and spaces for
that eventual goal, instead regarding the PDE as of interest in its own right, since
numerical solution of HL problems is in any case a topic of central interest in the
FEEC [12, p. 39].
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3.2 Problem formulation

3.2.1 A strain-displacement formulation

In primal strong formulation, for given f ∈ L2(Ω;S), we seek

E ∈ dom(airy inc−ε div)

={F ∈ H(inc) ∩H0(div;S) | incF ∈ H0(airy), divF ∈ H1(Ω;R2)}

=

{
F ∈ (H(inc) ∩H(div))(Ω; S)

∣∣∣∣
airy incF, ε divF ∈ L2(Ω;S),

incF = ∂n(incF ) = 0 and Fn = 0 on ∂Ω

}

(3.2.1)
such that

airy incE − ε(divE) = f in Ω, (3.2.2)

where
H0(airy) := H2

0 (Ω) = {v ∈ H2(Ω) | v = ∂nv = 0 on ∂Ω}. (3.2.3)

Note that the space (3.2.1) encodes strongly imposed boundary conditions, and that
its constraints are not assumptions of elliptic regularity. As a result, the boundary
value problem (3.2.2) is equivalent (not just formally) to the primal weak form, which
one may consider for Galerkin discretisation:[36] seek E ∈ H(inc) ∩ H0(div;S) such
that
∫

Ω

(incE)(incF ) + divE · divF dx =

∫

Ω

f : F dx ∀ F ∈ H(inc) ∩H0(div; S).

(3.2.4)
As is typical with primal HL problems arising not from the ‘first’ or ‘last’ space
in a complex, note that the test and trial space in (3.2.4) does not arise directly
in any version of the complexes (1.0.1)–(1.0.3), (3.0.1)–(3.0.3), and appears difficult
to discretise. We therefore consider the following equivalent, amenable mixed weak
formulation of the problem, with dual variable u := − divE interpreted as the elastic
displacement: seek the strain-displacement pair (E, u) ∈ H(inc) × H1(Ω;R2) such
that

∫

Ω

(incE)(incF ) + ε(u) : F dx =

∫

Ω

f : F dx ∀ F ∈ H(inc), (3.2.5a)
∫

Ω

ε(v) : E − u · v dx = 0 ∀ v ∈ H1(Ω;R2). (3.2.5b)

[36]By analogy, observe that by definition the domain of the Neumann–Laplace problem at H1(Ω)
for the de Rham sequence (0.1.2) has HL operator with domain {u ∈ H1(Ω) | ∇u ∈ H0(div)} =
{u ∈ H1(Ω) | ∆u ∈ L2(Ω), ∂nu = 0 on ∂Ω}.
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The strain tensor is classically viewed as a metric tensor; in geometric terms this
means it is the matrix proxy to a symmetric covariant 2-tensor field, which moreover
is everywhere positive definite. As identified back in §1.6.1, the correct notion of
pullback for the H(inc) space, and any FE space by which it is discretised, is therefore
given by the double covariant Piola map (1.3.8).

3.2.2 Comparison to the linear models of van Goethem et al.

We now compare the model problem (3.2.5) to a linearised intrinsic model of defect
elasticity proposed by van Goethem and coauthors, and argue that implicit in some
of this existing work are concepts readily provided already by the structure of the
elasticity complexes (0.1.3) and (3.0.3).

Observe that Kröner’s condition (3.1.3) is naturally interpretable in terms of the
Hodge decomposition of the base strain space (2.2.6),

L2(Ω;S) = εH1
0 (Ω;R2) kL2 airyH(airy) = εH1(Ω;R2) kL2 airyH0(airy), (3.2.6)

revealing that the incompatible component of a strain field is exactly its divergence-
free component. The three-dimensional analogue of the orthogonal decomposi-
tion (3.2.6), i.e. the Hodge decomposition of L2(Ω;S) in (0.1.3), has been generalised
in [141] to tensor fields in Lp(Ω;S), 1 < p <∞, and proposed by van Goethem (by its
classical name, the Beltrami decomposition) as an alternative to the classical elasto-
plastic decomposition of the strain tensor from plasticity theory [5]. For example, it
is observed to be preferable in being unique upon prescribing boundary conditions
for the displacement field; indeed, this is always true of the Hodge decomposition, as
may be seen from both decompositions in the special case (3.2.6). Analogously, the
application of this general case in the same work [141] to prove the Korn inequality
for vector fields in W 1,p(Ω;R3), 1 < p < ∞, is, in FEEC terms, a generalisation to
the non-Hilbertian case of the Poincaré inequality associated with H1(Ω;R3) in the
sequence (0.1.3), which follows automatically by the bounded inverse theorem and
the closedness of (0.1.3).

Recently in [7], the same authors proposed an intrinsic model of small-strain
incompatible elasticity given by seeking the strain field E ∈ H with

∫

Ω

CE : F + D incE : incF dx =

∫

Ω

K : F dx ∀ F ∈ H, (3.2.7)

where C is the elasticity tensor, D is symmetric and uniformly positive definite, and
K is a tensor field representing external work. Here in 3D, the partially trace-free
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space H is defined as {F ∈ H(inc) | T0(E) = T1(E) = 0 on Γ ⊆ ∂Ω}, where T0, T1 are
trace operators discussed below in (3.3.1). The deformed solid body is endowed with
metric induced by the matrix field g = I + 2E, whose Riemannian curvature tensor
in the small strain regime is incE (up to constants in each component). Equation
(3.2.7) is then obtained as the Newton linearisation of a proposed plastic flow rule.

Observe that up to the identification of the symmetric positive definite tensors
C,D with the identity, equation (3.2.7) is essentially equivalent to solving the H(inc)

Riesz map (E,F )H(inc) = 〈K, F 〉 ∀ F ∈ H(inc), where 〈·, ·〉 denotes the dual pairing
of H(inc)∗. Such an identification between tensors is exactly the equivalence between
the mixed form of the Poisson Hodge Laplacian and Darcy flow, as pointed out
in §0.2.1. Its leading-order operator essentially coincides with that in our formulation
of interest (3.2.4), subject to the constraint divE = 0, which encodes incompatibility
as already argued; this may be thought of as ‘half’ a HL operator, and in fact will
turn out to be crucial to our analysis in §3.5.2. The zeroth-order perturbation term
(CE,F )L2 is moreover natural to weight with the elasticity tensor C, as the base
strain space L2(Ω;S) in (3.0.3) may be weighted with C = A−1 in duality with the
weighting of the base stress space with A as specified back in §1; in FEEC terms, the
constitutive law which relates the strain to the stress, and the strain complex to the
stress complex, is in analogy to the Hodge star between differential forms [12, Section
8.6].

For finite element appoximation, the Beltrami decomposition is used to de-
rive a mixed displacement-strain-displacement formulation in H1(Ω;R3) ×H(inc) ×
H1(Ω;R3), the secondary displacement field arising also as a potential for K which is
not directly known. The resulting mixed weak formulation [7, p. 14] is still recognis-
ably comparable to our mixed weak form (3.2.5), apart from low-order cross terms
arising from the zeroth-order perturbation and the secondary displacement field.

In [141], the authors draw analogy between the St Venant condition and deter-
mining whether a curl-free vector field is conservative, a question answered by the
classical Poincaré lemma and equivalent to exactness of the de Rham sequence (0.1.2)
at H(curl), but draw no further connection to the FEEC. The Hodge Laplace prob-
lem (3.2.2) is anticipated to be a problem of interest in its own right, and with it we
may apply the theoretical FEEC machinery discussed in §0.2 and §1.6.1 to inherit
well-posedness and give clues to discretisation.
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3.3 The incompatibility operator

3.3.1 Green’s formulae

We first make note of the following theorem in 3D due to van Goethem & Amstutz [4]:
for Ω ⊆ R3 with smooth boundary, E ∈ C2

(
Ω;S

)
, S ∈ H2(Ω;S),

∫

Ω

E : inc(S) dx =

∫

Ω

inc(E) : S dx+

∫

∂Ω

T1(E) : S + T0(E) : ∂nS ds, (3.3.1)

where

T0(E) := (E × n)> × n ∈ H−1/2(∂Ω;S),

T1(E) := sym(curl(E × n)>) +

((∂n + k)E × n)> × n + sym((curlE)> × n) ∈ H−3/2(∂Ω;S),

(3.3.2)

and k is twice the mean (extrinsic) curvature of ∂Ω. For the two-dimensional case,
we now derive novel Green’s formulae which relate the scalar inc operator to its
formal adjoint, the Airy operator. For n the outward pointing unit normal to a given
boundary, let t := n⊥ = Ln denote the unit tangent, where

L =

(
−1

1

)
(3.3.3)

is anticlockwise rotation. For the remainder of this section, we assume Ω ⊆ R2

is a bounded domain, with trivial topology, and that ∂Ω is at least C2. For all
E ∈ C2(Ω;S), S ∈ C2(Ω), we compute that
∫

Ω

(incE)S dx =

∫

Ω

(rotE) · curlS ds+

∫

Γ

((rotE) · t)S ds

=

∫

Ω

E : airyS dx+

∫

Γ

((rotE) · t)S + (curlS) · Et ds,
(3.3.4)

where Γ := ∂Ω. Decomposing the final surface term, we have
∫

Γ

(L−1∇S) · Et ds =

∫

Γ

−(∂nS)(Et · t) + (∂tS)(Et · n) ds, (3.3.5)

and by the divergence theorem for the tangential gradient ∇Γ := (∂t·)t and the
tangential divergence divΓ f := ∇Γ · f (e.g. [80, Theorem 2.10]),

∫

Γ

(∂tS)(Et · n) ds =

∫

Γ

(∇ΓS) · E>n ds

=

∫

Γ

(n · E>n)Sκ− S divΓ(E>n) ds+

∫

∂Γ

S(E>n) · π ds

=

∫

Γ

(n · En)Sκ− S∂t(n · Et) ds+

∫

∂Γ

S(En) · π ds,

(3.3.6)
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where κ(x) = −1
2

divΓ n(x) is the curvature of Γ at x ∈ Γ, and π is the conormal to
Γ, a term we may drop since Γ is a compact hypersurface (giving ∂Γ = ∅). This gives
the overall Green’s formula

∫

Ω

E : airyS dx =

∫

Ω

(incE)S dx+

∫

Γ

T0(E)∂nS + T1(E)S ds, (3.3.7)

where, comparing with (3.3.1), we have defined

T0(E) := t · Et, (3.3.8a)

T1(E) := ∂t(n · Et)− (n · En)κ− (rotE) · t. (3.3.8b)

3.3.2 Traces and exactness

We now characterise the correct notion of traces for the H(inc) space, which is neces-
sary to even define the vanishing-trace subspaces in (3.0.1), (3.0.2). We follow mutatis
mutandis the procedure for normal traces of H(div) functions in [12, Section 3.4].

Proposition 3.3.1. (Annihilator ofH0(airy)). If L ∈ H(airy)∗ vanishes on H0(airy),
then there exists a unique (t0, t1) ∈ (H1/2 ×H−3/2)(∂Ω) such that

Lv = 〈∂nv, t0〉∂Ω + 〈t1, v〉∂Ω ∀ v ∈ H(airy), (3.3.9)

and ‖(t0, t1)‖ 1
2
×− 3

2
,∂Ω . ‖L‖H(airy)∗.

Proof. Define j : H(airy)→ (H−1/2×H3/2)(∂Ω) by the traces j(S) = (∂nS, S). Then
j is bounded linear with kernel H0(airy). Let (y, Y ) ∈ (H−1/2 ×H3/2)(∂Ω); we show
that j is surjective.

There exists w ∈ H(div) with y = w · n. Choose z ∈ H2(Ω)/R to be the unique
solution of

−∆z = − divw in Ω, ∂nz = 0 on ∂Ω. (3.3.10)

Then div∇z = divw, i.e. w,∇z coincide up to a curl, so for all b ∈ H1(Ω),

〈y, b〉∂Ω =

∫

Ω

(divw)b+ w · ∇b dx =

∫

Ω

(div∇z)b+∇z · ∇b dx, (3.3.11)

and hence ∇z · n = y. A minor subtlety in working with this higher-order trace,
familiar from the analysis of biharmonic problems and already clear from the definition
of H0(airy) (3.2.3), is that the zeroth-order trace is enough to specify tangential
derivative traces, and a priori the subspaces of H(airy) mapping surjectively onto
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H1/2 and H−3/2 could be orthogonal. This is corrected simply by solving the Laplace
problem

−∆z′ = 0 in Ω, z′ = Y on ∂Ω (3.3.12)

for z′ ∈ H2(Ω), so that j(z + z′) = (y, Y ).
IdentifyingH−1/2(∂Ω)∗ = H1/2(∂Ω) and by [12, Lemma 3.10], the dual j∗ : (H1/2×

H−3/2)(∂Ω) → H(airy)∗ is therefore a bounded injection with image the annihilator
of H0(airy), which gives the statement.

Theorem 3.3.1. (Traces in H(inc)). The map E 7→ (T0(E), T1(E)), C2(Ω;S) →
C0(∂Ω)2, extends to a bounded linear trace operator T : H(inc)→ (H1/2×H−3/2)(∂Ω)

which moreover satisfies the Green’s formula (3.3.7) for all S ∈ H(airy).

Proof. Fix E ∈ H(inc) and define LE ∈ H(airy)∗ by

LE(S) =

∫

Ω

E : airyS − (incE)S dx, (3.3.13)

which vanishes on C∞c (Ω) by (3.3.7), and by density also on H0(airy). Proposi-
tion 3.3.1 gives a unique pair T E = (t0(E), t1(E)) ∈ (H1/2 ×H−3/2)(∂Ω) with
∫

Ω

E : airyS−(incE)S dx = 〈∂nS, t0(E)〉∂Ω+〈t1(E), S〉∂Ω ∀ E ∈ H(inc), S ∈ H(airy),

(3.3.14)
and

‖T E‖ 1
2
×− 3

2
,∂Ω = sup

S∈H(airy)

∫
Ω
E : airyS − (incE)S dx

‖S‖airy

≤
√

2‖E‖inc. (3.3.15)

To interpret T , we see that for fixed E ∈ C2(Ω;S), each integral in (3.3.7) is ‖ · ‖airy-
bounded as a function of S ∈ C2(Ω), so (3.3.7) holds for all S ∈ H(airy) by density of
C∞(Ω) in H(airy). Since the pair T E is uniquely determined by the relation (3.3.14),
we have

(t0(E), t1(E)) = (T0(E), T1(E)) (3.3.16)

whenever E ∈ C2(Ω;S).

Definition 3.3.1. (Vanishing on the boundary in H(inc)). The trace-free subspace
of H(inc) is defined as H0(inc) := {E ∈ H(inc) | T0(E) = T1(E) = 0 on ∂Ω}.

With this structure in place, the following result is elementary; it is not surpris-
ing, as exactness of a complex is typically inherited by its adjoint sequence, but we
explicitly prove the following special case, as adjoints and exactness for the elasticity
complexes have only partially been clarified in the literature.
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Lemma 3.3.1. (Exactness of the strain complex with boundary conditions). The
strain complex with boundary conditions (3.0.2) is exact, provided Ω is simply con-
nected.

Proof. If E = ε(u) for some u ∈ H1
0 (Ω;R2), then for all S ∈ H(airy),

〈∂nS, T0(E)〉∂Ω + 〈T1(E), S〉∂Ω =

∫

Ω

E : airyS − (incE)S dx =

∫

Ω

ε(u) : airy S dx

= 〈(airyS)n, u〉∂Ω −
∫

Ω

div(airy S) · u dx = 0,

(3.3.17)
i.e. (T1(E), T1(E)) vanish in (H1/2×H−3/2)(∂Ω). Conversely if E ∈ ker(inc;H0(inc)),
then E ⊥L2 airyH(airy), so by the Hodge decomposition of the strain complex with-
out boundary conditions (3.0.3), we have E = ε(u) for some u ∈ H1(Ω;R2). For all
S ∈ H(airy),

0 =

∫

Ω

ε(u) : airy S dx = 〈(airyS)n, u〉∂Ω −
∫

Ω

div(airy S)︸ ︷︷ ︸
= 0

· u dx. (3.3.18)

By surjectivity of S 7→ (airyS)n, H(airy) → H−1/2(∂Ω), we can choose (airyS)n

to be the Hahn–Banach norming functional of u|∂Ω ∈ H1/2(∂Ω), i.e. we must have
u|∂Ω = 0.

If E ∈ H0(inc), then (3.3.7) clearly gives incE ⊥L2(Ω) P1(Ω). Conversely, let
S ∈ P1(Ω)⊥L2(Ω) . Observe that for scalar fields w, r we have the identity

airyw : airy r ≡ ∇2w : ∇2r, (3.3.19)

so by the regularity theory of the biharmonic problem with homogeneous boundary
conditions, there exists a unique w ∈ H4(Ω) ∩H0(airy) with

∫

Ω

airyw : airy r dx =

∫

Ω

Sr dx ∀r ∈ H0(airy), (3.3.20)

so w = ∂nw = 0 on ∂Ω with S = inc airyw.

3.3.3 A remark on abstract Hilbert traces

We discuss our result, Theorem 3.3.1, in the context of the very recent frame-
work [110] for trace operators on abstract Hilbert complexes. There is no notion
of ‘boundary’ in an abstract Hilbert space, so given an abstract closed Hilbert
complex, the work [110] (in the notation of page iv) uses relations of the form
H(op;X)/H0(op;X) ' TH(op;X) (which hold in Rd for ∂Ω of sufficient regularity)
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to define the trace spaces, and the notion of ‘boundary’ is subsumed into an assump-
tion of the existence of an L2-dense closed subcomplex of spaces H∗(op;X) playing
the role of the trace-free subspaces H0(op;X) [110, Eq. (2.8a)]. The framework makes
precise the observation that for a given operator, passing to the trace space commutes
with taking the dual, as is easily seen in Theorem 3.3.1. However, to our knowledge
this abstraction does not provide a classical interpretation of the trace operator on a
smoother subspace in the sense of (3.3.8), which justifies its computation by hand.

A further potential criticism of [110] is the apparently arbitrary manner in which
the trace operator is ‘hidden’ in assuming the existence of the dense subcomplex,
whose closed subspaces H∗(op;X) could a priori encode conditions other than being
trace-free. However, due to the density assumption, this may still be seen to be inher-
ent to the notion of traces in the following sense. In the abstract setting of sequences
of smooth differential k-forms (to which functions in the de Rham complex are proxy)
as introduced in §1.6.1, Brüning & Lisch [50] observe that H0Λk := C∞c Λk

‖·‖d is the
domain of the minimal closed extension of d, while HΛk is the domain of its max-
imal closed extension. For the Sobolev functions proxy to these differential forms,
it follows that the Sobolev space playing the role of the (trace-free) dense subspace
H∗(op;X) must, indeed, lie ‘between’ H0(op;X) and H(op;X), which corresponds to
(for example) the subspace vanishing in the trace sense on only a part of the boundary
Γ ( ∂Ω (for Γ of sufficient regularity).

3.4 Discrete incompatibility and the Regge element

For discretisation of the model problem, symmetric tensor elements conforming to
the H(inc) space have been recently constructed [72], but in this section, we argue
why a DG-type method is appropriate specifically for the strain HL.

In [117], a framework is provided for the DGFEM discretisation of HL problems
arising in the de Rham complex in arbitrary dimensions. It is known that the elasticity
complex may be constructed via the de Rham complex [20], but this connection is
nontrivial and we prefer to attack (3.0.4) directly.

We assume now that Ω is polygonal, and let Th denote a quasi-uniform trian-
gulation thereof. We proceed with the DG notation E◦h,Λh, [[·]] introduced in §1.5;
in addition, for a given cell K, denote the set of its edges by E(K), and by
Eh = ∪K∈Th ∪e∈E(K) e the set of all edges of Th. On an interior edge e = ∂K ∩ ∂K ′,
let {vh} := 1

2
(vh|K + vh|K′) denote the average, defined as the identity on an exterior
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edge e ⊆ ∂Ω. We introduce the shorthand
∫
Th

:=
∑

K∈Th

∫
K
,
∫
E(◦)
h

:=
∑

e∈E(◦)
h

∫
e
, and

the corresponding inner products induce norms ‖ · ‖0,Th , ‖ · ‖E(◦)
h
.

3.4.1 The Regge finite element

It is natural to first consider C0-interior penalty methods for the airy inc operator due
to its 4th order nature, as have been very successful for the biharmonic problem [49].
The comparable model detailed above in §3.2.2 was solved for a strain tensor with the
scalar H2(Ω)-conforming Hsieh–Clough–Tocher element in each component in order
to avoid the direct discretisation of H(inc). However, the exact solution to the primal
problem (3.0.4) might not lie in H1(Ω;S), and we anticipate an incompatible strain
field to be of low regularity, so that an even weakly H1(Ω;S)-conforming numerical
solution could be spurious. Such a situation is familiar in being even a motivation for
the invention of what is now called the FEEC, in that spurious solutions arise from
the use of Lagrange (rather than Nédélec) elements for the Maxwell eigenproblem [12,
p. 9], or more generally for high-order curl source and eigenproblems, due to the lack
of discrete cohomological structure [125]; this lies in analogy with the Lavrentiev gap
phenomenon.

Secondly, in anticipation of application to the scheme to fracture mechanics, the
fully discontinuous Galerkin method is well-known to incorporate the possibility of
shock-/singularity-capture through the development of Riemann solvers or slope lim-
iters. In particular, the Lagrangian associated with a DG scheme will include normed
jumps of the solution tuple across element boundaries, as for example in (1.5.8), which
may be interpreted as the energetic cost of crack creation or propagation [77].

Thirdly, motivated to discretise the mixed formulation (3.2.5), to resolve the
−ε div term it is in addition essential to be guided by the structure of a discrete
elasticity complex, for which proof of the inf-sup compatibility condition is tractable.
Discrete elasticity complexes more regular than the Regge complex (see (3.4.2) below,
which we shall use) which provide a H1(Ω;S)-conforming metric tensor do exist (in
analogy to the Stokes complex and its subcomplexes as smoothed versions of the de
Rham complex), but to date, only on specialised meshes, such as the Alfeld/Worsey–
Farin split [70].

We propose the symmetric-tensor-valued generalised Regge finite element to dis-
cretise the strain field. Regge [165] postulated a formalism for producing simplicial
approximations to spacetimes in general relavitity, the so-called Regge calculus, using
piecewise constant metric tensors; this produced a corresponding discrete formula-
tion of the Einstein equations which made them amenable to numerical simulation.
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This method has been interpreted in FEEC terms, in particular as a concrete finite
element space in 3D nonconforming to {F ∈ L2(Ω;S) | incF ∈ H−1(Ω;S)}, by Chris-
tiansen [67, 69], and then generalised to arbitrary polynomial order and dimension in
the recent PhD thesis of Li [138], who applied them to discretise the metric tensor of
general relativity. A Regge-valued finite element solution thus inherits a clear inter-
pretation as a metric. The simplicial Riemannian metric and corresponding Gaussian
curvature induced by the Regge space can be understood in a distributional sense [38],
as we touch on in the next subsection.

The Regge element is characterised by tangential-tangential continuity. It is glob-
ally defined for degree k ≥ 0 as

REGk
h := {F ∈ DGk(Th;S) | [[t · F t]] = 0 on E◦h}. (3.4.1)

Consequently, the Regge space is partially inc-conforming in that it is T0-continuous
over mesh edges. By a rotation of its rows, at lowest order it coincides with the
HHJ element in 2D and forms a strict subset of the TDNNS element in 3D, each
described in §1.2.3. In this lowest order case, for which a schematic is provided
in Figure 3.1, the degrees of freedom are given by the mean of the tangential-tangential
components on each edge. On a cell K, DOFs for the kth-degree element are given
by tangential-tangential moments up to degree k over edges, and internal moments
F 7→

∫
K
F : B dx against elements B of a basis of Pk−1(K;S).

Figure 3.1: The 0th-order generalised Regge finite element [138].

The associated Regge complex may be connected to the 2D strain complex via ap-
propriate densely defined commuting interpolants, in the lowest-order case as

0 RM H1(Ω;R2) H(inc) L2(Ω) 0

0 RM CG1(Th;R2) REG0
h Xh 0.

⊆

id

ε

I0
h

inc

I1
h I2

h

⊆ ε inc

(3.4.2)

Here Xh := {δx | x ∈ Λh} is a distributional element whose shape functions are
measures, the Dirac masses supported on mesh vertices Λh, hence is not a finite
element in the classical Ciarlet sense. This structure follows from [69] and explicit
computations which we provide in the next subsection.
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3.4.2 Discrete Green’s formulae

As the Regge space is H(inc)-nonconforming, in this subsection we carefully consider
mesh-dependent analogues of the inc operator in the framework of DGFEM.

We cannot apply cell-by-cell the Green’s formula (3.3.7), because on the edges of
triangular cells one cannot compute curvature in the classical sense; edges have no
curvature other than that arising from the discontinuous jump in the normal vector
n at the vertices. Instead, given a cell K ∈ Th and E ∈ C2(K;S), S ∈ C2(K), we
apply edge-wise the formula (3.3.6). Thus, curvature vanishes, but one cannot drop
the conormal term:

∫

∂K

(∂tS)(Et · n) ds =
∑

e∈E(K)

∫

e

−S∂t(n · Et) ds+

∫

∂e

S(En) · π ds, (3.4.3)

in which E(K) denotes the set of edges of K. We thus obtain the discrete Green’s
formula
∫

K

E : airyS dx =

∫

K

inc(E)S dx+
∑

e∈E(K)

∫

e

T0(E)∂nS + (∂t(n · Et)− t · rotE)S ds

+
∑

e∈E(K)

∑

x∈∂e

(−1)[e,x](n · Et)(x)S(x),

(3.4.4)
with Iverson bracket negating the sign only if e starts at x:

[e,x] := [x is the start point of e] =

{
1 if e starts at x,

0 if e ends at x.
(3.4.5)

This recovers [65, Eq. 34]; we place terms in order of codimension of their ‘integration
domain’.

Consequently if Eh ∈ DGk(Th;S) and φ ∈ C∞c (Ω), then the distributional incom-
patibility of Eh across the mesh, incEh ∈ D′(Ω), is given by taking the sum over all
cells in (3.4.4):

〈incEh, φ〉 :=

∫

Ω

Eh : airy φ dx

=

∫

Th
inch(Eh)φ dx+

∫

Eh
[[T0(Eh)]]∂nφ+ [[∂t(n · Eht)− t · rotEh]]φ ds

+
∑

K∈Th

∑

e∈E(K)

∑

x∈∂e

(−1)[e,x](n · Eh(x)t)φ(x),

(3.4.6)
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i.e.
incEh = inchEh +

∑

e∈Eh

[[T0(Eh)]]δ
n
e + [[∂t(n · Eht)− t · rotEh]]δe

+
∑

K∈Th

∑

e∈E(K)

∑

x∈∂e

(−1)[e,x](n · Eht)δx,
(3.4.7)

where for θ ∈ C∞(e),

〈θδe, S〉 :=

∫

e

θS ds, 〈θδne , S〉 :=

∫

e

θ∂nS ds. (3.4.8)

The discontinuous Galerkin method may be thought of as comparing an operator
(inc) with its element-wise version (inch), and then considering what spaces lie in the
kernel of the error terms, contributed by jumps in the fluxes across interior cell edges
(or more generally, positive-codimensional facets). Tangential-tangential continuity
of the Regge space means the T0 jump term vanishes identically, and the 0th order
Regge element is piecewise constant, so that its piecewise inc and its edge jump in
derivatives must vanish. Thus, it may be seen from (3.4.7) that inc : REG0

h → Xh is
well-defined and surjective. These Dirac masses may be rigorously interpreted as the
measure-valued curvature of the cell boundary [38], the quantity κ in the continuous
Green’s formula (3.3.7), so in this simple lowest-order case, the calculation (3.4.7) is
consistent with the intuition that the incompatibility operator encodes the existence
of singularities in the curvature of the domain.

Since the product of Dirac masses is ill-defined, this also demonstrates the subtlety
of interpreting the airy inc operator “〈airy incE, S〉 = 〈incE, incS〉” if one would like
to take both arguments from the Regge space, in analogy to the div operator acting
on the TDNNS stress-displacement element in §1.2.3.

3.4.3 Codimension-2 curvature

Consider the localisation of the vertex term in (3.4.7). At a given x ∈ Λh, let P x
h :=

{K ∈ Th | x ∈ ∂K} denote the patch of cells sharing x as a vertex. The angle defect
∑

K∈Px
h

∑

e∈E(K)

∑

x∈∂e

(−1)[e,x]δx(n · Eht) =
∑

K∈Px
h

∑

e∈E(K)

∑

x∈∂e

(−1)[e,x]n · Eh(x)t (3.4.9)

is then a 2-codimensional analogue of the classical DG jump over mesh edges, whose
cancellation quantifies the inc-nonconformity of a tensor field.

The following combinatorial identity, which can be proved by hand assuming suf-
ficient regularity of a matrix field near a vertex, therefore means something rather
concrete in terms of inc-conformity.
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Corollary 3.4.1. (“Kirchhoff’s law”.) For all E ∈ C∞(Ω;S),
∑

K∈Px
h

∑

e∈E(K)

∑

x∈∂e

(−1)[e,x]n · E(x)t = 0 (3.4.10)

at each x ∈ Λh.

3.5 Interior penalisation in H(inc)

3.5.1 A codimension-1 approach

For k ≥ 0, let V k
h := CGk+1(Th;R2) denote the discrete displacement space in the

Regge complex. We consider the following DG formulation of the strain HL on the
Regge element pair: seek (Eh, uh) ∈ REGk

h × V k
h such that

ah(Eh, Fh) +

∫

Ω

Fh : ε(uh) dx =

∫

Ω

f : Fh dx ∀ Fh ∈ REGk
h, (3.5.1a)

∫

Ω

Eh : ε(vh)− uh · vh dx = 0 ∀ vh ∈ V k
h , (3.5.1b)

where now, in light of §3.4.2, ah(·, ·) is a carefully chosen mesh-dependent airy inc

operator. We must decrease the regularity requirement of the argument Eh in (3.4.7),
so as to derive a well-defined bilinear form on the Regge space.

We now specify the choice of trace formula to use for this purpose. Although we
have argued that the Regge element is the natural choice for a DG discretisation of
the model problem, its degrees of freedom only match the trace operator T0, and not
T1 nor its discrete analogue. We thus choose to partially reverse the integration by
parts in (3.4.6): for Eh ∈ DGk(Th;S), we have

incEh = inchEh +
∑

e∈Eh

−[[rotEh · t]]δe + [[t · Eht]]δne − [[n · Eht]]δte, (3.5.2)

where for θ ∈ C∞(e),

〈θδte, S〉 :=

∫

e

θ∂tS ds, (3.5.3)

so if Eh ∈ REGk
h then

incEh = inchEh −
∑

e∈Eh

(
[[rotEh · t]]δe + [[n · Eht]]δte

)

= inchEh −
∑

K∈Th

∑

e∈E(K)

(
(rotEh · t)δe + (n · Eht)δte

)
.

(3.5.4)
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This form of the inc operator is thus amenable to approximation or regularisation,
but without the 2-codimensional jump terms suggested by the previous subsection
(although vertex jump terms have been applied for the biharmonic operator [49]).

Note that the final term in (3.5.4) counts interior edges twice, but using the classic
identity [[uv]] = 1

2
([[u]]{v}+{u}[[v]]) is readily simplified to

∑

K∈Th

∫

∂K

((rotEh · t)S + (n · Eht)∂tS) ds

=

∫

Γ

((rotEh · t)S + (n · Eht)∂tS) ds+

∫

E◦h

[[rotEh · t]]{S}+{rotEh · t}[[S]]

+ [[n · Eht]]{∂tS}+{n · Eht}[[∂tS]] ds.
(3.5.5)

We define the mesh-dependent discrete seminorm

|Eh|2h := ‖ inchEh‖2
0,Th +

1

h3
‖[[rotEh · t]]‖2

0,E◦h
+

1

h
‖[[n · Eht]]‖2

0,E◦h
, (3.5.6)

with kernel the distributionally inc-free tensor fields, and the mesh-dependent airy inc

operator

ah(Eh, Fh) :=

∫

Th
(inchEh)(inch Fh) dx

−
∫

Eh

(
[[t · rotEh]]{incFh}+{incEh}[[t · rotFh]]

)
ds

−
∫

Eh

(
[[n · Eht]]{incFh}+{incEh}[[n · Fht]]

)
ds

+
1

h3

∫

E◦h

[[t · rotEh]][[t · rotFh]] ds

+
1

h

∫

E◦h

[[n · Eht]][[n · Fht]] ds.

(3.5.7)

As is standard in DGFEM, we add consistent terms to symmetrise the bilinear form,
and penalisation terms to weakly enforce the inc-conformity requirement and to make
the form coercive with respect to an appropriate mesh-dependent norm. By construc-
tion,

|ah(Eh, Fh)| ≤ |Eh|h|Fh|h. (3.5.8)

3.5.2 A discrete Poincaré inequality

A fundamental tool in DG analysis is the establishment of a discrete Poincaré in-
equality

‖E‖0 . |E|h (3.5.9)
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for all piecewise polynomial fields. Clearly, such an inequality can be true only on a
subspace orthogonal to the kernel of inc, which by the discrete Hodge decomposition
of REGk

h will be equivalent to the gauge condition divhE = 0, where divh denotes
some appropriate notion of discrete divergence. This is to be expected, as typically a
bilinear form arising on the diagonal of a saddle point system need only be coercive
on some (possibly infinite-codimensional) kernel, as has been the case for the saddle
point systems already studied in both §1 and §2.

Typically, such results on nonconforming polynomial spaces are available by em-
ploying the space BV (Rd) of functions of bounded variation in an intermediate es-
timate (e.g. [79, Theorem 5.3]), whose norm agrees with the W 1,1(Rd) seminorm
|∇(·)|L1(Rd) on an ‖ · ‖L1(Rd)-dense subspace [2, Theorem 3.9]. However, an heuristic
problem in this setting lies, as mentioned above, in the infinite-dimensional kernel
of inc, in contrast to those of ∇ or ε which are trivially fixed by imposing Dirich-
let boundary conditions or requiring finite integrability on all of Rd; moreover, it is
unclear how to generalise Sobolev embeddings to the inc operator as, unlike ∇, it is
a priori well-defined only in dimension 2 or 3. Thus, adaptations of standard DG
well-posedness theory, for example using an analogue of the BV space for the inc

operator, would require significant modification for the present case.
Typically, the operation of passing to a subcomplex of a given complex commutes

with taking the Hodge Laplace equations; this is for example true of the conforming
Arnold–Winther method for the Hellinger–Reissner principle as in (1.5.2). Indeed,
in the case of a subcomplex for which bounded commuting interpolations can be
constructed, Poincaré inequalities may then be inherited from the infinite-dimensional
spaces with constants independent of h, as required already for the previous chapter
in Assumption 2.4.1.

For the nonconforming subcomplex (3.4.2), a Poincaré inequality could be derived
by applying the bounded inverse theorem directly to the closedness of the Regge
sequence, but the resulting constant (which will arise in convergence estimates) will a
priori depend on h. Moreover, any scheme of the form (3.5.1) cannot be interpreted as
a Hodge Laplacian associated with the exact Regge complex (3.4.2) at REGk

h (which
would render its well-posedness automatic), as the space Xh is not Hilbertian. We
therefore proceed with direct analysis of the scheme (3.5.1).

We now motivate the ‘halved’ Hodge Laplace problem. In the special case that the
data f in the abstract HL problem (0.2.6) is chosen from the subspace ker((dk−1)∗),
then f admits a potential in the space V k+1, f = (dk)∗g for some g ∈ V k+1, and it
may be checked that the solution to (0.2.6) with data f can be obtained as u = (dk)∗v,
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where v ∈ V k+1 solves the HL Lk+1v = g [12, Section 4.4.3]. In what follows, we shall
place the following strong assumption on a discrete analogue of this PDE at H(inc),
where (dk−1)∗ = − div, to account for the infinite-dimensional kernel of inc.

Define divh : L2(Ω;S)→ V k
h as the Hilbert space adjoint of −ε, i.e.

∫

Ω

(divhEh) · vh := −
∫

Ω

Eh : ε(vh) dx ∀ vh ∈ V k
h , (3.5.10)

so that vanishing divh of the data is a compatibility condition for well-posedness of
what follows.

Assumption 3.5.1. (Elliptic regularity of the ‘half’ strain Hodge Laplacian). As-
sume Ω is such that for every f ∈ REGk

h with divh f = 0, a solution Ξ ∈ H(inc) to
the system

airy inc Ξ = f in Ω,

divh Ξ = 0 in Ω,

inc Ξ = ∂n(inc Ξ) = 0 on Γ,

Ξn = 0 on Γ,

(3.5.11)

exists and satisfies Ξ ∈ H4(Ω;S), and moreover that ‖Ξ‖4 . ‖f‖0.

This (strong) assumption may be viewed as a statement of elliptic regularity for the
continuous Hodge Laplacian, but constrained by the discrete divergence (3.5.10).

Note that in the case of the HL (3.5.11), the displacement may thus be interpreted
as the Lagrange multiplier enforcing that the strain field is completely incompatible,
i.e. (by the Hodge decomposition (3.2.6)) that it is divergence-free.

Lemma 3.5.1. (Poincaré inequality for the discrete incompatibility). Let Ω sat-
isfy Assumption 3.5.1. Then for all E ∈ REGk

h with divhE = 0,

‖E‖0 . |E|h. (3.5.12)

Norming V k
h with ‖ · ‖0, we see that by the Babuška theory of perturbed saddle

point systems [31], well-posedness of the scheme (3.5.1) follows from (3.5.8) and that
ah(·, ·) is bounded below by | · |h.

Proof. We adapt the proof of [10, Lemma 2.1] (for scalar fields) to tensor fields, which
moreover are divh-free. Define Ξ ∈ H4(Ω;S) to be the unique solution to (3.5.11) with
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right-hand side data E. Then by (3.5.5),

‖E‖2
0 =

∫

Ω

E : airy inc Ξ dx (3.5.13a)

=

∫

Th
(incE)(inc Ξ) dx−

∫

Eh
([[rotE · t]] inc Ξ + [[n · Et]]∂t(inc Ξ)) ds (3.5.13b)

.

(
‖ inchE‖2

0,Th +
1

h3
‖[[rotEh · t]]‖2

0,E◦h
+

1

h
‖[[n · Eht]]‖2

0,E◦h

) 1
2

(3.5.13c)

×
(
‖ inch Ξ‖2

0,Th + h3‖ rot Ξ · t‖2
0,E◦h

+ h‖n · Ξt‖2
0,E◦h

) 1
2
. (3.5.13d)

By the scalings ‖ rot Ξ · t‖0,e . h−3/2‖Ξ‖0,K , ‖n · Ξt‖0,e . h−1/2‖Ξ‖0,K for e ∈ E(K),
we see that the final term (3.5.13d) may be bounded in terms of ‖E‖0. The claim
follows.[37]

[37]The author is grateful to Ari Stern for a discussion concerning §3.3.3.

110



Chapter 4

Concluding remarks and outlook

The three thrusts of this thesis are somewhat disjoint – the price to be paid, per-
haps, for actually diving into the myriad applications which we claimed the elasticity
complex would have back in the Introduction. We here review natural avenues for
future work. There is much to be said, because the triad of themes – automated fi-
nite element transformations, structure-preserving finite elements for novel problems
in thermodynamics, and analysis for the spaces and operators of defect elasticity
models – are each of a ‘fundamental’ flavour.

4.1 Exotic finite elements

In our first chapter, we generalised Piola transformation theory to incorporate non-
standard elements discretising H(div; S), developing techniques in 2D for two repre-
sentative, exotic elements for elastic stress due to Arnold and Winther which discretise
the symmetric Cauchy stress tensor in planar linear elasticity. This has ranged from
the axiomatic considerations of why such a tensor even exists, to concrete numerical
experiments verifying the accuracy of implementations which are newly enabled by
our approach. We have also demonstrated the composability of our implementations
with existing patch-based smoothers in Firedrake.

We emphasise that our theory aims to demonstrate that unusual or nonstandard
elements, with desirable features but perhaps complicated transformation properties,
can be used in an inexpensive, composable, and automated way, rather than to advo-
cate for the use of AWc or AWnc specifically. Indeed, the calculations for the trans-
formation theory in §1 are mostly elementary, but there remains a large gap between
structure-preserving elements currently being devised by the FEEC community, and
the extent of their actual implementation and use in solving concrete problems. We
hope that our didactic treatment of the transformation theory provides an example
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for those wishing to implement schemes with other sophisticated elements and/or in
other software ecosystems.

In the long term, one would like to be able to implement any (reference-based)
finite element just by providing its DOFs and a constructive definition of its lo-
cal shape space, although this places a burden on the user to provide a unisolvent
set. One should also consider the notion of finite element with which to work, as
in Remark 1.3.4. Future software generalisations could even aim to automate all
calculations carried out in (for example) §1.3.2, §1.4.1, §1.4.2, but would have to
avoid premature optimisation, in the sense of ensuring that these computations for
additional finite elements would not be outweighed in effort by such an automation.

4.1.1 Solvers for symmetry-enforcing discretisations

In keeping with Remark 1.7.1, it is likely that specialised kernel-preserving transfer
operators for the AW elements could be constructed to make the vertex star itera-
tion even more robust, and the two elements have the same elastostatic subspace as
per Remark 1.7.2. Note that in [87], an AL preconditioner was developed for a shear
stress-velocity-pressure formulation of implicitly-constituted incompressible flow, but
the shear stress was taken only in L2(Ω;S).

Of independent interest is the application of Nitsche’s method to dual mixed
problems, and further investigation is merited by the interaction between the Nitsche
and augmented Lagrangian penalties, whose efficacy when combined together we have
observed numerically when applied to AW elements.[38]

4.1.2 Symmetric elements and Piola transforms in 3D

The 3D analogues of the AW spaces, namely the conforming and nonconforming
Arnold–Awanou–Winther elements [14, 15], are of dimension 162 and 42 respectively
when restricted to a single cell, and are presented in the understanding that “[t]he com-
plexity of the elements may very well limit their practical significance” [14, p. 1231],
although the nonconforming element is amenable to hybridisation [15]. A cheaper
alternative is provided by the conforming Hu–Zhang element, which in 3D is of di-
mension only 48, while many nonconforming efforts in 3D are rectangular [119, 190];
in keeping with Remark 1.3.2, we conjecture that the mapping properties of these 3D

[38]Furthermore, there is the possibility of extension to nonlinear and/or complementarity problems
such as the Signorini contact problem, which to date (in this formulation) has, to the author’s
knowledge, only been solved using FOSLS [26].
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elements would be analogous to our analysis in §1.3.3, if perhaps more involved due
to the complexity of the geometry used to define their DOFs.

In 3D, one also has that the co- and contravariant cases are genuinely distinct
(see Remark 1.3.3); the covariant maps are used for theH(curl) andH(curl;S) spaces,
typically arising in computational electromagnetism. Our work in §1 could provide
an example for future work if elements are proposed with bases not preserved by the
covariant Piola map.

4.1.3 The curvilinear case

The zany transformation theory could be extended to spaces defined on curved
meshes, which corresponds to choosing the diffeomorphism F in (1.3.1) to be non-
affine. That a given finite element method easily extends to curved elements is a
common claim in papers, but ‘composing’ these issues with the dual transformations
described here would be nontrivial; relations between physical and reference compo-
nents would not be as succinct as in §1.3.2 because of spatial variation in the Jacobian
J . Moreover, an issue arising on curved geometries for the elasticity complex (which
is absent from the de Rham case) is a nonvanishing cross term in the commutator
dJ−∗ − J−∗d [124], so that §1.4.4 ceases to apply.

Non-affine approximation of Piola-mapped symmetric tensor fields has been con-
sidered in [23, 170], although with elements such as HHJ or TDNNS, so that the Piola
map suffices in the standard manner as explained in §1.3.2.

4.2 Multicomponent diffusion

In §2, we proposed a formulation and numerical method for the Stokes–Onsager–
Stefan–Maxwell equations of multicomponent flow, proving continuous and discrete
inf-sup conditions for a linearisation of the system with saddle point structure. This
structure arises from the duality between the diffusion driving forces, and the com-
bination of species continuity equations with the divergence of the mass-average ve-
locity constraint. The resulting error estimates were (modulo interpolation of the
coefficients) a straightforward application of the approximation theory of perturbed
saddle point problems.

We saw that the subcomplex structure for the stress elements gave h-independent
discrete inf-sup constants. Alternative discretisations may be pursued via, for ex-
ample, weak imposition of the symmetry of the viscous stress, which at the time of
writing would provide a first avenue to extending §2 to 3D or to higher polynomial

113



F. R. A. Aznaran The inc operator and defect elasticity

degree. In any case, we hope that this work plays some role in exhibiting Onsager’s
theory of thermodynamics as an exciting new application area of the FEM and FEEC.

4.2.1 Refinements of the model

Future work could incorporate tertiary physical phenomena by relaxing the physical
assumptions placed on the model discretised in §2. Of particular interest would be
the full incorporation of thermal effects based on the framework proposed in [181].

Rigorous investigation into a notion of weak solution more refined than Defini-
tion 2.2.1 incorporating (for example) integrability of thermodynamic pressure gra-
dients, and weak form of linearisation, would also be of significant interest. We also
remark that a proof of convergence of the Picard iteration could be used to prove the
existence of a solution tuple for the infinite-dimensional nonlinear SOSM system.

4.2.2 Multicomponent CFD

Many concepts and methods from the classical CFD literature on numerical meth-
ods for Navier–Stokes problems in the dilute solution regime merit generalisation to
our formulation of the SOSM problem, for example boundary layers, new scalings and
nondimensionalisations relating the species velocities to each other and to the convec-
tive velocity, pressure-robustness [127], flow-following smoothers [81, Ch. 7], gradient
jump penalisation for the convective term [150], and the Q-criterion, a turbulence
statistic for the detection of eddies [193].

4.2.3 Preconditioning

As repeatedly emphasised, the perturbed saddle point structure (2.4.3) should be
amenable to the development of fast solvers, potentially building on the techniques
for AL-type preconditioners as described in §1.7. It is interesting to note that the
operator blocks in the linearised coupled SOSM system (2.3.6) do not correspond to
the Stokes and OSM subsytems, so that development of a multigrid scheme for one
does not reduce the problem to developing a solver for the other.

4.3 The incompatibility operator and defect elastic-
ity

Finally in §3, we studied the incompatibility operator in 2D and the strain Hodge
Laplacian problem, drawing links between the compatibility condition encoded in the
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strain complex and Kröner’s theory of incompatible strain fields. A DG method was
presented, using the Regge element for metric tensors and bypassing a vertex-jump
formulation.

This DG scheme is not hybridisable as is, but the HL problem discretised with
a local DG method may be amenable to weak enforcement of H(inc)-conformity via
Lagrange multipliers on the skeleton Eh [75], and to hybridisation of the abstract
HL problem as proposed in [27]. Future work could consider a fuller physical in-
terpretation of the model problem, extension to the 3D elasticity complex, and the
identification of problematic parameter regimes in analogy to the incompressible limit
in primal linear elasticity.

The method presented in §3 in addition may not be the most competitive, due to
ill-conditioning of the Regge element (and indeed many FEEC-based elements); multi-
grid schemes may partially deal with this via the construction of kernel-preserving
transfer operators as explained in §1.7.

4.4 How far can we take the FEEC and the Hodge
Laplace concept?

Even if one believes that the Hodge Laplacian is useful as an abstraction, there is a
temptation to ‘shoehorn’ – to identify HL structure where in fact there is none. Recall
however that we already encountered such a situation in §2; as in Remark 2.1.1, the
Stefan–Maxwell equations are not (or not obviously) the Euler-Lagrange stationarity
condition of any associated functional, and hence in particular their Newton lineari-
sation cannot have HL structure. For our discrete structural conditions, the bottom
of (2.4.4) is simply a segment in a discrete stress complex, but we were not able to
provide a similar sequence for the Stefan–Maxwell variables, or draw an analogous
sequence for the five Sobolev spaces (2.4.1) in infinite dimensions.

4.4.1 Construction of finite element complexes

The recent framework due to Arnold and Hu [22] presents a systematic method to de-
rive new complexes from old, using the Bernstein–Gelfand–Gelfand (BGG) resolution
from Lie representation theory. Although we emphasised in §0 (and demonstrated
throughout the thesis) how much structure is provided by the existence of a discrete
subcomplex to a given sequence, there is to date no systematic way to construct such
a discrete subcomplex. Discrete analogues of the BGG construction have been used
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to reinterpret the Arnold–Winter element [20], and have been constructed for the
Hessian, elasticity, and div div complexes in 2D [123].

4.4.2 General relativity

In §3 we drew on the work [138], which applied the Regge calculus and element to the
discretisation of the Riemannian metric tensor which encodes the geometry of space-
time in the fully nonlinear Einstein field equations. Indeed, numerical relativity, like
elasticity, is becoming an increasingly successful application area of the FEEC [162].
This is partly because the same complexes arise in both problems – for example, the
smooth analogue of the elasticity complex (0.1.3) also arises when considering the
stable discretisation of the time derivative of the metric tensor in the linearised Ein-
stein equations [11]. This is at least consistent with the observation that spacetime
may be formally modelled as a 4-dimensional elastic medium [177].

4.4.3 Implicitly-constituted continuum mechanics

We began §1 by observing that Hellinger–Reissner linear elasticity arises as a HL if
the base stress space L2(Ω;S) is weighted with the compliance tensor; later in §3.2.2
we pointed out that this corresponds to the Hodge star operator, in d dimensions
mapping isometrically between differential k-forms and (d − k)-forms, which may
be observed from §1.6.1 upon comparison of the forms to which stress and strain
are proxy. It is therefore natural to consider whether the theory of continua with
implicitly-constituted rheological laws, for which one of the stress or (rate of) strain
cannot be eliminated purely in terms of the other, can also be interpreted in FEEC
terms – for example, via an implicitly defined Hodge star operator.

4.4.4 Nonlinear complexes of Riemannian geometry

For Ω ⊆ R3 in reference configuration, let φ ∈ C∞(Ω;R3) denote a deformation of Ω

to some domain in R3. Let Dφ := ∇φ(∇φ)> denote the corresponding right Cauchy–
Green strain tensor, precisely the metric induced by the embedding φ, taking values
in C∞+ (Ω;S), which we define to be the symmetric positive definite cone in C∞(Ω;S).
For a flat metric on R3, we have Riem ◦ D = 0, where Riem denotes the Riemannian
curvature tensor, and the second Bianchi identity states that div ◦ Riem = 0. The
fundamental theorem of Riemannian geometry gives for g ∈ C∞+ (Ω;S) with Riem g =

0 the existence of an embedding φ ∈ C∞(Ω;R3), unique up to isometry, with g = Dφ.
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It will not surprise the reader that we are now tempted to write down the following
sequence [122]:

0 C∞(Ω;R3) C∞+ (Ω;S) C∞(Ω;S) C∞(Ω) 0,D Riem div

(4.4.1)
whose linearisation about the identity is the smooth version of precisely the linear
elasticity complex (0.1.3) with which this thesis began. This is purely formal, how-
ever, and it is not clear what ‘exactness’ would amount to at the penultimate space,
since the definition of div involves covariant derivatives and thus a metric in the
first place. The intriguing possibilities of seeking nonlinear generalisations of Hodge
Laplace operators, inf-sup conditions, and Hodge decompositions now arise. The
nonlinear generalisation of the Poincaré inequalities, for example, may unify known
results such as nonlinear Korn inequalities due to Ciarlet [73, p. 57].

117



References

[1] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified
Form Language: a Domain-Specific Language for weak formulations of partial differential
equations, ACM Transactions on Mathematical Software, Feb. 2014, pp. 1–37, https://doi.
org/10.1145/2566630.

[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free dis-
continuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis
and Applications, Apr. 2001, pp. 15–41, https://doi.org/10.1137/S0895479899358194.

[4] S. Amstutz and N. Van Goethem, Analysis of the incompatibility operator and applica-
tion in intrinsic elasticity with dislocations, SIAM Journal on Mathematical Analysis, 2016,
pp. 320–348, https://doi.org/10.1137/15M1020113.

[5] , The incompatibility operator: from Riemann’s intrinsic view of geometry to a new model
of elasto-plasticity, in Topics in Applied Analysis and Optimisation, Springer, 2019, pp. 33–70,
https://doi.org/10.1007/978-3-030-33116-0_2.

[6] , Existence and asymptotic results for an intrinsic model of small-strain incompatible
elasticity, Discrete & Continuous Dynamical Systems-B, 2020, p. 3769, https://doi.org/
10.3934/dcdsb.2020240.

[7] , A second-order model of small-strain incompatible elasticity, Feb. 2022, https://hal.
archives-ouvertes.fr/hal-03581050.

[8] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny,
V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, et al., MFEM: A modular finite el-
ement methods library, June 2019, https://arxiv.org/abs/1911.09220.

[9] S. S. Antman, Nonlinear problems of elasticity, vol. 107 of Applied Mathematical Sciences,
Springer, New York, 2nd ed., 2005, https://doi.org/10.1007/0-387-27649-1.

[10] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM
Journal on Numerical Analysis, 1982, pp. 742–760, https://doi.org/10.1137/0719052.

[11] , From exact sequences to colliding black holes: Differential complexes in numerical anal-
ysis. Plenary address at the International Congress of Mathematics, Beijing, Aug. 2002.
https://www-users.math.umn.edu/~arnold//talks/icm2002.pdf.

[12] , Finite element exterior calculus, no. 93 in CBMS-NSF Regional Conference Se-
ries in Applied Mathematics, SIAM, Philadelphia, 2018, https://doi.org/10.1137/1.
9781611975543.

[13] , Lecture notes on numerical analysis of partial differential equations. University of
Minnesota, Mar. 2018. http://www-users.math.umn.edu/~arnold/8445/notes.pdf.

[14] D. N. Arnold, G. Awanou, and R. Winther, Finite elements for symmetric tensors
in three dimensions, Mathematics of Computation, July 2008, pp. 1229–1251, https://doi.
org/10.1090/S0025-5718-08-02071-1.

[15] , Nonconforming tetrahedral mixed finite elements for elasticity, Mathematical Mod-
els and Methods in Applied Sciences, 2014, pp. 783–796, https://doi.org/10.1142/
s021820251350067x.

[16] D. N. Arnold, F. Brezzi, and J. Douglas, PEERS: A new mixed finite element for plane
elasticity, Japan Journal of Applied Mathematics, May 1984, pp. 347–367, https://doi.org/

118

https://doi.org/10.1145/2566630
https://doi.org/10.1145/2566630
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/15M1020113
https://doi.org/10.1007/978-3-030-33116-0_2
https://doi.org/10.3934/dcdsb.2020240
https://doi.org/10.3934/dcdsb.2020240
https://hal.archives-ouvertes.fr/hal-03581050
https://hal.archives-ouvertes.fr/hal-03581050
https://arxiv.org/abs/1911.09220
https://doi.org/10.1007/0-387-27649-1
https://doi.org/10.1137/0719052
https://www-users.math.umn.edu/~arnold//talks/icm2002.pdf
https://doi.org/10.1137/1.9781611975543
https://doi.org/10.1137/1.9781611975543
http://www-users.math.umn.edu/~arnold/8445/notes.pdf
https://doi.org/10.1090/S0025-5718-08-02071-1
https://doi.org/10.1090/S0025-5718-08-02071-1
https://doi.org/10.1142/s021820251350067x
https://doi.org/10.1142/s021820251350067x
https://doi.org/10.1007/BF03167064
https://doi.org/10.1007/BF03167064


F. R. A. Aznaran References

10.1007/BF03167064.
[17] D. N. Arnold, R. Falk, and R. Winther, Mixed finite element methods for linear elastic-

ity with weakly imposed symmetry, Mathematics of Computation, Oct. 2007, pp. 1699–1723,
https://doi.org/10.1090/S0025-5718-07-01998-9.

[18] D. N. Arnold, R. S. Falk, and R. Winther,Multigrid in H(div) and H(curl), Numerische
Mathematik, Jan. 2000, pp. 197–217, https://doi.org/10.1007/PL00005386.

[19] , Finite element exterior calculus, homological techniques, and applications, Acta Numer-
ica, May 2006, pp. 1–155, https://doi.org/10.1017/S0962492906210018.

[20] , Differential complexes and stability of finite element methods II: The elasticity complex,
in Compatible Spatial Discretizations, Springer, Jan. 2007, pp. 47–67, https://doi.org/10.
1007/0-387-38034-5_3.

[21] , Geometric decompositions and local bases for spaces of finite element differential forms,
Computer Methods in Applied Mechanics and Engineering, May 2009, pp. 1660–1672, https:
//doi.org/10.1016/j.cma.2008.12.017.

[22] D. N. Arnold and K. Hu, Complexes from complexes, Foundations of Computational Math-
ematics, 2021, pp. 1–36, https://doi.org/10.1007/s10208-021-09498-9.

[23] D. N. Arnold and S. W. Walker, The Hellan–Herrmann–Johnson method with curved
elements, SIAM Journal on Numerical Analysis, 2020, pp. 2829–2855, https://doi.org/10.
1137/19M1288723.

[24] D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numerische Mathe-
matik, Sept. 2002, pp. 401–419, https://doi.org/10.1007/s002110100348.

[25] , Nonconforming mixed elements for elasticity, Mathematical Models and Methods in
Applied Sciences, Mar. 2003, pp. 295–307, https://doi.org/10.1142/s0218202503002507.

[26] F. S. Attia, Z. Cai, and G. Starke, First-order system least squares for the Signorini
contact problem in linear elasticity, SIAM Journal on Numerical Analysis, 2009, pp. 3027–
3043, https://doi.org/10.1137/080726975.

[27] G. Awanou, M. Fabien, J. Guzmán, and A. Stern, Hybridization and postprocessing in
finite element exterior calculus, Oct. 2021, https://arxiv.org/abs/2008.00149.

[28] F. R. A. Aznaran, P. E. Farrell, and R. C. Kirby, Transformations for Piola-mapped
elements, SMAI Journal of Computational Mathematics, 2023. (to appear), https://arxiv.
org/abs/2110.13224.

[29] F. R. A. Aznaran, P. E. Farrell, C. W. Monroe, and A. J. Van-Brunt, Finite
element methods for multicomponent convection-diffusion, Aug. 2022, https://arxiv.org/
abs/2208.11949.

[30] F. R. A. Aznaran and K. Hu, The strain Hodge Laplacian. In preparation.
[31] I. Babuška, Error-bounds for finite element method, Numerische Mathematik, Jan. 1971,

pp. 322–333, https://doi.org/10.1007/BF02165003.
[32] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,

L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley,
D. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith,
S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech. Report ANL-95/11 -
Revision 3.11, Mar. 2019.

[33] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – A general-purpose object-
oriented finite element library, ACM Transactions on Mathematical Software (TOMS), 2007,
pp. 24/1–24/27, https://doi.org/10.1145/1268776.1268779.

[34] S. Bartels, Numerical methods for nonlinear partial differential equations, vol. 47 of
Springer Series in Computational Mathematics, Springer, 2015, https://doi.org/10.1007/
978-3-319-13797-1.

[35] P. Bastian, M. Blatt, C. Engwer, A. Dedner, R. Klöfkorn, S. Kuttanikkad,
M. Ohlberger, and O. Sander, The Distributed and Unified Numerics Environment
(DUNE), in Proceedings of the 19th Symposium on Simulation Technique in Hannover,
vol. 123, Aug. 2006.

[36] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numerica, Apr. 2005, pp. 1–137, https://doi.org/10.1017/S0962492904000212.

119

https://doi.org/10.1007/BF03167064
https://doi.org/10.1007/BF03167064
https://doi.org/10.1090/S0025-5718-07-01998-9
https://doi.org/10.1007/PL00005386
https://doi.org/10.1017/S0962492906210018
https://doi.org/10.1007/0-387-38034-5_3
https://doi.org/10.1007/0-387-38034-5_3
https://doi.org/10.1016/j.cma.2008.12.017
https://doi.org/10.1016/j.cma.2008.12.017
https://doi.org/10.1007/s10208-021-09498-9
https://doi.org/10.1137/19M1288723
https://doi.org/10.1137/19M1288723
https://doi.org/10.1007/s002110100348
https://doi.org/10.1142/s0218202503002507
https://doi.org/10.1137/080726975
https://arxiv.org/abs/2008.00149
https://arxiv.org/abs/2110.13224
https://arxiv.org/abs/2110.13224
https://arxiv.org/abs/2208.11949
https://arxiv.org/abs/2208.11949
https://doi.org/10.1007/BF02165003
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1007/978-3-319-13797-1
https://doi.org/10.1007/978-3-319-13797-1
https://doi.org/10.1017/S0962492904000212


F. R. A. Aznaran References

[37] M. Benzi and M. A. Olshanskii, An augmented Lagrangian-based approach to the Oseen
problem, SIAM Journal on Scientific Computing, Dec. 2006, pp. 2095–2113, https://doi.
org/10.1137/050646421.

[38] Y. Berchenko-Kogan and E. S. Gawlik, Finite element approximation of the Levi-Civita
connection and its curvature in two dimensions, Nov. 2021, https://arxiv.org/abs/2111.
02512.

[39] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, no. 1 in
Transport Phenomena, Wiley, 2nd ed., 2002.

[40] D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications,
vol. 44 of Springer Series in Computational Mathematics, Springer, Berlin, 2013, https:
//doi.org/10.1007/978-3-642-36519-5.

[41] A. Bondesan, L. Boudin, and B. Grec, A numerical scheme for a kinetic model for
mixtures in the diffusive limit using the moment method, Numerical Methods for Partial Dif-
ferential Equations, Jan. 2019, pp. 1184–1205, https://doi.org/10.1002/num.22345.

[42] D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid
mixtures, Acta Mechanica, June 2015, pp. 1757–1805, https://doi.org/10.1007/
s00707-014-1275-1.

[43] N. Bottasso, Experimental methods for measuring the mechanical properties of soft tissues
under large deformations, master’s thesis, Polytechnic University of Turin, Mar. 2020. https:
//webthesis.biblio.polito.it/14104/1/tesi.pdf.

[44] L. Boudin, D. Götz, and B. Grec, Diffusion models of multicomponent mixtures in the
lung, in ESAIM: Proceedings, vol. 30, EDP Sciences, 2010, pp. 90–103, https://doi.org/
10.1051/proc/2010008.

[45] D. Braess, Finite elements: Theory, fast solvers, and applications in solid mechanics, Cam-
bridge University Press, Cambridge, 3rd ed., 2007, https://doi.org/10.1088/0957-0233/
13/9/704.

[46] D. Braess and P. Ming, A finite element method for nearly incompressible elastic-
ity problems, Mathematics of Computation, 2005, pp. 25–52, https://doi.org/10.1090/
S0025-5718-04-01662-X.

[47] J. Bramwell, L. Demkowicz, J. Gopalakrishnan, and W. Qiu, A locking-free hp
DPG method for linear elasticity with symmetric stresses, Numerische Mathematik, Dec. 2012,
pp. 671–707, https://doi.org/10.1007/s00211-012-0476-6.

[48] S. Brenner and R. Scott, The mathematical theory of finite element methods, vol. 15 of
Texts in Applied Mathematics, Springer Science & Business Media, New York, 3rd ed., 2007,
https://doi.org/10.1007/978-0-387-75934-0.

[49] S. C. Brenner, T. Gudi, and L.-Y. Sung, A weakly over-penalized symmetric in-
terior penalty method for the biharmonic problem, Electronic Transactions on Numerical
Analysis, 2010, pp. 214–238, https://etna.math.kent.edu/vol.37.2010/pp214-238.dir/
pp214-238.pdf.

[50] J. Brüning and M. Lesch, Hilbert complexes, Journal of Functional Analysis, Aug. 1992,
pp. 88–132, https://doi.org/10.1016/0022-1236(92)90147-B.

[51] M. Bulíček, E. Maringová, and J. Málek, On nonlinear problems of parabolic type with
implicit constitutive equations involving flux, Mathematical Models & Methods in Applied
Sciences, Aug. 2021, pp. 2039–2090, https://doi.org/10.1142/s0218202521500457.

[52] E. Burman and R. Puppi, Two mixed finite element formulations for the weak imposition
of the Neumann boundary conditions for the Darcy flow, Journal of Numerical Mathematics,
June 2022, pp. 141–162, https://doi.org/10.1515/jnma-2021-0042.

[53] Z. Cai, J. Korsawe, and G. Starke, An adaptive least squares mixed finite element method
for the stress-displacement formulation of linear elasticity, Numerical Methods for Partial
Differential Equations: An International Journal, 2005, pp. 132–148, https://doi.org/10.
1002/num.20029.

[54] Z. Cai and G. Starke, Least-squares methods for linear elasticity, SIAM Journal on Nu-
merical Analysis, June 2004, pp. 826–842, https://doi.org/10.1137/S0036142902418357.

[55] C. Cancés, V. Ehrlacher, and L. Monasse, Finite volumes for the Stefan–Maxwell

120

https://doi.org/10.1137/050646421
https://doi.org/10.1137/050646421
https://arxiv.org/abs/2111.02512
https://arxiv.org/abs/2111.02512
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1002/num.22345
https://doi.org/10.1007/s00707-014-1275-1
https://doi.org/10.1007/s00707-014-1275-1
https://webthesis.biblio.polito.it/14104/1/tesi.pdf
https://webthesis.biblio.polito.it/14104/1/tesi.pdf
https://doi.org/10.1051/proc/2010008
https://doi.org/10.1051/proc/2010008
https://doi.org/10.1088/0957-0233/13/9/704
https://doi.org/10.1088/0957-0233/13/9/704
https://doi.org/10.1090/S0025-5718-04-01662-X
https://doi.org/10.1090/S0025-5718-04-01662-X
https://doi.org/10.1007/s00211-012-0476-6
https://doi.org/10.1007/978-0-387-75934-0
https://etna.math.kent.edu/vol.37.2010/pp214-238.dir/pp214-238.pdf
https://etna.math.kent.edu/vol.37.2010/pp214-238.dir/pp214-238.pdf
https://doi.org/10.1016/0022-1236(92)90147-B
https://doi.org/10.1142/s0218202521500457
https://doi.org/10.1515/jnma-2021-0042
https://doi.org/10.1002/num.20029
https://doi.org/10.1002/num.20029
https://doi.org/10.1137/S0036142902418357


F. R. A. Aznaran References

cross-diffusion system, July 2020, https://arxiv.org/abs/2007.09951.
[56] A. Čap and K. Hu, BGG sequences with weak regularity and applications, Mar. 2022, https:

//arxiv.org/abs/2203.01300.
[57] J. A. Carrillo, Y. Huang, and M. Schmidtchen, Zoology of a nonlocal cross-diffusion

model for two species, SIAM Journal on Applied Mathematics, Apr. 2018, pp. 1078–1104,
https://doi.org/10.1137/17M1128782.

[58] C. Carstensen, M. Eigel, and J. Gedicke, Computational competition of symmetric
mixed FEM in linear elasticity, Computer Methods in Applied Mechanics and Engineering,
Oct. 2011, pp. 2903–2915, https://doi.org/10.1016/j.cma.2011.05.013.

[59] C. Carstensen, D. Gallistl, and M. Schedensack, L2 best approximation of the elastic
stress in the Arnold–Winther FEM, IMA Journal of Numerical Analysis, July 2016, pp. 1096–
1119, https://doi.org/10.1093/imanum/drv051.

[60] C. Carstensen, J. Gedicke, and E.-J. Park, Numerical experiments for the Arnold–
Winther mixed finite elements for the Stokes problem, SIAM Journal on Scientific Computing,
Aug. 2012, pp. A2267–A2287, https://doi.org/10.1137/100802906.

[61] C. Carstensen, D. Günther, J. Reininghaus, and J. Thiele, The Arnold–Winther
mixed FEM in linear elasticity. Part I: Implementation and numerical verification, Computer
Methods in Applied Mechanics and Engineering, Feb. 2008, pp. 3014–3023, https://doi.
org/10.1016/j.cma.2008.02.005.

[62] S. Caucao, D. Mora, and R. Oyarzúa, A priori and a posteriori error analysis of a
pseudostress-based mixed formulation of the Stokes problem with varying density, IMA Journal
of Numerical Analysis, Apr. 2016, pp. 947–983, https://doi.org/10.1093/imanum/drv015.

[63] A.-L. B. Cauchy, Recherches sur l’équilibre et le mouvement intérieur des corps solides
ou fluides, élastiques ou non élastiques, Bulletin de la Société Philomatique, 1823, pp. 9–13.
https://gallica.bnf.fr/ark:/12148/bpt6k901948/f308.image.

[64] L. Chen and X. Huang, Geometric decompositions of div-conforming finite element tensors,
Dec. 2021, https://arxiv.org/abs/2112.14351.

[65] , Finite elements for divdiv-conforming symmetric tensors, Mathematics of Computa-
tion, 2022, pp. 1107–1142.

[66] C. Cherubini, S. Filippi, A. Gizzi, A. Loppini, and R. Ruiz-Baier, Modelling thermo-
electro-mechanical effects in orthotropic cardiac tissue, Communications in Computational
Physics, Jan. 2020, pp. 87–115, https://doi.org/10.4208/cicp.OA-2018-0253.

[67] S. H. Christiansen, A characterization of second-order differential operators on finite ele-
ment spaces, Mathematical Models and Methods in Applied Sciences, 2004, pp. 1881–1892,
https://doi.org/10.1142/S0218202504003854.

[68] , A construction of spaces of compatible differential forms on cellular complexes, Mathe-
matical Models and Methods in Applied Sciences, May 2008, pp. 739–757, https://doi.org/
10.1142/S021820250800284X.

[69] , On the linearization of Regge calculus, Numerische Mathematik, Dec. 2011, pp. 613–640,
https://doi.org/10.1007/s00211-011-0394-z.

[70] S. H. Christiansen, J. Gopalakrishnan, J. Guzmán, and K. Hu, A discrete elasticity
complex on three-dimensional Alfeld splits, Sept. 2020, https://arxiv.org/abs/2009.07744.

[71] S. H. Christiansen, J. Hu, and K. Hu, Nodal finite element de Rham com-
plexes, Numerische Mathematik, June 2018, pp. 411–446, https://doi.org/10.1007/
s00211-017-0939-x.

[72] S. H. Christiansen and K. Hu, Finite element systems for vector bundles: elasticity and
curvature, Foundations of Computational Mathematics, Feb. 2022, pp. 1–52, https://doi.
org/10.1007/s10208-022-09555-x.

[73] P. G. Ciarlet, An introduction to differential geometry with applications to elasticity, Journal
of Elasticity, 2005, pp. 1–215, https://doi.org/10.1007/s10659-005-4738-8.

[74] P. G. Ciarlet, L. Gratie, and C. Mardare, Intrinsic methods in elasticity: A math-
ematical survey, Discrete & Continuous Dynamical Systems, 2009, pp. 133–164, https:
//doi.org/10.3934/dcds.2009.23.133.

[75] B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontin-

121

https://arxiv.org/abs/2007.09951
https://arxiv.org/abs/2203.01300
https://arxiv.org/abs/2203.01300
https://doi.org/10.1137/17M1128782
https://doi.org/10.1016/j.cma.2011.05.013
https://doi.org/10.1093/imanum/drv051
https://doi.org/10.1137/100802906
https://doi.org/10.1016/j.cma.2008.02.005
https://doi.org/10.1016/j.cma.2008.02.005
https://doi.org/10.1093/imanum/drv015
https://gallica.bnf.fr/ark:/12148/bpt6k901948/f308.image
https://arxiv.org/abs/2112.14351
https://doi.org/10.4208/cicp.OA-2018-0253
https://doi.org/10.1142/S0218202504003854
https://doi.org/10.1142/S021820250800284X
https://doi.org/10.1142/S021820250800284X
https://doi.org/10.1007/s00211-011-0394-z
https://arxiv.org/abs/2009.07744
https://doi.org/10.1007/s00211-017-0939-x
https://doi.org/10.1007/s00211-017-0939-x
https://doi.org/10.1007/s10208-022-09555-x
https://doi.org/10.1007/s10208-022-09555-x
https://doi.org/10.1007/s10659-005-4738-8
https://doi.org/10.3934/dcds.2009.23.133
https://doi.org/10.3934/dcds.2009.23.133


F. R. A. Aznaran References

uous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems,
SIAM Journal on Numerical Analysis, 2009, pp. 1319–1365, https://doi.org/10.1137/
070706616.

[76] E. L. Cussler, Diffusion: Mass transfer in fluid systems, Cambridge Series in Chemical Engi-
neering, Cambridge University Press, 2009, https://doi.org/10.1017/CBO9780511805134.

[77] L. De Luca, R. Scala, and N. Van Goethem, A new approach to topological singularities
via a weak notion of Jacobian for functions of bounded variation, May 2022, https://arxiv.
org/abs/2205.14746.

[78] W. M. Deen, Introduction to chemical engineering fluid mechanics, Cambridge Series in
Chemical Engineering, Cambridge, 2016, https://doi.org/10.1017/CBO9781316403464.

[79] D. A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin meth-
ods, vol. 69 of Mathématiques et Applications, Springer, 2011, https://doi.org/10.1007/
978-3-642-22980-0.

[80] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numerica,
2013, pp. 289–396, https://doi.org/10.1017/S0962492913000056.

[81] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative
solvers: With applications in incompressible fluid dynamics, Numerical Mathematics and Sci-
entific Computation, Oxford University Press, 2nd ed., 2014, https://doi.org/10.1093/
acprof:oso/9780199678792.001.0001.

[82] A. Ern and V. Giovangigli, Multicomponent transport algorithms, vol. 24 of Lec-
ture Notes in Artificial Intelligence, Springer-Verlag, 1994, https://doi.org/10.1007/
978-3-540-48650-3.

[83] , Thermal diffusion effects in hydrogen-air and methane-air flames, Combustion Theory
and Modelling, Dec. 1998, pp. 349–372, https://doi.org/10.1088/1364-7830/2/4/001.

[84] , Impact of detailed multicomponent transport on planar and counterflow hydrogen/air
and methane/air flames, Combustion Science and Technology, Jan. 1999, pp. 157–181, https:
//doi.org/10.1080/00102209908952104.

[85] A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159 of Applied
Mathematical Sciences, Springer Science & Business Media, New York, 2004, https://doi.
org/10.1007/978-1-4757-4355-5.

[86] P. E. Farrell, L. F. Gatica, B. P. Lamichhane, R. Oyarzúa, and R. Ruiz-Baier,
Mixed Kirchhoff stress–displacement–pressure formulations for incompressible hyperelasticity,
Computer Methods in Applied Mechanics and Engineering, Feb. 2021, p. 113562, https:
//doi.org/10.1016/j.cma.2020.113562.

[87] P. E. Farrell and P. A. Gazca-Orozco, An augmented Lagrangian preconditioner for
implicitly-constituted non-Newtonian incompressible flow, SIAM Journal on Scientific Com-
puting, Nov. 2020, pp. B1329–B1349, https://doi.org/10.1137/20M1336618.

[88] P. E. Farrell, P. A. Gazca-Orozco, and E. Süli, Finite element approximation and pre-
conditioning for anisothermal flow of implicitly-constituted non-Newtonian flow, Mathematics
of Computation, Nov. 2021, pp. 659–697, https://doi.org/10.1090/mcom/3703.

[89] P. E. Farrell, M. G. Knepley, F. Wechsung, and L. Mitchell, PCPATCH: soft-
ware for the topological construction of multigrid relaxation methods, ACM Transactions on
Mathematical Software, Sept. 2021, pp. 1–22, https://doi.org/10.1145/3445791.

[90] P. E. Farrell, L. Mitchell, L. R. Scott, and F. Wechsung, A Reynolds-robust
preconditioner for the Scott–Vogelius discretization of the stationary incompressible Navier–
Stokes equations, SMAI Journal of Computational Mathematics, Mar. 2021, pp. 75–96,
https://doi.org/10.5802/smai-jcm.72.

[91] , Robust multigrid methods for nearly incompressible elasticity using macro elements,
IMA Journal of Numerical Analysis, Jan. 2022, https://doi.org/10.1093/imanum/drab083.

[92] P. E. Farrell, L. Mitchell, and F. Wechsung, An augmented Lagrangian preconditioner
for the 3D stationary incompressible Navier–Stokes equations at high Reynolds number, SIAM
Journal on Scientific Computing, Oct. 2019, pp. A3073–A3096, https://doi.org/10.1137/
18M1219370.

[93] C. A. Fernandez and M. C. Hatzell, Economic considerations for low-temperature elec-

122

https://doi.org/10.1137/070706616
https://doi.org/10.1137/070706616
https://doi.org/10.1017/CBO9780511805134
https://arxiv.org/abs/2205.14746
https://arxiv.org/abs/2205.14746
https://doi.org/10.1017/CBO9781316403464
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1017/S0962492913000056
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1007/978-3-540-48650-3
https://doi.org/10.1007/978-3-540-48650-3
https://doi.org/10.1088/1364-7830/2/4/001
https://doi.org/10.1080/00102209908952104
https://doi.org/10.1080/00102209908952104
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1016/j.cma.2020.113562
https://doi.org/10.1016/j.cma.2020.113562
https://doi.org/10.1137/20M1336618
https://doi.org/10.1090/mcom/3703
https://doi.org/10.1145/3445791
https://doi.org/10.5802/smai-jcm.72
https://doi.org/10.1093/imanum/drab083
https://doi.org/10.1137/18M1219370
https://doi.org/10.1137/18M1219370


F. R. A. Aznaran References

trochemical ammonia production: Achieving Haber–Bosch parity, Journal of the Electrochem-
ical Society, Nov. 2020, p. 143504, https://doi.org/10.1149/1945-7111/abc35b.

[94] A. Fick, Über Diffusion, Annalen der Physik, 1855, pp. 59–86, https://doi.org/10.1002/
andp.18551700105.

[95] B. M. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element
method, Stress Analysis, 1965, pp. 145–197, https://doi.org/10.1002/nme.339.

[96] T. Frankel, The geometry of physics: An introduction, Cambridge University Press, Cam-
bridge, 2nd ed., 2003, https://doi.org/10.1017/CBO9780511817977.

[97] Y.-C. Fung, P. Tong, and X. Chen, Classical and computational solid mechanics, vol. 2
of Advanced Series in Engineering Science, World Scientific Publishing Company, Singapore,
2nd ed., July 2017, https://doi.org/10.1142/9744.

[98] J. Gedicke and A. Khan, Arnold–Winther mixed finite elements for Stokes eigenvalue
problems, SIAM Journal on Scientific Computing, Oct. 2018, pp. A3449–A3469, https://
doi.org/10.1137/17M1162032.

[99] S. A. A. Ghoreyshi, F. A. Farhadpour, and M. Soltanieh, Multicomponent transport
across nonporous polymeric membranes, Desalination, 2002, pp. 93–101, https://doi.org/
10.1016/S0011-9164(02)00295-3.

[100] V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, IM-
PACT of Computing in Science and Engineering, Mar. 1990, pp. 73–97, https://doi.org/
10.1016/0899-8248(90)90004-T.

[101] , Multicomponent flow modeling, Modeling and Simulation in Science, Engineering and
Technology, Birkhäuser Basel, 1999, https://doi.org/10.1007/978-1-4612-1580-6.

[102] O. Gonzalez and A. M. Stuart, A first course in continuum mechanics, Cambridge Texts
in Applied Mathematics, Cambridge University Press, Cambridge, 2008, https://doi.org/
10.1017/CBO9780511619571.

[103] J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble,
IMA Journal of Numerical Analysis, 2012, pp. 352–372, https://doi.org/10.1093/imanum/
drq047.

[104] D. W. Green and R. H. Perry, Perry’s chemical engineers’ handbook, McGraw Hill Pro-
fessional, McGraw-Hill Education, 8th ed., 2007.

[105] G. Guevara-Carrion, T. Janzen, Y. Muñoz-Muñoz, and J. Vrabec, Mutual diffusion
of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene,
and carbon tetrachloride, The Journal of Chemical Physics, Mar. 2016, p. 124501, https:
//doi.org/10.1063/1.4943395.

[106] J. S. Hale, M. Brunetti, S. P. A. Bordas, and C. Maurini, Simple and extensible
plate and shell finite element models through automatic code generation tools, Computers &
Structures, Oct. 2018, pp. 163–181, https://doi.org/10.1016/j.compstruc.2018.08.001.

[107] E. Helfand, On inversion of the linear laws of irreversible thermodynamics, The Journal of
Chemical Physics, Aug. 1960, pp. 319–322, https://doi.org/10.1063/1.1731144.

[108] K. Hellan, Analysis of elastic plates in flexure by a simplified finite element method, Acta
Polytechnica Scandinavica, Civil Engineering and Building Construction Series, Jan. 1967,
pp. 1–29. Finnish Academy of Technology, Tekniikentie 12, FIN-02150 Espoo, Finland.

[109] L. R. Herrmann, Finite-element bending analysis for plates, Journal of the Engineering
Mechanics Division, Oct. 1967, pp. 13–26.

[110] R. Hiptmair, D. Pauly, and E. Schulz, Traces for Hilbert complexes, Mar. 2022, https:
//arxiv.org/abs/2203.00630.

[111] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The molecular theory of gases
and liquids, John Wiley & Sons, New York, 1954, https://doi.org/10.1002/pol.1955.
120178311.

[112] M. Homolya, R. C. Kirby, and D. A. Ham, Exposing and exploiting structure: Optimal
code generation for high-order finite element methods, Nov. 2017, https://arxiv.org/abs/
1711.02473.

[113] M. Homolya, L. Mitchell, F. Luporini, and D. A. Ham, TSFC: A structure-preserving
form compiler, SIAM Journal on Scientific Computing, June 2018, pp. C401–C428, https:

123

https://doi.org/10.1149/1945-7111/abc35b
https://doi.org/10.1002/andp.18551700105
https://doi.org/10.1002/andp.18551700105
https://doi.org/10.1002/nme.339
https://doi.org/10.1017/CBO9780511817977
https://doi.org/10.1142/9744
https://doi.org/10.1137/17M1162032
https://doi.org/10.1137/17M1162032
https://doi.org/10.1016/S0011-9164(02)00295-3
https://doi.org/10.1016/S0011-9164(02)00295-3
https://doi.org/10.1016/0899-8248(90)90004-T
https://doi.org/10.1016/0899-8248(90)90004-T
https://doi.org/10.1007/978-1-4612-1580-6
https://doi.org/10.1017/CBO9780511619571
https://doi.org/10.1017/CBO9780511619571
https://doi.org/10.1093/imanum/drq047
https://doi.org/10.1093/imanum/drq047
https://doi.org/10.1063/1.4943395
https://doi.org/10.1063/1.4943395
https://doi.org/10.1016/j.compstruc.2018.08.001
https://doi.org/10.1063/1.1731144
https://arxiv.org/abs/2203.00630
https://arxiv.org/abs/2203.00630
https://doi.org/10.1002/pol.1955.120178311
https://doi.org/10.1002/pol.1955.120178311
https://arxiv.org/abs/1711.02473
https://arxiv.org/abs/1711.02473
https://doi.org/10.1137/17M1130642
https://doi.org/10.1137/17M1130642


F. R. A. Aznaran References

//doi.org/10.1137/17M1130642.
[114] Q. Hong, J. Hu, L. Ma, and J. Xu, An extended Galerkin analysis for linear elasticity

with strongly symmetric stress tensor, Feb. 2020, https://arxiv.org/abs/2002.11664.
[115] Q. Hong and J. Kraus, Uniformly stable discontinuous Galerkin discretization and robust

iterative solution methods for the Brinkman problem, SIAM Journal on Numerical Analysis,
Sept. 2016, pp. 2750–2774, https://doi.org/10.1137/14099810X.

[116] Q. Hong, J. Kraus, J. Xu, and L. Zikatanov, A robust multigrid method for discontinuous
Galerkin discretizations of Stokes and linear elasticity equations, Numerische Mathematik,
Mar. 2015, pp. 23–49, https://doi.org/10.1007/s00211-015-0712-y.

[117] Q. Hong, Y. Li, and J. Xu, An extended Galerkin analysis in finite element exterior calculus,
Mathematics of Computation, 2022, pp. 1077–1106, https://doi.org/10.1090/mcom/3707.

[118] P. Howell, G. Kozyreff, and J. Ockendon, Applied solid mechanics, vol. 43, Cambridge
University Press, Cambridge, 2009, https://doi.org/10.1017/CBO9780511611605.

[119] J. Hu, Finite element approximations of symmetric tensors on simplicial grids in Rn: The
higher order case, Journal of Computational Mathematics, May 2015, pp. 283–296, https:
//doi.org/10.4208/jcm.1412-m2014-0071.

[120] J. Hu and S. Zhang, A family of conforming mixed finite elements for linear elasticity on
triangular grids, Jan. 2015, https://arxiv.org/abs/1406.7457.

[121] , Finite element approximations of symmetric tensors on simplicial grids in Rn: The
lower order case, Mathematical Models and Methods in Applied Sciences, July 2016, pp. 1649–
1669, https://doi.org/10.1142/S0218202516500408.

[122] K. Hu. Private communication, Nov. 2021.
[123] , Oberwolfach report: Discretization of Hilbert complexes, Aug. 2022, https://arxiv.

org/abs/2208.03420.
[124] , Spline Bernstein–Gelfand–Gelfand sequences. Seminar at Heidelberg University, Mar.

2022.
[125] K. Hu, Q. Zhang, J. Han, L. Wang, and Z. Zhang, Spurious solutions for high order

curl problems, Nov. 2021, https://arxiv.org/abs/2110.12481.
[126] W. Hundsdorfer and J. G. Verwer, Numerical solution of time-dependent advection-

diffusion-reaction equations, Springer Series in Computational Mathematics, Springer Berlin
Heidelberg, 2013, https://doi.org/10.1007/978-3-662-09017-6.

[127] V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz, On the divergence
constraint in mixed finite element methods for incompressible flows, SIAM Review, Aug. 2017,
pp. 492–544, https://doi.org/10.1137/15M1047696.

[128] C. Johnson, On the convergence of a mixed finite-element method for plate bending problems,
Numerische Mathematik, Feb. 1973, pp. 43–62, https://doi.org/10.1007/BF01436186.

[129] R. C. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element basis
functions, ACM Transactions on Mathematical Software, Dec. 2004, pp. 502–516, https:
//doi.org/10.1145/1039813.1039820.

[130] , A general approach to transforming finite elements, SMAI Journal of Computational
Mathematics, Apr. 2018, pp. 197–224, https://doi.org/10.5802/smai-jcm.33.

[131] R. C. Kirby and L. Mitchell, Solver composition across the PDE/linear algebra barrier,
SIAM Journal on Scientific Computing, Feb. 2018, pp. C76–C98, https://doi.org/10.1137/
17M1133208.

[132] , Code generation for generally mapped finite elements, ACM Transactions on Mathe-
matical Software, Dec. 2019, pp. 1–23, https://doi.org/10.1145/3361745.

[133] J. Könnö, D. Schötzau, and R. Stenberg, Mixed finite element methods for problems
with Robin boundary conditions, SIAM Journal on Numerical Analysis, Feb. 2011, pp. 285–308,
https://doi.org/10.1137/09077970X.

[134] E. Kröner, General continuum theory of dislocations and proper stresses, Archive for Ratio-
nal Mechanics and Analysis, 1960, pp. 273–334.

[135] F. Laakmann, P. E. Farrell, and L. Mitchell, An augmented Lagrangian precondi-
tioner for the magnetohydrodynamics equations at high Reynolds and coupling numbers, SIAM
Journal on Scientific Computing, Aug. 2022, pp. B1018–B1044, https://doi.org/10.1137/

124

https://doi.org/10.1137/17M1130642
https://doi.org/10.1137/17M1130642
https://arxiv.org/abs/2002.11664
https://doi.org/10.1137/14099810X
https://doi.org/10.1007/s00211-015-0712-y
https://doi.org/10.1090/mcom/3707
https://doi.org/10.1017/CBO9780511611605
https://doi.org/10.4208/jcm.1412-m2014-0071
https://doi.org/10.4208/jcm.1412-m2014-0071
https://arxiv.org/abs/1406.7457
https://doi.org/10.1142/S0218202516500408
https://arxiv.org/abs/2208.03420
https://arxiv.org/abs/2208.03420
https://arxiv.org/abs/2110.12481
https://doi.org/10.1007/978-3-662-09017-6
https://doi.org/10.1137/15M1047696
https://doi.org/10.1007/BF01436186
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.5802/smai-jcm.33
https://doi.org/10.1137/17M1133208
https://doi.org/10.1137/17M1133208
https://doi.org/10.1145/3361745
https://doi.org/10.1137/09077970X
https://doi.org/10.1137/21M1416539
https://doi.org/10.1137/21M1416539


F. R. A. Aznaran References

21M1416539.
[136] M. Lange, L. Mitchell, M. G. Knepley, and G. J. Gorman, Efficient mesh man-

agement in Firedrake using PETSc DMPlex, SIAM Journal on Scientific Computing, 2016,
pp. S143–S155, https://doi.org/10.1137/15M1026092.

[137] V. G. Levich, Physicochemical hydrodynamics, Prentice-Hall International Series in the Phys-
ical and Chemical Engineering Sciences, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

[138] L. Li, Regge finite elements with applications in solid mechanics and relativity, PhD the-
sis, University of Minnesota, May 2018, http://www-users.math.umn.edu/~arnold/papers/
LiThesis.pdf.

[139] E. N. Lightfoot, E. L. Cussler, and R. L. Rettig, Applicability of the Stefan–Maxwell
equations to multicomponent diffusion in liquids, AIChE Journal, 1962, pp. 708–710, https:
//doi.org/10.1002/aic.690080530.

[140] A. Logg, K.-A. Mardal, and G. N. Wells, Automated solution of differential equations
by the finite element method: The FEniCS book, vol. 84 of Lecture Notes in Computational
Science and Engineering, Springer, 2012, https://doi.org/10.1007/978-3-642-23099-8.

[141] G. B. Maggiani, R. Scala, and N. Van Goethem, A compatible-incompatible decompo-
sition of symmetric tensors in Lp with application to elasticity, Mathematical Methods in the
Applied Sciences, 2015, pp. 5217–5230, https://doi.org/10.1002/mma.3450.

[142] H. Makihara and T. Ito, Centrifugal separation of uranium isotopes in presence of light
gas, Journal of Nuclear Science and Technology, 1989, pp. 1023–1037, https://doi.org/10.
1080/18811248.1989.9734423.

[143] J. Málek, V. Průša, T. Skřivan, and E. Süli, Thermodynamics of viscoelastic rate-type
fluids with stress diffusion, Physics of Fluids, 2018, p. 023101, https://doi.org/10.1063/1.
5018172.

[144] H. Manouzi and M. Farhloul, Mixed finite element analysis of a non-linear three-fields
Stokes model, IMA Journal of Numerical Analysis, Jan. 2001, pp. 143–164, https://doi.org/
10.1093/imanum/21.1.143.

[145] K.-A. Mardal, X.-C. Tai, and R. Winther, A robust finite element method for Darcy–
Stokes flow, SIAM Journal on Numerical Analysis, Oct. 2002, pp. 1605–1631, https://doi.
org/10.1137/s0036142901383910.

[146] J. C. Maxwell, IV. On the dynamical theory of gases, Philosophical Transactions of the
Royal Society of London, Jan. 1867, pp. 49–88, https://doi.org/10.1098/rstl.1867.0004.

[147] M. McLeod and Y. Bourgault, Mixed finite element methods for addressing multi-species
diffusion using the Maxwell–Stefan equations, Computer Methods in Applied Mechanics and
Engineering, Sept. 2014, pp. 515–535, https://doi.org/10.1016/j.cma.2014.07.010.

[148] L. A. Mihai and A. Goriely, Numerical simulation of shear and the Poynting effects by
the finite element method: An application of the generalised empirical inequalities in non-
linear elasticity, International Journal of Non-Linear Mechanics, Mar. 2013, pp. 1–14, https:
//doi.org/10.1016/j.ijnonlinmec.2012.09.001.

[149] P. Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Sci-
entific Computation, Oxford University Press, New York, 2003, https://doi.org/10.1093/
acprof:oso/9780198508885.001.0001.

[150] R. C. Moura, A. Cassinelli, A. F. C. da Silva, E. Burman, and S. J. Sherwin,
Gradient jump penalty stabilisation of spectral/hp element discretisation for under-resolved
turbulence simulations, Computer Methods in Applied Mechanics and Engineering, Jan. 2022,
p. 114200, https://doi.org/10.1016/j.cma.2021.114200.

[151] B. Müller, G. Starke, A. Schwarz, and J. Schröder, A first-order system least squares
method for hyperelasticity, SIAM Journal on Scientific Computing, Sept. 2014, pp. B795–B816,
https://doi.org/10.1137/130937573.

[152] M. Neilan, Discrete and conforming smooth de Rham complexes in three dimensions,
Mathematics of Computation, Sept. 2015, pp. 2059–2081, https://doi.org/10.1090/
S0025-5718-2015-02958-5.

[153] S. Nicaise, K. Witowski, and B. Wohlmuth, An a posteriori error estimator for the
Lamé equation based on H(div)-conforming stress approximations, IMA Journal of Numerical

125

https://doi.org/10.1137/21M1416539
https://doi.org/10.1137/21M1416539
https://doi.org/10.1137/15M1026092
http://www-users.math.umn.edu/~arnold/papers/LiThesis.pdf
http://www-users.math.umn.edu/~arnold/papers/LiThesis.pdf
https://doi.org/10.1002/aic.690080530
https://doi.org/10.1002/aic.690080530
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1002/mma.3450
https://doi.org/10.1080/18811248.1989.9734423
https://doi.org/10.1080/18811248.1989.9734423
https://doi.org/10.1063/1.5018172
https://doi.org/10.1063/1.5018172
https://doi.org/10.1093/imanum/21.1.143
https://doi.org/10.1093/imanum/21.1.143
https://doi.org/10.1137/s0036142901383910
https://doi.org/10.1137/s0036142901383910
https://doi.org/10.1098/rstl.1867.0004
https://doi.org/10.1016/j.cma.2014.07.010
https://doi.org/10.1016/j.ijnonlinmec.2012.09.001
https://doi.org/10.1016/j.ijnonlinmec.2012.09.001
https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
https://doi.org/10.1016/j.cma.2021.114200
https://doi.org/10.1137/130937573
https://doi.org/10.1090/S0025-5718-2015-02958-5
https://doi.org/10.1090/S0025-5718-2015-02958-5


F. R. A. Aznaran References

Analysis, Apr. 2008, pp. 331–353, https://doi.org/10.1.1.495.2057.
[154] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung

von Teilräumen, die keinen Randbedingungen unterworfen sind, in Abhandlungen aus dem
mathematischen Seminar der Universität Hamburg, vol. 36, Springer, July 1971, pp. 9–15,
https://doi.org/10.1007/BF02995904.

[155] S. Olver and Y. Xu, Orthogonal structure on a wedge and on the boundary of a square,
Foundations of Computational Mathematics, June 2019, pp. 561–589, https://doi.org/10.
1007/s10208-018-9393-0.

[156] L. Onsager, Reciprocal relations in irreversible processes. I, Physical Review, Feb. 1931,
pp. 405–426, https://doi.org/10.1103/PhysRev.37.405.

[157] , Reciprocal relations in irreversible processes. II, Physical Review, Dec. 1931, pp. 2265–
2279, https://doi.org/10.1103/PhysRev.38.2265.

[158] , Theories and problems of liquid diffusion, Annals of the New York Academy of Sciences,
Nov. 1945, pp. 241–265, https://doi.org/10.1111/j.1749-6632.1945.tb36170.x.

[159] J. E. Pasciak and Y. Wang, A multigrid preconditioner for the mixed formulation of linear
plane elasticity, SIAM Journal on Numerical Analysis, Mar. 2006, pp. 478–493, https://doi.
org/10.1137/040617820.

[160] D. Pauly and M. Schomburg, Hilbert complexes with mixed boundary conditions – Part
2: Elasticity complex, Mathematical Methods in Applied Sciences, Aug. 2022, https://doi.
org/10.1002/mma.8242.

[161] D. Pauly and W. Zulehner, The divDiv-complex and applications to biharmonic equa-
tions, Applicable Analysis, 2020, pp. 1579–1630, https://doi.org/10.1080/00036811.
2018.1542685.

[162] V. Quenneville-Bélair, A new approach to finite element simulations of general relativ-
ity, PhD thesis, University of Minnesota, June 2015. https://www-users.cse.umn.edu/
~arnold/papers/QuennevilleThesis.pdf.

[163] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer-
ical Methods for Partial Differential Equations, Mar. 1992, pp. 97–111, https://doi.org/
10.1002/num.1690080202.

[164] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae,
G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite
element method by composing abstractions, ACM Transactions on Mathematical Software,
Dec. 2016, pp. 1–27, https://doi.org/10.1145/2998441.

[165] T. Regge, General relativity without coordinates, Il Nuovo Cimento (1955–1965), Feb. 1961,
pp. 558–571, https://doi.org/10.1007/BF02733251.

[166] E. Reissner, On a variational theorem in elasticity, Journal of Mathematics and Physics,
1950, pp. 90–95, https://doi.org/10.1002/sapm195029190.

[167] R. Riedlbeck, D. A. Di Pietro, A. Ern, S. Granet, and K. Kazymyrenko, Stress
and flux reconstruction in Biot’s poro-elasticity problem with application to a posteriori error
analysis, Computers & Mathematics with Applications, Apr. 2017, pp. 1593–1610, https:
//doi.org/10.1016/j.camwa.2017.02.005.

[168] M. E. Rognes, R. C. Kirby, and A. Logg, Efficient assembly of H(div) and H(curl)
conforming finite elements, SIAM Journal on Scientific Computing, Nov. 2009, pp. 4130–4151,
https://doi.org/10.1137/08073901X.

[169] J. Schöberl, Robust multigrid methods for parameter dependent problems, PhD thesis, Jo-
hannes Kepler University, Linz, June 1999. https://www.asc.tuwien.ac.at/~schoeberl/
wiki/publications/diss.pdf.

[170] J. Schöberl and A. S. Sinwel, Tangential-Displacement and Normal-Normal-Stress con-
tinuous mixed finite elements for elasticity, tech. report, Linz, Oct. 2007. https://ricamwww.
ricam.oeaw.ac.at/files/reports/07/rep07-10.pdf.

[171] D. Shapero, Nitsche’s method. https://shapero.xyz/posts/nitsches-method/, 2019. Ac-
cessed 2020.11.16.

[172] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems Part
II: Using general block preconditioners, SIAM Journal on Numerical Analysis, Oct. 1994,

126

https://doi.org/10.1.1.495.2057
https://doi.org/10.1007/BF02995904
https://doi.org/10.1007/s10208-018-9393-0
https://doi.org/10.1007/s10208-018-9393-0
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1111/j.1749-6632.1945.tb36170.x
https://doi.org/10.1137/040617820
https://doi.org/10.1137/040617820
https://doi.org/10.1002/mma.8242
https://doi.org/10.1002/mma.8242
https://doi.org/10.1080/00036811.2018.1542685
https://doi.org/10.1080/00036811.2018.1542685
https://www-users.cse.umn.edu/~arnold/papers/QuennevilleThesis.pdf
https://www-users.cse.umn.edu/~arnold/papers/QuennevilleThesis.pdf
https://doi.org/10.1002/num.1690080202
https://doi.org/10.1002/num.1690080202
https://doi.org/10.1145/2998441
https://doi.org/10.1007/BF02733251
https://doi.org/10.1002/sapm195029190
https://doi.org/10.1016/j.camwa.2017.02.005
https://doi.org/10.1016/j.camwa.2017.02.005
https://doi.org/10.1137/08073901X
https://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/diss.pdf
https://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/diss.pdf
https://ricamwww.ricam.oeaw.ac.at/files/reports/07/rep07-10.pdf
https://ricamwww.ricam.oeaw.ac.at/files/reports/07/rep07-10.pdf
https://shapero.xyz/posts/nitsches-method/


F. R. A. Aznaran References

pp. 1352–1367, https://doi.org/10.1137/0731070.
[173] A. Sky, I. Muench, and P. Neff, On [H1]3×3, [H(curl)]3 and H(symCurl) finite elements

for matrix-valued Curl problems, Feb. 2022, https://arxiv.org/abs/2202.08740.
[174] J. Stefan, Über das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasge-

mengen, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen
Akademie der Wissenschaften Wien, 2te Abteilung, 1871, pp. 63–124.

[175] R. Stenberg, Some new families of finite elements for the Stokes equations, Numerische
Mathematik, Aug. 1989, pp. 827–838, https://doi.org/10.1007/BF01405291.

[176] M. Stynes and D. Stynes, Convection-diffusion problems, Graduate Studies in Mathemat-
ics, American Mathematical Society, 2018, https://doi.org/10.1090/gsm/196.

[177] A. Tartaglia, Fourdimensional elasticity: Is it general relativity?, in Frontiers of
Fundamental Physics, Springer, Boston, 1994, pp. 147–152, https://doi.org/10.1007/
978-1-4615-2560-8_17.

[178] A. Tasić, B. Djordjević, D. Grozdanić, N. Afgan, and D. Malić, Vapour–liquid
equilibria of the systems acetone–benzene, benzene–cyclohexane and acetone–cyclohexane
at 25°C, Chemical Engineering Science, 1978, pp. 189–197, https://doi.org/10.1016/
0009-2509(78)85053-2.

[179] V. Thomée, Galerkin finite element methods for parabolic problems, vol. 25 of Springer Series
in Computational Mathematics, Springer Berlin Heidelberg, Berlin, 2nd ed., 2006, https:
//doi.org/10.1007/3-540-33122-0.

[180] A. J. Van-Brunt, P. E. Farrell, and C. W. Monroe, Augmented saddle point formula-
tion of the steady-state Stefan–Maxwell diffusion problem, IMA Journal of Numerical Analysis,
Oct. 2021, https://doi.org/10.1093/imanum/drab067.

[181] , Consolidated theory of fluid thermodiffusion, AIChE Journal, Jan. 2022, p. e17599,
https://doi.org/10.1002/aic.17599.

[182] N. Van Goethem, A multiscale model for dislocations: from mesoscopic elasticity to macro-
scopic plasticity, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Ange-
wandte Mathematik und Mechanik, 2012, pp. 514–535, https://doi.org/10.1002/zamm.
201100076.

[183] J. Villaluenga and A. Tabe-Mohammadi, A review on the separation of ben-
zene/cyclohexane mixtures by pervaporation process, Journal of Membrane Science, May 2000,
pp. 159–174, https://doi.org/10.1016/S0376-7388(99)00337-3.

[184] S. W. Walker, FELICITY: A MATLAB/C++ toolbox for developing finite element meth-
ods and simulation modeling, SIAM Journal on Scientific Computing, 2018, pp. C234–C257,
https://doi.org/10.1137/17M1128745.

[185] Y. Wang, Preconditioning for the mixed formulation of linear plane elasticity, PhD thesis,
Texas A&M University, College Station, Aug. 2004. https://oaktrust.library.tamu.edu/
bitstream/handle/1969.1/2781/etd-tamu-2004B-MATH-Wang.pdf.

[186] S. Wu and J. Xu, Nonconforming finite element spaces for 2mth order partial differential
equations on Rn simplicial grids when m = n + 1, Mathematics of Computation, Mar. 2019,
pp. 531–551, https://doi.org/10.1090/mcom/3361.

[187] J. Xia, P. E. Farrell, and F. Wechsung, Augmented Lagrangian preconditioners for the
Oseen–Frank model of nematic and cholesteric liquid crystals, BIT Numerical Mathematics,
Mar. 2021, pp. 1–38, https://doi.org/10.1007/s10543-020-00838-9.

[188] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review, Dec.
1992, pp. 581–613, https://doi.org/10.1137/1034116.

[189] J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories, Numerische
Mathematik, Mar. 2003, pp. 195–202, https://doi.org/10.1007/s002110100308.

[190] S.-Y. Yi, Nonconforming mixed finite element methods for linear elasticity using rectangular
elements in two and three dimensions, Calcolo, July 2005, pp. 115–133, https://doi.org/
10.1007/s10092-005-0101-5.

[191] Software used in ‘Transformations for Piola-mapped elements’, Oct. 2021, https://doi.org/
10.5281/zenodo.5596313.

[192] Software used in ‘Finite element methods for multicomponent convection-diffusion’, Aug. 2022,

127

https://doi.org/10.1137/0731070
https://arxiv.org/abs/2202.08740
https://doi.org/10.1007/BF01405291
https://doi.org/10.1090/gsm/196
https://doi.org/10.1007/978-1-4615-2560-8_17
https://doi.org/10.1007/978-1-4615-2560-8_17
https://doi.org/10.1016/0009-2509(78)85053-2
https://doi.org/10.1016/0009-2509(78)85053-2
https://doi.org/10.1007/3-540-33122-0
https://doi.org/10.1007/3-540-33122-0
https://doi.org/10.1093/imanum/drab067
https://doi.org/10.1002/aic.17599
https://doi.org/10.1002/zamm.201100076
https://doi.org/10.1002/zamm.201100076
https://doi.org/10.1016/S0376-7388(99)00337-3
https://doi.org/10.1137/17M1128745
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/2781/etd-tamu-2004B-MATH-Wang.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/2781/etd-tamu-2004B-MATH-Wang.pdf
https://doi.org/10.1090/mcom/3361
https://doi.org/10.1007/s10543-020-00838-9
https://doi.org/10.1137/1034116
https://doi.org/10.1007/s002110100308
https://doi.org/10.1007/s10092-005-0101-5
https://doi.org/10.1007/s10092-005-0101-5
https://doi.org/10.5281/zenodo.5596313
https://doi.org/10.5281/zenodo.5596313


F. R. A. Aznaran References

https://doi.org/10.5281/zenodo.7017917.
[193] J. Zhan, Y. Li, W. O. Wai, and W. Hu, Comparison between the Q criterion and Rortex

in the application of an in-stream structure, Physics of Fluids, 2019, p. 121701, https://doi.
org/10.1063/1.5124245.

128

https://doi.org/10.5281/zenodo.7017917
https://doi.org/10.1063/1.5124245
https://doi.org/10.1063/1.5124245

	Introduction
	The elasticity complex
	The abstract Hodge Laplacian
	Some less abstract Hodge Laplacians

	Contributions and structure

	 Finite elements for symmetric stress tensors
	Motivations: continuum mechanics and finite element transformation theory
	The stress tensor in linear elasticity
	Continuum-mechanical context and problem formulation
	Stress components and the incompressible limit
	Numerical enforcement of symmetry
	The Arnold–Winther elements

	Piola transformation theory
	Domain geometry and pullbacks
	Transformation of components and their moments
	Transforming Piola-inequivalent elements

	Piola-mapped tensor elements
	The nonconforming AW element
	The conforming AW element
	Scale-invariance and conditioning
	Preservation of the constraints

	Traction conditions in the Hellinger–Reissner principle with Nitsche's method
	An exterior calculus perspective
	Uniform construction of the pullbacks
	Kernel-capturing and robust multigrid

	Multigrid for the Hellinger–Riessner system 
	Numerical examples
	Manufactured solutions
	Li, 2018


	Application to linear irreversible thermodynamics
	Overview of the Stokes–Onsager–Stefan–Maxwell system 
	Convection-diffusion in multicomponent flows
	Thermodynamic setting and the Onsager–Stefan–Maxwell system
	Stokes momentum balance
	Augmentation of the transport matrix and Stokes momentum balance
	The chemical potential and the thermodynamic equation of state
	Coupled problem statement
	Relation to existing numerical literature

	Variational formulation
	Pressure regularity in the stress complex
	Fully coupled nonlinear variational formulation

	Linearisation and well-posedness
	Generalised Picard scheme
	Well-posedness of the linearised system

	Discretisation
	Structure-preservation and well-posedness
	Error estimates
	Examples of suitable finite elements

	Numerical experiments
	Validation with manufactured solutions
	Convergence of thermodynamic forces and the pressure gradient
	Microfluidic mixing of benzene and cyclohexane


	The strain Hodge Laplacian 
	Motivations: Kröner's theory of defect elasticity 
	Problem formulation 
	A strain-displacement formulation
	Comparison to the linear models of van Goethem et al.

	The incompatibility operator
	Green's formulae
	Traces and exactness
	A remark on abstract Hilbert traces

	Discrete incompatibility and the Regge element
	The Regge finite element
	Discrete Green's formulae
	Codimension-2 curvature

	Interior penalisation in H(`39`42`"613A``45`47`"603Ainc)
	A codimension-1 approach
	A discrete Poincaré inequality


	Concluding remarks and outlook
	Exotic finite elements 
	Solvers for symmetry-enforcing discretisations
	 Symmetric elements and Piola transforms in 3D
	The curvilinear case

	Multicomponent diffusion
	Refinements of the model
	Multicomponent CFD
	Preconditioning

	The incompatibility operator and defect elasticity
	How far can we take the FEEC and the Hodge Laplace concept?
	Construction of finite element complexes
	General relativity
	Implicitly-constituted continuum mechanics
	Nonlinear complexes of Riemannian geometry


	References

