
Data-driven discovery of

Green’s functions

Nicolas Boullé

University College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2022

Abstract

Discovering hidden partial differential equations (PDEs) and operators

from data is an important topic at the frontier between machine learning

and numerical analysis. Theoretical results and deep learning algorithms

are introduced to learn Green’s functions associated with linear partial

differential equations and rigorously justify PDE learning techniques.

A theoretically rigorous algorithm is derived to obtain a learning rate,

which characterizes the amount of training data needed to approximately

learn Green’s functions associated with elliptic PDEs. The construction

connects the fields of PDE learning and numerical linear algebra by ex-

tending the randomized singular value decomposition to non-standard

Gaussian vectors and Hilbert–Schmidt operators, and exploiting the low-

rank hierarchical structure of Green’s functions using hierarchical matri-

ces.

Rational neural networks (NNs) are introduced and consist of neural net-

works with trainable rational activation functions. The highly composi-

tional structure of these networks, combined with rational approximation

theory, implies that rational functions have higher approximation power

than standard activation functions. In addition, rational NNs may have

poles and take arbitrarily large values, which is ideal for approximating

functions with singularities such as Green’s functions.

Finally, theoretical results on Green’s functions and rational NNs are com-

bined to design a human-understandable deep learning method for dis-

covering Green’s functions from data. This approach complements state-

of-the-art PDE learning techniques, as a wide range of physics can be

captured from the learned Green’s functions such as dominant modes,

symmetries, and singularity locations.

Acknowledgements

I would first like to thank my supervisors Patrick Farrell, Marie Rognes,

and Alex Townsend for their guidance and suggestions. Their passion

and excitement for the field of numerical analysis, as well as their high

academic standards, have been a constant source of inspiration and mo-

tivation during my DPhil.

I would also like to thank my confirmation examiners, Christoph Reisinger

and Justin Sirignano, for their comments and suggestions, as well as An-

drew Stuart and Jared Tanner for accepting to be my thesis examiners.

This thesis benefited from discussions with great collaborators, includ-

ing Efstathios Charalampidis, Vassilios Dallas, Christopher Earls, Ada

Ellingsrud, Panayotis Kevrekidis, Seick Kim, Yuji Nakatsukasa, Alberto

Paganini, Debasmita Samaddar, Tianyi Shi, and Jonasz S lomka.

I am grateful to Simula Research Laboratory for co-funding my DPhil

along with University College, the Oxford-Radcliffe scholarship, and the

InFoMM CDT.

I thank my friends and colleagues from Oxford and Cornell, Boris An-

drews, Francis Aznaran, Pablo Brubeck, Dan Fortunato, Marc Gilles,

Gonzalo Gonzalez de Diego, Andrew Horning, Fabian Laakmann, Maike

Meier, John Papadopoulos, Alex Puiu, Tianyi Shi, and Heather Wilber,

who made this DPhil always enjoyable and fun with great academic and

non-academic conversations.

Finally, I am grateful to my family and Tina for their continuous support

and encouragements throughout the years.

Contents

1 Introduction 1

1.1 Deep learning . 2

1.2 Physics-informed machine learning 3

1.3 Green’s functions . 7

1.4 Low-rank approximation . 8

1.5 Randomized singular value decomposition 9

1.6 Hilbert–Schmidt operators . 10

1.7 Quasimatrices . 12

1.8 Gaussian processes . 12

1.9 Contribution . 13

2 Learning elliptic PDEs with randomized linear algebra 15

2.1 Low-rank approximation of Hilbert–Schmidt operators 18

2.1.1 Three caveats that make the generalization non-trivial 19

2.1.2 Deterministic error bound . 20

2.1.3 Probability distribution of Ω1 21

2.1.4 Quality of the covariance kernel 23

2.1.5 Probabilistic error bounds . 24

2.1.6 Randomized SVD algorithm for HS operators 27

2.2 Recovering the Green’s function from input-output pairs 30

2.2.1 Recovering the Green’s function on admissible domains 31

2.2.2 Ignoring the Green’s function on non-admissible domains . . . 34

2.2.3 Hierarchical admissible partition of domain 35

2.2.4 Recovering the Green’s function on the entire domain 36

2.3 Discussion . 39

2.3.1 Fast and stable reconstruction of hierarchical matrices 39

2.3.2 Extension to other partial differential operators 40

2.3.3 Connection with neural networks 41

i

3 A generalization of the randomized singular value decomposition 43

3.1 Theoretical bounds for non-standard covariance matrices 44

3.2 Randomized SVD for Hilbert–Schmidt operators 49

3.3 Covariance kernels . 50

3.3.1 Sample random functions from a Gaussian process 51

3.3.2 Influence of the kernel’s eigenvalues and Mercer’s representation 52

3.3.3 Jacobi covariance kernel . 52

3.3.4 Smoothness of functions sampled from a GP with Jacobi kernel 53

3.4 Numerical experiments . 56

3.4.1 Covariance matrix with prior knowledge 57

3.4.2 Randomized SVD for Hilbert–Schmidt operators 59

4 Rational neural networks 63

4.1 Definitions . 64

4.2 Theoretical results on rational neural networks 65

4.2.1 Approximation of ReLU networks by rational neural networks 66

4.2.2 Approximation of functions by rational networks 75

4.3 Experiments using rational neural networks 81

4.3.1 Approximation of functions 82

4.3.2 Generative adversarial networks 86

5 Data-driven discovery of Green’s functions with deep learning 90

5.1 Learning Green’s functions . 91

5.1.1 Definitions . 92

5.1.2 Theoretical justification . 93

5.2 Deep learning method . 93

5.2.1 Generating the training data 95

5.2.2 Rational neural networks . 96

5.2.3 Loss function . 98

5.2.4 Optimization algorithm . 99

5.2.5 Measuring the results . 100

5.3 Robustness of the method . 101

5.3.1 Influence of the activation function on the accuracy 101

5.3.2 Number of training pairs and spatial measurements 102

5.3.3 Noise perturbation . 104

5.3.4 Location of the measurements 104

5.3.5 Missing measurements data 105

ii

5.4 Human-understandable features . 105

5.4.1 Linear constraints and symmetries 107

5.4.2 Eigenvalue decomposition . 108

5.4.3 Singular value decomposition 111

5.4.4 Schrödinger equation with double-well potential 113

5.4.5 Singularity location and type 113

5.5 Viscous shock and multiphysics examples 115

5.5.1 Viscous shock . 116

5.5.2 Advection-diffusion operator 118

5.6 Two-dimensional operators and systems 118

5.6.1 Differential operators in two dimensions 118

5.6.2 System of differential equations 121

5.7 Nonlinear and vector-valued equations 122

5.7.1 Linearized models of nonlinear operators 122

5.7.2 Lid-driven cavity problem . 124

5.8 Time-dependent equations . 127

Conclusions 130

Bibliography 133

iii

Chapter 1

Introduction

This thesis aims at understanding whether partial differential equations (PDEs) can

be discovered from data by connecting standard mathematical fields, such as nu-

merical linear algebra, probability, and PDE analysis, with modern deep learning

techniques. We focus on learning Green’s functions associated with linear PDEs from

pairs of forcing functions and solutions. Theoretical bounds exploiting the regularity

of the problem are derived and a practical deep learning algorithm is proposed.

Chapter 2 derives a theoretically-rigorous scheme for learning Green’s functions

associated with elliptic PDEs in three dimensions, given input-output pairs. A learn-

ing rate is obtained, giving a bound on the number of training pairs needed to learn

a Green’s function to within a prescribed accuracy with high probability. Along the

way, the randomized singular value decomposition (SVD) is extended from matrices

to Hilbert–Schmidt (HS) operators, and a quantity is introduced to measure the qual-

ity of the training forcing terms to learn Green’s functions. The randomized SVD is

a popular and effective algorithm for computing a near-best rank k approximation of

a matrix using matrix-vector products with standard Gaussian vectors.

Chapter 3 extends the randomized SVD to multivariate Gaussian vectors, allow-

ing one to incorporate prior knowledge of the matrix into the algorithm. This enables

us to explore the continuous analogue of the randomized SVD for HS operators using

operator-function products with functions drawn from a Gaussian process (GP). A

new covariance kernel for GPs, based on weighted Jacobi polynomials, is constructed

to rapidly sample the GP and control the smoothness of the randomly generated

functions. Numerical examples on matrices and HS operators demonstrate the appli-

cability of the algorithm.

Chapter 4 considers neural networks with rational activation functions. The choice

of the nonlinear activation function in deep learning architectures is crucial and heav-

ily impacts the performance of a neural network. We establish optimal bounds in

1

terms of network complexity and prove that rational neural networks approximate

smooth functions more efficiently than networks with Rectified Linear Unit (ReLU)

activation functions with exponentially smaller depth. The flexibility and smooth-

ness of rational activation functions make them an attractive alternative to ReLU, as

demonstrated by numerical experiments.

Chapter 5 develops a data-driven approach for learning Green’s functions using

deep learning. By collecting physical system responses under excitations drawn from

a Gaussian process, we train rational neural networks to learn Green’s functions of

hidden linear PDEs. These functions reveal human-understandable properties and

features, such as linear conservation laws and symmetries, along with shock and

singularity locations, boundary effects, and dominant modes. The technique is il-

lustrated on several examples and allows us to capture a range of physics, including

advection-diffusion, viscous shocks, and Stokes flow in a lid-driven cavity.

1.1 Deep learning

Deep learning has become an important topic across many domains of science due to

its recent successes in image recognition, speech recognition, and drug discovery [89,

114, 118, 138]. Deep learning techniques are based on objects called artificial neural

networks (NNs), which apply a succession of mathematical transformations on an

input variable x to output a variable y, where N (x) = y and N denotes the neural

network. An example of simple data fitting task is to assign labels 0 or 1 to points

in R2, where, in this case, x ∈ R2 and y ∈ {0, 1} [88]. A large number of NN

architectures, characterized by the type of mathematical operations used, have been

proposed over the past decades for performing different tasks, such as convolutional

NNs for classifying images [114, 119], recurrent and long short-term memory neural

networks for speech recognition [78, 90, 196], and generative adversarial network to

generate realistic images [76, 103].

We consider one of the most standard types of deep learning model called feed-

forward neural networks or multilayer perceptrons [75, Chapt. 6]. Let L ≥ 1 be an

integer and n1, nL be the respective dimension of the input and output data. A feed-

forward network N : Rn1 → RnL , mapping from Rn1 to RnL , with L layers consists of

a composition of L− 1 functions f1, . . . , fL−1 of the form

N (x) = fL−1 ◦ · · · ◦ f1(x), x ∈ Rn1 .

2

At a given layer 1 ≤ i ≤ L − 1, the nonlinear transformation fi : Rni → Rni+1

determines the output of the neural network. The layers 2 ≤ i ≤ L− 1 are called the

hidden layers of the network and their dimensionality determines the width of the

network, while the number of layers is referred to as the depth [75, Chapt. 6]. For

1 ≤ i ≤ L− 1, we choose the function fi to be of the form

fi : x 7→ σ(Wix+ bi), x ∈ Rni ,

where Wi ∈ Rni×ni+1 is a matrix called the weight matrix, bi ∈ Rni+1 is a bias vector,

and σ is a nonlinear function called the activation function (also called activation

unit). The weight matrices and bias vectors are trainable parameters of the network,

and their coefficients are usually obtained using a gradient-based optimization algo-

rithm, such as stochastic gradient descent, applied to a training dataset containing

examples of inputs and expected associated outputs of the network [75, Chapt. 6.2].

In this thesis, we will measure the network complexity using its total number of pa-

rameters (i.e., size) and number of layers (depth), which are standard measures in

theoretical deep learning [8].

In Chapter 4, we will consider NNs with rational activation functions and derive

theoretical results that quantify the size needed to approximate smooth functions

within a prescribed accuracy. We will establish a connection between standard ap-

proximation theory for rational functions and the highly compositional structure of

neural networks to show that rational neural networks require fewer parameters than

ReLU networks to approximate smooth functions. We expect that the smoothness

of rational neural networks away from their poles, together with their potential sin-

gularities, make them an interesting alternative to standard activation functions for

physics-informed machine learning applications.

1.2 Physics-informed machine learning

Over the past decades, there has been spectacular progress in numerical techniques

for solving PDEs, such as finite element methods, finite differences, and spectral

methods [102]. However, solving inverse problems to identify parameters of a model or

learn a physical model from real-world data remains highly challenging due to missing

and noisy data [11, 209]. Hence, such problems are often ill-posed and require a data-

driven approach. Recently, the fields of numerical analysis and machine learning have

successfully converged towards physics-informed machine learning, which integrates

partial data and prior knowledge on governing physical laws to solve inverse problems

3

using neural networks [102]. The flexibility of the networks, due to the large potential

choices of architectures, along with their generalization ability in the presence of big

data, either generated by numerical simulations or acquired via experiments, makes

them ideal for such tasks. On the other hand, the selection of a specific architecture

is a challenging task and is difficult to justify mathematically due to the complexity

of the models.

One example of problems that can be tackled by deep learning is to solve a PDE

by training a NN on initial and boundary training data. Two popular approaches are

physics-informed neural networks (PINNs) [184] and the deep Galerkin method [203],

which, in their original formulation, aim to solve PDEs of the form

∂u

∂t
+ L(u) = 0, x ∈ D ⊂ Rd, t ∈ [0, T], (1.1)

where the partial differential operator L is potentially nonlinear. The left-hand side

of Equation (1.1) is denoted by f(x, t), i.e., f := ut + L(u). These techniques are

attractive because they are mesh-free as they do not require a spatial discretization

of the domain and can be applied in high dimensions. The PINN approach consists

of approximating the solution u to Equation (1.1) by a neural network. This results

in a physics-informed neural network f , which can be evaluated using chain rule

and automatic differentiation [14, 184]. The loss function is expressed as a sum of a

supervised loss of data measurements at the boundary and an unsupervised loss of

PDE [102, 184]:

Loss = wdataLdata + wPDELPDE,

where wdata and wPDE are weights balancing the two terms and Ldata, LPDE are defined

as

Ldata =
1

Ndata

Ndata∑

i=1

|u(xbdri , tbdri)− ubdri |2, LPDE =
1

NPDE

NPDE∑

j=1

|f(xdomj , tdomj)|2.

Here, {(xbdri , tbdri)} are points sampled at the initial and boundary locations, while

the points {(xdomj , tdomj)} are sampled on the entire domain, and LPDE is the average

of the squared residual of the PDE evaluated at {(xdomj , tdomj)}. These methods have

been generalized since their introductions to tackle a wide range of PDEs such as

integro-differential equations [136], fractional PDEs [169], and stochastic PDEs [244],

and have been applied to problems in fluid mechanics [185], geophysics [124], and

materials science [202].

4

This thesis focuses on another aspect of physics-informed machine learning called

PDE learning, whose aim is to discover, or learn, a mathematical model from data.

We consider stationary PDEs of the form:

L(u) = f,

where L is a partial differential operator, f is called the forcing term, and u the associ-

ated solution of the PDE. The approaches that dominate the PDE learning literature

focus on the “forward” problem and aim to discover properties of the differential

operator L. As an example, sparsity-promoting techniques [36, 195, 246] consist of

building a library of states u and its spatio-temporal derivatives ut, ux, uxx, uy, . . . to

identify parameters (or coefficients) and discover the main contributing terms in L.

Another method aims to find a symbolic expression for L and identify its dominant

coefficients by solving a regression problem [224, 225]. Finally, one can also project

the operator L onto a low-dimensional subspace to build a reduced-order model and

to significantly speed up standard numerical solvers [177, 178].

An alternative approach, which we will consider, is to study the “inverse” problem

and directly approximate the PDE solution operator, L−1 : f 7→ u, by an artificial

neural network N from training pairs of forcing terms and solutions {fj, uj}Nj=1 [71,

112, 126, 127, 128, 135, 233]. The network N takes a forcing term f evaluated at a

finite number of sensors {yi}Nfi=1 and a point x in the domain of L−1(f) and outputs

a real number approximating the solution u to the PDE L(u) = f evaluated at x:

N
([
f(y1) · · · f(yNf)

]>
, x
)
≈ u(x).

The NN is then trained by minimizing the following loss function using stochastic

gradient descent algorithms:

Loss =
1

NNuNf

N∑

k=1

Nu∑

i=1

Nf∑

j=1

∣∣∣N
([
fk(y1) · · · fk(yNf)

]>
, xi

)
− uk(xi)

∣∣∣
2

,

where {xi}Nui=1 are spatial points at which the solutions are measured. Unlike coeffi-

cient discovery techniques, this approach provides a fast solver for PDEs, which may

outperform state-of-the-art numerical solvers [127]. However, the physical interpre-

tation of the learned solution operator remains highly challenging due to the math-

ematical complexity of the neural network that approximates it. Several black-box

deep learning techniques are proposed to approximate the solution operator, which

maps forcing terms f to observations of the associated system’s responses u such

5

that L(u) = f . These methods are based on the concept of neural operators [112],

which generalize neural networks to learn maps between infinite-dimensional function

spaces, and mainly differ in their choice of the neural network architecture that is

used to approximate the solution map. For example, Fourier neural operator [127]

uses a Fourier transform at each layer, while DeepONet [135] contains a concatenation

of ‘trunk’ and ‘branch’ networks to enforce additional structure.

On the theoretical side, most of the research has focused on the approximation

theory of infinite-dimensional operators by NNs, such as the generalization of the uni-

versal approximation theorem [46] to shallow and deep NNs [38, 135] as well as error

estimates for Fourier neural operators and DeepONets with respect to the network

width and depth [111, 112, 116]. Other approaches aim to approximate the matrix

of the discretized Green’s functions associated with elliptic PDEs from matrix-vector

multiplications by exploiting sparsity patterns or hierarchical structure of the ma-

trix [130, 198]. In addition, [49] derived convergence rates for learning linear self-

adjoint operators based on the assumption that the target operator is diagonal in the

basis of the Gaussian prior.

In this thesis, we focus on learning linear partial differential operators L for which

the solution operator can be written as an integral operator,

L−1(f)(x) =

ˆ
D

G(x, y)f(y) dy = u(x),

whose kernel G is known as the Green’s function. Our approach contrasts with prior

works because we aim to approximate the Green’s function instead of the integral

operator. As we will see in Chapters 2 and 5, imposing a prior structure on the

solution operator offers theoretical and practical advantages over recent PDE learn-

ing techniques. First, standard mathematical techniques from elliptic PDE theory

and numerical analysis can be exploited to derive rigorous results that quantify the

amount of training data needed to learn the solution operator to within a prescribed

accuracy. These types of results are notoriously challenging to obtain for deep learn-

ing algorithms due to the high nonlinearity of neural network architectures and the

complexity of the optimization procedure. Secondly, unlike black-box deep learning

techniques, it is possible to extract physical features of the original PDE from the

associated Green’s function, which is a well-understood mathematical object.

6

1.3 Green’s functions

Throughout this thesis, we consider linear boundary value problems defined on a

bounded domain D ⊂ Rd, with d ≥ 1, of the form:

Lu = f, in D,

u = 0, on ∂D,

where L is a linear partial differential operator and f : D → R is a given forcing func-

tion. A typical example of such problems is the Poisson equation in one dimension:

− d2u

dx2
= f, x ∈ (0, 1), u(0) = u(1) = 0. (1.3)

Equation (1.3) can be solved for any forcing function f by introducing a kernel G :

[0, 1]× [0, 1]→ R so that the solution u can be expressed as the following integral [64,

79, 190],

u(x) =

ˆ 1

0

G(x, y)f(y) dy, x ∈ [0, 1]. (1.4)

The function G is called the Green’s function and is a solution to the equation

LG(x, y) = δ(x− y), where δ is the Dirac delta function and x, y ∈ [0, 1].

Green’s functions are useful because they are independent of the forcing terms and

only characterize the partial differential operators and boundary conditions. Once the

Green’s function has been determined, then the solution to Equation (1.3) with any

forcing term can be obtained by computing the integral in Equation (1.4), which is

numerically easier than solving the original PDE and imposing the appropriate bound-

ary conditions [190]. Additionally, several properties of the PDE can be recovered

from the Green’s function, such as symmetries or eigenvalues.

Traditional methods for finding Green’s functions can be summarized as deriving

analytical formulas, computing eigenvalue expansions, or numerically solving a sin-

gular PDE [64, 190]. This is difficult when the geometry of the domain is complex

or when the PDE has variable coefficients. Moreover, it requires knowledge of the

partial differential operator, which may not be accessible in real applications [102].

Other works study properties of Green’s functions and provide theoretical results

such as decay bounds along the diagonal of the domain [42, 80, 91, 100] or low-rank

structure on separable domains [16, 28, 63]. In this thesis, we aim to approximate

Green’s functions from pairs of forcing terms and system’s responses {(fj, uj)}Nj=1 by

exploiting their low-rank structure on well-separated domains [16], and combining it

with randomized numerical linear algebra [86].

7

1.4 Low-rank approximation

Let A be an m× n real matrix with m ≥ n and k ≤ n be an integer. The best rank

k approximation to A in the Frobenius norm is the m × n real matrix Ak, which is

solution to the following minimization problem:

min
Ak∈Rm×n

‖A−Ak‖F subject to rank(Ak) ≤ k, (1.5)

where ‖ ·‖F denotes the Frobenius norm defined as ‖A‖F =
√

Tr(AA∗). The Eckart–

Young theorem [58] states that (1.5) has a unique solution given by the truncation

of the singular value decomposition of A to the kth term. The SVD of an m × n

real matrix A, with m ≥ n, is a factorization of the form A = UΣV∗, where U is

an m×m orthogonal matrix of left singular vectors, Σ is an m× n diagonal matrix

with entries σ1(A) ≥ · · · ≥ σn(A) ≥ 0, and V is an n× n orthogonal matrix of right

singular vectors [74]. Then,

min
Ak∈Rm×n

rank(Ak)≤k

‖A−Ak‖F =

(
n∑

j=k+1

σj(A)2

)1/2

,

where

Ak =
k∑

j=1

σj(A)ujv
∗
j .

Here, uj and vj denote the jth column of U and V, respectively.

This result can be generalized to functions [200, 216] and, in particular, Green’s

functions of the form G : D1 × D2 → R, where D1, D2 ⊂ Rd. As an example, if

D1 = [a, b] and D2 = [c, d] are two real intervals, and G is square-integrable, then it

can be written as the following infinite series, which converges in the L2(D1 × D2)

sense to G,

G(x, y) =
∞∑

j=1
σj>0

σjuj(x)vj(y), x ∈ D1, y ∈ D2,

where {uj}j≥1 and {vj}j≥1 form an orthonormal basis of L2(D1) and L2(D2), and

σ1 ≥ σ2 ≥ · · · ≥ 0 are called the singular values of G. This series is referred to as

the SVD of G. Similar to matrices, the best rank k approximant to G is obtained by

truncating its SVD after k terms to obtain a separable approximation

Gk(x, y) =
k∑

j=1

σjuj(x)vj(y), x ∈ D1, y ∈ D2.

8

By the Eckart–Young theorem, Gk is solution to the following minimization problem:

min
fj∈L2(D1)

gj∈L2(D2)

‖G−
k∑

j=1

fjgj‖L2(D1×D2) = ‖G−Gk‖L2(D1×D2) =

(∞∑

j=k+1

σ2
j

)1/2

.

Let 0 < ε < 1. If there exists an integer k > 0 and a separable expression satisfying

‖G−
k∑

j=1

fjgj‖L2(D1×D2) ≤ ε‖G‖L2(D1×D2), fj ∈ L2(D1), gj ∈ L2(D2),

then we say that G has numerical rank smaller than k. We remark that one can easily

obtain a bound on the tail of the singular values of G by applying the Eckart–Young

theorem as follows,

(∞∑

j=k+1

σ2
j

)1/2

= min
fj∈L2(D1)

gj∈L2(D2)

‖G−
k∑

j=1

fjgj‖L2(D1×D2) ≤ ε‖G‖L2(D1×D2).

When k = O(logδ(1/ε)) for some small δ ∈ N as ε → 0, then we say that G has

exponentially decaying singular values on D1 ×D2.

1.5 Randomized singular value decomposition

Computing the SVD of a matrix is a fundamental linear algebra task in machine learn-

ing [173], statistics [240], and signal processing [7, 227]. As we saw in Section 1.4,

the SVD plays a central role in numerical linear algebra because truncating it after

k terms provides the best rank k approximation to A in the spectral and Frobenius

norms [58, 151]. Since computing the SVD of a large matrix can be computationally

infeasible, there are various principal component analysis (PCA) [2, 92, 174] algo-

rithms that perform dimensionality reduction by computing near-best rank k matrix

approximations from matrix-vector products [86, 145, 159, 164, 238]. The randomized

SVD uses matrix-vector products with random test vectors and is one of the most

popular algorithms for constructing a low-rank approximation to A [86, 145]. While

the error analysis performed in [86] for the randomized SVD uses standard Gaussian

random vectors, other random embedding techniques have been considered such as

random permutations [5], sparse sign matrices [44, 147, 162, 226], and subsampled

randomized trigonometric transforms (SRTTs) [4, 5, 172, 241] to mitigate the com-

putational cost of Gaussian vectors in practical applications. Throughout this thesis,

we will focus on Gaussian vectors because they yield a more precise error analysis

(cf. [145, Sec. 8.3]).

9

First, one performs the matrix-vector products y1 = Ax1, . . . , yk+p = Axk+p,

where x1, . . . , xk+p are standard Gaussian random vectors with identically and inde-

pendently distributed entries and p ≥ 1 is an oversampling parameter. Then, one

computes the economized QR factorization
[
y1 · · · yk+p

]
= QR, before forming

the rank ≤ k + p approximant QQ∗A. Note that if A is symmetric, one can form

QQ∗A by computing Q(AQ)∗ via matrix-vector products involving A; otherwise it

requires the adjoint A∗. The quality of the rank ≤ k + p approximant QQ∗A is

characterized by the following bound for u, t ≥ 1 [86, Thm. 10.7],

‖A−QQ∗A‖F ≤
(

1 + t

√
3k

p+ 1

)√√√√
n∑

j=k+1

σ2
j (A) + ut

√
k + p

p+ 1
σk+1(A), (1.6)

with failure probability at most 2t−p + e−u
2
. The squared tail of the singular values

of A, i.e.,
√∑n

j=k+1 σ
2
j (A), gives the best rank k approximation error to A in the

Frobenius norm. This result shows that the randomized SVD can compute a near-

best low-rank approximation to A with high probability. In Chapters 2 and 3, we

will generalize this result to random vectors sampled from a multivariate normal

distribution with any covariance matrix, and Hilbert–Schmidt operators.

1.6 Hilbert–Schmidt operators

Hilbert–Schmidt operators generalize the notion of matrices acting on vectors to in-

finite dimensions with linear operators acting on functions [93, Ch. 4]. First, let

D1, D2 ⊂ Rd be two domains with d ≥ 1. For 1 ≤ p ≤ ∞, we denote by Lp(D1) the

space of measurable functions defined on the domain D1 with finite Lp norm, where

‖f‖Lp(D1) =

(ˆ
D1

|f(x)|p dx

)1/p

if p <∞,

‖f‖L∞(D1) = inf {C > 0, |f(x)| ≤ C for almost every x ∈ D1} .

Since the space of square-integrable functions, L2(D1), is a separable Hilbert space,

it admits a complete orthonormal basis {ej}∞j=1.

A linear operator F : L2(D1) → L2(D2) is an HS operator [93, Def. 4.4.2] if it

has finite HS norm, ‖F‖HS, defined as

‖F‖HS :=

(∞∑

j=1

‖F ej‖2
L2(D2)

)1/2

<∞.

10

This norm does not depend on the choice of the basis [93, Thm. 4.4.1]. The archetyp-

ical example of an HS operator is an integral operator F : L2(D1)→ L2(D2) defined

as

(Ff)(x) =

ˆ
D1

G(x, y)f(y) dy, f ∈ L2(D1), x ∈ D2,

where G ∈ L2(D2 ×D1) is the kernel of F and ‖F‖HS = ‖G‖L2(D2×D1). The adjoint

operator F ∗ : L2(D2)→ L2(D1) is defined as

(F ∗g)(y) =

ˆ
D2

G(x, y)g(x) dx, g ∈ L2(D2), y ∈ D1.

Since HS operators are compact operators, they have an SVD [93, Thm. 4.3.1].

That is, that for any f ∈ L2(D1) we have

Ff =
∞∑

j=1

σj〈q1j, f〉q2j, (1.7)

where the equality holds in the L2(D2) sense. Here, σ1 ≥ σ2 ≥ · · · ≥ 0 denote

the square roots of the eigenvalues of the self-adjoint operator F ∗F , {q1j} are the

orthonormal eigenvectors of F ∗F , and {q2j} are the orthonormal eigenvectors of

FF ∗. We refer to {(σj, q1j, q2j)}∞j=1 as the singular system of F . When the HS

operator is an integral operator, we refer to its singular values as the singular values

of the underlying kernel.

Moreover, one finds that ‖F‖2
HS =

∑∞
j=1 σ

2
j , which shows that the HS norm is an

infinite dimensional analogue of the Frobenius matrix norm ‖ · ‖F. In the same way

that truncating the SVD after k terms gives the best rank k matrix approximation,

truncating Equation (1.7) gives the best rank k approximation in the HS norm. That

is, [93, Thm. 4.4.7]

min
uj∈L2(D1),vj∈L2(D2)

‖F −
k∑

j=1

〈uj, ·〉vj‖HS = ‖F −Fk‖HS =

(∞∑

j=k+1

σ2
j

)1/2

,

where the operator Fk is defined as

Fkf =
k∑

j=1

σj〈q1j, f〉q2j, f ∈ L2(D1).

This result is known as the Eckart–Young–Mirsky theorem [58, 151]. We will exploit

this theorem in Chapter 2 to extend the randomized SVD to HS operators and learn

Green’s functions.

11

1.7 Quasimatrices

Quasimatrices are an infinite dimensional analogue of tall-skinny matrices [218]. Let

D1, D2 ⊆ Rd be two domains with d ≥ 1, we say that Ω is a D1 × k quasimatrix, if

Ω is a matrix with k columns where each column is a function in L2(D1). That is,

Ω =
[
ω1 | · · · |ωk

]
, ωj ∈ L2(D1).

Quasimatrices are useful to define analogues of matrix operations for HS operators [48,

208, 218, 221]. For example, if F : L2(D1) → L2(D2) is an HS operator, then we

write FΩ to denote the quasimatrix obtained by applying F to each column of Ω.

Moreover, we write Ω∗Ω and ΩΩ∗ to mean the following:

Ω∗Ω =

〈ω1, ω1〉 · · · 〈ω1, ωk〉

...
. . .

...
〈ωk, ω1〉 · · · 〈ωk, ωk〉

 , ΩΩ∗ =

k∑

j=1

ωj(x)ωj(y),

where 〈·, ·〉 is the L2(D1) inner-product. Many operations for rectangular matrices

in linear algebra can be generalized to quasimatrices such as the SVD, QR, LU, and

Cholesky factorizations [218].

Throughout this thesis, the HS operator denoted by ΩΩ∗F : L2(D1) → L2(D2)

is given by ΩΩ∗Ff =
∑k

j=1〈ωj,Ff〉ωj. Moreover, if Ω has full column rank then

PΩF := Ω(Ω∗Ω)†Ω∗F is the orthogonal projection of the range of F onto the

column space of Ω. Here, (Ω∗Ω)† is the pseudo-inverse of Ω∗Ω. This notation is

convenient to state the generalization of the randomized SVD in infinite dimensions.

1.8 Gaussian processes

A Gaussian process is an infinite dimensional analogue of a multivariate Gaussian

distribution and a function drawn from a GP is analogous to a randomly generated

vector. If K : D × D → R is a continuous symmetric positive semi-definite kernel,

where D ⊆ Rd is a domain, then a GP is a stochastic process {Xt, t ∈ D} such that for

every finite set of indices t1, . . . , tn ∈ D the vector of random variables (Xt1 , . . . , Xtn)

is a multivariate Gaussian distribution with mean (0, . . . , 0) and covariance Kij =

K(ti, tj) for 1 ≤ i, j ≤ n. We denote a GP with mean (0, . . . , 0) and covariance kernel

K by GP(0, K).

Since K is a continuous symmetric positive semi-definite kernel, it has nonnegative

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and there is an orthonormal basis of eigenfunctions

12

{ψj}∞j=1 of L2(D) such that [93, Thm. 4.6.5]:

K(x, y) =
∞∑

j=1

λjψj(x)ψj(y),

ˆ
D

K(x, y)ψj(y) dy = λjψj(x), x, y ∈ D, (1.8)

where the infinite sum is absolutely and uniformly convergent [148]. Note that the

eigenvalues of K are the ones of the integral operator with kernel K. In addition,

we define the trace of the covariance kernel K by Tr(K) :=
∑∞

j=1 λj < ∞. The

eigendecomposition of K gives an algorithm for sampling functions from GP(0, K).

In particular, if

ω =
∞∑

j=1

√
λjcjψj,

where the coefficients {cj}∞j=1 are independent and identically distributed (i.i.d.) stan-

dard Gaussian random variables and the series converges in mean-square and uni-

formly, then ω ∼ GP(0, K). This is known as the Karhunen–Loève theorem [101, 133].

We also have [93, Thm. 7.2.5]

E
[
‖ω‖2

L2(D)

]
=
∞∑

j=1

λjE
[
c2
j

]
‖ψj‖2

L2(D) =
∞∑

j=1

λj =

ˆ
D

K(y, y) dy <∞,

where the last equality is analogous to the fact that the trace of a matrix is equal

to the sum of its eigenvalues. In this thesis, we restrict our attention to GPs with

positive definite covariance kernels so that the eigenvalues of K are strictly positive.

1.9 Contribution

The material of Chapter 2 to Chapter 5 is based on the following four papers with

collaborators:

• Learning elliptic PDEs with randomized linear algebra

Nicolas Boullé and Alex Townsend

Foundations of Computational Mathematics, 2022

• A generalization of the randomized singular value decomposition

Nicolas Boullé and Alex Townsend

International Conference on Learning Representations, 2022

• Rational neural networks

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend

Neural Information Processing Systems, 2020

13

• Data-driven discovery of Green’s functions with human-understandable

deep learning

Nicolas Boullé, Christopher J. Earls, and Alex Townsend

Scientific Reports, 2022

My co-authors had advisory roles; I proved the main theoretical results, performed

the numerical experiments, and was the lead author in writing the papers.

14

Chapter 2

Learning elliptic PDEs with
randomized linear algebra∗

Can one learn a differential operator from pairs of solutions and righthand sides?

If so, how many pairs are required? These two questions have received significant

research attention [65, 127, 134, 170]. From data, one hopes to eventually learn

physical laws of nature or conservation laws that elude scientists in the biological sci-

ences [243], computational fluid dynamics [185], and computational physics [180]. The

literature contains many highly successful practical schemes based on deep learning

techniques [146, 184]. However, the challenge remains to understand when and why

deep learning is effective theoretically. This chapter describes the first theoretically-

justified scheme for discovering scalar-valued elliptic partial differential equations

(PDEs) in three variables from input-output data and provides a rigorous learning

rate. While our novelties are mainly theoretical, we hope to motivate future practical

choices in PDE learning.

Let D ⊂ R3 be a bounded domain with Lipschitz smooth boundary, L2(D) be

the space of square-integrable functions defined on D, Hk(D) be the space of k times

weakly differentiable functions in the L2-sense, and H1
0(D) be the closure of C∞c (D)

in H1(D). Here, C∞c (D) is the space of infinitely differentiable compactly supported

functions on D. Roughly speaking, H1
0(D) are the functions in H1(D) that are zero

on the boundary of D. We suppose that there is an unknown second-order uniformly

elliptic linear PDE operator L : H2(D) ∩H1
0(D)→ L2(D) [64], which takes the form

Lu(x) = −∇ · (A(x)∇u) + c(x) · ∇u+ d(x)u, x ∈ D, u|∂D = 0. (2.1)

∗This chapter is based on a paper with Alex Townsend [32], published in Foundations of Com-
putational Mathematics. Townsend had an advisory role; I proved the theoretical results and was
the lead author in writing the paper.

15

Here, for every x ∈ D, we have that A(x) ∈ R3×3 is a symmetric positive definite

matrix with bounded coefficient functions so that Aij ∈ L∞(D), c ∈ Lr(D) with

r ≥ 3, d ∈ Ls(D) for s ≥ 3/2, and d(x) ≥ 0 [106]. We emphasize that the regularity

requirements on the variable coefficients are quite weak.

The goal of PDE learning is to discover the operator L from N ≥ 1 input-output

pairs, i.e., {(fj, uj)}Nj=1, where Luj = fj and uj|∂D = 0 for 1 ≤ j ≤ N . There are

two main types of PDE learning tasks: (1) Experimentally-determined input-output

pairs, where one must do the best one can with the predetermined information and

(2) Algorithmically-determined input-output pairs, where the data-driven learning

algorithm can select f1, . . . , fN for itself. In this chapter, we focus on the PDE

learning task where we have algorithmically-determined input-output pairs and aim

to provide an upper bound on the sample complexity of the Green’s function G

associated with L, i.e. characterize the number of pairs needed to learn G within

a prescribed accuracy. In particular, we suppose that the functions f1, . . . , fN are

generated at random and are drawn from a Gaussian process (GP) (see Section 1.8).

Note that alternative strategies analogue to a power scheme in randomized numerical

linear algebra [74, 86, 191, 192] to generate forcing terms iteratively might lead to

better approximation errors. To keep our theoretical statements manageable, we

restrict our attention to PDEs of the form:

Lu = −∇ · (A(x)∇u) , x ∈ D, u|∂D = 0. (2.2)

Lower-order terms in Equation (2.1) should cause few theoretical problems [16],

though our algorithm and our bounds get far more complicated.

The approach that dominates the PDE learning literature is to directly learn L by

either (1) learning parameters in the PDE [24, 247], (2) using neural networks (NNs)

to approximate the action of the PDE on functions [180, 182, 183, 184, 185], or (3)

deriving a model from a library of operators via sparsity considerations [36, 141, 195,

197, 231, 234]. Instead of trying to learn the unbounded, closed operator L directly,

we follow [27, 65, 71] and discover the Green’s function associated with L. That is,

we attempt to learn the function G : D ×D → R+ ∪ {∞} such that [64]

uj(x) =

ˆ
D

G(x, y)fj(y) dy, x ∈ D, 1 ≤ j ≤ N. (2.3)

Seeking G, as opposed to L, has several theoretical benefits:

1. The integral operator in Equation (2.3) is compact [60], while L is only closed [59].

This allows G to be rigorously learned by input-output pairs {(fj, uj)}Nj=1, as its

range can be approximated by finite-dimensional spaces (see Theorem 2.3).

16

2. It is known that G has a hierarchical low-rank structure [16, Thm. 2.8]: for 0 <

ε < 1, there exists a function Gk(x, y) =
∑k

j=1 gj(x)hj(y) with k = O(log4(1/ε))

such that [16, Thm. 2.8]

‖G−Gk‖L2(X×Y) ≤ ε ‖G‖L2(X×Ŷ) ,

where X, Y ⊆ D are sufficiently separated domains, and Y ⊆ Ŷ ⊆ D denotes

a larger domain than Y (see Theorem 2.4 for the definition). The further apart

X and Y , the faster the singular values of G decay. Moreover, G also has an

off-diagonal decay property [80, 100]:

G(x, y) ≤ c

‖x− y‖2

‖G‖L2(D×D), x 6= y, x ∈ D, y ∈ D,

where c is a constant independent of x and y. Exploiting these structures of G

leads to a rigorous algorithm for constructing a global approximant to G (see Sec-

tion 2.2).

3. The function G is smooth away from its diagonal, allowing one to efficiently ap-

proximate it [80].

Once a global approximation G̃ has been constructed for G using input-output pairs,

given a new righthand side f one can directly compute the integral in Equation (2.3)

to obtain the corresponding solution u to Equation (2.1). Usually, numerically com-

puting the integral in Equation (2.3) must be done with sufficient care as G possesses

a singularity when x = y. However, our global approximation G̃ has a hierarchical

structure and is constructed as 0 near the diagonal. Therefore, for each fixed x ∈ D,

we simply recommend that
´
D
G̃(x, y)fj(y) dy is partitioned into the panels that cor-

responds to the hierarchical decomposition, and then discretized each panel with a

quadrature rule.

There are two main contributions in this chapter: (1) the generalization of the

randomized singular value decomposition (SVD) algorithm for learning matrices from

matrix-vector products to Hilbert–Schmidt (HS) operators and (2) a theoretical learn-

ing rate for discovering Green’s functions associated with PDEs of the form Equa-

tion (2.2). These contributions are summarized in Theorems 2.1 and 2.3.

Theorem 2.1 says that, with high probability, one can recover a near-best rank k

HS operator using k+p operator-function products, for a small integer p. In the bound

of the theorem, a quantity, denoted by 0 < γk ≤ 1, measures the quality of the input-

output training pairs (see Sections 2.1.1 and 2.1.4). We then combine Theorem 2.1

17

with the theory of Green’s functions for elliptic PDEs to derive a theoretical learning

rate for PDEs.

In Theorem 2.3, we show that Green’s functions associated with uniformly elliptic

PDEs in three dimensions can be recovered using N = O(ε−6 log4(1/ε)) input-output

pairs (fj, uj)
N
j=1 to within an accuracy of O(Γ

−1/2
ε log3(1/ε)ε) with high probability, for

0 < ε < 1. Our learning rate associated with uniformly elliptic PDEs in three variables

is therefore O(ε−6 log4(1/ε)). The quantity 0 < Γε ≤ 1 (defined in Equation (2.23))

measures the quality of the GP used to generate the random functions {fj}Nj=1 for

learning G. We emphasize that the number of training pairs is small only if the GP’s

quality is high. The probability bound in Theorem 2.3 implies that the constructed

approximation is close to G with high probability and converges almost surely to the

Green’s function as ε→ 0.

2.1 Low-rank approximation of Hilbert–Schmidt

operators

In a landmark paper, Halko, Martinsson, and Tropp proved that one could learn

the column space of a finite matrix—to high accuracy and with a high probability

of success—by using matrix-vector products with standard Gaussian random vec-

tors [86]. We now set out to generalize this from matrices to HS operators. Alterna-

tive randomized low-rank approximation techniques such as the generalized Nyström

method [159] might also be generalized in a similar manner. Since the proof is rela-

tively long, we state our final generalization now.

Theorem 2.1. Let D1, D2 ⊆ Rd be domains with d ≥ 1 and F : L2(D1) → L2(D2)

be an HS operator. Select a target rank k ≥ 1, an oversampling parameter p ≥ 2,

and a D1 × (k + p) quasimatrix Ω such that each column is i.i.d. and drawn from

GP(0, K), where K : D1×D1 → R is a continuous symmetric positive definite kernel

with eigenvalues λ1 ≥ λ2 ≥ · · · > 0. If Y = FΩ, then

E[‖F −PYF‖HS] ≤
(

1 +

√
1

γk

k(k + p)

p− 1

)(∞∑

j=k+1

σ2
j

)1/2

, (2.4)

where γk = k/(λ1 Tr(C−1)) with Cij =
´
D1×D1

vi(x)K(x, y)vj(y) dx dy for 1 ≤ i, j ≤
k. Here, PY is the orthogonal projection onto the vector space spanned by the columns

of Y, σj is the jth singular value of F , and vj is the jth right singular vector of F .

18

Assume further that p ≥ 4, then for any s, t ≥ 1, we have

‖F −PYF‖HS ≤

√√√√1 + t2s2
3

γk

k(k + p)

p+ 1

∞∑

j=1

λj
λ1

(∞∑

j=k+1

σ2
j

)1/2

, (2.5)

with probability ≥ 1− t−p − [se−(s2−1)/2]k+p.

We remark that the term [se−(s2−1)/2]k+p in the statement of Theorem 2.1 is

bounded by e−s
2

for s ≥ 2 and k + p ≥ 5. The term 0 ≤ γk ≤ 1 is discussed in

Section 2.1.4 and is bounded by the inverse of the harmonic mean of k eigenvalues of

the covariance kernel under some conditions on the kernel eigenvectors and the right

singular vectors of the Hilbert–Schmidt operator F (see Lemma 2.2). In the rest of

the section, we prove this theorem.

2.1.1 Three caveats that make the generalization non-trivial

One might imagine that the generalization of the randomized SVD algorithm from

matrices to HS operators is trivial, but this is not the case due to three caveats.

First, the randomized SVD on finite matrices always uses matrix-vector products

with standard Gaussian random vectors [86]. However, for GPs, one must always have

a continuous kernel K in GP(0, K), which discretizes to a non-standard multivariate

Gaussian distribution. Therefore, we must extend [86, Thm. 10.5] to allow for non-

standard multivariate Gaussian distributions. The discrete version of our extension

is the following:

Corollary 2.1. Let A be a real n2 × n1 matrix with singular values σ1 ≥ · · · ≥
σmin{n1,n2}. Choose a target rank k ≥ 1 and an oversampling parameter p ≥ 2. Draw

an n1 × (k + p) Gaussian matrix, Ω, with independent columns where each column

is i.i.d. from a multivariate Gaussian distribution with mean (0, . . . , 0)> and positive

definite covariance matrix K. If Y = AΩ, then the expected approximation error is

bounded by

E [‖A−PYA‖F] ≤

1 +

√√√√k + p

p− 1

n1∑

j=n1−k+1

λ1

λj

(∞∑

j=k+1

σ2
j

)1/2

, (2.6)

where λ1 ≥ · · · ≥ λn1 > 0 are the eigenvalues of K and PY is the orthogonal projection

onto the vector space spanned by the columns of Y. Assume further that p ≥ 4, then

for any s, t ≥ 1, we have

‖A−PYA‖F ≤

1 + ts ·

√√√√3(k + p)

p+ 1

(
n1∑

j=1

λj

)
n1∑

j=n1−k+1

1

λj

(∞∑

j=k+1

σ2
j

)1/2

,

19

with probability ≥ 1− t−p − [se−(s2−1)/2]k+p.

Choosing a covariance matrix K with eigenvalue decay so that limn1→∞
∑n1

j=1 λj <

∞ allows E[‖Ω‖2
F] to remain bounded as n1 →∞. This is of interest when applying

the randomized SVD algorithm to extremely large matrices and is critical for HS

operators. A stronger statement of this result (see Theorem 3.1) shows that prior

information on A can be incorporated into the covariance matrix to achieve lower

approximation error than the randomized SVD with standard Gaussian vectors.

Secondly, we need an additional essential assumption. The kernel in GP(0, K) is

“reasonable” for learning F , where reasonableness is measured by the quantity γk in

Theorem 2.1. If the first k right singular functions of the HS operator v1, . . . , vk are

spanned by the first k + m eigenfunctions of K ψ1, . . . , ψk+m, for some m ∈ N, then

(see Equation (2.9) and Lemma 2.2)

1

k

k∑

j=1

λ1

λj
≤ 1

γk
≤ 1

k

k+m∑

j=m+1

λ1

λj
.

In the matrix setting, this assumption always holds withm = n1−k (see Corollary 2.1)

and one can have γk = 1 when λ1 = · · · = λn1 [86, Thm. 10.5].

Finally, probabilistic error bounds for the randomized SVD in [86] are derived

using tail bounds for functions of standard Gaussian matrices [121, Sec. 5.1]. Unfor-

tunately, we are not aware of tail bounds for non-standard Gaussian quasimatrices.

This results in a weaker bounds by a factor of
√
k + p in Corollary 2.1 compared

to [86, Thm. 10.7].

2.1.2 Deterministic error bound

Apart from the three caveats, the proof of Theorem 2.1 follows the outline of the

argument in [86, Thm. 10.5]. We define two quasimatrices U and V containing

the left and right singular functions of F so that the jth column of V is vj. We

also denote by Σ the infinite diagonal matrix with the singular values of F , i.e.,

σ1 ≥ σ2 ≥ · · · ≥ 0, on the diagonal. Finally, for a fixed k ≥ 1, we define the D1 × k
quasimatrix as the truncation of V after the first k columns and V2 as the remainder.

Similarly, we split Σ into two parts:

k ∞
Σ =

(
Σ1

0
0

Σ2

)
k
∞

.

We are ready to prove an infinite dimensional analogue of [86, Thm. 9.1] for HS

operators.

20

Theorem 2.2 (Deterministic error bound). Let F : L2(D1) → L2(D2) be an HS

operator with SVD given in Equation (1.7). Let Ω be a D1 × k quasimatrix and

Y = FΩ. If Ω1 = V∗1Ω and Ω2 = V∗2Ω, then assuming Ω1 has full rank, we have

‖F −PYF‖2
HS ≤ ‖Σ2‖2

HS + ‖Σ2Ω2Ω
†
1‖2

HS,

where PY = Y(Y∗Y)†Y∗ is the orthogonal projection onto the space spanned by the

columns of Y and Ω†1 = (Ω∗1Ω1)−1Ω∗1.

Proof. First, note that because UU∗ is the orthonormal projection onto the range of

F and U is a basis for the range, we have

‖F −PYF‖HS = ‖UU∗F −PYUU∗F‖HS.

By Parseval’s theorem [194, Thm. 4.18], we have

‖UU∗F −PYUU∗F‖HS = ‖U∗UU∗F −U∗PYUU∗FV‖HS.

Moreover, we have the equality ‖F −PYF‖HS = ‖(I−PU∗Y)U∗FV‖HS because the

inner product 〈∑∞j=1 αjuj,
∑∞

j=1 βuj〉 = 0 if and only if
∑∞

j=1 αjβj = 0. We now take

A = U∗FV, which is a bounded infinite matrix such that ‖A‖F = ‖F‖HS <∞. The

statement of the theorem immediately follows from the proof of [86, Thm. 9.1].

This theorem shows that the bound on the approximation error ‖F − PYF‖HS

depends on the singular values of the HS operator and the test matrix Ω.

2.1.3 Probability distribution of Ω1

If the columns of Ω are independent and identically distributed as GP(0, K), then

the matrix Ω1 in Theorem 2.2 is of size k × ` with entries that follow a Gaussian

distribution. To see this, note that

Ω1 = V∗1Ω =

〈v1, ω1〉 · · · 〈v1, ω`〉

...
. . .

...
〈vk, ω1〉 · · · 〈vk, ω`〉

 , ωj ∼ GP(0, K).

If ω ∼ GP(0, K) with K given in Equation (1.8), then we find that

〈v, ω〉 ∼ N
(

0,
∞∑

j=1

λj〈v, ψj〉2
)

so we conclude that Ω1 has Gaussian entries with zero mean. Finding the covariances

between the entries is more involved.

21

Lemma 2.1. With the same setup as Theorem 2.2, suppose that the columns of Ω

are independent and identically distributed as GP(0, K). Then, the matrix Ω1 = V∗1Ω

in Theorem 2.2 has independent columns and each column is identically distributed

as a multivariate Gaussian with positive definite covariance matrix C given by

Cij =

ˆ
D1×D1

vi(x)K(x, y)vj(y) dx dy, 1 ≤ i, j ≤ k, (2.7)

where vi is the ith column of V1.

Proof. We already know that the entries are Gaussian with mean 0. Moreover, the

columns are independent because ω1, . . . , ω` are independent. Therefore, we focus on

the covariance matrix. Let 1 ≤ i, i′ ≤ k, 1 ≤ j, j′ ≤ `, then since E[〈vi, ωj〉] = 0 we

have

cov(〈vi, ωj〉, 〈vi′ , ωj′〉) = E [〈vi, ωj〉 〈vi′ , ωj′〉] = E [XijXi′j′] ,

where Xij = 〈vi, ωj〉. Since 〈vi, ωj〉 ∼
∑∞

n=1

√
λnc

(j)
n 〈vi, ψn〉, where c

(j)
n ∼ N (0, 1), we

have

cov(〈vi, ωj〉, 〈vi′ , ωj′〉) = E
[

lim
m1,m2→∞

Xm1
ij X

m2

i′j′

]
, Xm1

ij :=

m1∑

n=1

√
λnc

(j)
n 〈vi, ψn〉.

We first show that limm1,m2→∞
∣∣E
[
Xm1
ij X

m2

i′j′
]
− E[XijXi′j′]

∣∣ = 0. For any m1,m2 ≥ 1,

we have by the triangle inequality,
∣∣E
[
Xm1
ij X

m2

i′j′
]
− E[XijXi′j′]

∣∣≤ E
[∣∣Xm1

ij X
m2

i′j′ −XijXi′j′
∣∣]

≤ E
[∣∣(Xm1

ij −Xij)X
m2

i′j′
∣∣]+ E

[∣∣Xij(X
m2

i′j′ −Xi′j′)
∣∣]

≤ E
[∣∣Xm1

ij −Xij

∣∣2
]1

2E
[∣∣Xm2

i′j′
∣∣2
]1

2
+ E

[∣∣Xi′j′ −Xm2

i′j′
∣∣2
]1

2E
[
|Xij|2

]1
2 ,

where the last inequality follows from the Cauchy–Schwarz inequality. We now set

out to show that both terms in the last inequality converge to zero as m1,m2 →∞.

The terms E[|Xm2

i′j′ |2] and E[|Xij|2] are bounded by
∑∞

n=1 λn <∞, using the Cauchy–

Schwarz inequality. Moreover, we have

E
[∣∣Xm1

ij −Xij

∣∣2
]

= E

∣∣∣∣∣
∞∑

n=m1+1

√
λnc

(j)
n 〈vi, ψn〉

∣∣∣∣∣

2

 ≤

∞∑

n=m1+1

λn −−−−→
m1→∞

0,

because Xij−Xm1
ij ∼ N (0,

∑∞
n=m1+1 λn〈vi, ψn〉2). Then, we find that cov(Xij, Xi′j′) =

limm1,m2→∞ E[Xm1
ij X

m2

i′j′] and we obtain

cov(Xij, Xi′j′) = lim
m1,m2→∞

E

[
m1∑

n=1

m2∑

n′=1

√
λnλn′c

(j)
n c

(j′)
n′ 〈vi, ψn〉〈vi′ , ψn′〉

]

= lim
m1,m2→∞

m1∑

n=1

m2∑

n′=1

√
λnλn′E[c(j)

n c
(j′)
n′]〈vi, ψn〉〈vi′ , ψn′〉.

22

The latter expression is zero if n 6= n′ or j 6= j′ because then c
(j)
n and c

(j′)
n′ are

independent random variables with mean 0. Since E[(c
(j)
n)2] = 1, we have

cov(Xij, Xi′j′) =

{∑∞
n=1 λn〈vi, ψn〉〈vi′ , ψn〉, j = j′,

0, otherwise.

The result follows as the infinite sum is equal to the integral in Equation (2.7).

To see that C is positive definite, let a ∈ Rk, then a∗Ca = E[Z2
a] ≥ 0, where

Za ∼ N (0,
∑∞

n=1 λn〈a1v1 + · · ·+ akvk, ψn〉2). Moreover, a∗Ca = 0 implies that a = 0

because v1, . . . , vk are orthonormal and {ψn} is an orthonormal basis of L2(D1).

Lemma 2.1 gives the distribution of the matrix Ω1, which is essential to prove

Theorem 2.1 in Section 2.1.6. In particular, Ω1 has independent columns that are each

distributed as a multivariate Gaussian with covariance matrix given in Equation (2.7).

2.1.4 Quality of the covariance kernel

To investigate the quality of the kernel, we introduce the Wishart distribution, which

is a family of probability distributions over symmetric and nonnegative-definite ma-

trices that often appear in the context of covariance matrices [239]. If Ω1 is a

k × ` random matrix with independent columns, where each column is a multi-

variate Gaussian distribution with mean (0, . . . , 0)> and covariance C, then A =

Ω1Ω
∗
1 has a Wishart distribution [239]. We write A ∼ Wk(`,C). We note that

‖Ω†1‖2
F = Tr[(Ω†1)∗Ω†1] = Tr(A−1), where the second equality holds with probabil-

ity one because the matrix A = Ω1Ω
∗
1 is invertible with probability one (see [156,

Thm. 3.1.4]). By [156, Thm. 3.2.12] for ` − k ≥ 2, we have E[A−1] = 1
`−k−1

C−1,

E[Tr(A−1)] = Tr(C−1)/(`− k − 1), and conclude that

E
[
‖Ω†1‖2

F

]
=

1

γkλ1

k

`− k − 1
, γk :=

k

λ1 Tr(C−1)
. (2.8)

The quantity γk can be viewed as measuring the quality of the covariance kernel

K for learning the HS operator F (see Theorem 2.1). First, 1 ≤ γk < ∞ as C is

symmetric positive definite. Moreover, for 1 ≤ j ≤ k, the jth largest eigenvalue of

C is bounded by the jth largest eigenvalue of K as C is a principal submatrix of

V∗KV [104, Sec. III.5]. Therefore, the following inequality holds,

1

k

k∑

j=1

λ1

λj
≤ 1

γk
<∞, (2.9)

23

and the harmonic mean of the first k scaled eigenvalues of K is a lower bound for 1/γk.

In the ideal situation, the eigenfunctions of K are the right singular functions of F ,

i.e., ψn = vn, C is a diagonal matrix with entries λ1, . . . , λk, and γk = k/(
∑k

j=1 λ1/λj)

is as small as possible.

We now provide a useful upper bound on γk in a more general setting.

Lemma 2.2. Let V1 be a D1× k quasimatrix with orthonormal columns and assume

that there exists m ∈ N such that the columns of V1 are spanned by the first k + m

eigenvectors of the continuous positive definite kernel K : D1 ×D1 → R. Then

1

γk
≤ 1

k

k+m∑

j=m+1

λ1

λj
,

where λ1 ≥ λ2 ≥ · · · > 0 are the eigenvalues of K. This bound is tight in the sense

that the inequality can be attained as an equality.

Proof. Let Q = [v1 | · · · | vk | qk+1 | · · · | qk+m] be a quasimatrix with orthonormal

columns whose columns form an orthonormal basis for Span(ψ1, . . . , ψk+m). Then,

Q is an invariant space of K and C is a principal submatrix of Q∗KQ, which has

eigenvalues λ1 ≥ · · · ≥ λk+m. By [104, Thm. 6.46] the k eigenvalues of C, denoted by

µ1, . . . , µk, are greater than the first k+m eigenvalues of K: µj ≥ λm+j for 1 ≤ j ≤ k,

and the result follows as the trace of a matrix is the sum of its eigenvalues.

2.1.5 Probabilistic error bounds

As discussed in Section 2.1.1, we need to extend the probability bounds of the ran-

domized SVD to allow for non-standard Gaussian random vectors. The following

lemma is a generalization of [86, Thm. A.7].

Lemma 2.3. Let k, ` ≥ 1 such that ` − k ≥ 4 and Ω1 be a k × ` random matrix

with independent columns such that each column has mean (0, . . . , 0)> and positive

definite covariance C. For all t ≥ 1, we have

P
{
‖Ω†1‖2

F >
3 Tr(C−1)

`− k + 1
· t2
}
≤ t−(`−k).

Proof. Since Ω1Ω
∗
1 ∼ Wk(`,C), the reciprocals of its diagonal elements follow a scaled

chi-square distribution [156, Thm. 3.2.12], i.e.,

((Ω1Ω
∗
1)−1)jj

(C−1)jj
∼ X−1

j , Xj ∼ χ2
`−k+1, 1 ≤ j ≤ k.

24

Let Z = ‖Ω†1‖2
F = Tr[(Ω1Ω

∗
1)−1] and q = (` − k)/2. Following the proof of [86,

Thm. A.7], we have the inequality

P
{
|Z| ≥ 3 Tr(C−1)

`− k + 1
· t2
}
≤
[

3 Tr(C−1)

`− k + 1
· t2
]−q

E [|Z|q] , t ≥ 1.

Moreover, by the Minkowski inequality, we have

(E [|Zq|])1/q =

(
E

[∣∣∣∣∣
k∑

j=1

[C−1]jjX
−1
j

∣∣∣∣∣

q])1/q

≤
k∑

j=1

[C−1]jjE
[
|X−1

j |q
]1/q ≤ 3 Tr(C−1)

`− k + 1
,

where the last inequality is from [86, Lem. A.9]. The result follows from the argument

in the proof of [86, Thm. A.7].

Under the assumption of Lemma 2.2, we find that Lemma 2.3 gives the following

bound:

P

‖Ω

†
1‖F > t ·

√√√√ 3

`− k + 1

k+m∑

j=m+1

λ−1
j

 ≤ t−(`−k).

In particular, in the finite dimensional case when λ1 = · · · = λn = 1, we recover the

probabilistic bound found in [86, Thm. A.7].

To obtain the probability statement found in Equation (2.11) we require control

of the tail of the distribution of a Gaussian quasimatrix with non-standard covariance

kernel (see Section 2.1.6). In the theory of the randomized SVD, one relies on the

concentration of measure results [86, Prop. 10.3]. However, we need to employ a

different strategy and instead directly bound the HS norm of Ω2. One difficulty is

that the norm of this matrix must be controlled for large dimensions n, which leads to

a weaker probability bound than [86]. While it is possible to apply Markov’s inequality

to obtain deviation bounds, we highlight that Lemma 2.4 provides a Chernoff-type

bound, i.e., exponential decay of the tail distribution of ‖Ω2‖HS, which is crucial to

approximate Green’s functions (see Section 2.2.4.3).

Lemma 2.4. With the same notation as in Theorem 2.2, let ` ≥ k ≥ 1. For all s ≥ 1

we have

P
{
‖Ω2‖2

HS > `s2 Tr(K)
}
≤
[
se−(s2−1)/2

]`
.

Proof. We first remark that

‖Ω2‖2
HS ≤ ‖Ω‖2

HS =
∑̀

j=1

Zj, Zj := ‖ωj‖2
L2(D1), (2.10)

25

where the Zj are i.i.d. because ωj ∼ GP(0, K) are i.i.d. For 1 ≤ j ≤ `, we have

(c.f. Section 1.8),

ωj =
∞∑

m=1

c(j)
m

√
λmψm,

where c
(j)
m ∼ N (0, 1) are i.i.d. for m ≥ 1 and 1 ≤ j ≤ `. First, since the series in

Equation (2.10) converges absolutely, we have

Zj =
∞∑

m=1

(c(j)
m)2λm = lim

N→∞

N∑

m=1

Xm, Xm = (c(j)
m)2λm,

where the Xm are independent random variables and Xm ∼ λmχ
2 for 1 ≤ m ≤ N .

Here, χ2 denotes the chi-squared distribution [155, Chapt. 4.3].

Let N ≥ 1 and 0 < θ < 1/(2 Tr(K)), we can bound the moment generating

function of
∑N

m=1 Xm as

E
[
eθ

∑N
m=1Xm

]
=

N∏

m=1

E
[
eθXm

]
=

N∏

m=1

(1− 2θλm)−1/2 ≤
(

1− 2θ
N∑

m=1

λm

)−1/2

≤ (1− 2θTr(K))−1/2 ,

because Xm/λm are independent random variables that follow a chi-squared distri-

bution. Using the monotone convergence theorem, we have

E
[
eθZj

]
≤ (1− 2θTr(K))−1/2.

Let s̃ ≥ 0 and 0 < θ < 1/(2 Tr(K)). By the Chernoff bound [41, Thm. 1], we

obtain

P
{
‖Ω2‖2

HS > `(1 + s̃) Tr(K)
}
≤ e−(1+s̃) Tr(K)`θE

[
eθZj

]`

= e−(1+s̃) Tr(K)`θ(1− 2θTr(K))−`/2.

We can minimize this upper bound over 0 < θ < 1/(2 Tr(K)) by choosing θ =

s̃/(2(1 + s̃) Tr(K)), which gives

P
{
‖Ω2‖2

HS > `(1 + s̃) Tr(K)
}
≤ (1 + s̃)`/2e−`s̃/2.

Choosing s =
√

1 + s̃ ≥ 1 concludes the proof.

Lemma 2.4 can be refined further to take into account the interaction between the

Hilbert–Schmidt operator F and the covariance kernel K (see Lemma 3.1).

26

2.1.6 Randomized SVD algorithm for HS operators

We first prove an intermediary result, which generalizes [86, Prop. 10.1] to HS oper-

ators. Note that one may obtain sharper bounds using a suitably chosen covariance

kernels that yields a lower approximation error (see Chapter 3).

Lemma 2.5. Let Σ2, V2, and Ω be defined as in Theorem 2.2, and T be an ` × k
matrix, where ` ≥ k ≥ 1. Then,

E
[
‖Σ2V

∗
2ΩT‖2

HS

]
≤ λ1‖Σ2‖2

HS‖T‖2
F,

where λ1 is the first eigenvalue of K.

Proof. Let T = UTDTV∗T be the SVD of T. If {vT,i}ki=1 are the columns of VT, then

E
[
‖Σ2V

∗
2ΩT‖2

HS

]
=

k∑

i=1

E
[
‖Σ2Ω2UTDTV∗TvT,i‖2

2

]
,

where Ω2 = V∗2Ω. Therefore, we have

E
[
‖Σ2Ω2T‖2

HS

]
=

k∑

i=1

((DT)ii)
2E
[
‖Σ2Ω2UT(:, i)‖2

2

]
.

Moreover, using the monotone convergence theorem for non-negative random vari-

ables, we have

E
[
‖Σ2Ω2UT(:, i)‖2

2

]
= E

[∞∑

n=1

∑̀

j=1

σ2
k+n |Ω2(n, j)|2 UT(j, i)2

]

=
∞∑

n=1

∑̀

j=1

σ2
k+nUT(j, i)2E

[
|Ω2(n, j)|2

]
,

where σk+1, σk+2, . . . are the diagonal elements of Σ2. Then, the quasimatrix Ω2 has

independent columns and, using Lemma 2.1, we have

E
[
|Ω2(n, j)|2

]
=

ˆ
D1×D1

vk+n(x)K(x, y)vk+n(y) dx dy,

where vk+n is the nth column of V2. Then, E [|Ω2(n, j)|2] ≤ λ1, as E [|Ω2(n, j)|2] is

written as a Rayleigh quotient. Finally, we have

E
[
‖Σ2V

∗
2ΩT‖2

HS

]
≤ λ1

k∑

i=1

((DT)ii)
2
∑̀

j=1

UT(j, i)2

∞∑

n=1

σ2
k+n = λ1‖T‖2

F‖Σ2‖2
HS,

by orthonormality of the columns on UT.

27

We are now ready to prove Theorem 2.1, which shows that the randomized SVD

can be generalized to HS operators.

Proof of Theorem 2.1. Let Ω1,Ω2 be the quasimatrices defined in Theorem 2.2. The

k× (k+p) matrix Ω1 has full rank with probability one and by Theorem 2.2, we have

E [‖(I−PY)F‖HS] ≤ E
[(
‖Σ2‖2

HS + ‖Σ2Ω2Ω
†
1‖2

HS

)1/2
]
≤ ‖Σ2‖HS + E‖Σ2Ω2Ω

†
1‖HS

≤ ‖Σ2‖HS + E
[
‖Σ2Ω2‖2

HS

]1/2 E
[
‖Ω†1‖2

F

]1/2

,

where the last inequality follows from Cauchy–Schwarz inequality. Then, combining

Lemma 2.5 and Equation (2.8), we have

E
[
‖Σ2Ω2‖2

HS

]
≤ λ1(k + p)‖Σ2‖2

HS and E
[
‖Ω1‖2

F

]
≤ 1

γkλ1

k

p− 1
,

where γk is defined in Section 2.1.4. The observation that ‖Σ2‖2
HS =

∑∞
j=k+1 σ

2
j

concludes the proof of Equation (2.4).

For the probabilistic bound in Equation (2.5), we note that by Theorem 2.2 we

have,

‖F −PYF‖2
HS ≤ ‖Σ2‖2

HS + ‖Σ2Ω2Ω
†
1‖2

HS ≤ (1 + ‖Ω2‖2
HS‖Ω†1‖2

F)‖Σ2‖2
HS,

where the second inequality uses the submultiplicativity of the HS norm. The bound

follows from bounding ‖Ω†1‖2
F and ‖Ω2‖2

HS using Lemmas 2.3 and 2.4, respectively.

Remark 2.1. The expectation bound (2.4) in Theorem 2.1 does not control the square

of the HS norm and therefore cannot be used to obtain an expectation bound for the

randomized scheme for learning Green’s functions described in Section 2.2.

The following proposition provides an expectation bound for the randomized SVD

of the HS norm squared.

Proposition 2.1. With the notations of Theorem 2.1, we have

E
[
‖F −PYF‖2

HS

]
≤
(

1 +
3
√

2

γk

k(k + p)

p+ 1

∞∑

j=1

λj
λ1

) ∞∑

j=k+1

σ2
j .

Proof. Let Ω1,Ω2 be the quasimatrices defined in Theorem 2.2. We combine Theo-

rem 2.2 with the submultiplicativity of the HS norm and Cauchy–Schwarz inequality

to obtain

E[‖F −PYF‖2
HS]≤‖Σ2‖2

HS +E[‖Σ2Ω2Ω
†
1‖2

HS]≤(1 +E[‖Ω2‖4
HS]

1
2E[‖Ω†1‖4

F]
1
2)‖Σ2‖2

HS.

28

We can then control both terms E[‖Ω2‖4
HS]1/2 and E[‖Ω†1‖4

F]1/2 independently.

First, since Ω1Ω
∗
1 ∼ Wk(k + p,C), where C is defined in Lemma 2.1, we have

(cf. the proof of Lemma 2.3)

((Ω1Ω
∗
1)−1)jj

(C−1)jj
∼ X−1

j , Xj ∼ χ2
p+1, 1 ≤ j ≤ k.

Therefore,

E[‖Ω†1‖4]1/2 = E[Tr((Ω1Ω
∗
1)−1)2]1/2 = E

(

k∑

j=1

(C−1)jjX
−1
j

)2

1/2

≤ Tr(C−1)E2[X−1
1],

by the triangle inequality for the norm defined as E2(Z) := E[|Z|2]1/2 (see [86,

Sec. A.3.1]). Finally, using [86, Lem. A.9], we have E2[X−1
1] = 3/(p + 1), which

gives

E[‖Ω†1‖4]1/2 ≤ 3

p+ 1
Tr(C−1).

The second term can be bounded as

‖Ω2‖2
HS ≤ ‖Ω‖2

HS =

k+p∑

j=1

Zj, Zj = ‖ωj‖2
L2(D1),

where the Zj are i.i.d.. Therefore, by the triangle inequality for the E2-norm applied

to the random variable ‖Ω‖2
HS, we have

E(‖Ω2‖4
HS)1/2 ≤ (k + p)E[Z2

1]1/2.

We then characterize the distribution of Z1 following the proof of Lemma 2.4 as

Z1 =
∞∑

m=1

λmYm, Ym ∼ χ2.

Applying triangle inequality to E2(Z1) yields

E[Z2
1]1/2 ≤

∞∑

m=1

λmE[Y 2
m]1/2 = Tr(K)E[Y 2

1]1/2 =
√

2 Tr(K),

which concludes the proof.

29

2.2 Recovering the Green’s function from input-

output pairs

It is known that the Green’s function associated with Equation (2.2) always exists,

is unique, and is a nonnegative function G : D ×D → R+ ∪ {∞} such that

u(x) =

ˆ
D

G(x, y)f(y) dy, f ∈ C∞c (D).

For each y ∈ Ω and any r > 0, we have G(·, y) ∈ H1(D \ Br(y)) ∩ W1,1
0 (D) [80].

Here, Br(y) = {z ∈ R3 : ‖z − y‖2 < r}, W1,1(D) is the space of weakly differentiable

functions in the L1-sense, andW1,1
0 (D) is the closure of C∞c (D) inW1,1(D). Since the

PDE in Equation (2.2) is self-adjoint, we also know that for almost every x, y ∈ D,

we have G(x, y) = G(y, x) [80].

We now state Theorem 2.3, which shows that if N = O(ε−6 log4(1/ε)) and one has

N input-output pairs {(fj, uj)}Nj=1 with algorithmically-selected fj, then the Green’s

function associated with L in Equation (2.2) can be recovered to within an accuracy

of O(Γ
−1/2
ε log3(1/ε)ε) with high probability. Here, the quantity 0 < Γε ≤ 1 measures

the quality of the random input functions {fj}Nj=1 (see Section 2.2.4.2).

Theorem 2.3. Let 0 < ε < 1, D ⊂ R3 be a bounded Lipschitz domain, and L given

in Equation (2.2). If G is the Green’s function associated with L, then there is a

randomized algorithm that constructs an approximation G̃ of G using O(ε−6 log4(1/ε))

input-output pairs such that, as ε→ 0, we have

‖G− G̃‖L2(D×D) = O
(
Γ−1/2
ε log3(1/ε)ε

)
‖G‖L2(D×D), (2.11)

with probability ≥ 1−O(εlog(1/ε)−6). The term Γε is defined by Equation (2.23).

For simplicity, we have not reported the dependence of the bound in Equa-

tion (2.11) with respect to the spectral condition number, κC = λmax/λmin
1, of the

coefficient matrix A(x) in Equation (2.2).

Our algorithm that leads to the proof of Theorem 2.3 relies on the extension of

the randomized SVD to HS operators (see Section 2.1) and a hierarchical partition of

the domain of G into “well-separated” domains. The scheme described in this section

is summarized by Algorithm 1.

1Here, λmax is defined as supx∈D λmax(A(x)) and λmin = infx∈D λmin(A(x)) > 0.

30

Algorithm 1 Approximation of the Green’s function

Input: Action of the integral operator with kernel G
Output: Approximation G̃ of G

1: Construct a hierarchical partition of the domain D ×D
2: Approximate the Green’s function on the admissible domains with the randomized

SVD
3: Neglect G on the non-admissible domains using a decay bound for the Green’s

function near the diagonal

2.2.1 Recovering the Green’s function on admissible domains

Roughly speaking, as ‖x−y‖2 increases G becomes smoother about (x, y), which can

be made precise using so-called admissible domains [13, 15, 84]. For X, Y ⊂ R3, let

diamX := supx,y∈X ‖x− y‖2 be the diameter of X, and dist(X, Y) := infx∈X,y∈Y ‖x−
y‖2 be the shortest distance between X and Y . Admissible domains are defined as

follows.

Definition 2.1. For a fixed parameter ρ > 0, we say that two bounded and non-empty

domains X, Y ⊂ R3 are admissible if

dist(X, Y) ≥ ρmax{diamX, diamY }.

Otherwise, we say that X × Y is non-admissible.

There exists a weaker definition of admissible domains, which only requires that

dist(X, Y) ≥ ρmin{diamX, diamY } [84, p. 59], but we do not consider it.

2.2.1.1 Approximation theory on admissible domains

It turns out that the Green’s function associated with Equation (2.2) has expo-

nentially decaying singular values when restricted to admissible domains. Roughly

speaking, if X, Y ⊂ D are such that X × Y is an admissible domain, then G is

well-approximated by a function of the form [16]

Gk(x, y) =
k∑

j=1

gj(x)hj(y), (x, y) ∈ X × Y, (2.12)

for some functions g1, . . . , gk ∈ L2(X) and h1, . . . , hk ∈ L2(Y). This is summarized

in Theorem 2.4, which is a corollary of [16, Thm. 2.8].

Theorem 2.4. Let G be the Green’s function associated with Equation (2.2) and

ρ > 0. Let X, Y ⊂ D such that dist(X, Y) ≥ ρmax{diamX, diamY }. Then, for any

31

0 < ε < 1, there exists k ≤ kε := dc(ρ, diamD, κC)edlog(1/ε)e4 + dlog(1/ε)e and an

approximant, Gk, of G in the form given in Equation (2.12) such that

‖G−Gk‖L2(X×Y) ≤ ε‖G‖L2(X×Ŷ), Ŷ := {y ∈ D, dist(y, Y) ≤ ρ

2
diamY },

where κC = λmax/λmin is the spectral condition number of the coefficient matrix A(x)

in Equation (2.2) and c is a constant that only depends on ρ, diamD, κC.

Proof. In [16, Thm. 2.8], it is shown that if Y = Ỹ ∩D and Ỹ is convex, then there

exists k ≤ c3
ρ/2dlog(1/ε)e4 + dlog(1/ε)e and an approximant, Gk, of G such that

‖G(x, ·)−Gk(x, ·)‖L2(Y) ≤ ε‖G(x, ·)‖L2(Ŷ), x ∈ X, (2.13)

where Ŷ := {y ∈ D, dist(y, Y) ≤ ρ
2

diamY } and cρ/2 is a constant that only depends

on ρ, diamY , and κC . As remarked by [16], Ỹ can be included in a convex of diameter

diamD that includes D to obtain the constant c(ρ, diamD, κC). The statement

follows by integrating the error bound in Equation (2.13) over X.

Since the truncated SVD of G on X×Y gives the best rank kε ≥ k approximation

to G, Theorem 2.4 also gives bounds on singular values:

(∑∞

j=kε+1
σ2
j,X×Y

)1/2

≤ ‖G−Gk‖L2(X×Y) ≤ ε‖G‖L2(X×Ŷ), (2.14)

where σj,X×Y is the jth singular value of G restricted to X × Y . Since kε =

O(log4(1/ε)), we conclude that the singular values of G restricted to admissible do-

mains X × Y rapidly decay to zero.

2.2.1.2 Randomized SVD for admissible domains

Since G has exponentially decaying singular values on admissible domains X×Y , we

use the randomized SVD for HS operators to learn G on X×Y with high probability

(see Section 2.1).

We start by defining a GP on the domain Y . Let RY×YK be the restriction2

of the covariance kernel K to the domain Y × Y , which is a continuous symmet-

ric positive definite kernel so that GP(0,RY×YK) defines a GP on Y . We choose

a target rank k ≥ 1, an oversampling parameter p ≥ 2, and form a quasimatrix

Ω =
[
f1 | · · · | fk+p

]
such that fj ∈ L2(Y) and fj ∼ GP(0,RY×YK) are identically

distributed and independent. We then extend by zero each column of Ω from L2(Y) to

2We denote the restriction operator by RY×Y : L2(D ×D)→ L2(Y × Y).

32

L2(D) by R∗Y Ω =
[
R∗Y f1 | · · · |R∗Y fk+p

]
, where R∗Y fj ∼ GP(0,R∗Y×YRY×YK). The

zero extension operator R∗Y : L2(Y)→ L2(D) is the adjoint of RY : L2(D)→ L2(Y).

Given the training data, Y =
[
u1 | · · · |uk+p

]
such that Luj = R∗Y fj and uj|∂D =

0, we now construct an approximation to G on X × Y using the randomized SVD

(see Section 2.1). Following Theorem 2.1, we have the following approximation error

for t ≥ 1 and s ≥ 2:

‖G− G̃X×Y ‖2
L2(X×Y) ≤

(
1 + t2s2 3

γk,X×Y

k(k + p)

p+ 1

∞∑

j=1

λj
λ1

)(∑∞

j=k+1
σ2
j,X×Y

)1/2

,

(2.15)

with probability greater than 1−t−p−e−s2(k+p). Here, λ1 ≥ λ2 ≥ · · · > 0 are the eigen-

values of K, G̃X×Y = PRXYRXFR∗Y and PRXY = RXY((RXY)∗RXY)†(RXY)∗ is

the orthogonal projection onto the space spanned by the columns of RXY. Moreover,

γk,X×Y is a measure of the quality of the covariance kernel of GP(0,R∗Y×YRY×YK)

(see Section 2.1.4) and, for 1 ≤ i, j ≤ k, defined as γk,X×Y = k/(λ1 Tr(C−1
X×Y)), where

[CX×Y]ij =

ˆ
D×D
R∗Y vi,X×Y (x)K(x, y)R∗Y vj,X×Y (y) dx dy,

and v1,X×Y , . . . , vk,X×Y ∈ L2(Y) are the first k right singular functions of G restricted

to X × Y .

Unfortunately, there is a big problem with the formula G̃X×Y = PRXYRXFR∗Y .

It cannot be formed because we only have access to input-output data, so we have no

mechanism for composing PRXY on the left of RXFR∗Y . Instead, we note that since

the partial differential operator in Equation (2.2) is self-adjoint, F is self-adjoint,

and G is itself symmetric. That means we can use this to write down a formula for

G̃Y×X instead. That is,

G̃Y×X = G̃∗X×Y = RY FR∗XPRXY,

where we used the fact that PRXY is also self-adjoint. This means we can construct

G̃Y×X by asking for more input-output data to assess the quasimatrix F (R∗XRXY).

Of course, to compute G̃X×Y , we can swap the roles ofX and Y in the above argument.

With a target rank of k = kε = dc(ρ, diamD, κC)edlog(1/ε)e4 + dlog(1/ε)e and an

oversampling parameter of p = kε, we can combine Theorem 2.4 and Equations (2.14)

and (2.15) to obtain the bound

‖G− G̃X×Y ‖2
L2(X×Y) ≤

(
1 + t2s2 6kε

γkε,X×Y

∞∑

j=1

λj
λ1

)
ε2‖G‖2

L2(X×Ŷ)
,

33

with probability greater than 1−t−kε−e−2s2kε . A similar approximation error holds for

G̃Y×X without additional evaluations of F . We conclude that our algorithm requires

Nε,X×Y = 2(kε + p) = O
(
log4(1/ε)

)
input-output pairs to learn an approximant to G

on X × Y and Y ×X.

2.2.2 Ignoring the Green’s function on non-admissible do-
mains

When the Green’s function is restricted to non-admissible domains, its singular values

may not decay. Instead, to learn G we take advantage of the off-diagonal decay

property of G. It is known that for almost every x 6= y ∈ D then

G(x, y) ≤ cκC
‖x− y‖2

‖G‖L2(D×D), (2.16)

where cκC is an implicit constant that only depends on κC (see [80, Thm. 1.1]). Note

that we have normalized [80, Eq. 1.8] to highlight the dependence on ‖G‖L2(D×D).

If X × Y is a non-admissible domain, then for any (x, y) ∈ X × Y , we find that

‖x− y‖2 ≤ dist(X, Y) + diam(X) + diam(Y) < (2 + ρ) max{diamX, diamY },

because dist(X, Y) < ρmax{diamX, diamY }. This means that x ∈ Br(y)∩D, where

r = (2 + ρ) max{diamX, diamY }. Using Equation (2.16), we have

ˆ
X

G(x, y)2dx ≤
ˆ
Br(y)∩D

G(x, y)2 dx ≤ c2
κC
‖G‖2

L2(D×D)

ˆ
Br(y)

‖x− y‖−2
2 dx

≤ 4πc2
κC
r‖G‖2

L2(D×D).

Noting that diam(Y) ≤ r/(2 + ρ) and
´
Y

1 dy ≤ 4π(diam(Y)/2)3/3, we have the

following inequality for non-admissible domains X × Y :

‖G‖2
L2(X×Y) ≤

2π2

3(2 + ρ)3
c2
κC
r4‖G‖2

L2(D×D), (2.17)

where r = (2 + ρ) max{diamX, diamY }. We conclude that the Green’s function

restricted to a non-admissible domain has a relatively small norm when the domain

itself is small. Therefore, in our approximant G̃ for G, we ignore G on non-admissible

domains by setting G̃ to be zero.

34

2.2.3 Hierarchical admissible partition of domain

We now describe a hierarchical partitioning of D × D so that many subdomains

are admissible domains, and the non-admissible domains are all small. For ease of

notation, we may assume—without loss of generality—that diamD = 1 and D ⊂
[0, 1]3; otherwise, one should shift and scale D. Moreover, partitioning [0, 1]3 and

restricting the partition to D is easier than partitioning D directly. For the definition

of admissible domains, we find it convenient to select ρ = 1/
√

3.

Figure 2.1: Two levels of hierarchical partitioning of [0, 1]3. The blue and green
domains are admissible, while the blue and red domains are non-admissible.

Let I = [0, 1]3. The hierarchical partitioning for n levels is defined recursively as:

• I1×1×1 := I1 × I1 × I1 = [0, 1]3 is the root for level L = 0.

• At a given level 0 ≤ L ≤ n − 1, if Ij1×j2×j3 := Ij1 × Ij2 × Ij3 is a node of the tree,

then it has 8 children defined as

{I2j1+nj(1) × I2j2+nj(2) × I2j3+nj(3) | nj ∈ {0, 1}3}.

Here, if Ij = [a, b], 0 ≤ a < b ≤ 1, then I2j =
[
a, a+b

2

]
and I2j+1 =

[
a+b

2
, b
]
.

The set of non-admissible domains can be given by an unwieldy expression

Pnon-adm =
⋃

∧3
i=1 |ji−j̃i|≤1

2n≤j1,j2,j3≤2n+1−1
2n≤j̃1,j̃2,j̃3≤2n+1−1

Ij1×j2×j3 × Ij̃1×j̃2×j̃3 , (2.18)

where ∧ is the logical “and” operator. The set of admissible domains is given by

Padm =
n⋃

L=1

Λ(Pnon-adm(L− 1))\Pnon-adm(L)), (2.19)

35

where Pnon-adm(L) is the set of non-admissible domain for a hierarchical level of L and

Λ(Pnon-adm(L− 1)) =
⋃

Ij1×j2×j3×Ij̃1×j̃2×j̃3
∈Pnon-adm(L−1)

⋃

nj ,nj̃∈{0,1}3
I×3

i=1 2ji+nj(i)
× I×3

i=1 2j̃i+nj̃(i)
.

Using Equation (2.18)-Equation (2.19), the number of admissible and non-admissible

domains are precisely |Pnon-adm| = (3×2n−2)3 and |Padm| =
∑n

`=1 26(3×2L−1−2)3−
(3×2L−2)3. In particular, the size of the partition at the hierarchical level 0 ≤ L ≤ n

is equal to 8L and the tree has a total of (8n+1 − 1)/7 nodes (see Figure 2.2).

1D 3D

Figure 2.2: For illustration purposes, we include the hierarchical structure of the
Green’s functions in 1D after 4 levels (left) and in 3D after 2 levels (right). The
hierarchical structure in 3D is complicated as this is physically a 6-dimensional tensor
that has been rearranged so it can be visualized.

Finally, the hierarchical partition of D ×D can be defined via the partition P =

Padm ∪ Pnon-adm of [0, 1]3 by doing the following:

D ×D =
⋃

τ×σ∈P
(τ ∩D)× (σ ∩D).

The sets of admissible and non-admissible domains of D × D are denoted by Padm

and Pnon-adm in the next sections.

2.2.4 Recovering the Green’s function on the entire domain

We now show that we can recover G on the entire domain D ×D.

36

2.2.4.1 Global approximation on the non-admissible set

Let nε be the number of levels in the hierarchical partition D×D (see Section 2.2.3).

We want to make sure that the norm of the Green’s function on all non-admissible

domains is small so that we can safely ignore that part of G (see Section 2.2.2). As

one increases the hierarchical partitioning levels, the volume of the non-admissible

domains get smaller (see Figure 2.3).

Level 2 Level 3 Level 4

Figure 2.3: For illustration purposes, we include the hierarchical structure of the
Green function in 1D. The green blocks are admissible domains at that level, the
gray blocks are admissible at a higher level, and the red blocks are the non-admissible
domains at that level. The area of the non-admissible domains decreases at deeper
levels.

Let X × Y ∈ Pnon-adm be a non-admissible domain, the two domains X and Y

have diameter bounded by
√

3/2nε because they are included in cubes of side length

1/2nε (see Section 2.2.3). Combining this with Equation (2.17) yields

‖G‖2
L2(X×Y) ≤ 2π2(6 +

√
3)c2

κC
2−4nε‖G‖2

L2(D×D).

Therefore, the L2-norm of G on the non-admissible domain Pnon-adm satisfies

‖G‖2
L2(Pnon-adm) =

∑

X×Y ∈Pnon-adm

‖G‖2
L2(X×Y) ≤ 54π2(6 +

√
3)c2

κC
2−nε‖G‖2

L2(D×D),

where we used |Pnon-adm| = (3× 2nε − 2)3 ≤ 27(23nε). This means that if we select nε

to be

nε =
⌈
log2(54π2(6 +

√
3)c2

κC
) + 2 log2(1/ε)

⌉
∼ 2 log2(1/ε), (2.20)

then we guarantee that ‖G‖L2(Pnon-adm) ≤ ε‖G‖L2(D×D). We can safely ignore G on

non-admissible domains—by taking the zero approximant—while approximating G

to within ε.

37

2.2.4.2 Learning rate of the Green’s function

Following Section 2.2.1.2, we can construct an approximant G̃X×Y to the Green’s

function on an admissible domain X × Y of the hierarchical partitioning using the

HS randomized SVD algorithm, which requires Nε,X×Y = O(log4(1/ε)) input-output

training pairs (see Section 2.2.1.2). Therefore, the number of training input-output

pairs needed to construct an approximant to G on all admissible domains is given by

Nε =
∑

X×Y ∈Padm

Nε,X×Y = O
(
|Padm| log4(1/ε)

)
,

where |Padm| denotes the total number of admissible domains at the hierarchical level

nε, which is given by Equation (2.20). Then, we have (see Section 2.2.3):

|Padm| =
nε∑

`=1

26(3× 2`−1 − 2)3 − (3× 2` − 2)3 ≤ 6323nε , (2.21)

and, using Equation (2.20), we obtain |Padm| = O(1/ε6). This means that the total

number of required input-output training pairs to learn G with high probability is

bounded by Nε = O
(
ε−6 log4(1/ε)

)
.

2.2.4.3 Global approximation error

We know that with Nε = O(ε−6 log4(1/ε)) input-output training pairs, we can con-

struct an accurate approximant to G on each admissible and non-admissible domain.

Since the number of admissible and non-admissible domains depends on ε, we now

check that this implies a globally accurate approximant that we denote by G̃.

Since G̃ is zero on non-admissible domains and Padm ∩ Pnon-adm has measure zero,

we have

‖G− G̃‖2
L2(D×D) ≤ ε2‖G‖2

L2(D×D) +
∑

X×Y ∈Padm

‖G− G̃‖2
L2(X×Y). (2.22)

Following Section 2.2.4.2, if X×Y is admissible then the approximation error satisfies

‖G− G̃X×Y ‖2
L2(X×Y) ≤ 12t2s2 kε

γkε,X×Y

∞∑

j=1

λj
λ1

ε2‖G‖2
L2(X×Ŷ)

,

with probability greater than 1 − t−kε − e−2s2kε . Here, Ŷ = {y ∈ D, dist(y, Y) ≤
diamY/2

√
3} (see Theorem 2.4 with ρ = 1/

√
3). To measure the worst γkε,X×Y , we

define

Γε = min{γkε,X×Y : X × Y ∈ Padm}. (2.23)

38

From Equation (2.9), we know that 0 < Γε ≤ 1 and that 1/Γε is greater than the

harmonic mean of the first kε scaled eigenvalues of the covariance kernel K, i.e.,

1

Γε
≥ 1

kε

kε∑

j=1

λ1

λj
, (2.24)

Now, one can see that X× Ŷ is included in at most 53 = 125 neighbours including

itself. Assuming that all the probability bounds hold on the admissible domains, this

implies that

∑

X×Y ∈Padm

‖G− G̃‖2
L2(X×Y) ≤

∑

X×Y ∈Padm

‖G− G̃‖2
L2(X×Y)

≤ 12t2s2 kε
λ1Γε

Tr(K)ε2
∑

X×Y ∈Padm

‖G‖2
L2(X×Ŷ)

≤ 1500t2s2 kε
λ1Γε

Tr(K)ε2‖G‖2
L2(D×D).

We then choose t = e and s = k
1/4
ε so that the approximation bound on each ad-

missible domain holds with probability of failure less than 2e−
√
kε . Finally, using

Equation (2.22) we conclude that as ε → 0, the approximation error on D × D

satisfies

‖G− G̃‖L2(D×D) = O
(
Γ−1/2
ε log3(1/ε)ε

)
‖G‖L2(D×D),

with probability ≥ (1− 2e−
√
kε)6323nε = 1−O(εlog(1/ε)−6), where nε is given by Equa-

tion (2.20). We conclude that the approximant G̃ is a good approximation to G with

very high probability.

2.3 Discussion

There are several possible extensions of the results presented in this chapter related to

the recovery of hierarchical matrices, the study of other partial differential operators,

and practical deep learning applications, which we discuss further in this section.

2.3.1 Fast and stable reconstruction of hierarchical matrices

We described an algorithm for reconstructing Green’s function on admissible domains

of a hierarchical partition of D × D that requires performing the HS randomized

SVD O(ε−6) times. We want to reduce it to a factor that is O(polylog(1/ε)). A

polylogarithmic function in x is any polynomial in log(x) and is denoted by polylog(x).

39

For n×n hierarchical matrices, there are several existing algorithms for recovering

the matrix based on matrix-vector products [25, 130, 143, 144]. There are two main

approaches: (1) the “bottom-up” approach: one begins at the lowest level of the hier-

archy and moves up and (2) the “top-down” approach: one updates the approximant

by peeling off the off-diagonal blocks and going down the hierarchy. The bottom-up

approach requires O(n) applications of the randomized SVD algorithm [143]. There

are lower complexity alternatives that only require O(log(n)) matrix-vector products

with random vectors [130]. However, the algorithm in [130] is not yet proven to

be theoretically stable as errors from low-rank approximations potentially accumu-

late exponentially, though this is not observed in practice. For symmetric positive

semi-definite matrices, it may be possible to employ a sparse Cholesky factoriza-

tion [198, 199]. This leads us to formulate the following challenge:

Algorithmic challenge: Design a provably stable algorithm that can
recover an n× n hierarchical matrix using O(log(n)) matrix-vector

products with high probability.

If one can design such an algorithm and it can be extended to HS operators, then

the O(ε−6 log4(1/ε)) term in Theorem 2.3 may improve to O(polylog(1/ε)). This

means that the learning rate of partial differential operators of the form of Equa-

tion (2.2) will be a polynomial in log(1/ε) and grow sublinearly with respect to 1/ε.

2.3.2 Extension to other partial differential operators

Our learning rate for elliptic partial differential operators (PDOs) in three variables

(see Section 2.2) depends on the decay of the singular values of the Green’s function

on admissible domains [16]. We expect that one can also find the learning rate for

other PDOs.

It is known that the Green’s functions associated to elliptic PDOs in two dimen-

sions exist and satisfy the following pointwise estimate [53]:

|G(x, y)| ≤ C

(
1

γR2
+ log

(
R

‖x− y‖2

))
, ‖x− y‖2 ≤ R :=

1

2
max(dx, dy), (2.25)

where dx = dist(x, ∂D), γ is a constant depending on the size of the domain D, and

C is an implicit constant. One can conclude that G(x, ·) is locally integrable for all

x ∈ D with ‖G(x, ·)‖Lp(Br(x)∩D) < ∞ for r > 0 and 1 ≤ p < ∞. We believe that the

pointwise estimate in Equation (2.25) implies the off-diagonal low-rank structure of

G here, as suggested in [16]. Therefore, we expect that the results in this chapter can

40

be extended to elliptic PDOs in two variables. It should also be possible to charac-

terize the learning rate for elliptic PDOs with lower order terms (under reasonable

conditions) [54, 94, 106] as the associated Green’s functions have similar regularity

and pointwise estimates. The main task is to extend [16, Thm. 2.8] to construct

separable approximations of the Green’s functions on admissible domains.

PDOs in four or more variables are far more challenging since we rely on the

following bound on the Green’s function on non-admissible domains [80]:

G(x, y) ≤ c(d, κC)

λmin

‖x− y‖2−d
2 , x 6= y ∈ D,

where D ⊂ Rd, d ≥ 3 is the dimension, and c is a constant depending only on d

and κC . This inequality implies that the Lp-norm of G on non-admissible domains is

finite when 0 ≤ p < d/(d − 2). However, for a dimension d ≥ 4, we have p < 2 and

one cannot ensure that the L2 norm of G is finite. Therefore, the Green’s function

may not be compatible with the HS randomized SVD.

The low-rank theory of Bebendorf and Hackbush has been recently extended

from elliptic to parabolic operators [16] and combined with pointwise estimates for

Green’s functions [107] to obtain a learning rate parabolic PDEs, expressed in the

L1-norm [28]. In contrast, we believe that deriving a theoretical learning rate for

hyperbolic PDOs remains a significant research challenge for many reasons. The first

roadblock is that the Green’s function associated with hyperbolic PDOs do not nec-

essarily lie in L2(D×D). For example, the Green’s function associated with the wave

equation in three variables, i.e., L = ∂2
t −∇2, is not square-integrable as

G(x, t, y, s) =
δ(t− s− ‖x− y‖2)

4π‖x− y‖2

, (x, t), (y, s) ∈ R3 × [0,∞),

where δ(·) is the Dirac delta function.

Finally, while the extension to nonlinear dynamical systems seem out of reach of

the technique presented in this chapter, characterizing the sample complexity of such

systems and learn finite-dimensional approximations of the dynamics using Koopman

operator theory [6, 34, 110] would be an interesting future research direction.

2.3.3 Connection with neural networks

As a concluding remark, we emphasize that the algorithm described in this chapter

to learn Green’s functions is not meant to be applied in practice. The proof of Theo-

rem 2.3 relies on the construction of a hierarchical partition of the domain D×D and

the HS randomized SVD algorithm applied on each admissible domain. While this

41

gives an algorithm for approximating Green’s functions with high probability, it would

be prohibitively computationally expensive to employ the hierarchical scheme and the

generalization of the randomized SVD to large-scale three-dimensional problems.

However, there are more practical approaches based on deep learning that cur-

rently do not yet have theoretical guarantees [65, 71]. As we will see in Chapter 5,

deep learning techniques may be more competitive due to their ability to learn non

self-adjoint problems and the fast optimization algorithms, based on stochastic gra-

dient descent, for training neural networks. There are many possible connections

between the work presented in this chapter and neural networks from practical and

theoretical viewpoints.

A promising opportunity that we will explore in Chapter 5 is to design a NN

that can learn and approximate Green’s functions using input-output training pairs

{(fj, uj)}Nj=1. Once a neural network N has been trained such that ‖N − G‖L2 ≤
ε‖G‖L2 , the solution to Lu = f can be obtained by computing the integral u(x) =´
D
N (x, y)f(y) dy. Therefore, this may give an efficient computational approach for

discovering operators since a NN is only trained once. Incorporating a priori knowl-

edge of the Green’s function into the network architecture design could be particularly

beneficial. As an example, one might exploit the low-rank structure by performing

dimensionality reduction with an autoencoder [71, 75]. One could also wrap the se-

lection of the kernel in the GP for generating random functions and training data into

a Bayesian framework. We expect that the theory developed in this chapter could

guide deep learning experiments regarding the choice of training data and the type

neural network architectures used to take advantage of the hierarchical structure of

Green’s functions and their singularity along the diagonal.

Finally, we wonder how many parameters in a NN are needed to approximate

a Green’s function associated with elliptic PDOs within a tolerance of 0 < ε < 1.

Can one exploit the off-diagonal low-rank structure of Green’s functions to reduce

the number of parameters? We expect the recent work on the characterization of

ReLU NNs’ approximation power is useful [82, 175, 242]. The use of NNs with high

approximation power such as rational NNs might also be of interest to approximate

the singularities of the Green’s function near the diagonal, as we shall see in Chapters 4

and 5.

42

Chapter 3

A generalization of the randomized
singular value decomposition∗

The theory behind the randomized SVD has been extended in Chapter 2 to non-

standard covariance matrices and HS operators. However, the probability bounds,

generalizing [86, Thm. 10.7], are not sharp enough to emphasize the improved perfor-

mance of covariance matrices with prior information over the standard randomized

SVD. In this chapter, we improve the bounds obtained in Chapter 2 when the matrix-

vector products are with multivariate Gaussian random vectors. Our theory allows for

multivariate Gaussian random input vectors that have a general symmetric positive

semi-definite covariance matrix. A key novelty of this work is that prior knowledge

of the matrix A can be exploited to design covariance matrices that achieve lower

approximation errors than the randomized SVD with standard Gaussian vectors. We

then design a practical algorithm for learning Hilbert–Schmidt (HS) operators using

random input functions, sampled from a Gaussian process (GP). Examples of ap-

plications include learning integral kernels such as Green’s functions associated with

linear partial differential equations, as discussed in the previous chapter.

The choice of the covariance kernel in the GP is crucial and impacts both the

theoretical bounds and numerical results of the randomized SVD. This leads us to

introduce a new covariance kernel based on weighted Jacobi polynomials for learning

HS operators. One of the main advantages of this kernel is that it is directly expressed

as a Karhunen–Loève expansion [101, 133] so that it is faster to sample functions from

the associated GP than using a standard squared-exponential kernel. In addition, we

∗This chapter is based on a paper with Alex Townsend [31], published in ICLR 2022. Townsend
had an advisory role; I proved the theoretical results, performed the numerical experiments, and
was the lead author in writing the paper.

43

show that the smoothness of the functions sampled from a GP with the Jacobi kernel

can be controlled as it is related to the decay rate of the kernel’s eigenvalues.

3.1 Theoretical bounds for non-standard covari-

ance matrices

In this section we provide new probability bounds for GPs with nonstandard covari-

ance matrices. Let m ≥ n ≥ 1 and A be an m × n real matrix with singular value

decomposition A = UΣV∗, where U and V are orthonormal matrices, and Σ be an

m×n diagonal matrix with entries σ1(A) ≥ · · · ≥ σn(A) ≥ 0. For a fixed target rank

k ≥ 1, we define Σ1 and Σ2 to be the k× k and (n− k)× (n− k) diagonal matrices,

which respectively contain the first k singular values of A: σ1(A) ≥ · · · ≥ σk(A), and

the remaining singular values. Let V1 be the n × k matrix obtained by truncating

V1 after k columns and V2 the remainder. In this section, K denotes a symmetric

positive semi-definite n× n matrix with kth largest eigenvalue λk > 0 and Ω ∈ Rn×`

a Gaussian random matrix with ` ≥ k independent columns sampled from a multi-

variate normal distribution with covariance matrix K. Finally, we define Ω1 := V∗1Ω

and Ω2 := V∗2Ω. The following theorem is a refinement of Theorem 2.1. While it is

formulated with matrices, the same result holds for HS operators in infinite dimen-

sions.

Theorem 3.1. Let A be an m×n matrix, k ≥ 1 an integer, and choose an oversam-

pling parameter p ≥ 4. If Ω ∈ Rn×(k+p) is a Gaussian random matrix, where each

column is i.i.d. from a multivariate Gaussian distribution with covariance matrix

K ∈ Rn×n, and QR = AΩ is the economized QR decomposition of AΩ, then for all

u, t ≥ 1,

‖A−QQ∗A‖F ≤
(

1 + ut

√
(k + p)

3k

p+ 1

βk
γk

)√√√√
n∑

j=k+1

σ2
j (A), (3.1)

with failure probability at most t−p+[ue−(u2−1)/2]k+p. Here, the covariance quality fac-

tors are denoted by γk=k/(λ1 Tr((V∗1KV1)−1))) and βk=Tr(Σ2
2V
∗
2KV2)/(λ1‖Σ2‖2

F),

where λ1 is the largest eigenvalue of K.

This result differs from Theorem 2.1 and [86, Thm. 10.5] due to the additional

factors γk and βk, which measure the quality of the covariance matrix to learn A

in Theorem 3.1. They can be respectively bounded (Lemmas 2.2 and 3.2) using the

44

eigenvalues λ1 ≥ · · · ≥ λn of the covariance matrix K and the singular values of A

as:
1

γk
≤ 1

k

n∑

j=n−k+1

λ1

λj
, βk ≤

n∑

j=k+1

λj−k
λ1

σ2
j (A)

/ n∑

j=k+1

σ2
j (A). (3.2)

This shows that the performance of the generalized randomized SVD depends on the

decay rate of the sequence {λj}. The quantities γk and βk depend on how much prior

information of the k + 1, . . . , n right singular vectors of A is encoded in K. In the

ideal situation where these singular vectors are known, then one can define K such

that βk = 0 for λk+1 = · · · = λn = 0. Unlike the weaker but more explicit bound

proven in Section 2.1, this highlights that a suitably chosen covariance matrix can

outperform the randomized SVD with standard Gaussian vectors (see Section 3.4.1

for a numerical example).

The proof of Theorem 3.1 will require bounding ‖Ω†1‖2
F, which we achieve using

Lemma 2.3, as well as the term ‖Σ2Ω2‖2
F, which is done in the following lemma.

Lemma 3.1. With the notations introduced at the beginning of the section, for all

s ≥ 0, we have

P
{
‖Σ2Ω2‖2

F > `(1 + s) Tr(Σ2
2V
∗
2KV2)

}
≤ (1 + s)`/2e−s`/2.

Proof. Let ωj be the jth column of Ω for 1 ≤ j ≤ ` and v1, . . . , vn be the n columns

of the orthonormal matrix V. We first remark that

‖Ω2‖2
F =

∑̀

j=1

Zj, Zj :=
n−k∑

n1=1

σ2
k+n1

(A)(v∗k+n1
ωj)

2,

where the Zj are i.i.d. because ωj ∼ N (0,K) are i.i.d. Let λ1 ≥ · · · ≥ λn ≥ 0 be the

eigenvalues of K with eigenvectors ψ1, . . . , ψn ∈ Rn. For 1 ≤ j ≤ `, we have,

ωj =
n∑

i=1

(c
(j)
i)2

√
λiψi,

where c
(j)
i ∼ N (0, 1) are i.i.d. for 1 ≤ i ≤ n and 1 ≤ j ≤ `. Then,

Zj =
n∑

i=1

(c
(j)
i)2λi

n−k∑

n1=1

σ2
k+n1

(A)(v∗k+n1
ψi)

2 =
n∑

i=1

Xi

where the Xi are independent. Let γi = λi
∑n−k

n1=1 σ
2
k+n1

(A)(v∗k+n1
ψi)

2, then Xi ∼ γiχ
2

for 1 ≤ i ≤ n.

45

Let 0 < θ < 1/(2
∑n

i=1 γi). We can bound the moment generating function of∑n
i=1Xi as

E
[
eθ

∑n
i=1Xi

]
=

n∏

i=1

E
[
eθXi

]
=

n∏

i=1

(1− 2θγi)
−1/2 ≤

(
1− 2θ

n∑

i=1

γi

)−1/2

because the Xi/γi are independent and follow a chi-squared distribution. The right

inequality is obtained by showing by recurrence that, if a1, . . . , an ≥ 0 are such

that
∑n

i=1 ai ≤ 1, then
∏n

i=1(1 − ai) ≥ 1 −∑n
i=1 ai. For convenience, we define

C1 :=
∑n

i=1 γn, we have shown that

E
[
eθZj

]
≤ (1− 2θC1)−1/2.

Moreover, we find that

C1 =
n−k∑

n1=1

σ2
k+n1

v∗k+n1

(
n∑

i=1

ψ∗i λiψi

)
vk+n1 =

n−k∑

n1=1

σ2
k+n1

(A)v∗k+n1
Kvk+n1

= Tr(Σ2
2V
∗
2KV2).

Let s ≥ 0 and 0 < θ < 1/(2C1). By the Chernoff bound [41, Thm. 1], we obtain

P
{
‖Σ2Ω2‖2

F > `(1 + s)C1

}
≤ e−(1+s)C1`θE

[
eθZj

]`

= e−(1+s)C1`θ(1− 2θC1)−`/2.

We minimize the bound over 0 < θ < 1/(2 Tr(K)) by choosing θ = s/(2(1 + s)C1),

which gives

P
{
‖Σ2Ω2‖2

F > `(1 + s)C1

}
≤ (1 + s)`/2e−`s/2.

We now prove Theorem 3.1, which provides a refined probability bound for the

performance of the generalized randomized SVD on matrices.

Proof of Theorem 3.1. Using Theorem 2.2 and the submultiplicativity of the Frobe-

nius norm, we have

‖A−QQ∗A‖2
F ≤ ‖Σ2‖2

F + ‖Σ2Ω2‖2
F‖Ω†1‖2

F. (3.3)

Let ` = k + p with p ≥ 4. Combining Lemmas 2.3 and 3.1 to bound the terms

‖Σ2Ω2‖2
F and ‖Ω†1‖2

F in Equation (3.3) yields the following probability estimate:

‖A−QQ∗A‖2
F ≤ ‖Σ2‖2

F + 3t2(1 + s)
k + p

p+ 1
Tr((V∗1KV1)−1) Tr(Σ2

2V
∗
2KV2)

≤
(

1 + 3t2(1 + s)
(k + p)k

p+ 1

βk
γk

) n∑

j=k+1

σ2
j (A),

46

with failure probability at most t−p+(1+s)(k+p)/2e−s(k+p)/2. Note that we introduced

γk := k/(λ1 Tr((V∗1KV1)−1))) and βk := Tr(Σ2
2V
∗
2KV2)/(λ1‖Σ2‖2

F). We conclude the

proof by defining u =
√

1 + s ≥ 1.

The following Lemma provides an estimate of the quantity βk introduced in the

statement of Theorem 3.1.

Lemma 3.2. Let βk = Tr(Σ2
2V
∗
2KV2)/(λ1‖Σ2‖2

F), then the following inequality holds

βk ≤
n∑

j=k+1

λj−k
λ1

σ2
j (A)

/ n∑

j=k+1

σ2
j (A).

Proof. Let µ1 ≥ · · · ≥ µn−k be the eigenvalues of the matrix V∗2KV2. Using von

Neumann’s trace inequality [152, 230], we have

Tr(Σ2
2V
∗
2KV2) ≤

n∑

j=k+1

µj−kσ
2
j (A).

Then, the matrix V∗2KV2 is a principal submatrix of V∗KV, which has the same

eigenvalues of K. Therefore, by [104, Thm. 6.46], the eigenvalues of V∗2KV2 are

individually bounded by the eigenvalues of K, i.e., µj ≤ λj for 1 ≤ j ≤ n− k, which

concludes the proof.

Finally, we highlight that the statement of Theorem 3.1 can be simplified by

choosing p = 5, t = 4, and u = 3 to highlight the difference with the standard bounds

for the randomized SVD.

Corollary 3.1 (Generalized randomized SVD). Let A be an m×n matrix and k ≥ 1

an integer. If Ω ∈ Rn×(k+5) is a Gaussian random matrix, where each column is

i.i.d. from a multivariate Gaussian distribution with symmetric positive semi-definite

covariance matrix K ∈ Rn×n, and QR = AΩ is the economized QR decomposition of

AΩ, then

P

‖A−QQ∗A‖F ≤

(
1 + 9

√
k(k + 5)

βk
γk

)√√√√
n∑

j=k+1

σ2
j (A)

 ≥ 0.999.

In contrast, a simplification of the theorem for the randomized SVD [86, Thm. 10.7]

by choosing t = 6 and u = 4 gives the following result.

47

Corollary 3.2 (Randomized SVD). Let A be an m×n matrix and k ≥ 1 an integer. If

Ω ∈ Rn×(k+5) is a standard Gaussian random matrix and QR = AΩ is the economized

QR decomposition of AΩ, then

P

‖A−QQ∗A‖F ≤

(
1 + 16

√
k + 5

)
√√√√

n∑

j=k+1

σ2
j (A)

 ≥ 0.999.

The following proposition bounds the expected approximation error of the ran-

domized SVD with multivariate Gaussian inputs.

Proposition 3.1. Let A be an m × n matrix, k ≥ 1 an integer, and choose an

oversampling parameter p ≥ 2. If Ω ∈ Rn×(k+p) is a Gaussian random matrix, where

each column is sampled from a multivariate Gaussian distribution with covariance

matrix K ∈ Rn×n, and QR = AΩ is the economized QR decomposition of AΩ, then,

E [‖A−QQ∗A‖F] ≤
(

1 +

√
βk
γk

k(k + p)

p− 1

)√√√√
n∑

j=k+1

σ2
j (A),

where γk = k/(λ1 Tr((V∗1KV1)−1))) and βk = Tr(Σ2
2V
∗
2KV2)/(λ1‖Σ2‖2

F).

We remark that for standard Gaussian inputs, we have γk = βk = 1 in Propo-

sition 3.1, and we recover the average Frobenius error of the randomized SVD [86,

Thm. 10.5] up to a factor of (k + p) due to the non-independence of Ω1 and Ω2 in

general. The proof of Proposition 3.1 consists of combining the proof of Theorem 2.1

with the following lemma, which is a refinement of Lemma 2.5.

Lemma 3.3. Let ` ≥ 1, Ω ∈ Rn×` be a Gaussian random matrix, where each column

is sampled from a multivariate Gaussian distribution with covariance matrix K, and

T be an `× k matrix. Then,

E[‖Σ2V
∗
2ΩT‖2

F] = Tr(Σ2
2V
∗
2KV2)‖T‖2

F. (3.4)

Proof. Let K = QKΛQ∗K be the eigenvalue decomposition of K, where QK is or-

thonormal and Λ is a diagonal matrix containing the eigenvalues of K in decreasing

order: λ1 ≥ · · · ≥ λn ≥ 0. We note that Ω can be expressed as Ω = QKΛ1/2G, where

G is a standard Gaussian matrix. Let S = Σ2V
∗
2QKΛ1/2, the proof follows from [86,

Prop. A.1], which shows that E‖SGT‖2
F = ‖S‖2

F‖T‖2
F.

Note that one can bound the term Tr(Σ2
2V
∗
2KV2) by λ1‖Σ2‖2

F, where λ1 is the

largest eigenvalue of K (cf. Lemma 2.5). While this provides a simple upper bound, it

does not demonstrate that the use of a covariance matrix containing prior information

on the singular vectors of A can outperform the randomized SVD with standard

Gaussian inputs.

48

3.2 Randomized SVD for Hilbert–Schmidt opera-

tors

We now describe the randomized SVD for learning HS operators (see Algorithm 2).

The algorithm is implemented in the Chebfun software system [56], which is a MAT-

LAB package for computing with functions. The Chebfun implementation of the

randomized SVD for HS operators uses Chebfun’s capabilities, which offer continu-

ous analogues of several matrix operations like the QR decomposition and numerical

integration. Indeed, the continuous analogue of a matrix-vector multiplication AΩ

for an HS integral operator F (see Section 1.6 for definitions and properties of HS

operators), with kernel G : D ×D → R, is

(Ff)(x) =

ˆ
D

G(x, y)f(y) dy, x ∈ D, f ∈ L2(D),

where D ⊂ Rd with d ≥ 1.

Algorithm 2 Randomized SVD for HS operators

Input: HS integral operator F with kernel G(x, y), number of samples k > 0
Output: Approximation Gk of G

1: Define a GP covariance kernel K
2: Sample the GP k times to generate a quasimatrix of random functions Ω =

[f1 . . . fk]
3: Evaluate the integral operator at Ω, Y = [F (f1) . . .F (fk)]
4: Orthonormalize the columns of Y , Q = orth(Y) = [q1 . . . qk]
5: Compute an approximation to G by evaluating the adjoint of F
6: Initialize Gk(x, y) to 0
7: for i = 1 : k do
8: Gk(x, y)← Gk(x, y) + qi(x)

´
D
G(z, y)qi(z) dz

The algorithm takes as input an integral operator that we aim to approximate.

Note that we focus here on learning an integral operator, but other HS operators

would work similarly. The first step of the randomized SVD for HS operators consists

of generating a D × k quasimatrix Ω by sampling a GP k times, where k is the

target rank (see Section 3.3). Therefore, each column of Ω is an object, consisting of

a polynomial approximation of a smooth random function sampled from the GP in

the Chebyshev basis. After evaluating the HS operator at Ω to obtain a quasimatrix

Y , we use the QR algorithm [218] to obtain an orthonormal basis Q for the range

of the columns of Y . Then, the randomized SVD for HS operators requires the

49

left-evaluation of the operator F or, equivalently, the evaluation of its adjoint Ft

satisfying:

(Ftf)(x) =

ˆ
D

G(y, x)f(y) dy, x ∈ D.

We evaluate the adjoint of F at each column vector of Q to construct an approx-

imation Gk of G. Finally, the approximation error between the operator kernel G

and the learned kernel Gk can be computed in the L2-norm, corresponding to the HS

norm of the integral operator.

3.3 Covariance kernels

To generate the random input functions f1, . . . , fk for the randomized SVD for HS

operators, we draw them from a GP, denoted by GP(0, K), for a certain covariance

kernel K. A widely employed covariance kernel is the squared-exponential function

KSE [187] given by

KSE(x, y) = exp
(
−|x− y|2/(2`2)

)
, x, y ∈ D, (3.5)

where ` > 0 is a parameter controlling the length-scale of the GP. This kernel is

isotropic as it only depends on |x− y|, is infinitely differentiable, and its eigenvalues

decay supergeometrically to 0. Since the bound in Theorem 3.1 degrades as the

ratio λ1/λj increases for j ≥ k + 1 (cf. Equation (3.2)), the randomized SVD for

learning HS operators prefers covariance kernels with slowly decaying eigenvalues.

Our randomized SVD cannot hope to learn HS operators where the range of the

operator has a rank greater than k̃, where k̃ is such that the k̃th eigenvalue of KSE

reaches machine precision. In Figure 3.1, we display the squared-exponential kernel

with length-scale parameters ` = 1, 0.1, 0.01 together with sampled functions from

GP(0, KSE). We observe that the functions become more oscillatory as the length-

scale parameter ` decreases and hence the numerical rank of the kernel increases or,

equivalently, the associated eigenvalues {λj} decay more slowly to zero.

Other popular kernels for GPs include the Matérn kernel [131, 187] and Brownian

bridge [161]. Prior information on the HS operator can also be enforced through the

choice of the covariance kernel. For instance, one can impose the periodicity of the

samples by using the following squared-exponential periodic kernel:

KPer(x, y) = exp

(
− 2

`2
sin2

(
x− y

2

))
, x, y ∈ D,

where ` > 0 is the length-scale parameter.

50

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

x

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

x

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

x

−4

−2

0

2

4

` = 1 ` = 0.1 ` = 0.01

Figure 3.1: Squared-exponential covariance kernel KSE with parameter ` = 1, 0.1, 0.01
(top row) and five functions sampled from GP(0, KSE) (bottom row).

3.3.1 Sample random functions from a Gaussian process

In finite dimensions, a random vector u ∼ N (0,K), where K ∈ Rn×n is a covariance

matrix with Cholesky factorization K = LL∗, can be generated from the matrix-

vector product u = Lc. Here, c ∈ Rn is a vector whose entries follow the standard

Gaussian distribution. We now detail how this process extends to infinite dimensions

with a continuous covariance kernel. Let K be a continuous symmetric positive-

definite covariance function defined on the domain [a, b]× [a, b] ⊂ R2 with −∞ < a <

b < ∞. We consider the continuous analogue of the Cholesky factorization to write

K as [218]

K(x, y) =
∞∑

j=1

rj(x)rj(y) = Lc(x)L∗c(y), x, y ∈ [a, b],

where rj is the jth row of Lc, which —in Chebfun’s terminology— is a lower-triangular

quasimatrix. In practice, we truncate the series after n terms, either arbitrarily or

when the nth largest kernel eigenvalue, λn, falls below machine precision. Then, if

c ∈ Rn follows the standard Gaussian distribution, a function u can be sampled from

GP(0, K) as u = Lcc. That is,

u(x) =
n∑

j=1

cjrj(x), x ∈ [a, b].

The continuous Cholesky factorization is implemented in Chebfun2 [217], which is the

extension of Chebfun for computing with two-dimensional functions. As an example,

51

the polynomial approximation, which is accurate up to essentially machine precision,

of the squared-exponential covariance kernel KSE with parameter ` = 0.01 on [−1, 1]2

yields a numerical rank of n = 503. The functions sampled from GP(0, KSE) become

more oscillatory as the length-scale parameter ` decreases and hence the numerical

rank of the kernel increases or, equivalently, the associated eigenvalues sequence {λj}
decays more slowly to zero.

3.3.2 Influence of the kernel’s eigenvalues and Mercer’s rep-
resentation

The covariance kernel can also be defined from its Mercer’s representation as

K(x, y) =
∞∑

j=1

λjψj(x)ψj(y), x, y ∈ D, (3.6)

where {ψj} is an orthonormal basis of L2(D) and λ1 ≥ λ2 ≥ · · · > 0 [93, Thm. 4.6.5].

We prefer to construct K directly from Mercer’s representations for several reasons.

First, one can impose prior knowledge of the kernel of the HS operator on the eigen-

functions of K (such as periodicity or smoothness). Then, one can often generate

samples from GP(0, K) efficiently using Equation (3.6). Finally, one can control the

decay rate of the eigenvalues of K.

Hence, the quantity γk in the probability bound of Theorem 3.1 measures the

quality of the covariance kernel K in GP(0, K) to generate random functions that can

learn the HS operator F . To minimize 1/γk we would like to select the eigenvalues

λ1 ≥ λ2 ≥ · · · > 0 of K so that they have the slowest possible decay rate while

maintaining
∑∞

j=1 λj <∞. One needs {λj} ∈ `1 to guarantee that ω ∼ GP(0, K)

has finite expected squared L2-norm, i.e., E[‖ω‖2
L2(D)] =

∑∞
j=1 λj <∞. The best

sequence of eigenvalues we know that satisfies this property is called the Rissanen

sequence [189] and is given by λj = Rj := 2−L(j), where

L(j) = log2(c0) + log∗2(j), log∗2(j) =
∞∑

i=2

max(log
(i)
2 (j), 0), c0 =

∞∑

i=2

2− log∗2(i),

and log
(i)
2 (j) = log2 ◦ · · · ◦ log2(j) is the composition of log2(·) i times. Other options

for the choice of eigenvalues include any sequence of the form λj = j−ν for ν > 1.

3.3.3 Jacobi covariance kernel

If D = [−1, 1], then a natural choice of orthonormal basis of L2(D) to define the

Mercer’s representation of the kernel are weighted Jacobi polynomials [50, 166]. That

52

is, for a weight function wα,β(x) = (1− x)α(1 + x)β with α, β > −1, and any positive

eigenvalue sequence {λj}, we consider the Jacobi kernel

K
(α,β)
Jac (x, y) =

∞∑

j=0

λj+1w
1/2
α,β(x)P̃

(α,β)
j (x)w

1/2
α,β(y)P̃

(α,β)
j (y), x, y ∈ [−1, 1], (3.7)

where P̃
(α,β)
j is the scaled Jacobi polynomial of degree j and parameters (α, β) where

P
(α,β)
j is defined by Rodrigues’ formula [211, Eq. 4.3.1] as

wα,β(x)P
(α,β)
j (x) =

(−1)j

2jn!

dj

dxj
{
wα,β(x)(1− x2)j

}
.

The polynomials P̃
(α,β)
j are normalized such that ‖w1/2

α,βP̃
(α,β)
j ‖L2([−1,1]) = 1 and {λj}

is chosen such that K
(α,β)
Jac ∈ L2([−1, 1]2). In this case, a random function can be

sampled as

u(x) =
∞∑

j=0

√
λj+1cjw

1/2
α,βP̃

(α,β)
j (x), x ∈ [−1, 1],

where cj ∼ N (0, 1) for 0 ≤ j ≤ ∞.

A desirable property of a covariance kernel is to be unbiased towards one spatial

direction, i.e., K(x, y) = K(−y,−x) for x, y ∈ [−1, 1], which motivates us to always

select α = β. Moreover, it is desirable to have the eigenfunctions of K
(α,β)
Jac to be

polynomial so that one can generate samples from GP(0, K) efficiently. This leads us

to choose α and β to be even integers. The choice of α = β = 0 gives the Legendre

kernel [68, 83]. In the rest of this chapter, we will use Equation (3.7) with α = β = 2 to

ensure that functions sampled from the associated GP satisfy homogeneous Dirichlet

boundary conditions (see Figure 3.3). We emphasize that covariance kernels on higher

dimensional domains of the form D = [−1, 1]d, for d ≥ 2, can be defined using tensor

products of weighted Jacobi polynomials.

3.3.4 Smoothness of functions sampled from a GP with Ja-
cobi kernel

We now connect the decay rate of the eigenvalues of the Jacobi covariance kernel K
(2,2)
Jac

to the smoothness of the samples from GP(0, K
(2,2)
Jac). Hence, the Jacobi covariance

function allows the control of the decay rate of the eigenvalues {λj} as well as the

smoothness of the resulting randomly generated functions. First, Lemma 3.4 asserts

that if the coefficients of an infinite polynomial series have sufficient decay, then the

resulting series is smooth with regularity depending on the decay rate. This result

can be seen as a converse to [220, Thm. 7.1].

53

Lemma 3.4. Let {pj} be a family of polynomials such that maxx∈[−1,1] |pj(x)| = 1 and

deg(pj) ≤ j. If fn(x) =
∑n

j=0 ajpj(x) with |aj| ≤ j−ν for ν > 1, then fn converges

uniformly to f(x) =
∑∞

j=0 ajpj(x) and f is µ times continuously differentiable for any

integer µ such that µ < (ν − 1)/2.

Proof. By Markov brothers’ inequality [142], for all j ≥ 0 and 0 ≤ µ ≤ j, we have

maxx∈[−1,1] |p(µ)
j (x)| ≤ j2µ. Therefore, |f (µ)

n (x)| ≤ ∑n
j=0 |aj|‖p

(µ)
j ‖∞ ≤

∑n
j=0 j

2µ−ν so

|f (µ)
n (x)| <∞ if µ < (ν − 1)/2. The result follows from a standard result on uniform

convergence and differentiation [193, Thm. 7.17].

Note that the main application of this lemma occurs when deg(pj) = j for all j ≥ 0.

We then prove a bound on ultraspherical polynomials in order to apply Lemma 3.4

to functions sampled from the GP with the Jacobi covariance kernel K
(2,2)
Jac . First,

note that P̃
(2,2)
j is a scaled ultraspherical polynomial C̃

(5/2)
j with parameter 5/2 and

degree j ≥ 0 so it can be bounded by the following proposition.

Proposition 3.2. Let C̃
(5/2)
j be the ultraspherical polynomial of degree j with param-

eter 5/2, normalized such that
´ 1

−1
(1− x2)2C̃

(5/2)
j (x)2 dx = 1. Then,

max
x∈[−1,1]

|(1− x2)C̃
(5/2)
j (x)| ≤ 2

√
j + 5/12, j ≥ 0. (3.8)

Proof. Let j ≥ 0 and x ∈ [−1, 1], according to [166, Table 18.3.1],

C̃
(5/2)
j (x) = 3

√
j + 5/2

(j + 1)(j + 2)(j + 3)(j + 4)
C

(5/2)
j (x), (3.9)

where C
(5/2)
j (x) is the standard ultraspherical polynomial. Using [166, (18.9.8)], we

have

(1− x2)C
(5/2)
j (x) =

(j + 3)(j + 4)C
(3/2)
j (x)− (j + 1)(j + 2)C

(3/2)
j+2 (x)

6(j + 5/2)
.

By using [166, (18.9.7)], we have (C
(3/2)
j+2 (x) − C(3/2)

j (x))/2 = (j + 5/2)C
(1/2)
j+2 (x) and

hence,

(1− x2)C
(5/2)
j (x) =

2

3
C

(3/2)
j (x)− (j + 1)(j + 2)

3
C

(1/2)
j+2 (x).

We bound the two terms with [166, (18.14.4)] to obtain the following inequalities:

|C(3/2)
j (x)| ≤ (j + 1)(j + 2)

2
, |C(1/2)

j+2 (x)| ≤ 1.

54

−1 −0.5 0 0.5 1
−2

−1

0

1

2

x
100 101 102 103

100

101

102

ma
xx∈

[−1
,1]
|(1−

x
2)C̃

(5
/2
)

j

(x
)|2

√ j +
5/
12

Degree j

(a) (b)

Figure 3.2: (a) Normalized ultraspherical polynomials C̃
(5/2)
j up to degree 10. (b)

Theoretical bound (blue line) for the maximum of weighted ultraspherical polynomials
on [−1, 1], obtained in Proposition 3.2, against the one observed numerically (red
line).

Hence, |(1− x2)C
(5/2)
j (x)| ≤ 2(j+ 1)(j+ 2)/3 and following Equation (3.9) we obtain

|(1− x2)C̃
(5/2)
j (x)| ≤ 2

√
(j + 1)(j + 2)(j + 5/2)

(j + 3)(j + 4)
≤ 2
√
j + 5/12,

which concludes the proof.

The bound given in Proposition 3.2 differs initially by a factor of 4/3 from the

numerically observed upper bound (1.5
√
j + 5/12) as shown by Figure 3.2. We

now state the following theorem about the regularity of functions sampled from

GP(0, K
(2,2)
Jac), which guarantees that if the eigenvalues are chosen such that λj =

O(1/jν) with ν > 3, then f ∼ GP(0, K
(2,2)
Jac) is almost surely continuous. Moreover,

a faster decay of the eigenvalues of K
(2,2)
Jac implies higher regularity of the sampled

functions, in an almost sure sense.

Theorem 3.2. Let {λj} ∈ `1(R+) be a positive sequence such that λj = O(j−ν) for

ν > 3. If f is sampled from GP(0, K
(2,2)
Jac), then f ∈ Cµ([−1, 1]) almost surely for any

integer µ < (ν − 3)/2.

Proof. Since f ∼ GP(0, K
(2,2)
Jac), f ∼ ∑∞

j=0 cj
√
λj+1(1 − x2)P̃

(2,2)
j (x), where cj ∼

N (0, 1) for j ≥ 0. Let fn denote the truncation of f after n terms. By letting M > 0

be the constant such that λj+1 ≤M(j + 1)−ν , we find that

‖f − fn‖∞ ≤ Sn, Sn := 2
√
M

∞∑

j=n+2

|cj−1|j(1−ν)/2,

55

where we used maxx∈[−1,1] |(1 − x2)P̃
(2,2)
j (x)| ≤ 2

√
j + 1 (cf. Proposition 3.2). Thus,

we have

P
(

lim
n→∞

‖f − fn‖∞ = 0
)
≥ P

(
lim
n→∞

Sn = 0
)
.

Here, Sn ∼ Xn =
∑∞

j=n+2 Yjj
(1−ν)/2, where Yj follows a half-normal distribution [123]

with parameter σ = 1 and the (Yj)j are independent. We want to show that Xn
a.s.−−→ 0.

For ε > 0, using Chebyshev’s inequality, we have:

∞∑

n=0

P(|Xn| ≥ ε) ≤ 1

ε2

∞∑

n=0

(
1− 2

π

) ∞∑

j=n+2

1

jν−1
≤ 1

ε2

(
1− 2

π

)
1

ν − 2

∞∑

n=1

1

nν−2
,

which is finite if ν > 3. Therefore, using the Borel–Cantelli Lemma [57, Chapt. 2.3],

Xn converges to 0 almost surely and P(limn→∞Xn = 0) = 1. Finally,

P
(

lim
n→∞

‖f − fn‖∞ = 0
)
≥ P

(
lim
n→∞

Xn = 0
)

= 1,

which proves that {fn} converges uniformly and hence f is continuous with probability

one. The statement for higher order derivatives follows the proof of Lemma 3.4.

This theorem can be seen as a particular case of Driscoll’s zero-one law [55], which

characterizes the regularity of functions samples from GPs (see also [99]). Hence, one

must have
∑∞

j=1 jλj <∞ so that the series of functions in Equation (3.7) converges

uniformly and K
(2,2)
Jac is a continuous kernel. Under this additional constraint, the

best choice of eigenvalues is given by a scaled Rissanen sequence: λj = Rj/j, for

j ≥ 1 (cf. Section 3.3.2). In Figure 3.3, we display the Jacobi kernel of type (2, 2)

with functions sampled from the corresponding GP. We selected eigenvalue sequences

of different decay rates: from the faster 1/j4 to the slower Rissanen sequence Rj/j

(Section 3.3.2). For λj = 1/j3 and λj = Rj/j, we observe a large variation of the

randomly generated functions near x = ±1, indicating a potential discontinuity of

the samples at these two points as n → ∞. This is in agreement with Theorem 3.2,

which only guarantees continuity (with probability one) of the randomly generated

functions if λj ∼ 1/jν with ν > 3.

3.4 Numerical experiments

We now perform several numerical experiments with the randomized SVD to learn

matrices using random vectors sampled for a multivariate Gaussian distribution and

HS operators.

56

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

x

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

x

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

x

−2

−1

0

1

2

λj = 1/j4 λj = 1/j3 λj = Rj/j

Figure 3.3: Covariance kernel K
(2,2)
Jac constructed using Jacobi polynomials of type

(2, 2) with λj = 1/j4, 1/j3, and Rj/j, where Rj is the Rissanen sequence (top).
The bottom panels illustrate functions sampled from GP(0, K

(2,2)
Jac) with the different

eigenvalue sequences. The series for generating the random functions are truncated
to n = 500.

3.4.1 Covariance matrix with prior knowledge

The approximation error bound in Theorem 3.1 depends on the eigenvalues of the

covariance matrix, which dictates the distribution of the column vectors of the input

matrix Ω. Roughly speaking, the more prior knowledge of the matrix A that can

be incorporated into the covariance matrix, the better. In this numerical example,

we investigate whether the standard randomized SVD, which uses the identity as

its covariance matrix, can be improved by using a different covariance matrix. We

then attempt to learn the discretized 2000 × 2000 matrix, i.e., the discrete Green’s

function, of the inverse of the following differential operator:

Lu = d2u/dx2 − 100 sin(5πx)u, x ∈ [0, 1].

We vary the number of columns (i.e. samples from the GP) in the input matrix Ω

from 1 to 2000.

In Figure 3.4(a), we compare the ratios between the relative error in the Frobe-

nius norm given by the randomized SVD and the best approximation error, obtained

by truncating the SVD of A. The prior covariance matrix K consists of the dis-

cretized 2000× 2000 matrix of the Green’s function of the negative Laplace operator

Lu = −d2u/dx2 on [0, 1] to incorporate knowledge of the diffusion term in the matrix

A. We see that a nonstandard covariance matrix leads to a higher approximation

57

0 500 1,000 1,500 2,000

1

1.5

2

2.5

3

Number of samples

Er
ro

r
/

B
es

t
er

ro
r

Standard covariance
Prior covariance
Best approximation

0 500 1,000 1,500 2,000
0

0.1

0.2

0.3

0.4

0.5

Number of samples

C
om

pu
ta

tio
na

lt
im

e
(s

)

0 0.1 0.2 0.3 0.4 0.5
10−15

10−12

10−9

10−6

10−3

100

Computational time (s)

Er
ro

r

(a) (b) (c)

Figure 3.4: (a) Ratio between the average randomized SVD approximation error
(over 10 runs) of the 2000 × 2000 matrix of the inverse of the differential operator
Lu = d2u/dx2 − 100 sin(5πx)u on [0, 1], and the best approximation error. The error
bars in light colour (blue and red) illustrate one standard deviation. (b) Average
computational time of the algorithm (over 10 runs). The eigenvalue decomposition
of the covariance matrix has been precomputed offline. (c) Randomized SVD ap-
proximation error with standard and prior covariance matrices with respect to the
computational time.

accuracy, with a reduction of the error by a factor of 1.3-1.6 compared to the standard

randomized SVD.

At the same time, the procedure is only 20% slower1 on average (Figure 3.4(b)) as

one can precompute the eigenvalue decomposition of the covariance matrix. Hence,

sampling a random vector from a multivariate normal distribution with an arbitrary

covariance matrix K can be computationally expensive when the dimension, n, of the

matrix is large as it requires the computation of a Cholesky factorization, which can

be done in O(n3) operations. We highlight that this step can be precomputed once,

such that the overhead of the generalized SVD can be essentially expressed as the

cost of an extra matrix-vector multiplication. Then, the difference in timings between

standard and prior covariance matrices is marginal as shown by Figure 3.4(b).

We observe in Figure 3.4(c) that using a standard covariance matrix offers a better

trade-off between error and computational time. However, choosing a prior covariance

matrix is of interest in applications where the sampling time is much higher than the

numerical linear algebra costs to maximize the accuracy of the approximation matrix

from a limited number of samples.

Additionally, we would like to highlight that prior covariance matrices can be

designed and derived using physical knowledge of the problem, such as its diffusive

1Timings were performed on an Intel Xeon CPU E5-2667 v2 @ 3.30GHz using MATLAB R2020b
without explicit parallelization.

58

nature, which can also significantly decrease the precomputation cost. In this exam-

ple, we employ the discretized Green’s function of the negative Laplacian operator

with homogeneous Dirichlet boundary conditions, given by Lu = −d2u/dx2 on [0, 1],

for which we know the eigenvalue decomposition. Hence, the eigenvalues and normal-

ized eigenfunctions are respectively given by

λn =
1

π2n2
, ψn(x) =

√
2 sin(nπx), x ∈ [0, 1], n ≥ 1.

Therefore, one can employ Mercer’s representation (see Equation (3.6)) to sample the

random vectors and precompute the covariance matrix in O(n2) operations. For a

problem of size n = 2000, it takes 0.16s to precompute the matrix.

3.4.2 Randomized SVD for Hilbert–Schmidt operators

We now apply the randomized SVD for HS operators to learn kernels of integral

operators. In this first example, the kernel is defined as [215]

G(x, y) = cos(10(x2 + y)) sin(10(x+ y2)), x, y ∈ [−1, 1],

and is displayed in Figure 3.5(a). We employ the squared-exponential covariance

kernel KSE with parameter ` = 0.01 and k = 100 samples (see Equation (3.5)) to

sample random functions from the associated GP. The learned kernelGk is represented

on the bottom panel of Figure 3.5(a) and has an approximation error around machine

precision.

As a second application of the randomized SVD for HS operators, we learn the ker-

nel G(x, y) = Ai(−13(x2y+ y2)) for x, y ∈ [−1, 1], where Ai is the Airy function [166,

Chapt. 9] defined by

Ai(x) =
1

π

ˆ ∞
0

cos

(
t3

3
+ xt

)
dt, x ∈ R.

We plot the kernel and its low-rank approximant given by the randomized SVD for

HS operators in Figure 3.5(b) and obtain an approximation error (measured in the

L2-norm) of 5.04× 10−14. The two kernels have a numerical rank equal to 42.

The last example consists of learning the HS operator associated with the kernel

G(x, y) = J0(100(xy + y2)) for x, y ∈ [−1, 1], where J0 is the Bessel function of the

first kind [166, Chapt. 10] defined as

J0(x) =
1

π

ˆ π

0

cos(x sin t) dt, x ∈ R,

59

−1 0 1

x

−1

0

1

y

−1.0

−0.5

0.0

0.5

1.0

−1 0 1

x

−1

0

1

y

−1.0

−0.5

0.0

0.5

1.0

−1 0 1

x

−1

0

1

y

−0.50

−0.25

0.00

0.25

0.50

−1 0 1

x

−1

0

1

y

−0.50

−0.25

0.00

0.25

0.50

−1 0 1

x

−1

0

1

y

−1.0

−0.5

0.0

0.5

1.0

−1 0 1

x

−1

0

1

y

−1.0

−0.5

0.0

0.5

1.0

(a) (b) (c)
K

er
n
el

L
ea

rn
ed

K
er

n
el

Figure 3.5: Kernels of three HS operators (top) together with the kernels learned
by the randomized SVD for HS operators (bottom), using the squared-exponential
covariance kernel KSE with parameter ` = 0.01 and one hundred functions sampled
from GP(0, KSE).

and plotted in Figure 3.5(c). The rank of this kernel is equal to 91 while its approxi-

mation is of rank 89 and the approximation error is equal to 4.88×10−13. We observe

that in the three numerical examples displayed in Figure 3.5, the differences between

the learned and the original kernels are not visually perceptible.

Finally, we evaluate the influence of the choice of covariance kernel and number of

samples in Figure 3.6. Here, we vary the number of samples from k = 1 to k = 100 and

use the randomized SVD for HS operators with four different covariance kernels: the

squared-exponential KSE with parameters ` = 0.01, 0.1, 1, and the Jacobi kernel K
(2,2)
Jac

with eigenvalues λj = 1/j3, for j ≥ 1. In the left panel of Figure 3.6, we represent the

eigenvalue ratio λj/λ1 of the four kernels and observe that this quantity falls below

machine precision for the squared-exponential kernel with ` = 1 and ` = 0.1 at j = 13

and j = 59, respectively. In Figure 3.6(right), we observe that these two kernels fail to

approximate kernels of high numerical rank. The other two kernels have a much slower

decay of eigenvalues and can capture (or learn) more complicated kernels. We then see

in the right panel of Figure 3.6 that the relative approximation errors obtained using

K
(2,2)
Jac and KSE are close to the best approximation error given by the squared tail of

the singular values of the integral kernel G(x, y), i.e., (
∑

j≥k+1 σ
2
j)

1/2. The overshoot

in the error at k = 100 compared to the machine precision is due to the decay of

the eigenvalues of the covariance kernels. Hence, spatial directions associated with

60

small eigenvalues are harder to learn accurately. This issue does not arise in finite

dimensions with the standard randomized SVD because the covariance kernel used

there is isotropic, i.e., all its eigenvalues are equal to one. However, this choice is no

longer possible for learning HS integral operators as the covariance kernel K must

be squared-integrable. The relative approximation errors at k = 100 (averaged over

10 runs) using K
(2,2)
Jac and KSE with ` = 0.01 are Error(K

(2,2)
Jac) ≈ 2.6× 10−11, and

Error(KSE) ≈ 5.7× 10−13, which gives a ratio of

Error(K
(2,2)
Jac)/Error(KSE) ≈ 45.6. (3.10)

However, the square-root of the ratio of the quality of the two kernels for k = 91 is

equal to √
γ91(KSE)/γ91(K

(2,2)
Jac) ≈ 117.8, (3.11)

which is of the same order of magnitude of Equation (3.10) as predicted by Theo-

rem 3.1. In Equation (3.11), γ91(KSE) ≈ 5.88× 10−2 and γ91(K
(2,2)
Jac) ≈ 4.24× 10−6

are both computed using Chebfun.

0 100 200 300 400 500
10−14

10−11

10−8

10−5

10−2

101

j

λ
j
/λ

1

0 20 40 60 80 100
10−14

10−11

10−8

10−5

10−2

101

Number of samples

R
el
at
iv
e
er
ro
r

K
(2,2)
Jac , λj = 1/j3

KSE, ` = 0.01
KSE, ` = 0.1
KSE, ` = 1

Figure 3.6: Left: Scaled eigenvalues of the Jacobi covariance kernel K
(2,2)
Jac with

sequence λj = 1/j3 and squared-exponential kernels KSE with parameters ` =
0.01, 0.1, 1, respectively. Right: Average (over 10 runs) relative approximation er-
ror in the L2-norm between the Bessel kernel G(x, y) = J0(100(xy + y2)) and its
low-rank approximation Gk(x, y), obtained from the randomized SVD by sampling
the GPs k times. The error bars in light colour (blue and red) illustrate one standard
deviation and the black line indicates the best approximation error given by the tail
of the singular values of G.

In conclusion, this section provides numerical insights to motivate the choice of

the covariance kernel to learn HS operators. Following Figure 3.6, a kernel with slowly

decaying eigenvalues is preferable and yields better approximation errors or higher

61

learning rate with respect to the number of samples, especially when learning a kernel

with a large numerical rank. The optimal choice from a theoretical viewpoint is to

select a covariance kernel whose eigenvalues have a decay rate similar to the Rissanen

sequence [189], but other choices may be preferable in practice to ensure smoothness

of the sample functions (cf. Section 3.3.4).

62

Chapter 4

Rational neural networks∗

A key question in designing deep learning architectures is the choice of the activation

function to reduce the number of trainable parameters of the network while keep-

ing the same approximation power [75]. While smooth activation functions such

as sigmoid, logistic, or hyperbolic tangent are widely used, they suffer from the

“vanishing gradient problem” [19] because their derivatives are zero for large in-

puts. Neural networks (NNs) based on polynomial activation functions are an alter-

native [40, 47, 77, 81, 139, 228], but can be numerically unstable due to large gradients

for large inputs [19]. Moreover, polynomials do not approximate non-smooth func-

tions efficiently [220], which can lead to optimization issues in classification problems.

A popular choice of activation function is the Rectified Linear Unit (ReLU) defined

as ReLU(x) = max(x, 0) [97, 158]. It has numerous advantages, such as being fast

to evaluate and zero for many inputs [73]. Many theoretical studies characterize and

understand the expressiveness of shallow and deep ReLU neural networks from the

perspective of approximation theory [52, 129, 150, 213, 242].

ReLU networks also suffer from drawbacks, which are most evident during train-

ing. The main disadvantage is that the gradient of ReLU is zero for negative real

numbers. Therefore, its derivative is zero if the activation function is saturated [140].

Several adaptations to ReLU have been proposed over the past few years, such as

Leaky ReLU [140], Exponential Linear Unit (ELU) [45], Parametric Linear Unit

(PReLU) [87], and Scaled Exponential Linear Unit (SELU) [109], to improve the

initialization and optimization of neural networks and avoid the use of batch nor-

malization layers [95]. These modifications outperform ReLU in image classification

∗This chapter is based on a paper with Yuji Nakatsukasa and Alex Townsend [30], published in
NeurIPS 2020. Nakatsukasa and Townsend had advisory roles and proved Lemma 4.1. I proved the
other theoretical results, performed the numerical experiments, and was the lead author in writing
the paper.

63

applications, and some of these activation functions have trainable parameters, which

are learned by gradient descent at the same time as the hyperparameters of the net-

work. To obtain significant benefits for image classification and partial differential

equation (PDE) solvers, one can also perform an exhaustive search over trainable

activation functions constructed from standard units [96, 186].

In this chapter, we are motivated by designing activation functions with greater

approximation power than ReLU. We study rational neural networks, which are neural

networks with activation functions that are trainable rational functions. These will

have improved theoretical guarantees on expressivity compared to ReLU, as we shall

see in Section 4.2.

4.1 Definitions

We consider neural networks whose activation functions consist of rational functions

with trainable coefficients ai and bj, i.e., functions of the form:

F (x) =
P (x)

Q(x)
=

∑rP
i=0 aix

i

∑rQ
j=0 bjx

j
, aP 6= 0, bQ 6= 0, (4.1)

where rP and rQ are the polynomial degrees of the numerator and denominator,

respectively. We say that F (x) is of type (rP , rQ) and degree max(rP , rQ).

The use of rational functions in deep learning is motivated by the theoretical work

of Telgarsky, who proved error bounds on the approximation of ReLU neural networks

by high-degree rational functions and vice versa [214]. On the practical side, neural

networks based on rational activation functions are considered by Molina et al. [153],

who defined a safe Padé Activation Unit (PAU) as

F (x) =

∑rP
i=0 aix

i

1 + |∑rQ
j=1 bjx

j| .

The denominator is selected so that F (x) does not have poles located on the real axis.

PAU networks can learn new activation functions and are competitive with state-of-

the-art neural networks for image classification. However, this choice results in a

non-smooth activation function and makes the gradient expensive to evaluate during

training. In a closely related work, Chen et al. [39] propose high-degree rational acti-

vation functions in a neural network, which have benefits in terms of approximation

power. However, this choice can significantly increase the number of parameters in

the network, causing the training stage to be computationally expensive.

64

In this chapter, we use low-degree rational functions as activation functions, which

are then composed together by the neural network to build high-degree rational func-

tions. In this way, we can leverage the approximation power of high-degree rational

functions without making training expensive. We highlight the approximation power

of rational networks and provide optimal error bounds to demonstrate that rational

neural networks theoretically outperform ReLU networks. Motivated by our theoret-

ical results, we consider rational activation functions of type (3, 2), i.e., rP = 3 and

rQ = 2. This type appears naturally in the theoretical analysis due to the composi-

tion property of Zolotarev sign functions (see Section 4.2.1): the degree of the overall

rational function represented by the rational neural network is an enormous 3#layers,

while the number of trainable parameters only grows linearly with respect to the

depth of the network. A low-degree activation function keeps the number of trainable

parameters small, while the implicit composition in a neural network gives us the

approximation power of high-degree rationals. This choice is also motivated empiri-

cally, and we do not claim that the type (3, 2) is the best choice for all situations as

the configurations may depend on the application as shown later by Figure 4.5. Our

experiments1 on the approximation of smooth functions and generative adversarial

networks (GANs) suggest that rational neural networks are an attractive alternative

to ReLU networks (see Section 4.3).

4.2 Theoretical results on rational neural networks

Here, we demonstrate the theoretical benefit of using neural networks based on ra-

tional activation functions due to their superiority over ReLU in approximating func-

tions. We derive optimal bounds in terms of the total number of trainable parameters

(also called size) needed by rational networks to approximate ReLU networks as well

as functions in the Sobolev spaceWn,∞([0, 1]d), where n, d ≥ 1 are integers. Through-

out this chapter, we take ε to be a small parameter with 0 < ε < 1. We first show that

an ε-approximation on the domain [−1, 1]d of a ReLU network (NReLU) by a rational

neural network (NRational) must have the following size (indicated in brackets):

NRational[Ω(log(log(1/ε)))] ≤ NReLU ≤ NRational[O(log(log(1/ε)))], (4.2)

where the constants only depend on the size and depth of the ReLU network. Here,

the upper bound means that all ReLU networks can be approximated to within ε by

a rational network of size O(log(log(1/ε))). The lower bound means that there is a

1All code and hyperparameters are publicly available at [29].

65

ReLU network that cannot be ε-approximated by a rational network of size less than

C log(log(1/ε)), for some constant C > 0. In comparison, the size needed by a ReLU

network to approximate a rational neural network within the tolerance of ε is given

by the following inequalities:

NReLU[Ω(log(1/ε))] ≤ NRational ≤ NReLU[O(log(1/ε))3], (4.3)

where the constants only depend on the size and depth of the rational neural net-

work. This means that all rational networks can be approximated to within ε by a

ReLU network of size O(log(1/ε))3, while there is a rational network that cannot be

ε-approximated by a ReLU network of size less than Ω(log(1/ε)). A comparison be-

tween (4.2) and (4.3) suggests that rational networks could be more expressive than

ReLU.

4.2.1 Approximation of ReLU networks by rational neural
networks

Telgarsky showed that neural networks and rational functions can approximate each

other in the sense that there exists a rational function of degree O(polylog(1/ε)) that

is ε-close to a ReLU network [214, Thm. 1.1], where ε > 0 is a small number.

Theorem 4.1 (Telgarsky). Let 0 < ε < 1 and let ‖ · ‖1 denote the vector 1-norm.

The following two statements hold:

1. Let k be a nonnegative integer and p : [0, 1]d → [−1, 1], q : [0, 1]d → [2−k, 1] be

polynomials of degree ≤ r, each with ≤ s monomials. Then, there exists a ReLU

network NReLU : [0, 1]d → R of size

O
(
k7 log(1/ε)3 + min

{
srk log(sr/ε), sdk2 log(dsr/ε)2

})
,

such that

sup
x∈[0,1]d

∣∣∣∣NReLU(x)− p(x)

q(x)

∣∣∣∣ ≤ ε.

2. Let NReLU : [−1, 1]d → R be a ReLU network with M layers and at most k nodes

per layer, where each node computes x 7→ ReLU(a>x+ b) and the pair (a, b) (possibly

distinct across nodes) satisfies ‖a‖1 + |b| ≤ 1. Then, there exists a rational function

R : [−1, 1]d → R with degree (maximum of numerator and denominator)

O
(
kM log(M/ε)M

)
,

such that

sup
x∈[−1,1]d

|NReLU(x)−R(x)| ≤ ε.

66

To prove this statement, Telgarsky used a rational function constructed with New-

man polynomials [163] to obtain a rational approximation to the ReLU function that

converges with square-root exponential accuracy. That is, Telgarsky needed a ratio-

nal function of degree Ω(log(1/ε)2) to achieve a tolerance of ε. A degree r rational

function can be represented with 2(r + 1) coefficients, i.e., a0, . . . , ar and b0, . . . , br

in Equation (4.1). Therefore, the rational approximation to a ReLU network con-

structed by Telgarsky requires at least Ω(polylog(1/ε)) parameters. In contrast, for

any rational function, Telgarsky showed that there exists a ReLU network of size

O(polylog(1/ε)) that is an ε-approximation on [0, 1]d.

Our key observation is that by composing low-degree rational functions together,

we can approximate a ReLU network much more efficiently in terms of the size (rather

than the degree) of the rational network. Our theoretical work is based on a family of

rationals called Zolotarev sign functions, which are the best rational approximation

in the infinity norm on [−1,−`] ∪ [`, 1], with 0 < ` < 1, to the sign function [3, 176],

defined as

sign(x) =

−1, x < 0,

0, x = 0,

1, x > 0.

We first show that a rational function can approximate the absolute value function |x|
on [−1, 1] with square-root exponential convergence using a composition of Zolotarev

functions.

Lemma 4.1. For any integer k ≥ 0, we have

min
r∈Rk,k

max
x∈[−1,1]

||x| − xr(x)| ≤ 4e−π
√
k/2,

where Rk,k is the space of rational functions of type at most (k, k). Thus, xr(x) is a

rational approximant to |x| of type at most (k + 1, k). Moreover, if k =
∏p

i=1 ki for

some p ≥ 1 and integers k1, . . . , kp ≥ 2, then r can be written as r = Rp ◦ · · · ◦ R1,

where Ri ∈ Rki,ki.

Proof. Let 0 < ` < 1 be a real number and consider the sign function on the domain

[−1,−`] ∪ [`, 1], i.e.,

sign(x) =

{
−1, x ∈ [−1,−`],
+1, x ∈ [`, 1].

By [17, Equation (33)], we find that for any k ≥ 0,

min
r∈Rk,k

max
x∈[−1,−`]∪[`,1]

|sign(x)− r(x)| ≤ 4

[
exp

(
π2

2 log(4/`)

)]−k
.

67

Let r(x) be the rational function of type (k, k) that attains the minimum [17, Equa-

tion (12)]. We refer to such r(x) as the Zolotarev sign function. It is given by

r(x) = Mx

∏b(k−1)/2c
j=1 x2 + c2j
∏bk/2c

j=1 x2 + c2j−1

, cj = `2 sn2(jK(κ)/k;κ)

1− sn2(jK(κ)/k;κ)
.

Here, M is a real constant selected so that sign(x)− r(x) equioscillates on [−1,−`]∪
[`, 1], κ =

√
1− `2, sn(·) is the first Jacobian elliptic function, and K is the complete

elliptic integral of the first kind. Since |x| = x·sign(x) we have the following inequality,

max
x∈[−1,−`]∪[`,1]

||x| − xr(x)| = max
x∈[−1,−`]∪[`,1]

|x · sign(x)− xr(x)|

≤ max
x∈[−1,−`]∪[`,1]

|sign(x)− r(x)| .

The last inequality follows because |x| ≤ 1 on [−1,−`] ∪ [`, 1]. Moreover, since

xr(x) ≥ 0 for x ∈ [−1, 1] (see [17, Equation (12)]) we have

max
x∈[−`,`]

||x| − xr(x)| ≤ max
x∈[−`,`]

|x| ≤ `.

Therefore,

max
x∈[−1,1]

||x| − xr(x)| ≤ max

{
`, 4

[
exp

(
π2

2 log(4/`)

)]−k}
.

Now, we select 0 < ` < 1 to minimize this upper bound. One finds that ` =

4 exp(−π
√
k/2) and the result follows immediately.

For the final claim, let r be the Zolotarev sign function Zk(· ; `) of type (k, k)

on [−1,−`] ∪ [`, 1], with k =
∏p

i=1 ki. By definition, Zk(·; `) is the best rational

approximation of degree k to the sign function on [−1,−`]∪[`, 1]. We know from [117,

160] that there exist p Zolotarev sign functions R1, . . . , Rp, where each Ri is of type

(ki, ki), such that

r(x) := Zk(x; `) = Rp(· · · (R2(R1(x))) · · ·). (4.4)

A composition of k ≥ 1 Zolotarev sign functions of type (3, 2) has type (3k, 3k−1)

but can be represented with 7k parameters instead of 2 × 3k + 1. This property

enables the construction of a rational approximation to ReLU using compositions of

low-degree Zolotarev sign functions with O(log(log(1/ε))) parameters in Lemma 4.2.

The proof of Lemma 4.2 is a direct consequence of the previous lemma and the

properties of Zolotarev sign functions.

68

Lemma 4.2. Let 0 < ε < 1. There exists a rational network NRational : [−1, 1] →
[−1, 1] of size O(log(log(1/ε))) such that

‖NRational − ReLU‖∞ := max
x∈[−1,1]

|NRational(x)− ReLU(x)| ≤ ε.

Moreover, no rational network of size smaller than Ω(log(log(1/ε))) can achieve this.

Proof. Let 0 < ε < 1, 0 < ` < 1, k ≥ 1, and r be the Zolotarev sign function Z3k(· ; `)
of type (3k, 3k − 1). Again from [117, 160], we see that there exist k Zolotarev sign

functions R1, . . . , Rk of type (3, 2) such that their composition equals Z3k(x; `), i.e.,

r(x) := Z3k(x; `) = Rk(· · · (R2(R1(x)) · · ·). (4.5)

Following the proof of Lemma 4.1, we have the inequality

max
x∈[−1,1]

||x| − xr(x)| ≤ 4e−π
√

3k/2, (4.6)

where we chose ` = 4 exp(−π
√

3k/2). Now, we take

k =

⌈
ln(2/π2) + 2 ln(ln(4/ε))

ln(3)

⌉
, (4.7)

so that the right-hand side of Equation (4.6) is bounded by ε. Finally, we use the

identity

ReLU(x) =
|x|+ x

2
, x ∈ R,

to define a rational approximation to the ReLU function on the interval [−1, 1] as

r̃(x) =
1

2

(
xr(x)

1 + ε
+ x

)
.

Therefore, we have the following inequalities for x ∈ [−1, 1],

|ReLU(x)− r̃(x)| = 1

2

∣∣∣∣|x| −
xr(x)

1 + ε

∣∣∣∣ ≤
1

2(1 + ε)
(||x| − xr(x)|+ ε|x|)

≤ ε

1 + ε
≤ ε.

Then, r is a composition of k rational functions of type (3, 2) and can be represented

using at most 7k coefficients (see Equation (4.4)). Moreover, using Equation (4.7),

we see that k = O(log(log(1/ε))), which means that r̃ is representable by a rational

network of size O(log(log(1/ε))). Finally, |r̃(x)| ≤ 1 for x ∈ [−1, 1].

The lower bound on the rational networks size will be proved separately later in

Proposition 4.1.

69

The upper bound on the complexity of the neural network obtained in Lemma 4.2

is optimal, as proved by Vyacheslavov [232].

Theorem 4.2 (Vyacheslavov). The following inequalities hold:

C1e
−π
√
k ≤ max

x∈[−1,1]
||x| − rk(x)| ≤ C2e

−π
√
k, k ≥ 0, (4.8)

where rk is the best rational approximation to |x| in [−1, 1] from Rk,k. Here, C1, C2 >

0 are constants that are independent of k.

We first deduce the following corollary, giving lower and upper bounds on the

optimal rational approximation to the ReLU function.

Corollary 4.1. The following inequalities hold:

C1

2
e−π

√
k ≤ ‖ReLU− rk‖∞ ≤

C2

2
e−π

√
k, k ≥ 0, (4.9)

where rk is the best rational approximation to ReLU on [−1, 1] in Rk,k and C1, C2 > 0

are constants given by Theorem 4.2.

Proof. Let k be an integer and let rk ∈ Rk,k be any rational function of degree ≤ k.

Now, define rabs(x) = 2rk(x)− x. Since ReLU(x) = (|x|+ x)/2, we have

‖ReLU− rk‖∞ = max
x∈[−1,1]

∣∣∣∣
1

2
(rabs(x) + x)− 1

2
(|x|+ x)

∣∣∣∣ = max
x∈[−1,1]

1

2
|rabs(x)− |x||

≥ 1

2
C1e

−π
√
k,

where the inequality is from Theorem 4.2. Now, let rk ∈ Rk,k be the best rational

approximation to |x| on [−1, 1]. Now, define rReLU(x) = (rk(x) + x)/2. We find that

‖ReLU− rReLU‖∞ = max
x∈[−1,1]

∣∣∣∣
1

2
(|x|+ x)− 1

2
(rk(x) + x)

∣∣∣∣ = max
x∈[−1,1]

1

2
||x| − rk(x)|

≤ 1

2
C2e

−π
√
k,

which proves that the best approximation to ReLU satisfies the upper bound.

We now show that a rational neural network must be at least Ω(log(log(1/ε))) in

size (total number of nodes) to approximate the ReLU function to within ε.

Proposition 4.1. Let 0 < ε < 1. A rational neural network that approximates the

ReLU function on [−1, 1] to within ε has size of at least Ω(log(log(1/ε))).

70

Proof. Let NRational : [−1, 1] → R be a rational neural network with k1, . . . , kM ≥ 1

nodes at each of its M layers, and assume that its activation functions are rational

functions of type at most (rP , rQ). Let dr = max(rP , rQ) be the maximum of the

degrees of the activation functions of NRational. Such a network has size
∑M

i=1 ki.

Note that NRational itself is a rational function of degree d, where from additions

and compositions of rational functions we have d ≤ dMr
∏M

i=1 ki. If NRational is an

ε-approximation to the ReLU function on [−1, 1], we know by Corollary 4.1 that

C1

2
e−π

√
d ≥ ε, d ≥

(
1

π
ln

(
C1

2ε

))2

. (4.10)

The statement follows by minimizing the size of NRational, i.e.,
∑M

i=1 ki subject to

dMr

M∏

i=1

ki ≥
(

1

π
ln

(
C1

2ε

))2

.

That is,
M∑

i=1

ln(ki) +M ln(dr) ≥ 2 ln

(
ln

(
C1

2ε

))
− 2 ln(π). (4.11)

We introduce a Lagrange multiplier λ ∈ R and define the Lagrangian of this opti-

mization problem as

L(k1, . . . , kM , λ) =
M∑

i=1

ki + λ

[
2 ln

(
ln

(
C1

2ε

))
− 2 ln(π)−

M∑

i=1

ln(ki)−M ln(dr)

]
.

One finds using the Karush–Kuhn–Tucker conditions [115] that k1 = · · · = kM = λ.

Then, using Equation (4.11), we find that λ satisfies

ln(λ) ≥ 2

M

[
ln

(
ln

(
C1

2ε

))
− ln(π)

]
− ln(dr) =: ln(λ∗). (4.12)

Therefore, the rational network NRational with M layers that approximates the ReLU

function to within ε on [−1, 1] has a size of at least s(M) := Mλ∗, where λ∗ is given

by Equation (4.12) and depends on M . We now minimize s(M) with respect to the

number of layers M ≥ 1. We remark that minimizing s is equivalent of minimizing

ln(s), where

ln(s(M)) = ln(M) + ln(λ∗) = ln(M) +
2

M

[
ln

(
ln

(
C1

2ε

))
− ln(π)

]
− ln(dr).

One finds that one should take k1 = · · · = kM = λ∗ = O(1) andM = Ω(log(log(1/ε))).

The result follows.

71

The proof of Proposition 4.1 shows that the bound obtained in Lemma 4.2 is

optimal in the sense that a rational network requires at least Ω(log(log(1/ε))) pa-

rameters to approximate the ReLU function on [−1, 1] to within the tolerance ε > 0.

The convergence of the Zolotarev sign functions to the ReLU function is much faster,

with respect to the number of parameters, than the rational constructed with New-

man polynomials (see Figure 4.1(left)). We also include in this panel the algebraic

convergence of O(1/ε) obtained by polynomials [220] as a comparison.

0 50 100 150 200 250
10−15

10−12

10−9

10−6

10−3

100

O(log(1/ε)2)

O(log(log(1/ε)))

O(1/ε)

Polynomial
Newman
Zolotarev

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

ReLU
Rational

Number of parameters

‖R
eL

U
−
r N
‖ ∞

x

Figure 4.1: Left: Approximation error ‖ReLU − rN‖∞ of the Newman (blue),
Zolotarev sign functions (red), and best polynomial approximation [168] of degree
N − 1 (green) rN to ReLU with respect to the number of parameters required to
represent rN . Right: Best rational function of type (3, 2) (red) that approximates
the ReLU function (blue). We use this to initialize the rational activation functions
when training a rational neural network.

The converse of Lemma 4.2, which is a consequence of a theorem proved by Tel-

garsky [214, Theorem 1.1], shows that any rational function can be approximated by

a ReLU network of size at most O(log(1/ε)3).

Lemma 4.3. Let 0 < ε < 1. If R : [−1, 1] → [−1, 1] is a rational function, then

there exists a ReLU network NReLU : [−1, 1]→ [−1, 1] of size O(log(1/ε)3) such that

‖R−NReLU‖∞ ≤ ε.

Proof. Let 0 < ε < 1 and R : [−1, 1] → [−1, 1] be a rational function. Take R̃(x) =

R(2x − 1), which is still a rational function. Without loss of generality, we can

assume that R̃ is an irreducible rational function (otherwise cancel factors till it is

irreducible). Since R̃ is a rational, it can be written as R̃ = p/q with maxx∈[0,1] |q(x)| =
1. Moreover, we know that R̃(x) ∈ [−1, 1] for x ∈ [0, 1] so we can assume that

q(x) ≥ 0 for x ∈ [0, 1] (it is either positive or negative by continuity). Since R is

72

continuous on [−1, 1], there is an integer n ≥ 1 such that q(x) ∈ [2−n, 1] for x ∈ [0, 1].

Furthermore, we find that |p(x)| ≤ 1 for x ∈ [0, 1] because |R(x)| ≤ 1 and |q(x)| ≤ 1

for x ∈ [0, 1]. By [214, Theorem 1.1], there exists a ReLU network NReLU : [0, 1]→ R
of size O(n7 log(1/ε)3) such that

max
x∈[0,1]

∣∣∣∣NReLU(x)− p(x)

q(x)

∣∣∣∣ ≤
ε

2
.

We now define a scaled ReLU network ÑReLU(x) = NReLU(x)/(1 + ε/2) such that

|ÑReLU(x)| ≤ 1 for x ∈ [0, 1]. Therefore, for all x ∈ [0, 1],

∣∣∣ÑReLU(x)− R̃(x)
∣∣∣ =

∣∣∣∣
NReLU(x)

1 + ε/2
− p(x)

q(x)

∣∣∣∣ ≤
1

1 + ε/2

(∣∣∣∣NReLU(x)− p(x)

q(x)

∣∣∣∣+
ε

2

∣∣∣∣
p(x)

q(x)

∣∣∣∣
)
≤ ε.

Therefore, x 7→ ÑReLU((x+ 1)/2) is a ReLU neural network of size O(log(1/ε)3) that

is an ε-approximation to R on [−1, 1].

To demonstrate the improved approximation power of rational neural networks

over ReLU networks (O(log(log(1/ε))) versus O(log(1/ε)3)), it is known that a ReLU

network that approximates x2, which is rational, to within ε on [−1, 1] must be of

size at least Ω(log(1/ε)) [129, Theorem 11].

We can now state our main theorem based on Lemmas 4.2 and 4.3. Theorem 4.3

provides bounds on the approximation power of ReLU networks by rational neural

networks and vice versa. We regard Theorem 4.3 as an analogue of [214, Thm. 1.1] for

our Zolotarev sign functions, where we are counting the number of training parameters

instead of the degree of the rational functions. In particular, our rational networks

have high degrees but can be represented with few parameters due to compositions,

making training more computationally efficient. While Telgarsky required a rational

function with O(kM log(M/ε)M) parameters to approximate a ReLU network with

fewer than k nodes in each of M layers to within a tolerance of ε, we construct a

rational network that only has size O(kM log(log(M/ε))).

Theorem 4.3. Let 0 < ε < 1 and let ‖ · ‖1 denote the vector 1-norm. The following

two statements hold:

1. Let NRational : [−1, 1]d → [−1, 1] be a rational network with M layers and at most

k nodes per layer, where each node computes x 7→ r(a>x + b) and r is a rational

function with Lipschitz constant L (a, b, and r are possibly distinct across nodes).

Suppose further that ‖a‖1 + |b| ≤ 1 and r : [−1, 1] → [−1, 1]. Then, there exists a

ReLU network NReLU : [−1, 1]d → [−1, 1] of size

O
(
kM log(MLM/ε)3

)

73

such that maxx∈[−1,1]d |NRational(x)−NReLU(x)| ≤ ε.

2. Let NReLU : [−1, 1]d → [−1, 1] be a ReLU network with M layers and at most k

nodes per layer, where each node computes x 7→ ReLU(a>x + b) and the pair (a, b)

(possibly distinct across nodes) satisfies ‖a‖1 + |b| ≤ 1. Then, there exists a rational

network NRational : [−1, 1]d → [−1, 1] of size

O(kM log(log(M/ε)))

such that maxx∈[−1,1]d |NReLU(x)−NRational(x)| ≤ ε.

Proof. The statement of Theorem 4.3 comes in two parts, and we prove them sepa-

rately. The structure of the proof closely follows [214, Lemma 1.3].

1. Consider the subnetwork H of the rational network NRational, consisting of

the layers of NRational up to the Jth layer for some 1 ≤ J ≤ M − 1. Let HReLU

denote the ReLU network obtained by replacing each rational function rij in H by

a ReLU network approximation frij at a given tolerance εj > 0 for 1 ≤ j ≤ J

and 1 ≤ i ≤ kj, such that |HReLU(x)| ≤ 1 for x ∈ [−1, 1] (see Lemma 4.3). Let

x 7→ ri,J+1(a>i,J+1H(x)+bi,J+1) be the output of the rational network NRational at layer

J + 1 and node i for 1 ≤ i ≤ kJ . Now, approximate node i in the (J + 1)st layer by a

ReLU network fri,J+1 with tolerance εJ+1 > 0 (see Lemma 4.3). The approximation

error Ei,J+1 between the rational and the approximating ReLU network at layer J+1

and node i satisfies

Ei,J+1 = |fri,J+1
(a>i,J+1HReLU(x) + bi,J+1)− ri,J+1(a>i,J+1H(x) + bi,J+1)|

≤ |fri,J+1
(a>i,J+1HReLU(x) + bi,J+1)− ri,J+1(a>i,J+1HReLU(x) + bi,J+1)|

︸ ︷︷ ︸
(1)

+ |ri,J+1(a>i,J+1HReLU(x) + bi,J+1)− ri,J+1(a>i,J+1H(x) + bi,J+1)|
︸ ︷︷ ︸

(2)

.

The first term is bounded by

(1) ≤ max
x∈[−1,1]

∣∣ri,J+1(x)− fri,J+1

∣∣ ≤ εJ+1,

since
∣∣a>i,J+1HReLU(x) + bi,J+1

∣∣ ≤ ‖ai,J+1‖1 + |bi,J+1| ≤ 1 by assumption. The second

term is bounded as the Lipschitz constant of ri,J+1 is at most L. That is,

(2) ≤ L‖ai,J+1‖1 max
x∈[−1,1]d

‖HReLU(x)−H(x)‖∞ ≤ L max
x∈[−1,1]d

‖HReLU(x)−H(x)‖∞ ,

74

where we used the fact that ‖ai,J+1‖1 ≤ 1 and ‖HReLU(x)‖∞ ≤ 1 for x ∈ [−1, 1]d. We

find that we have the following set of inequalities:

max
1≤i≤kj+1

Ei,j+1 ≤ L max
1≤i≤kj

Ei,j + εj+1, 1 ≤ i ≤ kj, 1 ≤ j ≤ J + 1,

with Ei,0 = 0. If we select εj = εLj−J−1/(J+1), then we find that max1≤i≤kJ+1
Ei,J+1≤

ε. When J = M − 1, the ReLU network approximates the original rational network,

NRational, and the ReLU network has size

O
(
k

M∑

j=1

log

(
M

Lj−Mε

)3
)
.

where we used the fact that kj ≤ k for 1 ≤ j ≤ M . This can be simplified a little

since

M∑

j=1

log

(
M

Lj−Mε

)3

=
M∑

j=1

(
log(MLM/ε) + j log(1/L)

)3
= O

(
M log(MLM/ε)3

)
.

2. Telgarsky proved in [214, Lemma 1.3] that if HR is a neural network obtained

by replacing all the ReLU activation functions in NReLU by rational functions R

for 1 ≤ j ≤ M , which satisfies R(x) ∈ [−1, 1] and |R(x) − ReLU(x)| ≤ ε/M for

x ∈ [−1, 1], then

max
x∈[−1,1]d

|NReLU(x)−HR(x)| ≤ ε.

Let R̃ be a rational neural network approximating ReLU with a tolerance of ε/M ,

constructed by Lemma 4.2. Then, R̃ is rational network of size O(log(log(M/ε))) and

thus, HR̃ is a rational neural network of size O(Mk log(log(M/ε))).

Theorem 4.3 highlights the improved approximation power of rational neural net-

works over ReLU networks. ReLU networks of size O(polylog(1/ε)) are required to

approximate rational networks while rational networks of size only O(log(log(1/ε)))

are sufficient to approximate ReLU networks.

4.2.2 Approximation of functions by rational networks

A important question is the required size and depth of deep neural networks to ap-

proximate smooth functions [129, 154, 242]. In this section, we consider the approx-

imation theory of rational networks. In particular, we consider the approximation

75

of functions in the Sobolev space Wn,∞([0, 1]d), where n ≥ 1 is the regularity of the

functions and d ≥ 1. The norm of a function f ∈ Wn,∞([0, 1]d) is defined as

‖f‖Wn,∞([0,1]d) = max
|n|≤n

ess sup
x∈[0,1]d

|Dnf(x)|,

where n is the multi-index n = (n1, . . . , nd) ∈ {0, . . . , n}d, and Dnf is the correspond-

ing weak derivative of f . In this section, we consider the approximation of functions

from

Fd,n := {f ∈ Wn,∞([0, 1]d), ‖f‖Wn,∞([0,1]d) ≤ 1}.

By the Sobolev embedding theorem [33], Fd,n contains the functions in Cn−1([0, 1]d),

which is the class of functions whose first n− 1 derivatives are Lipschitz continuous.

Yarotsky derived upper bounds on the size of neural networks with piecewise linear

activation functions needed to approximate functions in Fd,n [242, Thm. 1]. In par-

ticular, Yarotsky constructed an ε-approximation to functions in Fd,n with a ReLU

network of size at most O(ε−d/n log(1/ε)) and depth smaller than O(log(1/ε)).

Theorem 4.4 (Yarotsky). Let d ≥ 1, n ≥ 1, 0 < ε < 1, and f ∈ Fd,n. There exists

a ReLU neural network NReLU of size

O(ε−d/n log(1/ε))

and maximum depth O(log(1/ε)) such that ‖f −NReLU‖∞ ≤ ε.

The term ε−d/n in Theorem 4.4 is introduced by a local Taylor approximation,

while the log(1/ε) term is the size of the ReLU network needed to approximate mono-

mials, i.e., xj for j ≥ 0, in the Taylor series expansion. We now present an analogue

of Theorem 4.4 for a rational neural network.

Theorem 4.5. Let d ≥ 1, n ≥ 1, 0 < ε < 1, and f ∈ Fd,n. There exists a rational

neural network NRational of size

O(ε−d/n log(log(1/ε)))

and maximum depth O(log(log(1/ε))) such that ‖f −NRational‖∞ ≤ ε.

The proof of Theorem 4.5 consists of approximating f by a local Taylor expansion.

One needs to approximate the piecewise linear functions and monomials arising in

the Taylor expansion by rational networks. The main distinction between Yarotsky’s

argument and the proof of Theorem 4.5 is that monomials can be represented by

rational neural networks with a size that does not depend on the accuracy of ε. In

76

contrast, ReLU networks require O(log(1/ε)) parameters. Meanwhile, while ReLU

neural networks can exactly approximate piecewise linear functions with a constant

number of parameters, rational networks can approximate them with a size of a most

O(log(log(1/ε))) (see Lemma 4.2). That is, rational neural networks approximate

piecewise linear functions much faster than ReLU networks approximate polynomials.

This allows the existence of a rational network approximation to f with exponentially

smaller depth (O(log(log(1/ε)))) than the ReLU networks constructed by Yarotsky.

We first show that the construction in Lemma 4.2 can approximate any piecewise

linear function on [−1, 1].

Proposition 4.2. Let 0 < ε < 1 and let g : [0, 1] → R be any continuous piecewise

linear function with m ≥ 1 breakpoints and Lipschitz constant L > 0. Then, there

exists a rational neural network NRational : [0, 1]→ R of size at most

O(m log(log(L/ε)))

such that maxx∈[0,1] |g(x)−NRational(x)| ≤ ε.

Proof. Let 0 ≤ b1 < · · · < bM ≤ 1 be the breakpoints of g. In a similar way to the

proof of [242, Proposition 1], we first express ρ as the following sum:

g(x) = c0ReLU(b1 − x) +
m∑

j=1

cjReLU(x− bj) + cm+1, (4.13)

for some constants c0, . . . , cm+1 ∈ R. Therefore, g can be exactly represented using a

ReLU network with m+ 1 nodes and one layer, i.e.,

g(x) =
(
c0 c1 · · · cm

)

ReLU(−x+ b1)
ReLU(x− b1)

...
ReLU(x− bm)

+ cm+1.

Since g has a Lipschitz constant of L, we find that |c0| ≤ L and
∑m

j=1 |cj| ≤ L.

Using Lemma 4.2 we can approximate a ReLU function on [−1, 1] with tolerance

ε/(2L) by a rational network RReLU of size O(log(log(2L/ε))). Now, we construct

NRational : [0, 1]→ R as a rational network obtained by replacing the ReLU functions

in g by RReLU. We have the following error estimate:

max
x∈[0,1]

|g(x)−NRational(x)| ≤ |c0|‖ReLU−RReLU‖∞+
m∑

j=1

|cj|‖ReLU−RReLU‖∞ ≤
ε

2
+
ε

2
≤ ε.

The result follows as NRational is of size O(m log(log(L/ε))).

77

We remark that the size of the rational network required to approximate a piece-

wise linear function depends on ε. In contrast, ReLU neural networks can represent

piecewise linear functions exactly. In the next proposition, we show that a rational

neural network can represent xn, for some integer n, exactly.

Proposition 4.3. Let n ≥ 1, rP ≥ 2, and rQ ≥ 0. There exists a rational net-

work NRational, with rational activation functions of type (rP , rQ), of size at most

5blogrP (n)c2 + 1 such that NRational(x) = xn for all x ∈ R.

Proof. We start by expressing n in base rP , i.e.,

n =

blogrP
(n)c∑

`=0

c`r
`
P , c` ∈ {0, 1, . . . , rP − 1}.

This means we can represent xn as

xn =

blogrP
(n)c∏

`=0

xc`r
`
P . (4.14)

Note that xc`r
`
P is just xrP composed ` times as well as composed with xc` so can

be represented by a rational neural network with ` + 1 layers, each with one node.

Therefore, all the xc`r
`
P terms can be represented in rational networks that in total

have size
blogrP

(n)c∑

`=0

(`+ 1) =
1

2
(blogrP(n)c)2 +

3

2
blogrP(n)c+ 1.

The function xn can be formed by multiplying all the xc`r
`
P terms together. Since

xy = (x2 +y2−(x−y)2)/2, there is a rational network with one layer and three nodes

that represents the multiplication operation. Therefore, multiplying all the terms

together requires a rational network of size at most 3blogrP(n)c (see Equation (4.14)).

The result follows by noting that x2/2 + 9x/2 + 1 ≤ 5x2 + 1 for x ≥ 1.

We can now prove Theorem 4.5 using the two previous propositions.

Proof of Theorem 4.5. The proof is based on the proof of [242, Theorem 1] and con-

sists of replacing the piecewise linear functions and monomials arising in the local

Taylor approximation of the function f by rational networks using the previous ap-

proximation results.

78

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

Figure 4.2: Partition of unity: ψ0 (red), ψ1 (blue), and ψ2 (green), for N = 2.

Let N ≥ 1 be an integer and consider a partition of unity of (N + 1)d functions

φm on the domain [0, 1]d, i.e.,

∑

m∈{0,...,N}d
φm(x) = 1, φm(x) =

d∏

k=1

ψmk(xk), x = (x1, . . . , xd),

where m = (m1, . . . ,md), and ψmk is given by

ψmk(x) =

1, if
∣∣xk − mk

N

∣∣ < 1
3N
,

0, if
∣∣xk − mk

N

∣∣ > 2
3N
,

2− 3N
∣∣xk − mk

N

∣∣ , otherwise.

Examples of the functions ψmk are shown in Figure 4.2 when N = 2. We now define

a local Taylor approximation of f by

fN(x) =
∑

m∈{0,...,N}d
φm(x)Pm(x),

where Pm denotes the degree n− 1 Taylor polynomial of f at x = m/N . That is,

Pm(x) =
∑

|n|<n

Dnf(m
N

)

n!

(
x− m

N

)n

, (4.15)

where |n| =
∑d

k=1 nk, n! =
∏d

k=1 nk!, and (x −m/N)n =
∏d

k=1(xk −mk/N)nk . Let

x ∈ [0, 1]d and note that

support(φm) ⊂
{

x = (x1, . . . , xd) :
∣∣∣xk −

mk

N

∣∣∣ < 1

N

}
, m ∈ {0, . . . , N}d.

79

Hence, the approximation error between f and its local Taylor approximation satisfies

|f(x)− fN(x)| =

∣∣∣∣∣∣
∑

m∈{0,...,N}d
φm(f(x)− Pm(x))

∣∣∣∣∣∣
≤

∑

m:|xk−mkN |< 1
N

|f(x)− Pm(x)|

≤ 2ddn

n!

(
1

N

)n
max
|n|=n

ess sup
x∈[0,1]d

|Dnf(x)| ≤ 2ddn

n!

(
1

N

)n
.

We now select (see [242, Theorem 1] for a similar idea)

N =

⌈(
n!

2ddn
ε

2

)−1/n
⌉
,

so that

max
x∈[0,1]d

|f(x)− fN(x)| ≤ ε/2. (4.16)

We now approximate the function fn by a rational network using Propositions 4.2

and 4.3. First, we write fN as

fN(x) =
∑

m∈{0,...,N}d

∑

|n|<n
am,nφm(x)

(
x− m

N

)n

, (4.17)

where |am,n|≤1 and the monomials are uniformly bounded by 1 (see Equation (4.15)).

Equation (4.17) consists of at most dn(N + 1)d terms of the form φm(x)(x−m/N)n.

The monomial part (x − m/N)n in Equation (4.17) is representable by a rational

network of size O(d log(n)2) using Proposition 4.3, including the fact that the mul-

tiplication is a rational network with one layer and three nodes. Let 0 < δ < 1 be

a small number, for each mk ∈ {0, . . . , N} the piecewise linear function ψmk has a

Lipschitz constant of L = 3N . Therefore, it can be approximated with a tolerance

δ by a rational network ψ̃mk of size O(log(log(N/δ))) (see Proposition 4.2). We can

assume ‖ψ̃mk‖∞ = 1 by increasing the size of the network by a constant. This yields

the following approximation error between a term in Equation (4.17) and the rational

network constructed using ψ̃mk :
∣∣∣∣∣φm(x)

(
x− m

N

)n

−
d∏

k=1

ψ̃mk(xk)
(
x− m

N

)n

∣∣∣∣∣ ≤
∣∣∣∣∣
d∏

k=1

ψmk(xk)−
d∏

k=1

ψ̃mk(xk)

∣∣∣∣∣

≤
∣∣∣ψm1(x1)− ψ̃m1(x1)

∣∣∣
∣∣∣∣∣
d∏

k=2

ψmk(xk)

∣∣∣∣∣+
∣∣∣ψ̃m1(x1)

∣∣∣
∣∣∣∣∣
d∏

k=2

ψmk(xk)−
d∏

k=2

ψ̃mk(xk)

∣∣∣∣∣

≤
∣∣∣ψm1(x1)− ψ̃m1(x1)

∣∣∣+

∣∣∣∣∣
d∏

k=2

ψmk(xk)−
d∏

k=2

ψ̃mk(xk)

∣∣∣∣∣

≤ δ +

∣∣∣∣∣
d∏

k=2

ψmk(xk)−
d∏

k=2

ψ̃mk(xk)

∣∣∣∣∣ ≤ dδ.

80

Here, the final inequality is derived by repeating the argument of the previous in-

equalities for x2, . . . , xd. If we denote by NRational the rational network approximation

to fN constructed above, then, for all x ∈ [0, 1]d, we have

|fN(x)−NRational(x)| ≤
∑

m∈{0,...,N}d

∑

|n|<n
|am,n|

∣∣∣∣∣φm(x)
(
x− m

N

)n

−
d∏

k=1

ψ̃mk(xk)
(
x− m

N

)n

∣∣∣∣∣

≤ 2ddn+1δ.

Therefore, we select δ = ε/(2d+1dn+1) so that maxx∈[0,1]d |fN(x)−f̃N(x)| ≤ ε/2. Then,

by Equation (4.16), we have

max
x∈[0,1]d

|f(x)−NRational(x)| ≤ ε

2
+
ε

2
≤ ε.

The statement of the theorem follows as the rational network NRational has size at

most

O(dn(N + 1)d log(log(N/δ)))=O(ε−d/n log(log(1/ε1+1/n)))=O(ε−d/n log(log(1/ε))).

A theorem proved by DeVore et al. [52] gives a lower bound of Ω(ε−d/n) on the

number of parameters needed by a neural network to express any function in Fd,n

with an error ε, under the assumption that the weights are chosen continuously.

Comparing O(ε−d/n log(log(1/ε))) and O(ε−d/n log(1/ε)), we find that rational neural

networks require exponentially fewer nodes than ReLU networks with respect to the

optimal bound of Ω(ε−d/n) to approximate functions in Fd,n.

4.3 Experiments using rational neural networks

In this section, we consider neural networks with trainable rational activation func-

tions of type (3, 2). We select the type (3, 2) based on empirical performance; roughly,

a low-degree (but higher than 1) rational function is ideal for generating high-degree

rational functions by composition, with a small number of parameters. The rational

activation units can be easily implemented in the open-source TensorFlow library [1]

by using the polyval and divide commands for function evaluations. The coeffi-

cients of the numerators and denominators of the rational activation functions are

trainable parameters, determined at the same time as the weights and biases of the

neural network by backpropagation and a gradient descent optimization algorithm.

81

One crucial question is the initialization of the coefficients of the rational acti-

vation functions [39, 153]. A badly initialized rational function might contain poles

on the real axis, leading to exploding values, or converge to a local minimum in

the optimization process. Our experiments, supported by the empirical results of

Molina et al. [153], show that initializing each rational function with the best rational

approximation to the ReLU function (as described in Lemma 4.2) produces good per-

formance. The underlying idea is to initialize rational networks near a network with

ReLU activation functions, widely used for deep learning. Then, the adaptivity of the

rational functions allows for further improvements during the training phase. We rep-

resent the initial rational function used in our experiments in Figure 4.1(right). The

coefficients of this function are obtained by using the minimax command, available

in the Chebfun software [56, 67] for numerically computing rational approximations,

and are given in Table 4.1.

Table 4.1: Initialization coefficients of the rational activation functions.

a0 a1 a2 a3 b0 b1 b2

1.1915 1.5957 0.5000 0.0218 2.3830 0.0000 1.0000

In the following experiments, we use a single rational activation function of type

(3, 2) at each layer, instead of different functions at each node to reduce the number

of trainable parameters and the computational training expense. This adds 7 degrees

of freedom per layer.

4.3.1 Approximation of functions

Raissi, Perdikaris, and Karniadakis [180, 184] introduce a framework called deep hid-

den physics models for discovering nonlinear partial differential equations (PDEs)

from observations. This technique requires to solving the following interpolation prob-

lem: given the observation data (ui)1≤i≤N at the spatio-temporal points (xi, ti)1≤i≤N ,

find a neural network N (called the identification network), that minimizes the loss

function

L =
1

N

N∑

i=1

|N (xi, ti)− ui|2. (4.18)

This technique has successfully discovered hidden models in fluid mechanics [185],

solid mechanics [85], and nonlinear PDEs such as the Korteweg–de Vries (KdV) equa-

tion [184]. Raissi et al. use an identification network, consisting of 4 layers and 50

82

nodes per layer, to interpolate samples from a solution to the KdV equation. More-

over, they observe that networks based on smooth activation functions, such as the

hyperbolic tangent (tanh(x)) or the sinusoid (sin(x)), outperform ReLU neural net-

works [180, 184]. However, the performance of these smooth activation functions

highly depends on the application.

Moreover, these functions might not be adapted to approximate non-smooth or

highly oscillatory solutions. Recently, Jagtap, Kawaguchi, and Karniadakis [96] pro-

posed and analyzed different adaptive activation functions to approximate smooth

and discontinuous functions with physics-informed neural networks. More specifi-

cally, they use an adaptive version of classical activation functions such as sigmoid,

hyperbolic tangent, ReLU, and Leaky ReLU. The choice of these trainable activation

functions introduces another parameter in the design of the neural network architec-

ture, which may not be ideal for use for a black-box data-driven PDE solver.

0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

t

x

100 101 102 103 10410 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

ReLU
Sinusoid
Rational
Polynomial

Epochs

V
al

id
at

io
n

lo
ss

Figure 4.3: Solution to the KdV equation used as training data (left) and validation
loss of a ReLU (blue), sinusoid (green), rational (red), and polynomial (purple) neural
networks with respect to the number of optimization steps (right).

We illustrate that rational neural networks can address the issues mentioned above

due to their adaptivity and approximation power (see Section 4.2). Similarly to

Raissi [180], we use a solution u to the KdV equation:

ut = −uux − uxxx, u(x, 0) = − sin(πx/20),

as training data for the identification network (see the left panel of Figure 4.3). We

use the TensorFlow implementation2 of the deep hidden physics model framework to

build and train the identifier network N that approximates a solution u to the KdV

equation. The true solution is computed on the domain (x, t) ∈ [−20, 20]× [0, 40] by

2We adapt the code that is publicly available [181].

83

Raissi [180] using the Chebfun package [56] with a spectral Fourier discretization of

512 and a time-step of ∆t = 10−4. Moreover, the solution is stored after every 2000

time steps, giving a testing data set of approximately 105 spatio-temporal points in

[−20, 20]× [0, 40]. We then constituted the training and validation sets (of 104 points

each) by randomly subsampling the solution at 2× 104 points in [−20, 20]× [0, 40].

In a similar manner to [180], we use a fully connected identification network to

approximate u with 4 hidden layers with 50 nodes per layer. The network is trained

using the L-BFGS optimization algorithm with 10,000 iterations. We train and com-

pare four networks with the following activation functions: ReLU, sinusoid, trainable

rational functions of type (3, 2), and trainable polynomials of degree 3. Furthermore,

the rational activation functions are initialized to be the best approximation to the

ReLU function, using the initial coefficients reported in Table 4.1.

The mean squared error (MSE) of the neural networks on the validation set

throughout the training phase is reported in the right panel of Figure 4.3. We observe

that the rational neural network outperforms the sinusoid network, despite having the

same asymptotic convergence rate. The network with polynomial activation functions

(chosen to be of degree 3 in this example) is harder to train than the rational network,

as shown by the non-smooth validation loss (see the right panel of Figure 4.3). We

highlight that rational neural networks are never much bigger in terms of trainable

parameters than ReLU networks since the increase is only linear with respect to the

number of layers. Here, the ReLU network has 8000 parameters (consisting of weights

and biases), while the rational network has 8000 + 7 ×#layers = 8035. The ReLU,

sinusoid, rational, and polynomial networks achieve the following mean square errors

after 104 epochs:

MSE(uReLU) = 1.9× 10−4, MSE(uSinusoid) = 3.3× 10−6,

MSE(uRational) = 1.2× 10−7, MSE(uPolynomial) = 3.6× 10−5.

The rational neural network is approximately five times more accurate than the

sinusoid network used by Raissi and twenty times more accurate than the ReLU

network. The absolute approximation errors between the different neural networks

and the exact solution to the KdV equation is illustrated in Figure 4.4. We find that

the approximation errors made by the ReLU network are not uniformly distributed

in space and time and located in specific regions, indicating that a network with

non-smooth activation functions is not appropriate to resolve smooth solutions to

PDEs.

84

0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

0.00

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

0.000

0.002

0.004

0.006

0.008

0.010

0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

ReLU

t

x

Sinusoid

t

x

Rational

t

x

Figure 4.4: Approximation errors of the neural networks with ReLU, sinusoid, and
rational activation layers. Note the different scales of the errors.

100 101 102 103 10410 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

(2, 2)
(3, 2)
(4, 3)
(5, 4)

Epochs

V
al

id
at

io
n

lo
ss

Figure 4.5: Validation loss of rational networks of types (2, 2), (3, 2), (4, 3), and (5, 4)
with respect to the number of epochs.

85

Finally, in Figure 4.5, we compare rational neural networks with different degree

activation functions (each initialized to approximate the ReLU function using the

MATLAB code initial rational coeffs.m available at [29]) and find that they all

performed better than ReLU networks. While a type (3, 2) rational offers a good

trade-off between the number of parameters and quality of approximation according

to the theoretical results presented in Section 4.2, the type of rational function might

well depend on the application considered.

4.3.2 Generative adversarial networks

Generative adversarial networks are used to generate synthetic examples from an

existing dataset [76]. They consist of two networks: a generator to produce syn-

thetic samples and a discriminator to evaluate the samples of the generator with

the training dataset. Radford et al. [179] describe deep convolutional generative

adversarial networks (DCGANs) to build good image representations using convolu-

tional architectures. They evaluate their model on the MNIST and ImageNet image

datasets [51, 120].

This section highlights the simplicity of using rational activation functions in

existing neural network architectures by training an Auxiliary Classifier GAN (AC-

GAN) [165] on the MNIST dataset. In particular, the neural network, referred to as

the ReLU network in this section, consists of convolutional generator and discrimi-

nator networks with ReLU and Leaky ReLU [140] activation units (respectively) and

is used as a reference GAN. We adapt the Keras example in [43] to train an Aux-

iliary Classifier GAN with rational activation functions on the MNIST. The hyper-

parameters used for the GAN experiment are given in Table 4.2. Moreover, the

GAN is trained on 20 epochs with a batch size of 100 by Adam’s optimization al-

gorithm [108] and the following parameters: α = 0.0002 and β1 = 0.5, as suggested

by [179].

As in the experiment described in Section 4.3.1, we replace the activation units

of the generative and discriminator networks by a rational function with trainable

coefficients (see Figure 4.1). We initialize the activation functions in the training

phase with the best rational function that approximates the ReLU function on [−1, 1].

We show images of digits from the first five classes generated by a ReLU and

rational GANs at different epochs of the training in Figure 4.6 (the samples are

generated randomly and are not manually selected). We observe that a rational

network can generate realistic images with a broader range of features than the ReLU

86

Table 4.2: Hyper-parameters of the GAN experiment, BN denotes the presence of a
Batch normalization layer. The Generator and Discriminator networks are trained
with ReLU and rational activation functions, initialized with the coefficients reported
in Table 4.1. Transposed convolution layers and rational activation functions are
respectively abbreviated as “Transp. Conv.” and “Rat.”.

Operation Kernel Strides Features BN Dropout Activation

Generator
Linear N/A N/A 3456 7 0.0 ReLU / Rat.
Transp. Conv. 5× 5 1× 1 192 3 0.0 ReLU / Rat.
Transp. Conv. 5× 5 2× 2 96 3 0.0 ReLU / Rat.
Transp. Conv. 5× 5 2× 2 1 7 0.0 Tanh
Discriminator
Convolution 3× 3 2× 2 32 7 0.3 Leaky ReLU / Rat.
Convolution 3× 3 1× 1 64 7 0.3 Leaky ReLU / Rat.
Convolution 3× 3 2× 2 128 7 0.3 Leaky ReLU / Rat.
Convolution 3× 3 1× 1 256 7 0.3 Leaky ReLU / Rat.
Linear N/A N/A 11 7 0.0 Soft-Sigmoid

epoch 5

R
eL

U

epoch 10 epoch 15 epoch 20

epoch 5

R
at

io
n
al

epoch 10 epoch 15 epoch 20 MNIST images

Figure 4.6: Digits generated by a ReLU (top) and rational (bottom) auxiliary classifier
generative adversarial network. The right panel contains samples from the first five
classes of the MNIST dataset for comparison.

87

network, as illustrated by the presence of bold numbers at the epoch 20 in the bottom

panel of Figure 4.6.

We report in Figure 4.7 samples of the 10 classes present in the MNIST dataset

(right) and images generated at the 20th epoch by the GAN with ReLU/Leaky ReLU

units (left) and rational activation functions (middle). We observe that the digits one

generated by the rational network are identical, suggesting that the rational GAN

suffers from mode collapse. It should be noted that generative adversarial networks

are notoriously tricky to train [75]. The hyper-parameters of the reference model are

intensively tuned for a piecewise linear activation function (as shown by the use of

Leaky ReLU in the discriminator network). Moreover, many stabilization methods

have been proposed to resolve the mode collapse and non-convergence issues in train-

ing, such as Wasserstein GAN [10], Unrolled Generative Adversarial Networks [149],

and batch normalization [95]. These techniques could be explored and combined with

rational networks to address the mode collapse issue observed in this experiment.

88

ReLU Rational MNIST images

Figure 4.7: Forty images generated by a ReLU network and a rational network after
20 epochs, together with real images from the MNIST dataset.

89

Chapter 5

Data-driven discovery of Green’s
functions with deep learning∗

Deep learning (DL) holds promise as a scientific tool for discovering elusive patterns

within the natural and technological world [75, 118]. These patterns hint at undiscov-

ered partial differential equations (PDEs) that describe governing phenomena within

biology and physics. From sparse and noisy laboratory observations, we aim to learn

mechanistic laws of nature [35, 102]. Recently, scientific computing and machine

learning have successfully converged on PDE discovery [36, 195, 197, 245], PDE learn-

ing [65, 71, 126, 135, 180, 185], and symbolic regression [201, 224] as promising means

for applying machine learning to scientific investigations. These methods attempt to

discover the coefficients of a PDE model or learn the operator that maps excitations

to system responses. The recent DL techniques addressing the latter problem are

based on approximating the solution operator associated with a PDE by a neural

network (NN) [65, 71, 126, 135, 180]. While excellent for solving PDEs, we consider

them as “black box” and focus here on a data-driven strategy that improves human

understanding of the governing PDE model.

We then offer a radically different, alternative approach that is backed by the-

ory [32] and infuse an interpretation in the model by learning well-understood math-

ematical objects that imply underlying physical laws. We devise a DL method, em-

ployed for learning the Green’s functions [207] associated with unknown governing

linear PDEs, and train the neural networks by collecting physical system responses

from random excitation functions drawn from a Gaussian process (GP). The empir-

ically derived Green’s functions relate the system’s response (or PDE solution) to a

∗This chapter is based on a paper with Christopher Earls and Alex Townsend [27], published in
Scientific Reports. Earls and Townsend had an advisory role; I designed the deep learning method,
performed the numerical experiments, and was the lead author in writing the paper.

90

forcing term, and can then be used as a fast reduced-order PDE solver. The existing

graph kernel network [126] and DeepGreen [71] techniques also aim to learn solution

operators of PDEs based on Green’s functions. While they show competitive per-

formance in predicting the solution of the PDE for new forcing functions, the errors

between the exact and learned Green’s functions are relatively large, which makes the

extraction of qualitative and quantitative features of the physical system challenging.

Our secondary objective is to study the discovered Green’s functions for clues re-

garding the physical properties of the observed systems. Our approach relies on the

rational neural networks introduced in the previous chapter, which have higher ap-

proximation power than standard networks and carry human-understandable features

of the PDE, such as shock and singularity locations, as we shall see later.

In this chapter, we use techniques from deep learning to discover the Green’s

function of linear differential equations Lu = f from input-output pairs (f, u), as

opposed to directly learning L, or model parameters. In this sense, our approach is

agnostic to the forward PDE model, but nonetheless offers insights into its physical

properties. There are several advantages to learning the Green’s function. First, once

the Green’s function is learned by a neural network, it is possible to compute the

solution, u, for a new forcing term, f , by evaluating an integral (see Equation (5.2));

which is more efficient than training a new NN. Second, the Green’s function associ-

ated with L contains information about the operator, L, and the type of boundary

constraints that are imposed; which helps uncover mechanistic understanding from

experimental data. Finally, as discussed in Chapter 2, it is easier to train NNs to

approximate Green’s functions, which are square-integrable functions under sufficient

regularity conditions [53, 80, 207], than trying to approximate the action of the linear

differential operator, L, which is not bounded [113]. Also, any prior mathematical

and physical knowledge of the operator, L, can be exploited in the design of the

NN architecture, which could enforce a particular structure such as symmetry of the

Green’s function.

5.1 Learning Green’s functions

We consider linear differential operators, L, defined on a bounded domain Ω ⊂ Rd,

where d ∈ {1, 2, 3} denotes the spatial dimension. The aim of our method is to

discover properties of the operator, L, using N input-output pairs {(fj, uj)}Nj=1, con-

sisting of forcing functions, fj : Ω→ R, and system responses, uj : Ω→ R, which are

91

solutions to the following equation:

Luj = fj, D(uj,Ω) = g, (5.1)

where D is a linear operator acting on the solutions, u, and the domain, Ω; with g

being the constraint. We assume that the forcing terms have sufficient regularity,

and that the operator, D, is a constraint so that Equation (5.1) has a unique so-

lution [207]. An example of constraint is the imposition of homogeneous Dirichlet

boundary conditions on the solutions: D(uj,Ω) := uj|∂Ω = 0. Note that boundary

conditions, integral conditions, jump conditions, or non-standard constraints, are all

possible (see Section 5.4.1).

5.1.1 Definitions

A Green’s function [9, 64, 157, 207] of the operator, L, is defined as the solution to

the following equation:

LG(x, y) = δ(y − x), x, y ∈ Ω,

where L is acting on the function x 7→ G(x, y) for fixed y ∈ Ω, and δ(·) denotes

the Dirac delta function. The Green’s function is well-defined and unique under

mild conditions on L, and suitable solution constraints imposed via an operator, D
(see Equation (5.1)) [207]. Moreover, if (f, u) is an input-output pair, satisfying

Equation (5.1) with g = 0, then

u(x) =

ˆ
Ω

G(x, y)f(y) dy, x ∈ Ω.

Therefore, the Green’s function associated with L can be thought of as the right

inverse of L.

Let uhom be the homogeneous solution to (5.1), so that

Luhom = 0, D(uhom,Ω) = g.

Using superposition, we can construct solutions, uj, to Equation (5.1) as uj = ũj +

uhom, where ũj satisfies

Lũj = fj, D(ũj,Ω) = 0.

Then, the relation between the system’s response, uj, and the forcing term, fj, can

be expressed via the Green’s function as

uj(x) =

ˆ
Ω

G(x, y)fj(y) dy + uhom(x), x ∈ Ω.

92

In this chapter, we focus on learning Green’s functions and homogeneous solutions

from a fixed boundary constraint g but one could also approximate a second Green’s

function associated with uhom from multiple boundary constraints. Therefore, we

train two NNs: NG : Ω × Ω → R ∪ {±∞} and Nhom : Ω → R, to learn the Green’s

function, and also the homogeneous solution associated with L and the constraint

operator D. Note that this procedure allows us to discover boundary conditions,

or constraints, directly from the input-output data without imposing it in the loss

function (which often results in training instabilities [236]).

5.1.2 Theoretical justification

Our approach for learning Green’s functions associated with linear differential opera-

tors has a theoretically rigorous underpinning. Indeed, we showed in Chapter 2 that

uniformly elliptic operators in three dimensions have an intrinsic learning rate, which

characterizes the number of training pairs needed to construct an ε-approximation

in the L2-norm of the Green’s function, G, with high probability, for 0 < ε < 1.

The number of training pairs depends on the quality of the covariance kernel used

to generate the random forcing terms, {fj}Nj=1. Our choice of covariance kernel (Sec-

tion 5.2.1) is motivated by the GP quality measure (cf. Section 2.1.4), to ensure that

our set of training forcing terms is sufficiently diverse to capture the action of the

solution operator, f 7→ u(x) =
´

Ω
G(x, y)f(y) dy, on a diverse set of functions.

Similarly, the choice of rational NNs to approximate the Green’s function, and

the homogeneous solution, is justified by the higher approximation power of these

networks over ReLU as observed in Chapter 4. Other adaptive activation functions

have been proposed for learning or solving PDEs with NNs [96], but they are only

motivated by empirical observations. Both theory and experiments support rational

NNs for regression problems. The number of trainable parameters, consisting of

weight matrices, bias vectors, and rational coefficients, needed by a rational NN to

approximate smooth functions within 0 < ε < 1, can be completely characterized [30].

This motivates our choice of NN architecture for learning Green’s functions.

5.2 Deep learning method

Our DL approach (see Figure 5.1) begins with excitations (or forcing terms), {fj}Nj=1,

sampled from a Gaussian process having a carefully designed covariance kernel, and

corresponding system responses, {uj}Nj=1 (see Chapter 3). It is postulated that there

is an unknown linearized governing PDE so that Luj = fj. The selection of random

93

forcing terms is theoretically justified by Chapter 2 and enables us to learn the dom-

inant eigenmodes of the solution operator, using only a small number, N , of training

pairs. The Green’s function, G, and homogeneous solution, uhom, which encodes the

boundary conditions associated with the PDE, satisfy

uj(x) =

ˆ
Ω

G(x, y)fj(y) dy + uhom(x), x ∈ Ω, (5.2)

and are approximated by two rational neural networks: NG and Nhom.

x y

G

x

u

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

x

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.05

0.10

0.15

0.20

0.25

Excite

Observe

Unknown system
on

Response

Source/forcing

Algorithmically informed
samples from theory

H
um

an
 re

ad
ab

le
 fe

at
ur

es Green’s functionHomogeneous solution

GP covariance kernel

Extract &
visualize

Extract &
visualize

TrainTrain

Boundary
conditions on

DL Green’s
function

DL Hom.
solution

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.1: Schematic of our DL method for learning Green’s functions from input-
output pairs. (a) The covariance kernel of the Gaussian process, which is used to
generate excitations. (b) The system’s response to each excitation is computed and
recorded (c). (d) A loss function is minimized to train rational NNs (e). (f) The
learned Green’s function and homogeneous solution are visualized by sampling the
NNs.

The parameters of the NNs representing the Green’s function and homogeneous so-

lution are simultaneously learned through minimization of the loss function displayed

in Figure 5.1(d). We discretize the integrals in the loss function at the specified mea-

surement locations {xi}Nui=1, within the domain, Ω, and forcing term sample points,

{yi}Nfi=1, respectively, using a quadrature rule.

In this section, we detail the deep learning method used to learn Green’s functions.

Our DL technique is data-driven and requires minimal by-hand parameter tuning. In

94

fact, all the numerical examples described in this chapter are performed using a single

rational NN architecture, initialization procedure, and optimization algorithm1.

5.2.1 Generating the training data

We create a training dataset, consisting of input-output functions, {(fj uj)} for 1 ≤
j ≤ N , in three steps: (1) Generating the forcing terms by sampling random functions

from a Gaussian process, (2) Solving Equation (5.1) for the generated forcing terms,

and (3) Sampling the forcing terms, fj, at the points {y1, . . . , yNf} ⊂ Ω and the

system’s responses, uj, at {x1, . . . , xNu} ⊂ Ω. Here, Nf and Nu are the forcing

and solution discretization sizes, respectively. We recommend that all the forcing

terms are sampled on the same grid and similarly for the system’s responses. This

minimizes the number of evaluations of NG during the training phase and reduces

the computational and memory costs of training.

The spatial locations of points {yi} and the forcing discretization size, Nf , are

chosen arbitrarily to train the NNs as the forcing terms are assumed to be known

over Ω. In practice, the number, Nu, and location of the measurement points, {xi},
are imposed by the nature of the experiment, or simulation, performed to measure

the system’s response. When Ω is an interval, we always select Nf = 200, Nu = 100,

and equally-spaced sampled points for the forcing and response functions.

Unless otherwise stated, the training data comprises N = 100 forcing and solu-

tion pairs, where the forcing terms are drawn at random from a Gaussian process,

GP(0, KSE), where KSE is the squared-exponential covariance kernel [187] defined as

KSE(x, y) = exp

(
−|x− y|

2

2`2

)
, x, y ∈ Ω. (5.3)

As discussed in Section 3.3, the parameter ` > 0 in Equation (5.3) is called the

length-scale parameter, and characterizes the correlation between the values of f ∼
GP(0, KSE) at x and y for x, y ∈ Ω. A small parameter, `, yields highly oscillatory

random functions, f , and determines the ability of the GP to generate a diverse set of

training functions. This last property is crucial for capturing different modes within

the operator, L, and for learning the associated Green’s function accurately [32].

Other possible choices of covariance kernels include the periodic kernel [187]:

KPer(x, y) = exp

(
−2 sin2(π|x− y|)

`2

)
, x, y ∈ Ω,

1All data and codes used in this chapter are publicly available on the GitHub and Zenodo repos-
itories at https://github.com/NBoulle/greenlearning/ [26] to reproduce the numerical experi-
ments and figures. A software package, including additional examples and documentation, is also
available at https://greenlearning.readthedocs.io/.

95

https://github.com/NBoulle/greenlearning/
https://greenlearning.readthedocs.io/

which is used to sample periodic random functions for problems with periodic bound-

ary conditions (Figure 5.8(b)). Another possibility is a kernel from the Matérn fam-

ily [187] or the Jacobi kernel introduced in Section 3.3.3.

When Ω is an interval [a, b], we introduce a normalized length-scale parameter

λ = `/(b − a), so that the method described does not depend on the length of

the interval. In addition, we choose λ = 0.03, so that the length-scale, `, is larger

than the forcing spatial discretization size, which allows us to adequately resolve the

functions sampled from the GP with the discretization. More precisely, we make

sure that ` ≥ (b − a)/Nf so that 1/Nf ≤ λ. In Figure 5.2, we display the squared-

exponential covariance kernel on the domain Ω = [−1, 1], along with ten random

functions sampled from GP(0, KSE).

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

x

−4

−2

0

2

4(a) (b)

Figure 5.2: Random forcing terms. (a) Squared exponential covariance kernel KSE

on [−1, 1]2 with normalized length-scale λ = 0.03 (b) 10 functions sampled from the
Gaussian process GP(0, KSE).

When (5.1) is a boundary-value problem, we generate training pairs by solving the

PDE with a spectral method [219] using the Chebfun software system [56], written

in MATLAB, and using a tolerance of 5 × 10−13. We also solve the homogeneous

problem with zero-forcing, to compare the learned and exact homogeneous solutions.

The exact homogeneous solution is not included in the training dataset. When the

homogeneous solution is zero, the solutions, {uj}Nj=1, and forcing terms, {fj}Nj=1, are

rescaled, so that max1≤j≤N ‖uj‖L∞(Ω) = 1. By doing this, we facilitate the training of

the NNs by avoiding disproportionately small-scale or large-scale data. In the presence

of real data, with no known homogeneous solution, one could instead normalize the

output of the NNs, NG and Nhom, to facilitate the training procedure.

5.2.2 Rational neural networks

As introduced in Chapter 4, rational NNs consist of NNs with adaptive rational

activation functions x 7→ σ(x) = p(x)/q(x), where p and q are two polynomials, whose

96

coefficients are trained at the same time as the other parameters of the networks, such

as the weights and biases. These coefficients are shared between all the neurons in a

given layer but generally differ between the network’s layers. This type of network

was proven to have better approximation power than standard Rectified Linear Unit

(ReLU) networks [73, 242], which means that they can approximate smooth functions

more accurately with fewer layers and network parameters (see Section 4.2). It is also

observed in Section 4.3 that rational NNs require fewer optimization steps in practice

and therefore can be more efficient to train than other activation functions.

The NNs, NG and Nhom, which approximate the Green’s function and homoge-

neous solution associated with Equation (5.1), respectively, are chosen to be rational

NNs with 4 hidden layers and 50 neurons in each layer. We choose the polynomials,

p and q, within the activation functions to be of degree 3 and 2, respectively, and ini-

tialize the coefficients of all the rational activation functions so that they are the best

(3, 2) rational approximant to a ReLU (see Section 4.3 for details). The motivation

is that the flexibility of the rational functions brings extra benefit in the training and

accuracy over the ReLU activation function. We highlight that the increase in the

number of trainable parameters, due to the adaptive rational activation functions, is

only linear with respect to the number of layers and negligible compared to the total

number of parameters in the network as:

number of rational coefficients = 7× number of hidden layers = 28.

The weight matrices of the NNs are initialized using Glorot normal initializer [72],

while the biases are initialized to zero.

Another advantage of rational NNs is the potential presence of poles, i.e., zeros of

the polynomial q. While the initialization of the activation functions avoids training

issues due to potential spurious poles, the poles can be exploited to learn physical

features of the differential operator (see Section 5.4.5). Therefore, the architecture

of the NNs also supports the aim of a human-understandable approach for learning

PDEs. In higher dimensions, such as d = 2 or d = 3, the Green’s function is not

necessarily bounded along the diagonal, i.e., {(x, x), x ∈ Ω}; thus making the poles

of the rational NNs crucial.

Finally, we emphasize that the enhanced approximation properties of rational

NNs make them ideal for learning Green’s functions and, more generally, approxi-

mating functions within regression problems. These networks may also be of benefit

97

to other approaches for solving and learning PDEs with DL techniques, such as Deep-

Green [71], Neural operator [126], Fourier neural operator [127], DeepONet [135], and

PINNs [184].

5.2.3 Loss function

The NNs, NG and Nhom, are trained by minimizing a mean square relative error (in

the L2-norm) regression loss, defined as:

Loss =
1

N

N∑

j=1

1

‖uj‖2
L2(Ω)

ˆ
Ω

(
uj(x)−Nhom(x)−

ˆ
Ω

NG(x, y)fj(y) dy

)2

dx. (5.4)

Unless otherwise stated, the integrals in Equation (5.4) are discretized by a trapezoidal

rule [210] using training data values that coincide with the forcing discretization grid,

{yi}Nfi=1, and measurement points, {xi}Nui=1. As an example, for 1 ≤ j ≤ N , the squared

L2-norm of uj, on a one-dimensional domain Ω = [a, b] ⊂ R, is approximated as

‖uj‖2
L2(Ω) =

ˆ b

a

uj(x)2 dx ≈
Nu∑

i=2

uj(xi−1)2 + uj(xi)
2

2
∆xi ,

where ∆xi = xi − xi−1 is the length of the ith subinterval [xi−1, xi].

Later in Section 5.3.4, we compare the results obtained by using trapezoidal inte-

gration, described above, and a Monte-Carlo integration [21]:

‖uj‖2
L2(Ω) ≈

b− a
Nu

Nu∑

i=1

uj(xi)
2,

which has a lower convergence rate to the integral with respect to the number of

points, Nu. This integration technique is, however, particularly suited for approxi-

mating integrals in high dimensions, or with complex geometries [21]. One could also

use a mesh of the domain and compute the integrals with a quadrature rule on each

cell.

It is also possible to incorporate some prior knowledge about the Green’s function

in the loss function, by adding a penalty term. If the differential operator is self-

adjoint, then depending on the constraint operator D, the associated Green’s function

is symmetric, i.e., G(x, y) = G(y, x) for all x, y ∈ Ω. In this case, one can train a

symmetric NN NG defined as

NG(x, y) = N (x, y) +N (y, x), x, y ∈ Ω.

However, our numerical experiments reveal that the NNs can learn both boundary

conditions and symmetry properties directly, from the training data, without addi-

tional constraints on the loss function or network architectures.

98

5.2.4 Optimization algorithm

The NNs are implemented with single-precision floating-point format within the Ten-

sorFlow DL library [1], and are trained2 using a two-step optimization procedure

to minimize the loss function. First, we use Adam’s algorithm [108] for the first

1000 optimization steps (or epochs), with default learning rate 0.001 and parameters

β1 = 0.9, β2 = 0.999. Then, we employ the limited memory BFGS, with bound

constraints (L-BFGS-B) optimization algorithm [37, 132], implemented in the SciPy

library [229], with a maximum of 5× 104 iterations. This training procedure is used

by Lu et al. to train physics-informed NNs (PINNs) and mitigate the risk of the

optimizer getting stuck at poor local minima [136]. The L-BFGS-B algorithm is also

successful for PDE learning [180] and PDE solvers using DL techniques [136, 184].

Moreover, this optimization algorithm takes advantage of the smoothness of the loss

function by using quasi-Newton approximations to second-order derivatives and of-

ten converges in fewer iterations than Adam’s algorithm and other methods based

on stochastic gradient descent [136]. Within this setting, rational NNs are beneficial

because the activation functions are smooth while maintaining an initialization close

to ReLU.

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

101

102

Adam L-BFGS-B

Epochs

Lo
ss

fu
nc

tio
n

Rational
ReLU
Tanh

Figure 5.3: Loss function during training. Loss function magnitudes for the ReLU,
tanh, and rational NNs with respect to the number of epochs. The networks are
trained to learn the Green’s function of the Helmholtz operator with homogeneous
Dirichlet boundary conditions and frequency K = 15. Adam’s optimizer is used until
1000 epochs (before the dashed line) and L-BFGS-B is employed thereafter.

In Figure 5.3, we display the value of the loss function during the training of

the NNs with different activation functions: rational, ReLU, and hyperbolic tangent

2The numerical experiments are performed on a desktop computer with a Intel® Xeon® CPU
E5-2667 v2 @ 3.30GHz and a NVIDIA® Tesla® K40m GPU.

99

(tanh). In this example, we aim to learn the Green’s function of a high-frequency

Helmholtz operator with homogeneous Dirichlet boundary conditions on Ω = [0, 1]:

Lu =
d2u

dx2
+K2u, u(0) = u(1) = 0, (5.5)

where K = 15 denotes the Helmholtz frequency. Note that the operator defined by

Equation (5.5) is indefinite but invertible. We first remark in Figure 5.3 that the

rational NN is easier to train than the other NNs, as it minimizes the loss function to

10−5 with ≈ 15000 epochs, while a ReLU NN requires three times as many epochs to

reach 10−4. We also see that the loss function for the ReLU and rational NN becomes

more oscillatory [18] and harder to minimize before epoch 1000, while it converges

much faster after switching to L-BFGS-B. In theory, one could introduce a variable

learning rate that improves the behavior of Adam’s optimizer [69, 204]. However,

that introduces an additional parameter, which is not desirable in the context of

PDE learning. We aim to design an adaptive and easy-to-use method that does not

require extensive hyperparameter tuning. We also observe that the tanh NN has a

similar convergence rate to the rational NN due to the smoothness of the activation

function, but this network exhibits instability during training, as indicated by the

high value of the loss function when the optimization terminates. Rational NNs do

not suffer from this issue, thanks to the initialization close to a ReLU NN, as can be

observed in Figure 5.3, when focusing on the value of the loss function corresponding

to the early optimization steps.

5.2.5 Measuring the results

Once the NNs have been trained, we visualize the Green’s functions by sampling the

networks on a fine 1000 × 1000 grid of Ω × Ω. In the case where the exact Green’s

function Gexact is known, we measure the accuracy of the trained NN, NG, using a

relative error in the L2-norm:

Relative Error = 100× ‖Gexact −NG‖L2(Ω)/‖Gexact‖L2(Ω). (5.6)

Here, we multiplied by 100 to obtain the relative error as a percentage (%). This

illustrates an additional advantage of using a Green’s function formulation: we can

create test case problems with known Green’s functions and evaluate the method

using relative error and offer performance guarantees on benchmark problems. The

standard approaches in the literature often use best-case and worst-case examples

as testing procedures and therefore do not guarantee that the solution operator is

100

accurately learned. The “worst-case” examples can be misleading if they consist of

functions with similar behavior to the forcing terms already included in the training

dataset. Furthermore, since the space of possible forcing terms is of infinite dimension,

it is not possible to evaluate the trained NNs on all these functions to obtain a true

worst-case example.

5.3 Robustness of the method

We test the robustness of our DL method for learning Green’s functions and homoge-

neous solutions of differential equations, with respect to the number of training pairs,

the discretization of the solutions and forcing terms, and the noise perturbation of the

training solutions, {uj}Nj=1. For consistency, we perform numerical experiments where

we learn the Green’s function of the Helmholtz operator with parameter K = 15 and

homogeneous Dirichlet boundary conditions (see Equation (5.5)). The performance

is measured using the relative error in the L2-norm defined in Equation (5.6) between

the trained network, NG, and the exact Green’s function, Gexact, whose analytic ex-

pression is given by

Gexact(x, y) =

{
sin(15x) sin(15(y−1))

15 sin(15)
, if x ≤ y,

sin(15y) sin(15(x−1))
15 sin(15)

, if x > y,

where x, y ∈ [0, 1].

5.3.1 Influence of the activation function on the accuracy

We first compare the performances of different activation functions for learning the

Green’s functions of the Helmholtz operator by training the NNs, NG and Nhom,

with rational, ReLU, and tanh activation functions. The numerical experiments are

repeated ten times to study the statistical effect of the random initialization of the

network weights and the stochastic nature of Adam’s optimizer. The rational NN

achieves a mean relative error of 1.2% (with a standard deviation of 0.2%), while

the ReLU NN reaches an average error of 3.3% (with a standard deviation of 0.2%),

which is about three times larger. Note that the ten times difference in the loss

function between ReLU and Rational NNs, displayed in Figure 5.3, is consistent with

the factor of three in the relative error since the loss is a mean squared error and√
10 ≈ 3. This indicates that the rational neural networks are not overfitting the

training dataset. One of the numerical experiments with a tanh NN terminated early

due to the training instabilities mentioned in Section 5.2.3, achieving a relative error

101

of 99%. We excluded this problematic run when comparing the ReLU and rational

NN’s accuracy, limiting ourselves only to cases where the training was successful. The

ReLU and rational NNs did not suffer from such issues and were always successful.

The averaged relative error of the tanh NN, over the nine remaining experiments, is

equal to 3.9% (with a standard deviation of 1.4%), which is slightly worse than the

ReLU NN, with higher volatility of the results.

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Exact Green’s function

−0.10

−0.05

0.00

0.05

0.10

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Rational NN (1.1% error)

−0.10

−0.05

0.00

0.05

0.10

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

ReLU NN (4.2% error)

−0.10

−0.05

0.00

0.05

0.10

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Tanh NN (2.7% error)

−0.10

−0.05

0.00

0.05

0.10

Figure 5.4: Comparison of activation functions. Exact and learned Green’s functions
of the Helmholtz operator by a rational, ReLU, and tanh NN. The relative error in
the L2 norm is reported in the titles of the panels.

The exact and learned Green’s functions with rational, ReLU, and tanh NNs

are displayed in Figure 5.4. We see that the rational and tanh NNs are smooth

approximations of the exact Green’s function, while visual artifacts are present for

the ReLU NN as it is piecewise linear, despite its good accuracy.

5.3.2 Number of training pairs and spatial measurements

This section describes our method’s accuracy as we change the number of training

pairs and the size of the spatial discretization. First, we fix the number of spa-

tial measurements to be Nu = 100, and then vary the number of input-output pairs,

{(fj, uj)}Nj=1, of the training dataset for the Helmholtz operator with Dirichlet bound-

ary conditions (see Equation (5.5)). As we increase N from 1 to 100, we report the

102

relative error of the Green’s function learned by a rational NN in Figure 5.5(a). Next,

in Figure 5.5(b), we display the relative error on the learned Green’s function as we

increase Nu from 3 to 100, with N = 100 input-output pairs. Note that we only per-

form the numerical experiments once since we obtained a low variation of the relative

errors in Section 5.3.1 when the networks, NG and Nhom, have rational activation

functions. We observe similar behavior in Figure 5.5(a) and (b), where the relative

error first rapidly (exponentially) decreases as we increase the number of functions in

our dataset or spatial measurements of the solutions to the Helmholtz equations with

random forcing terms. One important thing to notice is our method’s ability to learn

the Green’s function of a high-frequency Helmholtz operator, with only 1% relative

error, using very few training pairs. The learning rate of our deep learning technique

for this operator appears to be poly-logarithmic, i.e., the number of input-output

pairs required to learn the Green’s function within accuracy 0 < ε < 1 behaves like

O(polylog(1/ε)), as predicted by the remark in Section 2.3.1.

0 20 40 60 80 10010−1

100

101

102

103

Input-output pairs (N)

R
el

at
iv

e
er

ro
r

(%
)

0 20 40 60 80 10010−1

100

101

102

103

Measurements (Nu)
0 10 20 30 40 5010−1

100

101

102

103

Noise (%)

(a) (b) (c)

Figure 5.5: Robustness of the method. Relative error of the learned Green’s function
of the Helmholtz operator with respect to the number of input-output pairs (a),
spatial measurements (b), and level of Gaussian noise perturbation (c).

The performance reaches a plateau at N ≈ 20 and Nu ≈ 20, respectively, and

ceases to improve. However, the stagnation of the relative error for more numerous

training data and spatial measurements is expected and can be explained by our choice

of covariance kernel length-scale, which restricts the GP’s ability to generate a wide

variety of forcing terms. Following Section 5.2.1, we chose a normalized length-scale

parameter λ = 0.03, which yields approximately 20 eigenvalues greater than 10−2.

This issue can be resolved by decreasing the length-scale parameter and concomitantly

increasing the forcing discretization size or choosing another covariance kernel with a

less pronounced eigenvalue decay rate (see Section 3.3). In summary, the number of

103

spatial measurements should be larger than 1/λ to resolve the forcing terms and the

number of input-output pairs should correspond to the number of covariance kernel

eigenvalues greater than 10−2.

5.3.3 Noise perturbation

The impact of noise in the training dataset on the accuracy of the learned Green’s

function is gauged experimentally by perturbing the system’s response measurements

with Gaussian noise as

unoise
j (xi) = uj(xi)(1 + δci,j), (5.7)

where the coefficients ci,j are i.i.d. Gaussian random variables for 1 ≤ i ≤ Nu and

1 ≤ j ≤ N , and δ denotes the noise level (in percent). We then vary the level

of Gaussian noise perturbation from 0% to 50%, train the NNs, NG and Nhom, for

each choice of the noise level, and report the relative error in Figure 5.5(c). We

first observe a low impact of the noise level on the accuracy of the learned Green’s

function, as a perturbation of the system’s responses measurements with 20% noise

only increases the relative error by a factor of 2 from 1.5% (no noise) to 2.7%. When

the level of noise exceeds 25%, we notice large variations of the relative errors and

associated higher volatility in results, characterized by a large standard deviation in

error associated with repeated numerical experiments. We consider our DL approach

relatively robust to noise in the training dataset.

5.3.4 Location of the measurements

As described in Section 5.2.1, by default, we use a uniform grid for spatial measure-

ments of the training dataset, and thus we discretize the integrals in the loss function

(cf. Equation (5.4)) using a trapezoidal rule. We conducted additional numerical

experiments on the Helmholtz example to study the influence of the measurements’

location and quadrature rule on the relative error of the learned Green’s function.

We report the relative errors between the learned and exact Green’s functions in

Table 5.1, using a Monte-Carlo or a trapezoidal rule to approximate the integrals

and uniform or random spatial measurements. In the latter case, the measurement

points {xi}Nui=1 are independently and identically sampled from a uniform distribution,

U(0, 1), where Ω = [0, 1] is the domain. We find that the respective relative errors

vary between 0.96% and 1.3%. Therefore, we do not observe statistically significant

differences in the relative error computed by rational NNs. These results support the

104

claim that our method is relatively robust to the type of spatial measurements in the

training dataset.

Table 5.1: Choice of quadrature rules. Relative error of the Green’s function of the
Helmholtz operator with frequency K = 15 learned by a rational NN with respect to
the type of spatial measurements and quadrature rule (Monte-Carlo or trapezoidal
rule) used.

Spatial measurements Monte-Carlo Trapezoidal rule
Random 1.1% 1.3%
Uniform 1.3% 0.96%

5.3.5 Missing measurements data

Since experimental data may be partially corrupted or unavailable at some spatial

locations, we assess our method’s accuracy with respect to missing measurement

data in the training dataset. We consider the high-frequency Helmholtz operator,

defined on the domain Ω = [0, 1] by Equation (5.5), with homogeneous Dirichlet

boundary conditions. We introduce a gap in the spatial measurements located at

x ∈ [0.5, 0.7] by sampling the system’s responses, {uj}Nj=1, uniformly on the domain

[0, 0.5] ∪ [0.7, 1]. Note that the forcing terms, {fj}Nj=1, are still sampled uniformly

on the whole domain since they are assumed to be known. The Green’s function

and homogeneous solution learned by the rational NNs are displayed in Figure 5.6(a)

and (b), respectively. Surprisingly, we find that the NN, NG, can capture the high-

frequency pattern of the Green’s function and achieves a relative error of 8.2%, despite

the large gap within the measurement data for x ∈ [0.5, 0.7]. Another interesting

outcome of this numerical experiment is that the lack of spatial measurements in a

specific interval does not influence the accuracy of our method outside this location,

i.e., for x ∈ [0, 0.5]∪ [0.7, 1] and y ∈ [0, 1] in this example. This phenomenon might be

explained by the existence of non-local effects when expressing the solution operator

associated with the PDE as an integral operator.

5.4 Human-understandable features

The trained NNs contain both the desired Green’s function and homogeneous solu-

tion, which we evaluate and visualize to glean novel insights concerning the underlying

governing PDE (Figure 5.7). In this way, we achieve one part of our human interpre-

tation goal: finding a link between the properties of the Green’s function and that of

the underlying differential operator and solution constraints.

105

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

−0.10

−0.05

0.00

0.05

0.10

0.00 0.25 0.50 0.75 1.00

x

−0.0010

−0.0005

0.0000

0.0005

0.0010
Exact

Learned

(a) (b)

Figure 5.6: Gap in measurements. (a) Green’s function of the Helmholtz operator
and its homogeneous solution (b) learned by a rational NN with no measurement
points for x ∈ [0.5, 0.7]. The space between the vertical black lines indicates where
there is a lack of spatial measurements.

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

Green’s function

−22

−11

0

11

22

−1.0 −0.5 0.0 0.5 1.0

x

−3.0

−1.5

0.0

1.5

3.0

Homogeneous solution

Exact

Learned

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

Symmetries

−22

−11

0

11

22

100 101 102

n

10−4

10−2

100

102

Dominant eigenvalues

−1.0 −0.5 0.0 0.5 1.0

x

−100

−50

0

50

100

Singularity location

−1.0 −0.5 0.0 0.5 1.0

x

−2

−1

0

1

2

Dominant eigenmodes

Extract features

Learned Green’s function

Homogeneous solution

Symmetries

Singularity location

Dominant eigenvalues

Dominant eigenmodes

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.7: Feature extraction from learned Green’s functions. The NNs for the
learned Green’s function (a) and homogeneous solution (b) enable the extraction of
qualitative and quantitative features associated with the differential operator. For
example, the symmetries in the Green’s function reveal PDE invariances (c), poles of
rational NNs identify singularity type and location (d), the dominant eigenvalues (e)
and eigenmodes (f) of the learned Green’s function are related to the eigenvalues and
eigenmodes of the differential operator.

106

As an example, if the Green’s function is symmetric, i.e., G(x, y) = G(y, x) for all

x, y ∈ Ω, then the operator L is self-adjoint. Another aspect of human interpretability

is that the poles of the trained rational NN tend to cluster in a way that reveal the

location and type of singularities in the homogeneous solution, discussed further in

Section 5.4.5 below. Finally, there is a direct correspondence between the dominant

eigenmodes and eigenvalues (as well as the singular vectors and singular values) of

the learned Green’s function and those of the differential operator. The correspon-

dence gives insight into the important eigenmodes that govern the system’s behavior

(see Sections 5.4.2 and 5.4.3 below). This section highlights that several features of

the differential operators can be extracted from the learned Green’s function, which

supports our aim of uncovering mechanistic understanding from input-output pairs

of forcing terms and solutions.

5.4.1 Linear constraints and symmetries

We first remark that boundary constraints, such as the constraint operator, D, of

Equation (5.1), can be recovered from the Green’s function, G, of the differential

operator, L. Let f ∈ C∞c (Ω) be any infinitely differentiable function with compact

support on Ω, and u be the solution to Equation (5.1) with forcing term, f , such that

u(x) =

ˆ
Ω

G(x, y)f(y) dy + uhom(x), x ∈ Ω.

Under sufficient regularity conditions, the linearity of the operator, D, implies that

D(G(·, y),Ω) = 0 for all y ∈ Ω. For instance, if D is the Dirichlet operator: D(u,Ω) =

u|∂Ω, then the Green’s function satisfies G(x, y) = 0 for all x ∈ ∂Ω.

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

−0.2

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

−0.02

0.00

0.02

(a) (b)

Figure 5.8: Extraction of linear constraints. (a) Learned Green’s functions of
a second-order differential operator with an integral constraint defined in Equa-
tion (5.8). (b) Green’s function of the Helmholtz operator with periodic boundary
conditions learned by a rational NN.

107

As an example, we display in Figure 5.8(a) the learned Green’s function of the

following second-order differential operator on Ω = [−1, 1] with an integral constraint

on the solution:

Lu =
du2

dx2
+ x2u, u(−1) = 1,

ˆ 1

−1

u(x) dx = 2. (5.8)

We observe that G(−1, y) = 0 for all y ∈ [−1, 1] and one can verify that the relation´ 1

−1
G(x, y) dx = 0 holds for any y ∈ [−1, 1]. In a second example, we learn the Green’s

function of the Helmholtz operator on Ω = [0, 1] with frequency K = 15 and periodic

boundary conditions: u(0) = u(1). One can see in Figure 5.8(b) that the Green’s

function itself is periodic and that G(0, y) = G(1, y) for all y ∈ [0, 1], as expected.

The periodicity of the Green’s function in the y-direction: G(x, 0) = G(x, 1) for

x ∈ [0, 1], is due to the fact that the Helmholtz operator is self-adjoint, which implies

symmetry in the associated Green’s function. Furthermore, any linear constraint

C(u) = 0 such as linear conservation laws or symmetries [167], satisfied by all the

solutions to Equation (5.1), under forcing f ∈ C∞c (Ω), is also satisfied by the Green’s

function, G, such that C(G(·, y)) = 0 for all y ∈ Ω, and is therefore witnessed by the

Green’s function.

5.4.2 Eigenvalue decomposition

Let L be a self-adjoint operator and consider the following eigenvalue problem:

Lv = λv, D(v,Ω) = 0, (5.9)

where v is an eigenfunction of the differential operator, L, satisfying the homogeneous

constraints with associated eigenvalue, λ > 0. The eigenfunction, v, can be expressed

using the Green’s function, G, of L as

v(x) = λ

ˆ
Ω

G(x, y)v(y) dy, x ∈ Ω,

which implies that v is also an eigenfunction of the integral operator with kernel G,

but with eigenvalue 1/λ. Consider now the eigenvalue problem associated with the

Green’s function, itself: ˆ
Ω

G(x, y)w(y) dy = µw(x), x ∈ Ω,

where µ > 0. Then, we find that (w, 1/µ) are solutions to the eigenvalue prob-

lem (5.9). Consequently, the differential operator, L, and integral operator with ker-

nel, G, share the same eigenfunctions, but possess reciprocal eigenvalues [207]. Thus,

108

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Exact Green’s function

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Learned Green’s function

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Exact Green’s function

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Learned Green’s function

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(a)

(b)

Figure 5.9: Laplace and advection-diffusion operators. Exact and learned Green’s
functions of the Laplace (a) and advection-diffusion (b) operators.

we can effectively compute the lowest eigenmodes of L from the learned Green’s

function.

We now evaluate our method’s ability to accurately recover the eigenfunctions of

the Green’s function that are associated with the largest eigenvalues, in magnitude,

from input-output pairs. We train a NN to learn the Green’s function of the Laplace

operator Lu = −d2u/dx2 on [0, 1], with homogeneous Dirichlet boundary conditions,

and numerically compute its eigenvalue decomposition. In Figure 5.9(a), we display

the learned and exact Green’s function, whose expression is given for x, y ∈ [0, 1] by

Gexact(x, y) =

{
x(1− y), if x ≤ y,

y(1− x), if y < x.

The one hundred largest eigenvalues in magnitude, along with the corresponding

first five eigenfunctions, are visualized for the exact and learned Green’s functions in

Figure 5.10. Note that the eigenvectors of the learned Green’s functions are normal-

ized and flipped to match the ones of the exact Green’s function because eigenfunc-

tions are unique up to a scalar multiple when the eigenvalues are all distinct. We find

that we can recover the largest eigenvalues and eigenfunctions of the learned Green’s

function and that the first 20 largest eigenvalues remain accurate. Therefore, the ap-

proximation error between the learned and exact Green’s functions mainly affects the

109

100 101 102
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

n
0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

x

1 2 3 4 5

100 101 102
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

n
0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

x

1 2 3 4 5

(a)

(b)

D V

Figure 5.10: Eigenvalue decomposition. The first 100 largest eigenvalues and first
five eigenfunctions of the exact (a) and learned (b) Green’s functions of the Laplace
operator. The eigenvalues are represented in the left panels, while the right panels
illustrate the first five eigenfunctions of the Green’s function.

110

smallest eigenvalues. This is an essential feature of our method since the dominant

eigenmodes of the differential operator L are associated with the largest eigenvalues of

the Green’s functions, which can be learned accurately. The exponential decay of the

smallest eigenvalues of the learned Green’s function in the left panel of Figure 5.10(b)

is because the rational NN is a smooth approximation to the exact Green’s function.

5.4.3 Singular value decomposition

When the Green’s function of the differentiation operator, L, is square-integrable, its

associated Hilbert–Schmidt integral operator admits a singular value decomposition

(SVD) (see Section 1.6). Then, there exist a positive sequence σ1 ≥ σ2 ≥ · · · > 0,

and two orthonormal bases, {φj} and {ψj}, of L2(Ω) such that

u(x) =

ˆ
Ω

G(x, y)f(y) dy+ uhom(x) =
∞∑

j=1
σj>0

σj〈φj, f〉ψj(x) + uhom(x), x ∈ Ω, (5.10)

where u is the solution to Equation (5.1) with forcing term f , and 〈·, ·〉 denotes the

inner product in L2(Ω). Therefore, the action of the solution operator f 7→ u can be

approximated using the SVD of the integral operator. Similarly to Section 5.4.2 with

the eigenvalue decomposition, the dominant terms in the expansion of Equation (5.10)

are associated with the largest singular values of the integral operator.

We now show that one can accurately recover the first singular values and singular

vectors from the Green’s function learned by a rational NN. We train a rational NN

to learn the Green’s function of an advection-diffusion operator L on Ω = [0, 1] with

Dirichlet boundary conditions, defined as

Lu =
1

4

d2u

dx2
+
du

dx
+ u, u(0) = 1, u(1) = −2. (5.11)

The learned Green’s function is illustrated in Figure 5.9(a), next to the exact Green’s

function given by:

Gexact(x, y) =

{
4x(y − 1) exp(−2(x− y)), if x ≤ y,

(x− 1)y, if y < x,

for x, y ∈ [0, 1]. In Figure 5.11, we display the first five left and right singular vectors

and the singular values of the exact and learned Green’s functions. We observe

that the first fifteen singular values of the learned Green’s functions are accurate.

This leads us to conclude that our method enables the construction of a low-rank

representation of the solution operator associated with the differential operator, L,

and allows us to compute and analyze its dominant modes.

111

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

x

1 2 3 4 5

100 101 102
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

n
0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

y

1 2 3 4 5

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

x

1 2 3 4 5

100 101 102
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

n
0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

y

1 2 3 4 5

(a)

(b)

U Σ V

Figure 5.11: Singular value decomposition. Singular value decomposition of the exact
(a) and learned (b) Green’s functions of the advection-diffusion operator defined by
Equation (5.11). The left and right panels, respectively, show the first five left and
right singular vectors, {φ}5

n=1 and {ψ}5
n=1, of the exact and learned Green’s functions.

The singular values of the Green’s functions are plotted in the middle panel.

112

5.4.4 Schrödinger equation with double-well potential

We highlight the ability of our DL method to learn physical features of an underlying

system by considering the steady-state one-dimensional Schrödinger operator on Ω =

[−3, 3]:

L(u) = −h2d
2u

dx2
+ V (x)u, u(−3) = u(3) = 0,

with double-well potential V (x) = x2 +1.5 exp(−(4x)4) and h = 0.1 [222]. The poten-

tial V (x) is illustrated in Figure 5.12, along with the Green’s function learned by the

rational NN from pairs of forcing terms and the system’s responses. First, the shape

of the well potential can be visualized along the diagonal of the Green’s function

in Figure 5.12(b). Next, in Figure 5.12, we compute the first ten eigenstates of the

Schrödinger operator in Chebfun [56] and plot them using a similar representation

as [222, Figure 6.9]. Similarly to Section 5.4.2, we compute the eigenvalue decom-

position of the Green’s function learned by a rational NN and plot the eigenstates

(shifted by the corresponding eigenvalues) in Figure 5.12. Note that the eigenval-

ues of the operator and the Green’s functions are reversed. We observe a perfect

agreement between the first ten exact and learned eigenstates. These energy levels

capture information about the states of atomic particles modeled by the Schrödinger

equation.

5.4.5 Singularity location and type

The input-output function of a rational NN is a high-degree rational function, which

means that it has poles (isolated points for which it is infinite). In rational function

approximation theory, it is known that the poles of a near-optimal rational approxi-

mant tend to cluster near a function’s singularities [223]. The clustering of the poles

near the singularity is needed for the rational approximant to have excellent global

approximation [205, 206]. Moreover, the type of clustering (algebraic, exponential,

beveled exponential) can reveal the type of singularity (square-root, blow-up, non-

differentiable) at that location. This feature of rational approximants is used in other

settings [20].

We show that the rational NNs also cluster poles in a way that identifies its

location and type. In Figure 5.13(c), we display the complex argument of the trained

rational NN for the Green’s function of a second-order differential operator with a

jump condition, defined on Ω = [0, 1] as

Lu = 0.2
d2u

dx2
+
du

dx
, u(0) = u(1) = 0, u(0.7−) = 2, u(0.7+) = 1.

113

−3.0 −1.5 0.0 1.5 3.0

x

0

2

4

6

8

10

−3.0 −1.5 0.0 1.5 3.0

x

−3.0

−1.5

0.0

1.5

3.0

y

0

2

4

6

8

10

−1.5 0.0 1.5

x

0.0

0.5

1.0

1.5

2.0

2.5
Exact eigenstates

−1.5 0.0 1.5

x

0.0

0.5

1.0

1.5

2.0

2.5
Learned eigenstates

(a) (b)

(c) (d)

Figure 5.12: Schrödinger equation. (a) Double well potential V (x) = x2 +
1.5 exp(−(4x)4). (n) Learned Green’s function of the Schrödinger equation with
potential V (x). (c) First ten exact eigenstates computed numerically from the
Schrödinger operator and (d) eigenstates computed from the learned Green’s function
displayed in (b). The eigenfunctions are shifted by an amount corresponding to the
eigenvalue. The double-well potential is shown as a black curve.

114

These diagrams are known as phase portraits and are useful for illustrating complex

analysis [235]. A pole of the rational function can be identified as a point in the

complex plane for which the full colormap goes around that point in a clockwise

fashion. In particular, in Figure 5.13(c), we see that the poles of the rational function

cluster quite closely to the real-line (where Im(z) = 0) at x = 0.7. If the clustering is

examined more closely, it may be possible to reveal that the singularity in the Green’s

function at x = 0.7 is due to a jump condition.

0.00 0.25 0.50 0.75 1.00

x

0.00

0.25

0.50

0.75

1.00

y

−0.6

−0.4

−0.2

0.0

0.00 0.25 0.50 0.75 1.00

x

0.0

0.5

1.0

1.5

2.0

Exact

Learned

0.00 0.25 0.50 0.75 1.00

Re(z)

−0.50

−0.25

0.00

0.25

0.50

I
m

(z
)

0

π/2

π

3π/2

2π(a) (b) (c)

Figure 5.13: Singularity location. (a) Learned Green’s function of a second-order
differential operator with a jump condition at x = 0.7. Homogeneous solution of the
operator with jump condition (b) and argument of the rational NN representing the
homogeneous solution in the complex plane (c).

Rational NNs are also important for resolving Green’s function with boundary

layers as the NN can resolve the boundary layer by clustering its poles in the complex

plane. In Figure 5.14, we see a learned Green’s function of a differential equation

with a boundary layer at x = 0 with ν = 10−2:

Lu = −ν d
2u

dx2
− du

dx
, u(0) = u(1) = 0, Ω = [0, 1].

The analytical expression for the Green’s function is given by the following equation:

Gexact(x, y) =

{
1

e1/ν−1
(1− e−xν)

(
e1/ν − ey/ν

)
, if x ≤ y,

1
e1/ν−1

(
1− e(1−x)/ν

) (
1− ey/ν

)
, if y < x,

While the Green’s function is not smooth, our rational NN still resolves it with

relatively good accuracy, as shown by the sharp interface along the diagonal.

5.5 Viscous shock and multiphysics examples

In this section, we focus on two physical models and analyse the Green’s functions

discovered by our deep learning approach.

115

0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

−0.00010

−0.00005

0.00000

0.00005

0.00010

Exact

Learned

(a) (b)

Figure 5.14: Boundary layer. Learned Green’s function (a) and homogeneous solution
(b) to a differential equation with a boundary layer around x = 0.

5.5.1 Viscous shock

As a first example, we consider a second-order differential operator having suitable

variable coefficients to model a viscous shock at x = 0 [122]:

Lu = 10−3d
2u

dx2
+ 2x

du

dx
, u(−1) = −1, u(1) = 1.

The system’s responses are obtained by solving the PDE, with Dirichlet boundary

conditions, using a spectral numerical solver for each of the N = 100 random forc-

ing terms, sampled from a GP having a squared-exponential covariance kernel [32].

The learned Green’s function is displayed in Figure 5.15(a) and satisfies the following

symmetry relation: G(x, y) = G(−x,−y), indicating the presence of a reflective sym-

metry group within the underlying PDE. Indeed, if u is a solution to Lu = f with

homogeneous boundary conditions, then u(−x) is a solution to Lv = f(−x). We

also observe in Figure 5.15(b) and (c) that the homogeneous solution is accurately

captured and that the poles of the homogeneous rational NN cluster near the real axis

around x = 0: the location of the singularity induced by the shock (cf. Section 5.4.5).

Next, we reproduce the same viscous shock numerical experiment, except that this

time we remove measurements of the system’s response from the training dataset in

the interval [−0.2, 0.2]: adjacent to the shock front. By comparing Figure 5.15(d)-(f)

and Figure 5.15(a)-(c), we find that the Green’s function and homogeneous solution,

learned by the rational NNs, may not be affected in the region outside of the in-

terval with missing data. In some cases, the NNs can still accurately capture the

main features of the Green’s function and homogeneous solution in the region lacking

measurements. The robustness of our method to noise perturbation and corrupted

or missing data is of significant interest and promising for real applications with

experimental data.

116

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

Green’s function

−8

−6

−4

−2

0

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

Homogeneous solution

Exact

Learned

−1.0 −0.5 0.0 0.5 1.0

Re(z)

−1.0

−0.5

0.0

0.5

1.0

I
m

(z
)

Phase portrait

0

π/2

π

3π/2

2π

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

−8

−6

−4

−2

0

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0
Exact

Learned

−1.0 −0.5 0.0 0.5 1.0

Re(z)

−1.0

−0.5

0.0

0.5

1.0

I
m

(z
)

0

π/2

π

3π/2

2π

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

−1.0 −0.5 0.0 0.5 1.0

x

−1

0

1

2
Exact

Learned

−1.0 −0.5 0.0 0.5 1.0

Re(z)

−1.0

−0.5

0.0

0.5

1.0

I
m

(z
)

0

π/2

π

3π/2

2π

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.15: Green’s functions learned by rational neural networks. (a) Green’s
function of a differential operator with a viscous shock at x = 0, learned by a rational
NN. (b) Learned and exact (computed by a classical spectral method) homogeneous
solution to the differential equation with zero forcing term. (c) Phase portrait of the
homogeneous rational NN evaluated on the complex plane. (d)-(f) Similar to (a)-(c),
but without any system’s response measurements in x ∈ [−0.2, 0.2] (see vertical black
lines) near the shock. (g) Learned Green’s function and homogeneous solution (h) of
an advection-diffusion operator with advection occurring for x ≥ 0. (i) Phase portrait
of the homogeneous NN on the complex plane.

117

5.5.2 Advection-diffusion operator

We next apply our DL method to discover the Green’s function and homogeneous

solution of an advection-diffusion operator, where the advection is dominant only

within the right half of the domain:

Lu = 0.1
d2u

dx2
+ I(x≥0)

du

dx
, u(−1) = 2, u(1) = −1,

on Ω = [−1, 1]. Here, I(x≥0) denotes the characteristic function on x ≥ 0. The result-

ing equation is diffusive on the left half of the domain, while the advection is turned

on for x ≥ 0. The output of the Green’s function NN is plotted in Figure 5.15(g),

where we observe the disparate spatial behaviors of the dominant physical mecha-

nisms. This can be recognized when observing the restriction of the Green’s function

to the subdomain [−1, 0]× [−1, 0], where the observed solution is reminiscent of the

Green’s function for the Laplacian; thus indicating that the PDE is diffusive on the

left half of the domain. Similarly, the restriction of the learned Green’s function to

[0, 1]× [0, 1] is characteristic of advection.

In Figure 5.15(h) and (i), we display the homogeneous solution NN, along with the

phase of the rational NN, evaluated on the complex plane. The agreement between

the exact and learned homogeneous solution illustrates the ability of the DL method

to accurately capture the behavior of a system within “multiphysics” contexts. The

choice of rational NNs is crucial here: to deepen our understanding of the system,

as the poles of the homogeneous rational NN characterize the location and type

of singularities in the homogeneous solution. Here the change in behavior of the

differential operator from diffusion to advection is delineated by the location of the

poles of the rational NN.

5.6 Two-dimensional operators and systems

Our deep learning technique for learning Green’s functions generalizes well in two

dimensions and for systems of linear partial differential equations as we will see in

this section.

5.6.1 Differential operators in two dimensions

We demonstrate the ability of our method to learn Green’s functions associated with

two-dimensional operators by repeating the numerical experiment of [126], which

118

consists of learning the Green’s function of the Poisson operator on the unit disk

Ω = D(0, 1), with homogeneous Dirichlet boundary conditions:

Lu = ∇2u, u|∂D(0,1) = 0.

This experiment is a good benchmark for PDE learning techniques as the analytical

expression of the Green’s function in Cartesian coordinates can be expressed as [157]:

Gexact(x, y, x̃, ỹ) =
1

4π
ln

(
(x− x̃)2 + (y − ỹ)2

(xỹ − x̃y)2 + (xx̃+ yỹ − 1)2

)
,

where (x, y), (x̃, ỹ) ∈ D(0, 1).

The training dataset for this numerical example is created as follows. First, we

generate N = 100 random forcing terms using the command randnfundisk of the

Chebfun software [56, 66, 237] with a frequency parameter of λ = 0.2, and then solve

the Poisson equation, with corresponding right-hand sides, using a spectral method.

Then, the forcing terms and system responses (i.e. solutions) are sampled at the Nu =

Nf = 673 nodes of a disk mesh, generated using the Gmsh software [70]. Moreover,

the mesh structure ensures that the repartition of the sample points is approximately

uniform in the disk (Figure 5.16(c)) and that the boundary is accurately captured.

The Green’s function and homogeneous rational NNs have four hidden layers and

width of 50 neurons, with 4 and 2 input nodes, respectively, as the Green’s function

is defined on Ω × Ω. The two-dimensional integrals of the loss function (5.4) are

discretized using uniform quadrature weights: wi = π/Nf for 1 ≤ i ≤ Nf . In Fig-

ure 5.16(d)-(g), we visualize four two-dimensional slices of the learned Green’s func-

tion together with two slices of the exact Green’s function in panels (a) and (b). Be-

cause of the symmetry in the Green’s function, due to the self-adjointness of L and the

boundary constraints, the exact Green’s function satisfies G(x, y, 0, 0) = G(0, 0, x, y)

for (x, y) ∈ D(0, 1). Therefore, we compare Figure 5.16(a) to Figure 5.16(d)-(e),

and similarly for Figure 5.16(b) and Figure 5.16(f)-(g). We observe that the Green’s

function is accurately learned by the rational NN, which preserves low approximation

errors near the singularity at (x, y) = (x̃, ỹ), contrary to the neural operator tech-

nique [126]. The visual artifacts present in Figure 5.16(e)-(g) are likely due to the low

spatial discretization of the training data. One could increase the number of spatial

measurements or use a high-order quadrature rule.

119

−1 0 1

x

−1

0

1

y

Exact G(x, y, 0, 0)

−0.8

−0.6

−0.4

−0.2

0.0

−1 0 1

x

−1

0

1

y

Learned G(x, y, 0, 0)

−0.8

−0.6

−0.4

−0.2

0.0

−1 0 1

x̃

−1

0

1

ỹ

Learned G(0, 0, x̃, ỹ)

−0.8

−0.6

−0.4

−0.2

0.0

−1 0 1

x

−1

0

1

x̃

Exact G(x, 0, x̃, 0)

−0.8

−0.6

−0.4

−0.2

0.0

−1 0 1

x

−1

0

1

x̃

Learned G(x, 0, x̃, 0)

−0.8

−0.6

−0.4

−0.2

0.0

−1 0 1

y

−1

0

1

ỹ

Learned G(0, y, 0, ỹ)

−0.8

−0.6

−0.4

−0.2

0.0

−1 0 1

x

−1

0

1

y

Exact hom. solution

−0.010

−0.005

0.000

0.005

0.010

−1 0 1

x

−1

0

1

y

Learned hom. solution

−0.010

−0.005

0.000

0.005

0.010

(a) (d) (e)

(b) (f) (g)

(c) (h)

Figure 5.16: Poisson equation on the disk. Exact (a)-(b) and learned (d)-(f) Green’s
function of the Poisson operator on the unit disk, evaluated at two-dimensional slices.
The colorbar is scaled to remove the singularity of the Green’s function at (x, y) =
(x̃, ỹ). (c) Exact homogeneous solution with sample points for the training functions
and (h) homogeneous solution learned by the rational NN.

120

5.6.2 System of differential equations

The method extends also naturally to systems of differential equations. Let f =[
f 1 · · · fnf

]>
: Ω→ Rnf be a vector of nf forcing terms and u =

[
u1 · · · unu

]>
:

Ω→ Rnu be a vector of nu system responses such that

L

u1

...
unu

 =

f 1

...
fnf

 , D

u1

...
unu

 ,Ω

 =

g1

...
gnu

 . (5.12)

The solution to Equation (5.12) with f = 0 is called the homogeneous solution and de-

noted by uhom =
[
u1

hom · · · unuhom

]>
. Similarly to the scalar case, we can express the

relation between the system’s response and the forcing term using Green’s functions

and an integral formulation as

ui(x) =

nf∑

j=1

ˆ
Ω

Gi,j(x, y)f j(y) dy + uihom(x), x ∈ Ω, (5.13)

for 1 ≤ i ≤ nu. Here, Gi,j : Ω × Ω → R ∪ {±∞} is a component of the Green’s

matrix for 1 ≤ i ≤ nu and 1 ≤ j ≤ nf , which consists of a nu × nf matrix of Green’s

functions:

G(x, y) =

G1,1(x, y) · · · G1,nf (x, y)

...
. . .

...
Gnu,1(x, y) · · · Gnu,nf (x, y)

 , x, y ∈ Ω.

Following Equation (5.13), we remark that the differential equations decouple, and

therefore we can learn each row of the Green’s function matrix independently. That

is, for each row 1 ≤ i ≤ nu, we train nf NNs to approximate the components

Gi,1, . . . , Gi,nf , and one NN to approximate the ith component of the homogeneous

solution, uihom.

As an example, we consider the following system of ordinary differential equations

(ODEs) on Ω = [−1, 1]:

d2u

dx2
− v = f 1, (5.14a)

−d2v

dx2
+ xu = f 2, (5.14b)

with boundary conditions: u(−1) = 1, u(1) = −1, v(−1) = v(1) = −2. In Fig-

ure 5.17, we display the different components of the Green’s matrix and the exact

solution (computed by a spectral method), along with the learned homogeneous so-

lutions. We find that the Green’s function matrix provides insight on the coupling

121

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

G1,1

−0.4

−0.2

0.0

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

G1,2

−0.15

−0.10

−0.05

0.00

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

G2,1

−0.02

0.00

0.02

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

G2,2

0.0

0.2

0.4

−1.0 −0.5 0.0 0.5 1.0

x

−1

0

1

uhom

Exact

Learned

−1.0 −0.5 0.0 0.5 1.0

x

−2.00

−1.95

−1.90

vhom

Exact

Learned

(a) (b)

Figure 5.17: Green’s matrix of system of ODEs. (a) Matrix of Green’s function
learned from the system of ordinary differential equations (5.14). (b) Homogeneous
solutions associated with the system of ODEs.

between the two system variables, u and v, as shown by the diagonal components

G1,2 and G2,1 of the Green’s matrix in Figure 5.17(a). Similarly, the components G1,1

and G2,2 are characteristic of diffusion operators, which appear in Equation (5.14).

In this case, the Green’s matrix can be understood as a 2 × 2 block inverse [137] of

the linear operator, L.

5.7 Nonlinear and vector-valued equations

We can also discover Green’s functions from forcing terms and concomitant solu-

tions to nonlinear differential equations possessing semi-dominant linearity as well as

Green’s functions associated with vector-valued equations.

5.7.1 Linearized models of nonlinear operators

We demonstrate that our DL method can be used to linearize and extract Green’s

functions from nonlinear boundary value problems of the form

Lu+ εN (u) = f, D(u,Ω) = g,

where L denotes a linear operator, N is a nonlinear operator, and ε < 1 is a small

parameter controlling the nonlinearity. We demonstrate this ability on the three

122

nonlinear boundary value problems, dominated by the linearity, used in [71]. In

Figure 5.18(a)-(c), we visualize the Green’s function NNs of three operators with

cubic nonlinearity considered in [71].

0 π 2π

x

0

π

2π

y

−0.50

−0.25

0.00

0 π 2π

x

0

π

2π

y

−0.24

−0.12

0.00

0 π 2π

x

0

π

2π

y

0.00

0.07

0.14

0.0 0.5 1.0

x

0.0

0.5

1.0

y

G1,1

−5

10

25

0.0 0.5 1.0

x

0.0

0.5

1.0

y

G1,2

−6

0

6

0.0 0.5 1.0

x

0.0

0.5

1.0

y

G2,1

−6

0

6

0.0 0.5 1.0

x

0.0

0.5

1.0

y

G2,2

−5

10

25

0.0 0.5 1.0

x

0.0

0.5

1.0

y

Exact velocity

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0

x

0.0

0.5

1.0

y

Learned velocity

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b) (c)

(d) (e)

(f)

Figure 5.18: Linearized models and Stokes flow. (a)-(c) Green’s functions of three dif-
ferential operators: Helmholtz, Sturm–Liouville, and biharmonic, with cubic nonlin-
earity. (d) Matrix of Green’s functions of a two-dimensional Stokes flow in a lid-driven
cavity, evaluated at the two-dimensional slice (x, y, 0.5, 0.5). Velocity magnitude and
streamlines of the exact (e) and learned (f) homogeneous solution to the Stokes equa-
tions with zero applied body force.

First, Figure 5.18(a) illustrates the learned Green’s function of a cubic Helmholtz

system on Ω = [0, 2π] with homogeneous Dirichlet boundary conditions:

d2u

dx2
+ αu+ εu3 = f(x),

where α = −1 and ε = 0.4. Next, in Figure 5.18(b), we consider a nonlinear Sturm–

Liouville operator of the form:

[−p(x)u′]′ + q(x)(u+ εu3) = f(x), u(0) = u(2π) = 0,

123

with p(x) = 0.4 sin(x) − 3, q(x) = 0.6 sin(x) − 2, and ε = 0.4. The notation u′

denotes the derivative with respect to x, du/dx. Finally, the example represented in

Figure 5.18(c) is the learned Green’s function of a nonlinear biharmonic operator:

[−p(x)u′′]′′ + q(u+ εu3) = f(x), u(0) = u(2π) = 0,

where p = −4, q = 2, and ε = 0.4.

The nonlinearity does not prevent our method from discovering a Green’s function

of an approximate linear model, from which one can understand features such as sym-

metry and boundary conditions. This property is crucial for tackling time-dependent

problems, where the present technique may be extended and applied to uncover linear

propagators.

5.7.2 Lid-driven cavity problem

Finally, we consider a classical benchmark in fluid dynamics consisting of Stokes flow

in a two-dimensional lid-driven cavity problem [62]. We aim to discover the matrix of

Green’s functions of the Stokes flow [22], which is modelled by the following system

of equations on the domain Ω = [0, 1]2,

µ∇2u−∇p = f ,

∇ · u = 0.

Here, u = (ux, uy) is the fluid velocity, p is the pressure, f = (fx, fy) is an applied

body force (i.e. a forcing term), and µ = 1/100 is the dynamic viscosity. The fluid

velocity satisfies no-slip boundary conditions on the walls, except on the top wall

where u = (1, 0). We first generate one hundred forcing terms, f , with two smooth

random components, in the Chebfun software [56, 66] using the randnfun2 command

with wavelength parameter λ = 0.1. The Stokes equations are then discretized with

Taylor–Hood finite elements [23, 212] for the velocity and pressure on a mesh with 96×
96 square cells and subsequently solved using the Firedrake finite element library [188].

We illustrate in Figure 5.19 an example of applied body force and velocity solution

obtained by solving the system of PDEs. We then create the training dataset for the

NNs by sampling the applied body forces and corresponding velocity solutions, u, on

a regular 25× 25 grid.

In this context, the relation between the system’s responses and the forcing terms

can be expressed using a Green’s matrix, which consists of a two-by-two matrix of

Green’s functions and whose components reveal features of the underlying system

124

0.0 0.5 1.0

x

0.0

0.5

1.0

y

0

1

2

3

4

0.0 0.5 1.0

x

0.0

0.5

1.0

y

0.00

0.25

0.50

0.75

1.00(a) (b)

Figure 5.19: Training functions for Stokes flow. (a) Magnitude of a random applied
body force used as a forcing term in the Stokes equations. (b) Velocity magnitude
and streamlines of the system’s response.

such as symmetry and coupling (Figure 5.18(d) and Section 5.6.2). The four Green’s

functions and two homogeneous NNs have the same architecture as the one described

in Section 5.2.2, except that they have respectively four and two input nodes (instead

of two and one) due to the current spatial dimension. Figure 5.18(e) and (f) illus-

trate that the homogeneous solution to the Stokes equation is accurately captured

by the homogeneous rational NN, despite the corner singularities and coarse mea-

surement grid. The four components of the Green’s matrix for the Stokes flow are

evaluated on the two-dimensional slice (x, y, 0.5, 0.5), for x, y ∈ [0, 1], and displayed

in Figure 5.18(d). This figure allows us to visualize the system’s response to a point

force, f = (fx, fy), located at (0.5, 0.5), with the system’s response being denoted as

u = (ux, uy), where

ux(x, y) = G1,1(x, y, 0.5, 0.5)fx +G1,2(x, y, 0.5, 0.5)fy,

uy(x, y) = G2,1(x, y, 0.5, 0.5)fx +G2,2(x, y, 0.5, 0.5)fy,

for x, y ∈ [0, 1]. The visualization of the G2,2 component in Figure 5.18(d), cor-

responding to the system’s response to a unitary vertical point force f = (0, 1) is

reminiscent of [61, Figure 1].

Finally, we evaluate the components of the Green’s matrix at three other two-

dimensional slices: (x, 0.5, x̃, 0.5), (0.5, y, 0.5, ỹ), (0.5, 0.5, x̃, ỹ) and display them re-

spectively in Figures 5.20 to 5.22. These figures illustrate the different symme-

tries of the Green’s matrix, which are captured by the rational NNs. As an ex-

ample, we see in Figures 5.20 and 5.21 that G1,1(x, 0.5, x̃, 0.5) = G2,2(0.5, x, 0.5, x̃)

and G2,2(x, 0.5, x̃, 0.5) = G1,1(0.5, x, 0.5, x̃), for x, x̃ ∈ [0, 1]. Similarly, we find

in Figure 5.22 that G1,1(0.5, 0.5, x̃, ỹ) = G1,1(0.5, 0.5, ỹ, x̃) and G1,2(0.5, 0.5, x̃, ỹ) =

G2,1(0.5, 0.5, x̃, ỹ), for x̃, ỹ ∈ [0, 1]. The G1,2 and G2,1 components of the Green’s

125

0.0 0.5 1.0

x

0.0

0.5

1.0

x̃

G1,1(x, 0.5, x̃, 0.5)

−5

10

25

0.0 0.5 1.0

x

0.0

0.5

1.0

x̃

G1,2(x, 0.5, x̃, 0.5)

−1

0

1

0.0 0.5 1.0

x

0.0

0.5

1.0

x̃

G2,1(x, 0.5, x̃, 0.5)

−1

0

1

0.0 0.5 1.0

x

0.0

0.5

1.0

x̃

G2,2(x, 0.5, x̃, 0.5)

−5

10

25

Figure 5.20: 2nd Green’s matrix slice of Stokes flow. The four components of the
Green’s matrix learned by a rational neural network evaluated at the two-dimensional
slice (x, 0.5, x̃, 0.5).

0.0 0.5 1.0

y

0.0

0.5

1.0

ỹ

G1,1(0.5, y, 0.5, ỹ)

−5

10

25

0.0 0.5 1.0

y

0.0

0.5

1.0

ỹ

G1,2(0.5, y, 0.5, ỹ)

−1

0

1

0.0 0.5 1.0

y

0.0

0.5

1.0

ỹ

G2,1(0.5, y, 0.5, ỹ)

−1

0

1

0.0 0.5 1.0

y

0.0

0.5

1.0

ỹ

G2,2(0.5, y, 0.5, ỹ)

−5

10

25

Figure 5.21: 3rd Green’s matrix slice of Stokes flow. The four components of the
Green’s matrix learned by a rational neural network evaluated at the two-dimensional
slice (0.5, y, 0.5, ỹ).

126

0.0 0.5 1.0

x̃

0.0

0.5

1.0

ỹ

G1,1(0.5, 0.5, x̃, ỹ)

−5

10

25

0.0 0.5 1.0

x̃

0.0

0.5

1.0

ỹ

G1,2(0.5, 0.5, x̃, ỹ)

−6

0

6

0.0 0.5 1.0

x̃

0.0

0.5

1.0

ỹ

G2,1(0.5, 0.5, x̃, ỹ)

−6

0

6

0.0 0.5 1.0

x̃

0.0

0.5

1.0

ỹ

G2,2(0.5, 0.5, x̃, ỹ)

−5

10

25

Figure 5.22: 4th Green’s matrix slice of Stokes flow. The four components of the
Green’s matrix learned by a rational neural network evaluated at the two-dimensional
slice (0.5, 0.5, x̃, ỹ).

matrix in Figure 5.20 highlight a singularity along the diagonal (x, 0.5, x, 0.5) for

x ∈ [0, 1]. However, this singularity does not prevent the rational NNs from accurately

learning the different components of the Green’s matrix displayed in Figure 5.18(d)

and Figures 5.20 to 5.22.

5.8 Time-dependent equations

In this section, we show that one can use a time-stepping scheme to discretize a time-

dependent PDE and learn the Green’s function associated with the time-propagator

operator τ : un → un+1, where un is the solution of the PDE at time t = n∆t for

a fixed time step ∆t. As an example, we consider the time-dependent Schrödinger

equation with a harmonic trap potential V (x) = x2 given by

i
∂ψ(x, t)

∂t
= −1

2

∂2ψ(x, t)

∂x2
+ x2ψ(x, t), x ∈ [−3, 3], (5.15)

with homogeneous Dirichlet boundary conditions. We use a Crank–Nicolson time-

stepping scheme with time step ∆t = 2 × 10−2 to discretize Equation (5.15) in time

and obtain

i
ψn+1 − ψn

∆t
=

1

2

[
−1

2

d2ψn+1

dx2
+ x2ψn+1 −

1

2

d2ψn
dx2

+ x2ψn

]
.

127

Our training dataset consists of one hundred random initial forcing functions ψn at

time t and associated response ψn+1 at time t+ ∆t. The functions ψn have real and

imaginary parts sampled from a Gaussian process with periodic kernel and length-

scale parameter λ = 0.5 (see Section 5.2.1), and multiplied by the Gaussian damping

function g(x) = e−x
6/20 to ensure that the functions decay to zero before reaching

the domain boundaries. We then train a rational neural network to learn the Green’s

function G associated with the time-propagator operator such that

τ(ψn)(x) =

ˆ 3

−3

G(x, y)ψn(y) dy = ψn+1(x), x ∈ [−3, 3].

Note that since ψ takes complex values, we in fact split Equation (5.15) into a system

of equations for the real and imaginary parts of ψ, and learn the Green’s matrix

associated with the system (see Section 5.6.2).

−3.0 −1.5 0.0 1.5 3.0

x

−3.0

−1.5

0.0

1.5

3.0

y

G1,1

0

1

2

3

−3.0 −1.5 0.0 1.5 3.0

x

−3.0

−1.5

0.0

1.5

3.0

y

G1,2

−4

0

4

−3.0 −1.5 0.0 1.5 3.0

x

−3.0

−1.5

0.0

1.5

3.0

y

G2,1

−4

0

4

−3.0 −1.5 0.0 1.5 3.0

x

−3.0

−1.5

0.0

1.5

3.0

y

G2,2

0

1

2

3

−3.0 −1.5 0.0 1.5 3.0

x

−2

−1

0

1

2
u

Exact

Predicted

−3.0 −1.5 0.0 1.5 3.0

x

−2

−1

0

1

2
v

Exact

Predicted

(a) (b)

Figure 5.23: Green’s matrix of the time-dependent Schrödinger equation. (a) The
four components of the Green’s matrix for the time propagator operator of the time-
dependent Schrödinger equation discretized using a time-stepping scheme. (b) Real
and imaginary components of the worst case prediction of the solution at the next
time step.

We report the Green’s matrix of the time-propagator operator for the Schrödinger

equation in Figure 5.23(a) and observe that the four components are dominated by

the diagonal, which is expected for a small time-step. Additionally, we evaluate the

accuracy of the learned Green’s functions by generating a testing dataset with one

hundred initial functions ψn, sampled from the same distribution, and associated

solution ψn+1 at time t + ∆t. We then compute the average (over the one hundred

128

test cases) relative error in the L2 norm between the exact solution ψn+1 and the one

predicted using the learned Green’s functions, ψpred
n+1 , as

relative error = ‖ψn+1 − ψpred
n+1‖L2([−3,3])/‖ψn+1‖L2([−3,3]),

where ψpred
n+1 is defined as

ψpred
n+1 (x) =

ˆ 3

−3

G(x, y)ψn(y) dy, x ∈ [−3, 3].

Finally, we obtain an average relative error of 1.3% with standard deviation 0.2%

across the 100 test cases, confirming the good accuracy of our method. We display

the worst-case prediction of the solution ψn+1 in Figure 5.23(b).

129

Conclusions

This thesis derived theoretical results and a practical deep learning algorithm for

approximating Green’s functions associated with linear partial differential equations

(PDEs) from pairs of forcing terms and solutions to a PDE.

By generalizing the randomized singular value decomposition (SVD) to Hilbert–

Schmidt (HS) operators in Chapter 2, we showed that one can rigorously learn the

Green’s function associated with an elliptic PDE in three dimensions. We derived a

learning rate associated with elliptic partial differential operators in three dimensions

and bounded the number of input-output training pairs required to recover a Green’s

function approximately with high probability. The random forcing functions are

sampled from a Gaussian process (GP) with mean zero and are characterized by the

associated covariance kernel. One practical outcome of this work is a measure for the

quality of covariance kernels, which may be used to design efficient GP kernels for

PDE learning tasks.

We then explored the practical extensions of the randomized SVD to Gaussian

random vectors with correlated entries (i.e., nonstandard covariance matrices) and

HS operators in Chapter 3. This chapter motivates new computational and algorith-

mic approaches for constructing the covariance kernel based on prior information to

compute a low-rank approximation of matrices and impose properties on the learned

matrix and random functions from the GP. We performed numerical experiments

to demonstrate that covariance matrices with prior knowledge can outperform the

standard identity matrix used in the literature and lead to near-optimal approxima-

tion errors. In addition, we proposed a covariance kernel based on weighted Jacobi

polynomials, which allows the control of the smoothness of the random functions

generated and may find practical applications in PDE learning [27, 30] as it imposes

prior knowledge of Dirichlet boundary conditions. The algorithm presented in this

chapter is limited to matrices and HS operators and does not extend to unbounded

operators such as differential operators. Additionally, the theoretical bounds only of-

fer probabilistic guarantees for Gaussian inputs, while sub-Gaussian distributions [98]

130

of the inputs would be closer to realistic application settings.

Motivated by the theoretical results obtained in Chapters 2 and 3, we wanted

to design an efficient deep learning architecture for learning Green’s functions. In

Chapter 4, we investigated rational neural networks, which are neural networks with

smooth trainable activation functions based on rational functions. We proved theo-

retical statements quantifying the advantages of rational neural networks over ReLU

networks. In particular, we remarked that a composition of low-degree rational func-

tions has a good approximation power but a relatively small number of trainable

parameters. Therefore, we showed that rational neural networks require fewer nodes

and exponentially smaller depth than ReLU networks to approximate smooth func-

tions to within a certain accuracy. This improved approximation power has prac-

tical consequences for large neural networks, given that a deep neural network is

computationally expensive to train due to expensive gradient evaluations and slower

convergence. The experiments conducted in the chapter demonstrate the potential

applications of these rational networks for solving PDEs and generative adversar-

ial networks. The practical implementation of rational networks is straightforward

in the TensorFlow framework and consists of replacing the activation functions by

trainable rational functions. The main benefits of rational NNs are their fast approx-

imation power, the trainability of the activation parameters, and the smoothness of

the activation function outside poles.

Our primary objective in Chapter 5 was to uncover mechanistic understanding

from input-output data using a human-understandable representation of an underly-

ing hidden differential operator. This representation took the form of a rational NN

for the Green’s function. We extensively described all the physical features of the

operator that can be extracted and discovered from the learned Green’s function and

homogeneous solutions, such as linear conservation laws, symmetries, shock front and

singularity locations, boundary conditions, and dominant modes. Our deep learning

method for learning Green’s functions and extracting human-understandable prop-

erties of partial differential equations benefits from the adaptivity of rational neural

networks and its support for qualitative feature detection and interpretation. We suc-

cessfully tested our approach with noisy and sparse measurements as training data in

one and two dimensions. The design of our network architecture, and the covariance

kernel used to generate the system forcings, are guided by rigorous theoretical state-

ments, obtained in Chapters 2 to 4, that offer performance guarantees. This shows

that our proposed deep learning method may be used to discover new mechanistic

understanding with machine learning.

131

The deep learning method naturally extends to the case of three spatial dimensions

but these systems are more challenging due to the GPU memory demands required

to represent the six-dimensional inputs used to train the neural network representing

the Green’s function. However, alternative optimization algorithms than the one we

used, such as mini-batch optimization [108, 125], may be employed to alleviate the

computational expense of the training procedure. While our method is demonstrated

on linear differential operators, it can be extended to nonlinear, time-dependent prob-

lems that can be linearized using an implicit-explicit time-stepping scheme [12, 171]

or an iterative method [105]. This process should allow us to learn Green’s functions

of linear time propagators and understand physical behavior in time-dependent prob-

lems from input-output data such as the time-dependent Schrödinger equation. The

numerical experiments conducted in Chapter 5 highlight that our approach can gen-

eralized to discover Green’s functions of some linearization of a nonlinear differential

operator.

There are many future research directions exploring the potential applications of

rational networks beyond PDE learning, in fields such as image classification, time

series forecasting, and generative adversarial networks. These applications already

employ nonstandard activation functions to overcome various drawbacks of ReLU.

Another exciting and promising field is the numerical solution and data-driven dis-

covery of partial differential equations with deep learning. We believe that popular

techniques such as physics-informed neural networks [184] could benefit from ratio-

nal NNs to improve the robustness and performance of PDE solvers, both from a

theoretical and practical viewpoint.

Finally, while the ideas present in Chapter 2 have been recently applied to derive

a learning rate for Green’s functions associated with parabolic PDEs [28], obtaining

theoretical results for more general classes of PDEs, such as hyperbolic, fractional, or

stochastic PDEs, remain highly challenging. Such studies are essential to understand

which mathematical models can be learned from data, obtain performance guarantees,

and, more generally, deepen our knowledge of PDE learning techniques.

132

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al., TensorFlow: A System for

Large-Scale Machine Learning, in 12th USENIX Conference on Operating Sys-

tems Design and Implementation, 2016, pp. 265–283.

[2] H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdis-

cip. Rev. Comput. Stat., 2 (2010), pp. 433–459.

[3] N. I. Achieser, Theory of Approximation, Courier Corporation, 2013.

[4] N. Ailon and B. Chazelle, Approximate nearest neighbors and the fast

Johnson–Lindenstrauss transform, in Proceedings of the Thirty-Eighth Annual

ACM Symposium on Theory of Computing, 2006, pp. 557–563.

[5] , The fast Johnson–Lindenstrauss transform and approximate nearest

neighbors, SIAM J. Comput., 39 (2009), pp. 302–322.

[6] R. Alexander and D. Giannakis, Operator-theoretic framework for fore-

casting nonlinear time series with kernel analog techniques, Physica D, 409

(2020), p. 132520.

[7] O. Alter, P. O. Brown, and D. Botstein, Singular value decomposition

for genome-wide expression data processing and modeling, Proc. Natl. Acad.

Sci. USA, 97 (2000), pp. 10101–10106.

[8] M. Anthony and P. Bartlett, Neural network learning: Theoretical foun-

dations, Cambridge University Press, 1999.

[9] G. Arfken, H. Weber, and F. E. Harris, Mathematical Methods for

Physicists, Academic Press, 7th ed., 2012.

133

[10] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein Generative Ad-

versarial Networks, in Proc. 34th International Conference on Machine Learning

(ICML), 2017, pp. 214–223.

[11] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse

problems using data-driven models, Acta Numer., 28 (2019), pp. 1–174.

[12] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-

Kutta methods for time-dependent partial differential equations, Appl. Numer.

Math., 25 (1997), pp. 151–167.

[13] J. Ballani and D. Kressner, Matrices with hierarchical low-rank structures,

in Exploiting Hidden Structure in Matrix Computations: Algorithms and Ap-

plications, Springer, 2016, pp. 161–209.

[14] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,

Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res.,

18 (2018), pp. 1–43.

[15] M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic

Boundary Value Problems, Springer-Verlag, 2008.

[16] M. Bebendorf and W. Hackbusch, Existence of H -matrix approximants

to the inverse FE-matrix of elliptic operators with L∞-coefficients, Numer.

Math., 95 (2003), pp. 1–28.

[17] B. Beckermann and A. Townsend, On the Singular Values of Matrices

with Displacement Structure, SIAM J. Matrix Anal. A., 38 (2017), pp. 1227–

1248.

[18] Y. Bengio, Practical recommendations for gradient-based training of deep ar-

chitectures, in Neural networks: Tricks of the trade, Springer, 2012, pp. 437–478.

[19] Y. Bengio, P. Simard, and P. Frasconi, Learning Long-Term Depen-

dencies with Gradient Descent is Difficult, IEEE T. Neural Netw., 5 (1994),

pp. 157–166.

[20] W. T. Beyene, Pole-clustering and rational-interpolation techniques for sim-

plifying distributed systems, IEEE T. Circuits-I, 46 (1999), pp. 1468–1472.

134

[21] K. Binder, D. M. Ceperley, J.-P. Hansen, M. Kalos, D. Landau,

D. Levesque, H. Mueller-Krumbhaar, D. Stauffer, and J.-J. Weis,

Monte Carlo Methods in Statistical Physics, Springer Science & Business Media,

2012.

[22] J. R. Blake, A note on the image system for a Stokeslet in a no-slip boundary,

Math. Proc. Camb. Philos. Soc., 70 (1971), pp. 303–310.

[23] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and

Applications, Springer, 2013.

[24] A. Bonito, A. Cohen, R. DeVore, G. Petrova, and G. Welper,

Diffusion coefficients estimation for elliptic partial differential equations, SIAM

J. Math. Anal., 49 (2017), pp. 1570–1592.

[25] W. Boukaram, G. Turkiyyah, and D. Keyes, Randomized GPU algo-

rithms for the construction of hierarchical matrices from matrix-vector opera-

tions, SIAM J. Sci. Comput., 41 (2019), pp. C339–C366.

[26] N. Boullé, NBoulle/GreenLearning - Software and datasets (version v1.0).

Zenodo. https://doi.org/10.5281/zenodo.4656020, 2021.

[27] N. Boullé, C. J. Earls, and A. Townsend, Data-driven discovery

of Green’s functions with human-understandable deep learning, Sci. Rep., 12

(2022).

[28] N. Boullé, S. Kim, T. Shi, and A. Townsend, Learning Green’s functions

associated with time-dependent partial differential equations, J. Mach. Learn.

Res., 23 (2022), pp. 1–34.

[29] N. Boullé, Y. Nakatsukasa, and A. Townsend, GitHub repository.

https://github.com/NBoulle/RationalNets/, 2020.

[30] N. Boullé, Y. Nakatsukasa, and A. Townsend, Rational neural net-

works, in Advances in Neural Information Processing Systems (NeurIPS),

vol. 33, 2020, pp. 14243–14253.

[31] N. Boullé and A. Townsend, A generalization of the randomized singular

value decomposition, in International Conference on Learning Representations

(ICLR), 2022.

135

https://doi.org/10.5281/zenodo.4656020
https://github.com/NBoulle/RationalNets/

[32] N. Boullé and A. Townsend, Learning elliptic partial differential equations

with randomized linear algebra, Found. Comput. Math., (2022).

[33] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equa-

tions, Springer Science & Business Media, 2010.

[34] S. L. Brunton, M. Budǐsić, E. Kaiser, and J. N. Kutz, Modern Koop-

man theory for dynamical systems, arXiv preprint arXiv:2102.12086, (2021).

[35] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine Learning

for Fluid Mechanics, Annu. Rev. Fluid Mech., 52 (2020), pp. 477–508.

[36] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing

equations from data by sparse identification of nonlinear dynamical systems,

Proc. Natl. Acad. Sci. USA, 113 (2016).

[37] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm

for bound constrained optimization, SIAM J. Sci. Comput., 16 (1995), pp. 1190–

1208.

[38] T. Chen and H. Chen, Universal approximation to nonlinear operators by

neural networks with arbitrary activation functions and its application to dy-

namical systems, IEEE Trans. Neur. Netw., 6 (1995), pp. 911–917.

[39] Z. Chen, F. Chen, R. Lai, X. Zhang, and C.-T. Lu, Rational Neural Net-

works for Approximating Graph Convolution Operator on Jump Discontinuities,

in IEEE International Conference on Data Mining (ICDM), 2018, pp. 59–68.

[40] X. Cheng, B. Khomtchouk, N. Matloff, and P. Mohanty, Polynomial

Regression As an Alternative to Neural Nets, arXiv preprint arXiv:1806.06850,

(2018).

[41] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis

based on the sum of observations, Ann. Math. Stat., (1952), pp. 493–507.

[42] S. Cho, H. Dong, and S. Kim, Global estimates for Green’s matrix of second

order parabolic systems with application to elliptic systems in two dimensional

domains, Potential Anal., 36 (2012), pp. 339–372.

[43] F. Chollet et al., Keras. https://keras.io, 2015.

136

https://keras.io

[44] K. L. Clarkson and D. P. Woodruff, Low-rank approximation and re-

gression in input sparsity time, J. ACM, 63 (2017), pp. 1–45.

[45] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and Accurate

Deep Network Learning by Exponential Linear Units (ELUs), arXiv preprint

arXiv:1511.07289, (2015).

[46] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math.

Control Signals Syst., 2 (1989), pp. 303–314.

[47] J. Daws Jr. and C. G. Webster, A Polynomial-Based Approach for Ar-

chitectural Design and Learning with Deep Neural Networks, arXiv preprint

arXiv:1905.10457, (2019).

[48] C. de Boor, An alternative approach to (the teaching of) rank, basis, and

dimension, Lin. Alg. Appl., 146 (1991), pp. 221–229.

[49] M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. Stuart,

Convergence rates for learning linear operators from noisy data, arXiv preprint

arXiv:2108.12515, (2021).

[50] P. Deheuvels and G. V. Martynov, A Karhunen–Loeve decomposition

of a Gaussian process generated by independent pairs of exponential random

variables, J. Funct. Anal., 255 (2008), pp. 2363–2394.

[51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Ima-

genet: A large-scale hierarchical image database, in IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[52] R. A. DeVore, R. Howard, and C. Micchelli, Optimal nonlinear ap-

proximation, Manuscripta Math., 63 (1989), pp. 469–478.

[53] H. Dong and S. Kim, Green’s matrices of second order elliptic systems with

measurable coefficients in two dimensional domains, Trans. Am. Math. Soc.,

361 (2009), pp. 3303–3323.

[54] , Green’s function for nondivergence elliptic operators in two dimensions,

SIAM J. Math. Anal., 53 (2021), pp. 4637–4656.

[55] M. F. Driscoll, The reproducing kernel Hilbert space structure of the sample

paths of a Gaussian process, Zeit. Wahrscheinlichkeitstheorie Verwandte Geb.,

26 (1973), pp. 309–316.

137

[56] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty

Publications, 2014.

[57] R. Durrett, Probability: Theory and Examples, Cambridge University Press,

5th ed., 2019.

[58] C. Eckart and G. Young, The approximation of one matrix by another of

lower rank, Psychometrika, 1 (1936), pp. 211–218.

[59] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators,

Oxford University Press, 2018.

[60] D. E. Edmunds, V. M. Kokilashvili, and A. Meskhi, Bounded and com-

pact integral operators, Springer Science & Business Media, 2013.

[61] M. Ekiel-Jeżewska, R. Boniecki, M. Bukowicki, and M. Gruca,

Stokes velocity generated by a point force in various geometries, Eur. Phys.

J. E, 41 (2018), pp. 1–7.

[62] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and

Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics,

Oxford University Press, 2nd ed., 2014.

[63] B. Engquist and H. Zhao, Approximate separability of the Green’s function

of the Helmholtz equation in the high frequency limit, Comm. Pure Appl. Math.,

71 (2018), pp. 2220–2274.

[64] L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 2nd ed.,

2010.

[65] J. Feliu-Faba, Y. Fan, and L. Ying, Meta-learning pseudo-differential op-

erators with deep neural networks, J. Comput. Phys., 408 (2020).

[66] S. Filip, A. Javeed, and L. N. Trefethen, Smooth random functions,

random ODEs, and Gaussian processes, SIAM Rev., 61 (2019), pp. 185–205.

[67] S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, and B. Beckermann,

Rational Minimax Approximation via Adaptive Barycentric Representations,

SIAM J. Sci. Comput., 40 (2018), pp. A2427–A2455.

[68] J. Foster, T. Lyons, and H. Oberhauser, An optimal polynomial approx-

imation of Brownian motion, SIAM J. Numer. Anal., 58 (2020), pp. 1393–1421.

138

[69] A. P. George and W. B. Powell, Adaptive stepsizes for recursive estima-

tion with applications in approximate dynamic programming, Mach. Learn., 65

(2006), pp. 167–198.

[70] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh gen-

erator with built-in pre-and post-processing facilities, Int. J. Numer. Methods

Eng., 79 (2009), pp. 1309–1331.

[71] C. R. Gin, D. E. Shea, S. L. Brunton, and J. N. Kutz, DeepGreen:

deep learning of Green’s functions for nonlinear boundary value problems, Sci.

Rep., 11 (2021), pp. 1–14.

[72] X. Glorot and Y. Bengio, Understanding the difficulty of training deep

feedforward neural networks, in Proc. 13th International Conference on Artificial

Intelligence and Statistics (AISTATS), 2010, pp. 249–256.

[73] X. Glorot, A. Bordes, and Y. Bengio, Deep Sparse Rectifier Neural

Networks, in Proc. 14th International Conference on Artificial Intelligence and

Statistics (AISTATS), 2011, pp. 315–323.

[74] G. H. Golub and C. F. Van Loan, Matrix Computations, JHU Press,

4th ed., 2013.

[75] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT

Press, 2016.

[76] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial

Nets, in Advances in Neural Information Processing Systems (NeurIPS), 2014,

pp. 2672–2680.

[77] M. Goyal, R. Goyal, and B. Lall, Improved polynomial neural networks

with normalised activations, in International Joint Conference on Neural Net-

works (IJCNN), 2020, pp. 1–8.

[78] A. Graves and N. Jaitly, Towards end-to-end speech recognition with recur-

rent neural networks, in International Conference on Machine Learning (ICML),

PMLR, 2014, pp. 1764–1772.

139

[79] G. Green, An essay on the application of mathematical analysis to the theories

of electricity and magnetism, J. für die Reine und Angew. Math., 47 (1854),

pp. 161–221.

[80] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic

equations, Manuscripta Math., 37 (1982), pp. 303–342.

[81] S. Guarnieri, F. Piazza, and A. Uncini, Multilayer feedforward networks

with adaptive spline activation function, IEEE Trans. Neural Networ., 10 (1999),

pp. 672–683.

[82] I. Gühring, G. Kutyniok, and P. Petersen, Error bounds for approxima-

tions with deep ReLU neural networks in W s,p norms, Anal. Appl., 18 (2020),

pp. 803–859.

[83] K. Habermann, A semicircle law and decorrelation phenomena for iterated

Kolmogorov loops, J. London Math. Soc., (2019).

[84] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer,

2015.

[85] E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes, A

physics-informed deep learning framework for inversion and surrogate modeling

in solid mechanics, Comput. Methods Appl. Mech. Eng., 379 (2021).

[86] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with

randomness: Probabilistic algorithms for constructing approximate matrix de-

compositions, SIAM Rev., 53 (2011), pp. 217–288.

[87] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification, in Proc. IEEE In-

ternational Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.

[88] C. F. Higham and D. J. Higham, Deep learning: An introduction for applied

mathematicians, SIAM Rev., 61 (2019), pp. 860–891.

[89] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., Deep

neural networks for acoustic modeling in speech recognition: The shared views

of four research groups, IEEE Signal Process. Mag., 29 (2012), pp. 82–97.

140

[90] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural

Comput., 9 (1997), pp. 1735–1780.

[91] S. Hofmann and S. Kim, The Green function estimates for strongly elliptic

systems of second order, Manuscripta Math., 124 (2007), pp. 139–172.

[92] H. Hotelling, Analysis of a complex of statistical variables into principal

components., J. Educ. Psychol., 24 (1933), p. 417.

[93] T. Hsing and R. Eubank, Theoretical foundations of functional data analy-

sis, with an introduction to linear operators, John Wiley & Sons, 2015.

[94] S. Hwang and S. Kim, Green’s function for second order elliptic equations in

non-divergence form, Potential Anal., 52 (2020), pp. 27–39.

[95] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, in Proc. 32nd International Con-

ference on Machine Learning (ICML), 2015, pp. 448–456.

[96] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis, Adaptive ac-

tivation functions accelerate convergence in deep and physics-informed neural

networks, J. Comput. Phys., 404 (2020).

[97] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, What is the

best multi-stage architecture for object recognition?, in Proc. IEEE International

Conference on Computer Vision (ICCV), 2009, pp. 2146–2153.

[98] J.-P. Kahane, Propriétés locales des fonctions à séries de Fourier aléatoires,

Stud. Math., 19 (1960), pp. 1–25.

[99] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur,

Gaussian processes and kernel methods: A review on connections and equiva-

lences, arXiv preprint arXiv:1807.02582, (2018).

[100] K. Kang and S. Kim, Global pointwise estimates for Green’s matrix of second

order elliptic systems, J. Differ. Equ., 249 (2010), pp. 2643–2662.

[101] K. Karhunen, Über lineare methoden in der wahrscheinlichkeitsrechnung,

Ann. Acad. Science Fenn., Ser. A. I., 37 (1946), pp. 3–79.

141

[102] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang,

and L. Yang, Physics-informed machine learning, Nat. Rev. Phys., 3 (2021),

pp. 422–440.

[103] T. Karras, S. Laine, and T. Aila, A style-based generator architecture for

generative adversarial networks, in Conference on Computer Vision and Pattern

Recognition (CVPR), 2019, pp. 4401–4410.

[104] T. Kato, Perturbation Theory for Linear Operators, Springer Science & Busi-

ness Media, 2013.

[105] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM,

1995.

[106] S. Kim and G. Sakellaris, Green’s function for second order elliptic equa-

tions with singular lower order coefficients, Commun. Partial. Differ. Equ., 44

(2019), pp. 228–270.

[107] S. Kim and L. Xu, Green’s function for second order parabolic equations with

singular lower order coefficients, Commun. Pure Appl. Anal., 21 (2022), pp. 1–

21.

[108] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in

International Conference on Learning Representations (ICLR), 2015.

[109] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-

Normalizing Neural Networks, in Advances in Neural Information Processing

Systems (NeurIPS), 2017, pp. 971–980.

[110] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,

Proc. Natl. Acad. Sci.s, 17 (1931), pp. 315–318.

[111] N. Kovachki, S. Lanthaler, and S. Mishra, On universal approximation

and error bounds for Fourier Neural Operators, J. Mach. Learn. Res., 22 (2021),

pp. 1–76.

[112] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya,

A. Stuart, and A. Anandkumar, Neural operator: Learning maps between

function spaces, arXiv preprint arXiv:2108.08481, (2021).

[113] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, 1978.

142

[114] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification

with Deep Convolutional Neural Networks, in Advances in Neural Information

Processing Systems (NeurIPS), 2012, pp. 1097–1105.

[115] H. W. Kuhn and A. W. Tucker, Nonlinear Programming, in Proc. Sec-

ond Berkeley Symp. on Math. Statist. and Prob., Univ. of Calif. Press, 1951,

pp. 481–492.

[116] S. Lanthaler, S. Mishra, and G. E. Karniadakis, Error estimates for

DeepONets: A deep learning framework in infinite dimensions, Trans. Math.

Appl., 6 (2022).

[117] V. I. Lebedev, On a Zolotarev problem in the method of alternating directions,

USSR Comp. Math. Math+, 17 (1977), pp. 58–76.

[118] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015),

pp. 436–444.

[119] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hub-

bard, and L. Jackel, Handwritten digit recognition with a back-propagation

network, Advances in Neural Information Processing Systems (NeurIPS), 2

(1989).

[120] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based

learning applied to document recognition, Proc. IEEE, 86 (1998), pp. 2278–2324.

[121] M. Ledoux, The concentration of measure phenomenon, Math. Surveys.

Monog. 89, AMS, Providence, RI, 2001.

[122] J.-Y. Lee and L. Greengard, A fast adaptive numerical method for stiff

two-point boundary value problems, SIAM J. Sci. Comput., 18 (1997), pp. 403–

429.

[123] F. C. Leone, L. S. Nelson, and R. B. Nottingham, The folded normal

distribution, Technometrics, 3 (1961), pp. 543–550.

[124] D. Li, K. Xu, J. M. Harris, and E. Darve, Coupled time-lapse full-

waveform inversion for subsurface flow problems using intrusive automatic dif-

ferentiation, Water Resour. Res., 56 (2020).

143

[125] M. Li, T. Zhang, Y. Chen, and A. J. Smola, Efficient mini-batch training

for stochastic optimization, in Proc. 20th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, 2014, pp. 661–670.

[126] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,

A. Stuart, and A. Anandkumar, Neural operator: Graph kernel network

for partial differential equations, arXiv preprint arXiv:2003.03485, (2020).

[127] , Fourier neural operator for parametric partial differential equations, in

International Conference on Learning Representations (ICLR), 2021.

[128] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhat-

tacharya, and A. Anandkumar, Multipole graph neural operator for para-

metric partial differential equations, in Advances in Neural Information Pro-

cessing Systems (NeurIPS), vol. 33, 2020, pp. 6755–6766.

[129] S. Liang and R. Srikant, Why Deep Neural Networks for Function Ap-

proximation?, in International Conference on Learning Representations (ICLR),

2017.

[130] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix rep-

resentation from matrix–vector multiplication, J. Comput. Phys., 230 (2011),

pp. 4071–4087.

[131] F. Lindgren, H. Rue, and J. Lindström, An explicit link between Gaussian

fields and Gaussian Markov random fields: the stochastic partial differential

equation approach, J. R. Stat. Soc. B, 73 (2011), pp. 423–498.

[132] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large

scale optimization, Math. Program., 45 (1989), pp. 503–528.

[133] M. Loève, Fonctions aleatoire de second ordre, Rev. Sci., 84 (1946), pp. 195–

206.

[134] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-NET: Learning PDEs from

data, in International Conference on Machine Learning (ICML), 2018, pp. 3208–

3216.

[135] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, Learning

nonlinear operators via DeepONet based on the universal approximation theorem

of operators, Nat. Mach. Intell., 3 (2021), pp. 218–229.

144

[136] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, DeepXDE: A

deep learning library for solving differential equations, SIAM Rev., 63 (2021),

pp. 208–228.

[137] T.-T. Lu and S.-H. Shiou, Inverses of 2× 2 block matrices, Comput. Math.

Appl., 43 (2002), pp. 119–129.

[138] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, Deep neu-

ral nets as a method for quantitative structure–activity relationships, J. Chem.

Inf. Model., 55 (2015), pp. 263–274.

[139] L. Ma and K. Khorasani, Constructive feedforward neural networks us-

ing Hermite polynomial activation functions, IEEE Trans. Neural Networ., 16

(2005), pp. 821–833.

[140] A. L. Maas, A. Y. Hannun, and A. Y. Ng, Rectifier Nonlinearities Im-

prove Neural Network Acoustic Models, in International Conference on Machine

Learning (ICML), 2013.

[141] S. Maddu, B. L. Cheeseman, I. F. Sbalzarini, and C. L. Müller,

Stability selection enables robust learning of differential equations from limited

noisy data, Proc. R. Soc. A, 478 (2022).

[142] A. A. Markov, On a question by D. I. Mendeleev, Zapiski Imp. Akad. Nauk,

62 (1889), pp. 1–24.

[143] P.-G. Martinsson, A fast randomized algorithm for computing a hierarchi-

cally semiseparable representation of a matrix, SIAM J. Matrix Anal. Appl., 32

(2011), pp. 1251–1274.

[144] , Compressing rank-structured matrices via randomized sampling, SIAM J.

Sci. Comput., 38 (2016), pp. A1959–A1986.

[145] P.-G. Martinsson and J. A. Tropp, Randomized numerical linear algebra:

Foundations and algorithms, Acta Numer., 29 (2020), p. 403–572.

[146] X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, PPINN: Parareal

physics-informed neural network for time-dependent PDEs, Comput. Methods

Appl. Mech. Eng., 370 (2020).

145

[147] X. Meng and M. W. Mahoney, Low-distortion subspace embeddings in

input-sparsity time and applications to robust linear regression, in Proceedings

of the Forty-Fifth Annual ACM Symposium on Theory of Computing, 2013,

pp. 91–100.

[148] J. Mercer, Functions of positive and negative type, and their connection the

theory of integral equations, Philos. T. R. Soc. A, 209 (1909), pp. 415–446.

[149] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, Unrolled Gener-

ative Adversarial Networks, in International Conference on Learning Represen-

tations (ICLR), 2017.

[150] H. N. Mhaskar, Neural Networks for Optimal Approximation of Smooth and

Analytic Functions , Neural Comput., 8 (1996), pp. 164–177.

[151] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Q. J.

Math., 11 (1960), pp. 50–59.

[152] , A trace inequality of John von Neumann, Monatsh. Math., 79 (1975),

pp. 303–306.

[153] A. Molina, P. Schramowski, and K. Kersting, Padé Activation Units:

End-to-end Learning of Flexible Activation Functions in Deep Networks, in In-

ternational Conference on Learning Representations (ICLR), 2019.

[154] H. Montanelli, H. Yang, and Q. Du, Deep ReLU networks overcome

the curse of dimensionality for generalized bandlimited functions, J. Comput.

Math., 39 (2021), pp. 801–815.

[155] A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory

of Statistics, McGraw-Hill, 3rd ed., 1974.

[156] R. J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons,

2009.

[157] T. Myint-U and L. Debnath, Linear Partial Differential Equations for Sci-

entists and Engineers, Birkhäuser Basel, 2007.

[158] V. Nair and G. E. Hinton, Rectified Linear Units Improve Restricted Boltz-

mann Machines, in Proc. 27th International Conference on Machine Learning

(ICML), 2010, pp. 807–814.

146

[159] Y. Nakatsukasa, Fast and stable randomized low-rank matrix approximation,

arXiv preprint arXiv:2009.11392, (2020).

[160] Y. Nakatsukasa and R. W. Freund, Computing fundamental matrix de-

compositions accurately via the matrix sign function in two iterations: The

power of Zolotarev’s functions, SIAM Rev., 58 (2016), pp. 461–493.

[161] N. H. Nelsen and A. M. Stuart, The random feature model for input-output

maps between Banach spaces, SIAM J. Sci. Comput., 43 (2021), pp. A3212–

A3243.

[162] J. Nelson and H. L. Nguyên, OSNAP: Faster Numerical Linear Algebra

Algorithms via Sparser Subspace Embeddings, in IEEE 54th Annual Symposium

on Foundations of Computer Science, 2013, pp. 117–126.

[163] D. J. Newman, Rational approximation to |x|, Mich. Math. J., 11 (1964),

pp. 11–14.

[164] E. J. Nyström, Über die praktische Auflösung von integralgleichungen mit

Anwendungen auf randwertaufgaben, Acta Math., 54 (1930), pp. 185–204.

[165] A. Odena, C. Olah, and J. Shlens, Conditional image synthesis with auxil-

iary classifier GANs, in International Conference on Machine Learning (ICML),

vol. 70, 2017, pp. 2642–2651.

[166] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,

NIST Handbook of Mathematical Functions , Cambridge University Press, 2010.

[167] P. J. Olver, Applications of Lie groups to differential equations, Springer-

Verlag, 2nd ed., 1993.

[168] R. Pachón and L. N. Trefethen, Barycentric-Remez algorithms for best

polynomial approximation in the chebfun system, BIT, 49 (2009), pp. 721–741.

[169] G. Pang, L. Lu, and G. E. Karniadakis, fPINNs: Fractional physics-

informed neural networks, SIAM J. Sci. Comput., 41 (2019), pp. A2603–A2626.

[170] G. Pang, L. Yang, and G. E. Karniadakis, Neural-net-induced Gaussian

process regression for function approximation and PDE solution, J. Comput.

Phys., 384 (2019), pp. 270–288.

147

[171] L. Pareschi and G. Russo, Implicit–explicit runge–kutta schemes and ap-

plications to hyperbolic systems with relaxation, J. Sci. Comput., 25 (2005),

pp. 129–155.

[172] D. S. Parker, Random Butterfly Transformations with Applications in Com-

putational Linear Algebra, Tech. Rep. CSD-950023, UCLA, 1995.

[173] A. Paterek, Improving regularized singular value decomposition for collabora-

tive filtering, in Proc. KDD cup and workshop, 2007, pp. 5–8.

[174] K. Pearson, On lines and planes of closest fit to systems of points in space,

Lond .Edinb. Phil. Mag., 2 (1901), pp. 559–572.

[175] P. Petersen and F. Voigtlaender, Optimal approximation of piecewise

smooth functions using deep ReLU neural networks, Neural Netw., 108 (2018),

pp. 296–330.

[176] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Func-

tions, Cambridge University Press, 2011.

[177] E. Qian, I.-G. Farcas, and K. Willcox, Reduced operator inference

for nonlinear partial differential equations, SIAM J. Sci. Comput., 44 (2022),

pp. A1934–A1959.

[178] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, Lift & learn:

Physics-informed machine learning for large-scale nonlinear dynamical systems,

Phys. D, 406 (2020).

[179] A. Radford, L. Metz, and S. Chintala, Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks, in Inter-

national Conference on Learning Representations (ICLR), 2016.

[180] M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial

differential equations, J. Mach. Learn. Res., 19 (2018), pp. 932–955.

[181] , GitHub repository. https://github.com/maziarraissi/DeepHPMs/,

2020.

[182] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learn-

ing of nonlinear partial differential equations, J. Comput. Phys., 357 (2018),

pp. 125–141.

148

https://github.com/maziarraissi/DeepHPMs/

[183] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Multistep neural net-

works for data-driven discovery of nonlinear dynamical systems, arXiv preprint

arXiv:1801.01236, (2018).

[184] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed

neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations, J. Comput. Phys.,

378 (2019), pp. 686–707.

[185] M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden fluid mechan-

ics: Learning velocity and pressure fields from flow visualizations, Science, 367

(2020), pp. 1026–1030.

[186] P. Ramachandran, B. Zoph, and Q. V. Le, Searching for Activation

Functions, arXiv preprint arXiv:1710.05941, (2017).

[187] C. E. Rasmussen and C. Williams, Gaussian processes for machine learn-

ing, MIT Press, 2006.

[188] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T.

McRae, G.-T. Bercea, G. R. Markall, and P. H. Kelly, Firedrake:

automating the finite element method by composing abstractions, ACM Trans.

Math. Softw., 43 (2016), pp. 1–27.

[189] J. Rissanen, A universal prior for integers and estimation by minimum de-

scription length, Ann. Stat., 11 (1983), pp. 416–431.

[190] G. F. Roach, Green’s Functions, Cambridge University Press, 2nd ed., 1982.

[191] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for prin-

cipal component analysis, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1100–

1124.

[192] S. Roweis, EM algorithms for PCA and SPCA, Advances in Neural Informa-

tion Processing Systems (NeurIPS), 10 (1997), pp. 626–632.

[193] W. Rudin, Principles of mathematical analysis, International series in pure

and applied mathematics, McGraw-Hill, 3rd ed., 1976.

[194] , Real and complex analysis, McGraw-Hill, 3rd ed., 1986.

149

[195] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Data-driven

discovery of partial differential equations, Sci. Adv., 3 (2017).

[196] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning repre-

sentations by back-propagating errors, Nature, 323 (1986), pp. 533–536.

[197] H. Schaeffer, Learning partial differential equations via data discovery and

sparse optimization, Proc. Math. Phys. Eng. Sci., 473 (2017).

[198] F. Schäfer and H. Owhadi, Sparse recovery of elliptic solvers from matrix-

vector products, arXiv preprint arXiv:2110.05351, (2021).

[199] F. Schäfer, T. J. Sullivan, and H. Owhadi, Compression, inversion,

and approximate PCA of dense kernel matrices at near-linear computational

complexity, Multiscale Model. Sim., 19 (2021), pp. 688–730.

[200] E. Schmidt, Zur Theorie der linearen und nicht linearen Integralgleichungen

Zweite Abhandlung, Math. Ann, 64 (1907), pp. 161–174.

[201] M. Schmidt and H. Lipson, Distilling free-form natural laws from experi-

mental data, Science, 324 (2009), pp. 81–85.

[202] K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman, and G. E.

Karniadakis, Physics-informed neural network for ultrasound nondestructive

quantification of surface breaking cracks, J. Nondestruct. Eval., 39 (2020), pp. 1–

20.

[203] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for

solving partial differential equations, J. Comput. Phys., 375 (2018), pp. 1339–

1364.

[204] L. N. Smith, Cyclical learning rates for training neural networks, in IEEE

Winter Conference on Applications of Computer Vision, 2017, pp. 464–472.

[205] H. Stahl, Best uniform rational approximation of |x| on [−1, 1], Mat. Sb., 183

(1992), pp. 85–118.

[206] , Best uniform rational approximation of xα on [0, 1], Bull. Amer. Math.

Soc., 28 (1993), pp. 116–122.

[207] I. Stakgold and M. J. Holst, Green’s Functions and Boundary Value Prob-

lems, John Wiley & Sons, 2011.

150

[208] G. W. Stewart, Matrix Algorithms: Volume 1: Basic Decompositions, SIAM,

1998.

[209] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer., 19

(2010), pp. 451–559.

[210] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis, Cam-

bridge University Press, 2003.

[211] G. Szego, Orthogonal polynomials, AMS, Providence, RI, 4th ed., 1939.

[212] C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations

using the finite element technique, Comput. Fluids, 1 (1973), pp. 73–100.

[213] M. Telgarsky, Benefits of depth in neural networks, in Conference on Learn-

ing Theory (COLT), 2016, pp. 1517–1539.

[214] , Neural networks and rational functions, in International Conference on

Machine Learning (ICML), vol. 70, 2017, pp. 3387–3393.

[215] A. Townsend, Pretty functions approximated by Chebfun2. https://www.

chebfun.org/examples/approx2/PrettyFunctions.html, 2013.

[216] , Computing with functions in two dimensions, PhD thesis, University of

Oxford, 2014.

[217] A. Townsend and L. N. Trefethen, An extension of Chebfun to two di-

mensions, SIAM J. Sci. Comput., 35 (2013), pp. C495–C518.

[218] , Continuous analogues of matrix factorizations, P. Roy. Soc. A, 471 (2015).

[219] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000.

[220] , Approximation Theory and Approximation Practice, Extended Edition,

SIAM, 2019.

[221] L. N. Trefethen and D. Bau III, Numerical linear algebra, SIAM, 1997.

[222] L. N. Trefethen, A. Birkisson, and T. A. Driscoll, Exploring ODEs,

SIAM, 2017.

151

https://www.chebfun.org/examples/approx2/PrettyFunctions.html
https://www.chebfun.org/examples/approx2/PrettyFunctions.html

[223] L. N. Trefethen, Y. Nakatsukasa, and J. Weideman, Exponential node

clustering at singularities for rational approximation, quadrature, and PDEs,

Numer. Math., 147 (2021), pp. 227–254.

[224] M.-L. Udrescu and M. Tegmark, AI Feynman: A physics-inspired method

for symbolic regression, Sci. Adv., 6 (2020).

[225] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and M. Tegmark,

AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modular-

ity, in Advances in Neural Information Processing Systems (NeurIPS), vol. 33,

2020, pp. 4860–4871.

[226] Y. Urano, A fast randomized algorithm for linear least-squares regression via

sparse transforms, Master’s thesis, New York University, 2013.

[227] A.-J. Van Der Veen, E. F. Deprettere, and A. L. Swindlehurst,

Subspace-based signal analysis using singular value decomposition, Proc. IEEE,

81 (1993), pp. 1277–1308.

[228] L. Vecci, F. Piazza, and A. Uncini, Learning and approximation capabil-

ities of adaptive spline activation function neural networks, Neural Netw., 11

(1998), pp. 259–270.

[229] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,

J. Bright, et al., SciPy 1.0: fundamental algorithms for scientific computing

in Python, Nat. Methods, 17 (2020), pp. 261–272.

[230] J. von Neumann, Some matrix-inequalities and metrization of matrix-space,

Tomsk Univ. Rev., 1 (1937), pp. 286–300.

[231] H. U. Voss, J. Timmer, and J. Kurths, Nonlinear dynamical system iden-

tification from uncertain and indirect measurements, Int. J. Bifurc. Chaos Appl.

Sci. Eng., 14 (2004), pp. 1905–1933.

[232] N. S. Vyacheslavov, On the uniform approximation of |x| by rational func-

tions., Sov. Math. Dokl., 16 (1975), pp. 100–104.

[233] S. Wang, H. Wang, and P. Perdikaris, Learning the solution operator of

parametric partial differential equations with physics-informed DeepONets, Sci.

Adv., 7 (2021).

152

[234] Z. Wang, X. Huan, and K. Garikipati, Variational system identification

of the partial differential equations governing the physics of pattern-formation:

inference under varying fidelity and noise, Comput. Methods Appl. Mech. Eng.,

356 (2019), pp. 44–74.

[235] E. Wegert, Visual Complex Functions: An Introduction with Phase Portraits,

Springer Science & Business Media, 2012.

[236] C. L. Wight and J. Zhao, Solving Allen-Cahn and Cahn-Hilliard Equa-

tions Using the Adaptive Physics Informed Neural Networks, Commun. Com-

put. Phys., 29 (2021), pp. 930–954.

[237] H. Wilber, A. Townsend, and G. B. Wright, Computing with functions

in spherical and polar geometries II. The disk, SIAM J. Sci. Comput., 39 (2017),

pp. C238–C262.

[238] C. Williams and M. Seeger, Using the Nyström method to speed up kernel

machines, in Advances in Neural Information Processing Systems (NeurIPS),

vol. 14, 2001, pp. 682–688.

[239] J. Wishart, The generalised product moment distribution in samples from a

normal multivariate population, Biometrika, (1928), pp. 32–52.

[240] S. Wold, K. Esbensen, and P. Geladi, Principal component analysis,

Chemometr. Intell. Lab., 2 (1987), pp. 37–52.

[241] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized

algorithm for the approximation of matrices, Appl. Comput. Harmon. Anal., 25

(2008), pp. 335–366.

[242] D. Yarotsky, Error bounds for approximations with deep ReLU networks,

Neural Netw., 94 (2017), pp. 103–114.

[243] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis, Systems biology

informed deep learning for inferring parameters and hidden dynamics, PLoS

Comput. Biol., 16 (2020).

[244] D. Zhang, L. Guo, and G. E. Karniadakis, Learning in modal space: Solv-

ing time-dependent stochastic PDEs using physics-informed neural networks,

SIAM J. Sci. Comput., 42 (2020), pp. A639–A665.

153

[245] J. Zhang and W. Ma, Data-driven discovery of governing equations for fluid

dynamics based on molecular simulation, J. Fluid Mech., 892 (2020).

[246] S. Zhang and G. Lin, Robust data-driven discovery of governing physical

laws with error bars, Proc. R. Soc. A, 474 (2018).

[247] H. Zhao, B. D. Storey, R. D. Braatz, and M. Z. Bazant, Learning

the physics of pattern formation from images, Phys. Rev. Lett., 124 (2020).

154

	Introduction
	Deep learning
	Physics-informed machine learning
	Green's functions
	Low-rank approximation
	Randomized singular value decomposition
	Hilbert–Schmidt operators
	Quasimatrices
	Gaussian processes
	Contribution

	Learning elliptic PDEs with randomized linear algebra
	Low-rank approximation of Hilbert–Schmidt operators
	Three caveats that make the generalization non-trivial
	Deterministic error bound
	Probability distribution of Omega_1
	Quality of the covariance kernel
	Probabilistic error bounds
	Randomized SVD algorithm for HS operators

	Recovering the Green's function from input-output pairs
	Recovering the Green's function on admissible domains
	Ignoring the Green's function on non-admissible domains
	Hierarchical admissible partition of domain
	Recovering the Green's function on the entire domain

	Discussion
	Fast and stable reconstruction of hierarchical matrices
	Extension to other partial differential operators
	Connection with neural networks

	A generalization of the randomized singular value decomposition
	Theoretical bounds for non-standard covariance matrices
	Randomized SVD for Hilbert–Schmidt operators
	Covariance kernels
	Sample random functions from a Gaussian process
	Influence of the kernel's eigenvalues and Mercer's representation
	Jacobi covariance kernel
	Smoothness of functions sampled from a GP with Jacobi kernel

	Numerical experiments
	Covariance matrix with prior knowledge
	Randomized SVD for Hilbert–Schmidt operators

	Rational neural networks
	Definitions
	Theoretical results on rational neural networks
	Approximation of ReLU networks by rational neural networks
	Approximation of functions by rational networks

	Experiments using rational neural networks
	Approximation of functions
	Generative adversarial networks

	Data-driven discovery of Green's functions with deep learning
	Learning Green's functions
	Definitions
	Theoretical justification

	Deep learning method
	Generating the training data
	Rational neural networks
	Loss function
	Optimization algorithm
	Measuring the results

	Robustness of the method
	Influence of the activation function on the accuracy
	Number of training pairs and spatial measurements
	Noise perturbation
	Location of the measurements
	Missing measurements data

	Human-understandable features
	Linear constraints and symmetries
	Eigenvalue decomposition
	Singular value decomposition
	Schrödinger equation with double-well potential
	Singularity location and type

	Viscous shock and multiphysics examples
	Viscous shock
	Advection-diffusion operator

	Two-dimensional operators and systems
	Differential operators in two dimensions
	System of differential equations

	Nonlinear and vector-valued equations
	Linearized models of nonlinear operators
	Lid-driven cavity problem

	Time-dependent equations

	Conclusions
	Bibliography

