
Optimal-complexity and robust multigrid
methods for high-order FEM

Pablo D. Brubeck
Balliol College

University of Oxford

DPhil thesis

Michelmas 2022



Acknowledgements

This thesis is dedicated to my parents. Thank you for educating me with perse-
verance and feeding my scientific curiosity, and thanks for all the great love and
sacrifice that have sustained me up to this point. I also thank my supervisor
Patrick Farrell for his patient and insightful guidance and for all the useful help
and motivation. It has been a great pleasure to work with him for the past three
years. Thanks to my colleagues Francis Aznaran, Gonzalo Gonzalez De Diego, and
Fabian Laakmann for their comradery and helpful discussions. A special thanks
to the Firedrake developers team, in particular to Lawrence Mitchell and Jack
Betteridge, who laid the groundwork and kindly provided continued support for
the software implementation, ultimately making this work available to the wider
scientific computing community.



Abstract

The numerical solution of elliptic PDEs is often the most computationally intensive
task in large-scale continuum mechanics simulations. High-order finite element
methods can efficiently exploit modern parallel hardware while offering very rapid
convergence properties. As the polynomial degree is increased, the efficient solution
of such PDEs becomes difficult.

This thesis develops preconditioners for high-order discretizations. We build
upon the pioneering work of Pavarino, who proved in 1993 that the additive
Schwarz method with vertex patches and a low-order coarse space gives a solver for
symmetric and coercive problems that is robust to the polynomial degree. However,
for very high polynomial degrees it is not feasible to assemble or factorize the
matrices for each vertex patch, as the patch matrices contain dense blocks, which
couple together all degrees of freedom within a cell. The central novelty of the
preconditioners we develop is that they have optimal time and space complexity
on unstructured meshes of tensor-product cells.

Our solver relies on new finite elements for the de Rham complex that enable
the blocks in the stiffness matrix corresponding to the cell interiors to become
diagonal for scalar PDEs or block diagonal for vector-valued PDEs. With these
new elements, the patch problems are as sparse as a low-order finite difference
discretization, while having a sparser Cholesky factorization. In the non-separable
case, the method can be applied as a preconditioner by approximating the problem
with a separable surrogate. Through the careful use of incomplete factorizations
and choice of space decomposition we achieve optimal fill-in in the patch factors,
ultimately allowing for optimal-complexity storage and computational cost across
the setup and solution stages.

We demonstrate the approach by solving a variety of symmetric and coercive
problems, including the Poisson equation, the Riesz maps of H(curl) and H(div),
and a H(div)-conforming interior penalty discretization of linear elasticity in three
dimensions at p = 15.
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1
Introduction

High-order finite element discretizations are well suited to exploit modern parallel
hardware architectures. They converge exponentially fast to smooth solutions and
allow for matrix-free solvers that balance the ratio of floating point operations (flops)
to energy-intensive data movement [55]. Unfortunately, the conditioning of the
stiffness matrix is severely affected by the polynomial degree of the approximation
[67]. In order to obtain practical iterative solvers, we require good preconditioners.

Optimal iterative solvers for linear systems involve work that is proportional
to the application of the matrix-vector product. Thus it is desirable that the
number of iterations does not grow as the number of degrees of freedom (DOFs)
is increased. Solvers with this property may be obtained from a multiplicative
multigrid V-cycle where the smoother consists of a domain decomposition method,
such as additive Schwarz with a particular space decomposition. The multigrid
algorithm is then accelerated by a Krylov subspace method, such as preconditioned
conjugate gradients (PCG). The choice of space decomposition in the relaxation
is crucial for robustness with respect to the cell size h, the polynomial degree p,
and any parameters in the equation.

One of the cheapest relaxations, with O(pd) computational cost, is diagonal
scaling, also known as point-Jacobi. This offers a multigrid solver with optimal
complexity at p = 1, but not for p > 1. The condition number of the Laplacian stiff-
ness matrix is O(p4(d−1)), and point-Jacobi improves the conditioning to O(p2(d−1))
[67]. This implies that the number of PCG iterations, and therefore the number
of residual evaluations, is O(pd−1), incurring a total cost of O(p2d). In order to
minimize the time to solution, it is reasonable to consider more expensive relaxation

6



1. Introduction 7

methods that converge in fewer iterations1. Ideally, we wish to balance the cost
of applying the relaxation with that of updating the residual. On tensor-product
elements, the latter operation can be done quickly in O(pd+1) operations via the
sum-factorization introduced by Orszag in 1980 [73]. Sum-factorization breaks down
the residual evaluation into products of one-dimensional operators and diagonal
scalings. This thesis only considers unstructured meshes of tensor product cells.

In 1993, Pavarino proved that the additive Schwarz method with a vertex-
centered space decomposition and an additive coarse space of lowest-order (p = 1)
gives a robust solver with respect to h and p for symmetric and coercive problems
[75]. This type of space decomposition is often referred to as generous overlap
and is illustrated in Figure 1.1(a). We use the terminology of [38] and refer to
the subdomains in this space decomposition as vertex-star patches, as they are
constructed by taking all DOFs on the topological entities in the star of each vertex2.

The most straightforward implementation of a vertex-star solver involves the
assembly and direct factorization of the O(pd) × O(pd) patch matrices, which are
dense for Lagrange basis functions. This becomes prohibitively expensive at very
high polynomial degrees, with the Cholesky factorization of such a matrix requiring
O(p3d) operations. However, there exist bases for which the element matrices are
sparse on affine cells, such as the hierarchical Lobatto basis functions [94]. In this
basis, the stiffness matrix has a 5-point stencil in 2D, and a much larger 13-point
stencil in 3D. The spectral element method (SEM) [73] employs Lagrange basis
functions and a quadrature rule collocated at the DOFs, that approximates the FEM
mass matrix with a diagonal lumped mass matrix whose entries are equal to the
row-sum of the FEM mass matrix. On rectangular cells the SEM stiffness matrix has
a (dp+1)-point stencil. Nevertheless, the sparsity that arises in these special cases is
lost when the cells are distorted or when the PDE coefficients are spatially varying.

Efficient relaxation methods that are p-robust may arise from the discretization
of an auxiliary problem for which fast inversion techniques are available. For a
more general approach to auxiliary space techniques, we refer to the work of Xu
[98]. In our context, the underlying PDE and/or the domain can be replaced by
those of a problem which is solvable by the method of separation of variables.
The fast diagonalization method (FDM) [65] is a O(pd+1) direct factorization that
breaks the problem down into a sequence of one-dimensional subproblems. This

1Arguably, the cost of setting up the solver should not be the main concern in an iterative
context, as it is often amortized by the cost of applying the relaxation multiple times.

2The vertex-star patch Vj includes the degrees of freedom associated with vertex vj of Th and
all cells, facets, and edges adjacent to vj (the topological entities in the star of the vertex, a
standard concept in algebraic topology [71, §2]).



1. Introduction 8

approach applies to a very limited set of symmetric coercieve PDEs, such as the
Poisson and Helmholtz equations, and the two-dimensional H(curl) and H(div)
Riesz maps, under very restrictive constraints on the geometry of the domain and
the spatial dependence of the PDE coefficients [84, 35].

For the Poisson equation discretized on meshes with all cells Cartesian (all
internal angles are right angles), the vertex-star problems can be solved directly
with the FDM [96]. Huismann et al. [49] introduced a remarkably fast relaxation
with O(pd) scaling on such meshes. The linear system is statically-condensed by
elimination of the cell DOFs, and the reduced system on the interface is solved
with p-multigrid and a restricted variant of the FDM onto the interface DOFs of a
vertex-star3. Since the statically-condensed operator requires the exact inversion
of the cell matrices, their approach has no obvious extension to the unstructured,
non-Cartesian case.

The FDM can be applied as a relaxation by means of an auxiliary problem that
is separable, but this requires a tensor-product grid discretization of the patch,
which is only possible when the cells are laid out in a tensor-product grid [96]. When
the cells are not Cartesian, the method of Witte et al. [96] approximates the whole
patch as a single Cartesian domain and converges slowly even when the cells are
slightly distorted. On general meshes, the patches may not have this structure, thus
the FDM cannot be directly applied on such patches. An example of a vertex-star
patch to which the FDM cannot be applied as a relaxation is shown in Figure 1.2(b).

(a) Vertex-star patch (b) Cell-centered patch

Figure 1.1: Subdomains for the additive Schwarz method on a regular mesh (p = 4). In
combination with a low-order coarse grid, the vertex-star patch gives a p-robust method
for symmetric and coercive problems, while the cell-centered patch does not.

A popular alternative in the literature has been to use cell-centered patches
with minimal overlap by including a few layers of DOFs of the neighboring cells

3In three dimensions the forward elimination of the cell interiors and backwards substitution
steps incur a setup cost of 12p4 flops, and one application of the relaxation involves 592p3 flops.
Given the magnitude of the O(p3) coefficient, the relaxation cost dominates over the setup and
the perceived overall scaling is O(p3) for p ≤ 48.



1. Introduction 9

[39, 83, 93]. This can be done in such a way that every patch remains structured.
This kind of space decomposition is more amenable to fast implementation, but
does not give a p-robust solver. If the number of layers is fixed, then the measure
of the overlap region will decrease as p is increased. Pavarino also proved that
when the overlap is not generous, the rate of convergence of the additive Schwarz
method will depend inversely on the overlap size [76]. To overcome this, Fischer
and Lottes [64] applied a hybrid p-multigrid/Schwarz method, in the context of a
Poisson problem. They implemented several levels of p-multigrid to overcome the
lack of p-robustness of the cell-centered patches with minimal overlap. The use of
multiple levels increases the overlap at the coarser levels with a minor impact on
the overall computational cost. Cell-centered patches without overlap have also
been employed for non-symmetric problems [79, 80, 30].

(a) Structured patch (b) Unstructured patch

Figure 1.2: The FDM may be applied as a relaxation only on vertex-star patches that
are structured, i.e., where the cells are laid out in a tensor-product grid.

Instead of replacing the vertex-star patches with cell-centered ones, the al-
ternative low-order-refined (LOR) preconditioner [73, 28, 29, 23, 21] rediscretizes
the problem on each vertex-star patch with p = 1 on a GLL grid, a mesh with
vertices at the DOFs of the high-order space. The theory behind this guarantees
the spectral equivalence between the differential operator discretized on the two
spaces [22]. Since low-order methods are naturally sparse, this approach is not
constrained to Cartesian cells and can deal properly with mixed first derivatives
that the FDM cannot handle. A downside of this approach is that the Cholesky
factors of the patch matrices are quite dense, limiting its scalability to very high
polynomial degree. Computationally advantageous approaches involve incomplete
factorizations of the patch LOR matrices [77], or the use of algebraic multigrid
on the global LOR operator [14].
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1.1 Outline of the thesis

In Chapter 2 we first consider the Poisson equation. We develop a solver for
the vertex-star patches arising in Pavarino’s method that scales to very high
polynomial degree. Our approach does not rely on a particular structure of the
patch. In particular, it applies to both patches shown in Figure 1.2. The key idea
to define a new finite element for H(grad) on the interval, inspired by the FDM, for
which the interior blocks of both the stiffness and mass matrices are diagonal. In
multiple dimensions, we construct a H(grad)-conforming element by tensor-products,
obtaining sparse stiffness and mass matrices, in the Cartesian case. In particular,
the total number of nonzeros is the same as that of a low-order finite difference
discretization of the Laplacian. Moreover, fill-in in the Cholesky factorization is only
introduced for the interface DOFs, resulting in very sparse Cholesky factors. The
factorization requires O(p3(d−1)) operations, while forward and back-substitution
steps have a cost of O(p2(d−1)) operations that is optimal for d ∈ {2, 3}, in contrast
with the O(p3d) and O(p2d) costs of the naïve approach. In the non-Cartesian
case, we approximate the form with one that is separable in the reference problem.
A disadvantage is that the memory required scales like O(p2(d−1)), instead of the
optimal O(pd) required for storing the solution. Robustness with respect to h and p
follows from the spectral equivalence between the forms, and numerical experiments
indicate that the approach is effective when the cells are moderately deformed.

In Chapter 3 we consider the application of our solver to linear elasticity. We
demonstrate the effectiveness of our approach by applying it to a H(div) × L2-
conforming discretization of a mixed formulation of incompressible linear elasticity.
In the primal formulation, although our approach can be applied to patch problems
for the individual components of displacement, we explain why it cannot be applied
to the coupled vector-valued problem, which is necessary for parameter robustness
in the incompressible regime. We therefore consider a mixed formulation instead.
Developing a p-robust solver requires both a p-robust preconditioner and a p-robust
discretization, and for the latter we choose a H(div) × L2 conforming approach.
We then extend the method to symmetric interior penalty discontinuous Galerkin
discretizations, required for the displacement block of the mixed problem. We apply
our relaxation to the displacement block of the incompressible elasticity system
in conjunction with block-preconditioned Krylov methods.

In Chapter 4 we extend our multigrid approach to high-order FEM discretizations
of the Riesz maps of the L2 de Rham complex, the canonical problems in H(grad),
H(curl), H(div), and L2, which frequently arise as subproblems in the construction
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of fast preconditioners for more complicated problems. Here we specifically address
one of the major drawbacks from the approach introduced in Chapter 2, which is
the lack of optimality in the storage and setup costs. Building on the finite element
introduced in Chapter 2, we devise new finite elements for each space in the de Rham
complex with orthogonality properties in both the L2- and H(d)-inner products
(d ∈ {grad, curl, div}) on the reference hexahedron. The resulting sparsity enables
the fast solution of the patch problems arising in the Pavarino, Arnold–Falk–Winther,
and Hiptmair space decompositions, in the separable case. In the non-separable case,
the method can be applied to an auxiliary operator that is sparse by construction.
With exact Cholesky factorizations of the sparse patch problems, the application
complexity is optimal but the setup costs and storage are not, as in Chapter 2.
We overcome this with the finer Hiptmair space decomposition for H(curl) and
H(div), and the use of incomplete Cholesky factorizations imposing the sparsity
pattern arising from static condensation, which applies whether static condensation
is used for the solver or not. This yields multigrid relaxations with time and space
complexity that are both optimal in the polynomial degree, i.e., with O(pd) storage
and O(pd+1) computational cost for setup and application. We then apply our
solvers on mixed formulations of the Hodge Laplacians of the L2 de Rham complex.

We end with conclusions in Chapter 5.



2
Multigrid solvers for the Poisson equation1

2.1 Continuous Galerkin formulation

We start from the standard weak formulation of the Poisson equation. Consider
a bounded domain Ω ⊂ Rd, d ∈ {1, 2, 3}, and let ΓD ⊆ ∂Ω be the part of the
boundary where the Dirichlet boundary condition u|ΓD

= u0 is prescribed. The
problem is to find u − u0 in V := H1

D(Ω) = {v ∈ H1(Ω), v|ΓD
= 0} such that

a(v, u) = L(v) ∀ v ∈ V. (2.1)

where after integration by parts, the bilinear form becomes

a(v, u) = aΩ(v, u) := (∇v,∇u)Ω , L(v) := (v, f)Ω . (2.2)

where (·, ·)Ω := (·, ·)L2(Ω) is the standard L2(Ω)-inner product.
The standard FEM discretization employs a mesh Th = {K} of Ω. In this work

we consider quadrilateral and hexahedral cells, so that each cell K can be mapped
with a diffeomorphism FK : K̂ → K from the reference hypercube K̂ = Îd, where
Î = [−1, 1] is the reference interval. The approximate solution uh ∈ Vh is sought
in the space of piecewise continuous tensor-product polynomials on each cell, i.e.,
Vh = Qp(Th) ∩ V . We first define the space of basis functions on K̂

Qp(K̂) :=
d⊗

j=1
Pp(Î), Pp(Î) := span

{
x̂j, 0 ≤ j ≤ p

}
, (2.3)

1This chapter is extracted from [20], published in SIAM J. Sci. Comput.
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2. Multigrid solvers for the Poisson equation 13

and via composition with F−1
K , we define

Vh :=
{
v ∈ H1

D(Ω) : ∀K ∈ Th ∃ v̂ ∈ Qp(K̂) s.t. v|K = v̂ ◦ F−1
K

}
. (2.4)

The discrete problem is to find uh − u0 ∈ Vh such that

a(vh, uh) = L(vh) ∀ vh ∈ Vh. (2.5)

Once we fix a basis {ϕj}n
j=1 for Vh, the approximate solution is expanded as

uh = ∑n
j=1 ujϕj. The resulting n × n system of linear equations is

Au = f, (2.6)

where [A]ij = a(ϕi, ϕj) is the stiffness matrix, u = (u1, . . . , un)⊤ is the vector of
coefficients, and f = (L(ϕ1), . . . , L(ϕn))⊤ is the load vector.

We recall the standard construction of the basis {ϕj} [50]. The basis is defined
in terms of basis functions {ϕ̂j} on K̂. Given basis functions {ϕ̂1D

j }p
j=0 for Pp(Î),

a tensor-product basis {ϕ̂j} for Qp(K̂) can be constructed as

ϕ̂j(x̂) =
d∏

k=1
ϕ̂1D

jk
(x̂k), (2.7)

where we have expanded j = (j1, . . . , jd) ∈ (0 : p)d as a multi-index.
The interval basis functions are decomposed into interface and interior modes.

The interface modes have nonzero support on either endpoint of Î, while the interior
modes vanish at the boundary of Î. In multiple dimensions, the basis functions
decompose into interior, facet, edge, and vertex modes, depending on how many
1D interface functions are multiplied together. To generate a C0 basis, we simply
match the shape of individual interface modes. Hence, A will be block sparse, since
[A]ij = 0 when i and j correspond to interior modes supported on different cells.

For the interval basis functions, one standard choice is the set of Lagrange
polynomials on the Gauß–Lobatto–Legendre (GLL) nodes {ξ̂i}p

i=0 ⊂ [−1, 1]. These
nodes are the roots of (1 − ξ̂2)P ′

p(ξ̂), where Pk(ξ̂) is the Legendre polynomial of
degree k. The Lagrange polynomials {ℓj(x̂)} satisfy ℓj(ξ̂i) = δij by construction,

ℓj(x̂) =
p∏

k=0,k ̸=j

x̂− ξ̂k

ξ̂j − ξ̂k

, j = 0, . . . , p. (2.8)

Another useful basis is formed by the hierarchical Lobatto polynomials {lj}, which
are constructed by augmenting the so-called bubble functions (integrated Legendre
polynomials) with linear Lagrange functions,

lj(x̂) =


(1 − x̂)/2 for j = 0,
(1 + x̂)/2 for j = p,∫ x̂

−1 Pj(z) dz = Pj+1(x̂) − Pj−1(x̂) for j = 1, . . . , p− 1.
(2.9)



2. Multigrid solvers for the Poisson equation 14

These two choices of basis functions are plotted in Figure 2.1.
The assembly of the stiffness matrix A is described as follows. On each cell

K ∈ Th we define the cell stiffness matrix AK ∈ R(p+1)d×(p+1)d in terms of the basis
functions {ϕK

j } that are supported on K, which are obtained from the reference
basis functions {ϕ̂j} via ϕK

j = ϕ̂j ◦ F−1
K . Then, the cell stiffness matrices are

[AK ]ij = (∇ϕK
i ,∇ϕK

j )K . (2.10)

The global stiffness matrix is then assembled via direct stiffness summation:

A =
∑

K∈Th

R⊤
KA

KRK , (2.11)

where RK ∈ R(p+1)d×n is the Boolean restriction matrix from the global DOFs
to those local to cell K.

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

(a) GLL, ℓj(x̂)
nz = 64

(b) GLL, B̂

nz = 64

(c) GLL, Â

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

(d) Hierarchical, lj(x̂)
nz = 26

(e) Hierarchical, B̂

nz = 10

(f) Hierarchical, Â

Figure 2.1: Plots of the interval basis functions (p = 4) and nonzero structure of the
mass and stiffness matrices on the reference interval (p = 7).

2.2 Fast Poisson solvers on Cartesian meshes

If d = 1 and FK is an affine mapping, then the cell stiffness matrices are

[AK ]ij = 1
LK

(ϕ̂′
i, ϕ̂

′
j)Î = 1

LK
[Â]ij. (2.12)
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Here Â ∈ R(p+1)×(p+1) is the stiffness matrix on the reference interval, and LK =
|K|/|Î|, where |K| denotes the measure of the cell K.

For d = {2, 3}, we will first consider the case where Ω can be tessellated with a
mesh Th consisting of Cartesian cells, i.e., the cells are rectangular quadrilaterals or
hexahedra (all internal angles are right angles). In this setting, the cell stiffness
matrices have the Kronecker product structure:

AK =

 µK
1 B̂ ⊗ Â+ µK

2 Â⊗ B̂ d = 2,
µK

1 B̂ ⊗ B̂ ⊗ Â+ µK
2 B̂ ⊗ Â⊗ B̂ + µK

3 Â⊗ B̂ ⊗ B̂ d = 3,
(2.13)

where
[B̂]ij = (ϕ̂i, ϕ̂j)Î , (2.14)

is the mass matrix on the reference interval, µK
j = (LK

j )−2 ∏d
i=1 L

K
i , and LK

j is the
length of K along the j-th axis divided by |Î|. The symbol ⊗ denotes the Kronecker
product, which for matrices A ∈ Rm×n, B ∈ Rr×s, is defined as the block matrix

A⊗B =


a11B · · · a1nB

... . . . ...
am1B · · · amnB

 ∈ Rrm×sn. (2.15)

It follows that if A and B are sparse, then A ⊗ B is also sparse.
For the GLL basis {ℓj}, both Â and B̂ are dense, but these are sparse in

the hierarchical basis {lj}. This is illustrated in Figure 2.1. On affine cells, the
hierarchical basis yields a sparse stiffness matrix. The bubble functions {lj}p−1

j=1,
satisfy l′j(x̂) = Pj(x̂), and due to the orthogonality of the Legendre polynomials, the
interior block of Â is diagonal. The only off-diagonal nonzeros in Â are due to the
coupling between the interface modes l0, lp. Nevertheless, in order for this sparsity
to propagate to higher dimensions, we would additionally wish that B̂ is also as
sparse as possible. This is not quite the case for {lj}, as B̂ has two interior blocks
with tri-diagonal structure, in the even-odd decomposition, as lj = Pj+1 − Pj−1

for j = 1, . . . , p− 1. Therefore, on a typical row, A will have the structure of the
5-point stencil for d = 2 and that of a 13-point stencil for d = 3.

2.2.1 The fast diagonalization method

Linear systems involving structured matrices such as that defined in (2.13) can be
solved efficiently using the fast diagonalization method (FDM) [65]. This method
reduces the computation into a sequence of eigenvalue problems on the interval in
a similar fashion as the method of separation of variables. It requires a separable
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PDE and a tensor-product basis; therefore it can only be applied on meshes or
mesh patches with tensor product structure.

We introduce the index sets I and Γ that decompose the DOFs into interior and
interface, respectively. For the space Pp(Î), I = {1, . . . , p− 1} and Γ = {0, p}.

To illustrate the FDM, we consider solving a problem on the interior of a
Cartesian cell, AK

IIu
K
I = rK

I , where AK
II = RK

I AR
K
I

⊤ and RK
I ∈ R(p−1)d×n is the

Boolean restriction matrix onto the interior DOFs of K. We may first solve the
generalized eigenvalue problem on the interior of the reference interval

ÂII ŜII = B̂II ŜIIΛ̂II , (2.16)

in conjunction with the normalization condition Ŝ⊤
IIB̂II ŜII = I, with I the identity

matrix. Here ÂII , B̂II ∈ R(p−1)×(p−1) are the interior blocks of Â and B̂, respectively,
Λ̂II ∈ R(p−1)×(p−1) is the diagonal matrix of eigenvalues, and ŜII ∈ R(p−1)×(p−1) is
the matrix of eigenvectors. The generalized eigenproblem (2.16) may be equiv-
alently rewritten as

Ŝ⊤
IIÂII ŜII = Λ̂II , Ŝ⊤

IIB̂II ŜII = I. (2.17)

If AK is given by (2.13), then its inverse has the following diagonal factorization

(
AK

II

)−1
=

{
d⊗

k=1
ŜII

} (
ΛK

II

)−1
{

d⊗
k=1

Ŝ⊤
II

}
, (2.18)

where

ΛK
II =

 µK
1 I ⊗ Λ̂II + µK

2 Λ̂II ⊗ I d = 2,
µK

1 I ⊗ I ⊗ Λ̂II + µK
2 I ⊗ Λ̂II ⊗ I + µK

3 Λ̂II ⊗ I ⊗ I d = 3.
(2.19)

Therefore, the solution of a system AK
IIu

K
I = rK

I can be obtained with O(pd+1)
computational work.

The main limitation of this approach is that it does not generalize to terms that
contain first derivatives, ruling out the possible extension to advection problems.
Mixed first derivative terms are also very common in symmetric coercive problems,
for instance, when the cells have non-orthotropic deformations, or for vector-valued
operators that mix first derivatives of distinct vector components, such as ∇(∇ · u).

2.2.2 Sparsity-promoting discretization

We construct a new finite element basis on the interval, inspired by the FDM,
which yields a sparse stiffness matrix. The basis functions can then be extended to
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tensor-product cells in arbitrary dimensions by tensor-products. The essential idea
is to solve the one-dimensional eigenproblem: find {ŝi}p−1

i=1 ⊂ Pp(Î) such that

(ŝ′
i, ŝ

′
j)Î = λiδij, (ŝi, ŝj)Î = δij, ŝi(−1) = ŝi(1) = 0, i, j ∈ 1 : (p− 1), (2.20)

where Pp(Î) is the set of polynomials of degree p on Î, a : b := [a, b] ∩Z, and where
summation is not implied. This eigenproblem (2.20) is solved once for a given p,
offline. With these functions, we define the degrees of freedom {ŝ∗

i }
p
i=0 as

ŝ∗
i (v) :=


v(−1), i = 0,
(ŝi, v)Î , i ∈ 1 : (p− 1),
v(1), i = p.

(2.21)

The Ciarlet triple [25] for our element is (Î,Pp(Î), {ŝ∗
i }

p
i=0). The point evaluations

at the vertices guarantee C0(Î) continuity, and hence H(grad, Î)-conformity.
The finite element induces a reference nodal basis dual to {ŝ∗

i }
p
i=0 in the usual

way. The basis functions associated with i ∈ 1 : (p− 1) are the eigenfunctions ŝi, by
construction (cf. (2.20)). It remains to determine the interface basis functions ŝ0, ŝp.
These two functions are defined via the duality condition ŝ∗

i (ŝj) = δij, which reads
 ŝ0(−1) ŝj(−1) ŝp(−1)
(ŝi, ŝ0)Î (ŝi, ŝj)Î (ŝi, ŝp)Î
ŝ0(1) ŝj(1) ŝp(1)

 =

1 0 0
0 δij 0
0 0 1

 , i, j ∈ 1 : (p− 1). (2.22)

As a direct consequence, the reference mass matrix B̂ij = (ŝi, ŝj)Î for i, j ∈ 0 : p
will become almost diagonal, with the only nonzero off-diagonal entries being
B̂0p = B̂p0. This is crucial for maintaining sparsity in higher dimensions, as the
stiffness matrix on Cartesian cells in higher dimensions is the Kronecker product
of reference mass and stiffness matrices.

We obtain {ŝj} numerically via Lagrange interpolants. We denote by Ŝ ∈
R(p+1)×(p+1) the tabulation of the basis functions onto the GLL points, i.e., Ŝij =
ŝj(ξ̂i), such that ŝj = ℓiŜij, where {ℓj} are the Lagrange polynomials associated
with the GLL points {ξ̂i}p

i=0. The matrix of coefficients Ŝ is determined as follows.
From the first and last rows of (2.22) we deduce that ŜΓI = 0 and ŜΓΓ = I. To
determine the tabulation of the interior basis functions onto {ξ̂i}i∈I , we note that
(2.20) is equivalent to the generalized eigenvalue problem: find ŜII ∈ R(p−1)×(p−1)

and {λj}j∈I such that

Ŝ⊤
IIÂ

GLL
II ŜII = ΛII , Ŝ⊤

IIB̂
GLL
II ŜII = I. (2.23)
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Here [ÂGLL]ij = (ℓ′
i, ℓ

′
j)Î , [B̂GLL]ij = (ℓi, ℓj)Î are the stiffness and mass matrices

discretized in the GLL basis2, and ΛII = diag(λ1, . . . , λp−1) is the diagonal matrix
of eigenvalues. We solve this problem numerically with the LAPACK routine
dsygv [3], which uses a Cholesky factorization of B̂GLL

II and the QR algorithm
on a standard eigenvalue problem.

To determine ŜIΓ, we employ the duality condition (ŝi, ŝj)Î = 0 for i ∈
I, j ∈ Γ to obtain

Ŝ⊤
II(B̂GLL

II ŜIΓ + B̂GLL
IΓ ŜΓΓ) = 0. (2.24)

Using (2.23) and ŜΓΓ = I, we obtain

ŜIΓ = −ŜII Ŝ
⊤
IIB̂

GLL
IΓ . (2.25)

In the new basis, the stiffness and mass matrices can be computed as

Â = Ŝ⊤ÂGLLŜ, B̂ = Ŝ⊤B̂GLLŜ. (2.26)

Figure 2.2 shows the computed shape functions and the nonzero structure of Â
and B̂ for the FDM basis.

-1 -0.5 0 0.5 1

-1.5
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0.5

1

1.5

(a) FDM, ŝj(x̂)
nz = 10

(b) FDM, B̂

nz = 34

(c) FDM, Â

Figure 2.2: Plots of the interval FDM basis functions (p = 4) and nonzero structure of
the mass and stiffness matrices in the FDM basis on the reference interval (p = 7).

This new element will yield a stiffness matrix that is much sparser than with
the elements in Figure 2.1. We will introduce a multigrid solver using a vertex-star
relaxation that exploits the sparsity.

2Our approach can be extended to the spectral element method by replacing B̂GLL with a
lumped mass matrix. The resulting FDM basis preserves the diagonal structure of the lumped mass
matrix. Because the vertex-star contains a single vertex, the sparsity pattern for the vertex-star
patch matrices is the same for both the high-order FEM and SEM discretizations.
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2.2.3 Sparse vertex-star relaxation

The solver of Pavarino is fully additive, across both the coarse grid and the vertex-
star patches. In our work we consider a small variation of this, with the solver
multiplicative between the two levels while remaining additive among the vertex-star
patches. This improves the convergence at essentially no cost. The method can
be interpreted as a hybrid multiplicative two-level V(1, 1)-cycle with the additive
Schwarz method [33] with vertex-star patches as the fine grid relaxation and the
lowest-order discretization on the same mesh as the coarse space. The sparse matrix
for the coarse space may be assembled and factorized, or other preconditioners such
as geometric or algebraic multigrid may be applied instead.

We may write the multigrid relaxation as

P−1
ASM =

J∑
j=1

R⊤
j A

−1
j Rj, (2.27)

with Rj the Boolean restriction matrix onto Vj, and Aj = RjAR
⊤
j are the sparse

patch matrices for which we may explicitly compute a Cholesky decomposition.
The relaxation is scaled by the damping coefficient

ω = 2 [(1 + α)λmax + (1 − α)λmin]−1 , (2.28)

where λmin, λmax are the extremal eigenvalues of P−1
ASMA estimated via the CG-

Lanczos procedure [59], and α = 0.25 is chosen to tackle the high frequency error,
also ensuring that the error iteration matrix I − ωP−1

ASMA is contractive.
To illustrate the direct solver on the Cartesian vertex-star patch shown in

Figure 1.1a, we show in Figure 2.3 the nonzero structure for the patch matrix Aj

and its Cholesky factor. The sparsity pattern of the global matrix A connects the
interior DOFs to their projections onto the facets, hence a typical interior row of A
will have 2d+1 nonzeros. For the patch matrix Aj , an interior row will only have d+1
nonzeros, as the patch only includes one facet per dimension on each cell. Moreover,
the total number of nonzeros of Aj is the same as that of a low-order finite difference
or finite element discretization with the 5-point or 7-point stencil on the same grid.

2.2.4 Computational complexity

Here we discuss the computational cost of the solution of the patch problem using
the Cholesky factorization. Once the factorization has been computed, it may
be applied in O(p2(d−1)) cost, which is optimal for d ∈ {2, 3}. Unfortunately, the
factorization phase is suboptimal, requiring O(p3(d−1)) operations to compute. The
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Figure 2.3: Nonzero structure of the stiffness matrix in the FDM basis Aj = LjL⊤
j and

its upper Cholesky factor L⊤
j for the Poisson problem on a Cartesian vertex-star patch

with p = 4. With the nested dissection reordering, the factor matrix has minimal fill-in,
occurring only on the bottom-right block.

memory required to store the Cholesky factor is O(p2(d−1)), which for d = 3 is one
factor of p higher than that required to store the solution.

Consider a stiffness matrix A discretized with the FDM basis on any mesh
with all cells Cartesian. The number of flops needed to solve a linear system using
a sparse Cholesky factorization A = LL⊤ is roughly four times the number of
nonzero entries in L [24]. To maximize the sparsity in L, it is crucial to reorder the
DOFs, such that interior DOFs are followed by the interface DOFs. This ensures
that the fill-in is introduced only on the bottom-left block. To analyze the cost of
factorization, we first introduce the block LDL⊤ decomposition

A =
[
AII AIΓ
AΓI AΓΓ

]
=

[
I 0

AΓIA
−1
II I

] [
AII 0
0 SΓ

] [
I A−1

II AIΓ
0 I

]
, (2.29)

where SΓ = AΓΓ − AΓIA
−1
II AIΓ is the interface Schur complement. By construction,

the top-left block AII is diagonal with positive entries, with Cholesky factor A1/2
II .

If we decompose AII and SΓ in the second matrix on the RHS of (2.29) into their
Cholesky factors, and distribute each factor onto the other two matrices, we obtain
the Cholesky decomposition of A:

A = LL⊤ =
[

A
1/2
II 0

AΓIA
−1/2
II LΓ

] [
A

1/2
II A

−1/2
II AIΓ

0 L⊤
Γ

]
, (2.30)

where the Schur complement is factorized as SΓ = LΓL
⊤
Γ . Since AII is diagonal, the

off-diagonal block AΓIA
−1/2
II will preserve the nonzero structure of AΓI , and similarly

for its transpose. Thus, fill-in is only introduced on the interface block through LΓ.
An ordering strategy that minimizes fill-in consists of applying nested dissection

[40] on the adjacency graph that connects topological entities. Each node in this
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Figure 2.4: Relative number of nonzero entries in the Cholesky factors of the stiffness
matrix with the FDM approach and the LOR preconditioner, for a Cartesian vertex-star
patch of 2d cells. Both approaches use a nested dissection ordering; the FDM approach
orders blocks of DOFs associated to topological entities, and LOR approach applies nested
dissection in the usual sense. The FDM approach is sparser, with substantial gains at
higher degrees.

graph represents a cell, face, edge or vertex. The ordering of the entities is then
used to permute the corresponding blocks in A.

Assuming for the worst case that L⊤
Γ is dense, the memory required to store

the Cholesky factor is O(p2(d−1)). This represents a significant increase from
the traditional FDM, which is kept at the optimal O(pd). However, the DOF
ordering does lead to some structured sparsity in L⊤

Γ , as can be seen in Figure 2.3.
Nevertheless, we still observe dense O(pd−1) × O(pd−1) blocks. The fact that L⊤

Γ

contains these dense blocks indicates that O(p3(d−1)) operations are required in
the factorization phase. However, the forward and back-substitution steps have a
computational cost of O(p2(d−1)) operations, which is optimal for d ≤ 3.

Compared to the LOR approach, our approach with the FDM basis has a sparser
Cholesky factorization. In Figure 2.4 we present the ratio of the number of nonzeros
in the Cholesky factors of our approach and the LOR preconditioner ordered with
nested dissection for d ∈ {2, 3}. The fact that the ratio is always below 1 confirms
that our approach is sparser, with a substantial gain at higher degrees. Practical LOR
solvers use algebraic multigrid [14] or patchwise multigrid with incolmplete Cholesky
smoothers [77] to avoid the cost of the Cholesky factorizations of the patch matrices.

2.3 Sparse preconditioners on unstructured meshes

For arbitrarily deformed cells, the local stiffness matrices AK cannot be expressed
in terms of tensor-products of Â and B̂ as in (2.13), and AK is not sparse in the
FDM basis. The preconditioning techniques found in [27, 39, 96] introduce an
auxiliary Cartesian domain to construct a separable problem for which the FDM is
a direct solver. The method described by Fischer [39] constructs a preconditioner
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by replacing K with its nearest rectangular approximation, whose dimensions are
computed as the mean separation between the mapped GLL nodes from opposite
facets of K. Witte et al. [96] obtain the lengths from the average arclength of
opposite sides of K, but it is not clear how this extends to the 3D case. To the
best of our knowledge, no theory underpins these choices.

Our approach to construct the separable surrogate is based on the theory of
equivalent operator preconditioning [11]. We work with the bilinear form a(·, ·) in
terms of the reference coordinates. We discard the mixed derivative terms that
prevent separability, and we replace the coefficients with piecewise constants in
the reference coordinates3. We will prove that this choice yields a spectrally
equivalent operator.

The bilinear form a(·, ·) is numerically computed via a quadrature rule on the
reference cell. The integration domain Ω is decomposed into the cells, so that
a(·, ·) can be expressed as a sum of cell contributions aK(·, ·) where integration
and differentiation are with respect to x̂ ∈ K̂,

a(v, u) =
∑

K∈Th

aK(v, u). (2.31)

The integration measure dx is replaced with |DFK |dx̂, thus aK(v, u) = aK̂(v ◦
FK , |DFK |u ◦ FK). As the form arguments are composed by the mapping, their
gradient is most conveniently computed by the chain rule, i.e., ∇ = DF−⊤

K ∇̂ where
∇̂ is the gradient with respect to x̂. Therefore

aK(v, u) = (∇v,∇u)K = (∇̂v ◦ FK , ĜK∇̂u ◦ FK)K̂ , (2.32)

where ĜK : K → Rd×d is the inverse metric of the coordinate transformation
weighted by the Jacobian determinant,

ĜK = |DFK |DF−1
K DF−⊤

K . (2.33)

This tensor encapsulates all the geometry-dependent information of the form; it is
spatially dependent for generally-deformed elements, and constant in the case of
affine transformations. For a separable geometry, ĜK is diagonal and constant.

To construct an auxiliary problem that is separable by the FDM in the reference
coordinates, we replace ĜK in aK(·, ·) with a constant diagonal approximation
diag(µK

j ). Each µK
j is given by the cell-wise average of the diagonal entry ĜK

jj,

µK
j := 1

|K̂|

∫
K̂
ĜK

jj dx̂, (2.34)

3Recall that piecewise constant coefficients in the physical coordinates will not yield piecewise
constant coefficients in the reference coordinates.
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where summation over the index j is not implied. As the approximation is local to
each cell, it is still possible to assemble a sparse stiffness matrix discretizing the
auxiliary problem on meshes where cells are not structured in a tensor-product grid.

We now establish the spectral equivalence between the original bilinear form
(2.2) and the auxiliary separable one.

Theorem 2.1. Let µ̂K := diag(µK
j ) be the constant diagonal approximation of ĜK,

and define the auxiliary bilinear form

ã(v, u) :=
∑

K∈Th

ãK(v, u) :=
∑

K∈Th

(∇̂v ◦ FK , µ̂K∇̂u ◦ FK)K̂ . (2.35)

Then, there exist p-independent constants c, C > 0 that depend on Th through ĜK

such that
c ≤ a(v, v)

ã(v, v) ≤ C ∀ v ∈ V \ {0}. (2.36)

Proof. Let cK , CK be lower and upper bounds for the spectrum of the diagonally
scaled metric, so that σ(µ̂−1/2

K ĜK µ̂
−1/2
K ) ∈ [cK , CK ] for all x̂ ∈ K̂. We claim that

cK ≤ aK(v, v)
ãK(v, v) ≤ CK ∀ v ∈ {v ∈ V : v|K ̸= 0}. (2.37)

This result is obtained by first rewriting aK(v, v) with µ̂1/2
K µ̂

−1/2
K ĜK µ̂

−1/2
K µ̂

1/2
K instead

of ĜK , and then replacing µ̂−1/2
K ĜK µ̂

−1/2
K with cKI or CKI to find the lower or upper

bounds, respectively. It then follows that

c := min
K∈Th

cK ≤ a(v, v)
ã(v, v) ≤ max

K∈Th

CK =: C ∀ v ∈ V \ {0}. (2.38)

Let Ã be the stiffness matrix associated with the auxiliary form ã(·, ·). By
Theorem 2.1, the condition number κ(Ã−1A) is bounded by C/c independently of p.
Numerical experiments also indicate that κ(Ã−1A) is independent of h under uniform
refinements. Now consider a preconditioner P where the auxiliary form ã(·, ·) is
used additively in both the coarse solve and the vertex-star patches. In this case,
Theorem 1 of [75] guarantees that κ(P−1Ã) is bounded from above independently
of h and p. Hence we may conclude that κ(P−1A) ≤ κ(P−1Ã)κ(Ã−1A) is bounded
independently of h and p. In practice, we expect that using multiplicative coarse
grid correction with the original form a(·, ·) can only improve the preconditioner.

To gain useful insight, we consider the case where d = 2 and FK is an affine
transformation, that is when K is a parallelogram. Without loss of generality,
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suppose that one of the sides of K has length 2L1 and is aligned with the first
reference coordinate axis, and the other side of length 2L2 is at an angle θ with
respect to the same axis. The Jacobian of the coordinate transformation is

DFK =
[
L1 L2 cos θ
0 L2 sin θ

]
, (2.39)

to which corresponds the Jacobian-weighted inverse metric

ĜK = 1
L1L2|sin θ|

[
L2

2 −L1L2 cos θ
−L1L2 cos θ L2

1

]
. (2.40)

Since ĜK is constant, µ̂K is simply the diagonal part of ĜK . The spectrum of the
diagonally scaled metric will be independent of L1 and L2, but still depend on θ,

σ
(
µ̂

−1/2
K ĜK µ̂

−1/2
K

)
= [1 − |cos θ|, 1 + |cos θ|] . (2.41)

This spectrum is desirable because it is centered at 1 and bounded above for all
θ. If we follow the geometric approaches of [39, 96], we would have to choose a
rectangle with side lengths 2L1 and 2L2 as the auxiliary domain for the Poisson
problem. Then, the previous bounds (2.41) would become scaled by |sin θ|−1. In
this case, the spectrum is unbounded from above in the limit θ → 0.

2.4 Numerical results

We provide an implementation of the new element with the FDM shape functions
on the interval in the FIAT [52] package. The extension to quadrilaterals and
hexahedra is achieved by taking tensor-products of the one-dimensional element with
FInAT [47]. Code for the sum-factorized evaluation of the residual is automatically
generated by Firedrake [82, 48], implementing a Gauß–Lobatto quadrature rule
with 3(p+ 1)/2 points along each direction. The sparse preconditioner discretizing
the auxiliary form is implemented in firedrake.FDMPC using PETSc [13]. The
Cholesky factorization of the patch matrices is computed using CHOLMOD [24].
Most of our computations were performed using an Intel Xeon CPU E5-4627 v2
@ 3.30GHz with 32 cores and 67.6 GB of RAM storage.

The hybrid p-multigrid/Schwarz solver employing the FDM/sparse relaxation is
illustrated in Figure 2.5. To achieve scalability with respect to the mesh parameter
h, on the p-coarse problem we employ geometric multigrid with damped point-Jacobi
relaxation and a Cholesky factorization on the coarsest level using MUMPS [2]. We
test the effectiveness of this approach on a hierarchy of meshes obtained by l ≥ 0
uniform refinements of the base meshes shown in Figure 2.6.
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Krylov solver: PCG

Hybrid p-multigrid/Schwarz V-cycle

Relaxation: FDM/sparse

p-coarse: geometric multigrid

Relaxation: point-Jacobi

h-coarse: Cholesky

Figure 2.5: Solver diagram for the Poisson problem.

We present results for the Poisson equation in Ω = (0, 1)d discretized on the
three hierarchies of Cartesian, unstructured, and structured but deformed (Kershaw)
[51] meshes. The coordinate field of the Kershaw mesh is in [Q3(Ω)]d ∩ C1(Ω),
with a cell aspect ratio of εy = εz = 0.3 near the corners of the domain. We
impose homogeneous Dirichlet BCs on ΓD = ∂Ω and a constant forcing f = 1.
In Table 2.1 we present PCG iteration counts required to reduce the Euclidean
norm of the residual by a factor of 108 starting from a zero initial guess. In
Table 2.2 we show the condition number κ(P−1A) estimated by CG-Lanczos. The
results show almost complete p- and h-robustness in the Cartesian case, and very
slow growth of iteration counts in the unstructured case. Given the lack of shape
regularity, the Kershaw mesh is significantly more challenging; even with exact
patch solvers, we do not expect h-robustness4.

(a) Cartesian (b) Unstructured (c) Kershaw, d = 2 (d) Kershaw, d = 3

Figure 2.6: Base meshes for the Poisson problem. The Cartesian and unstructured base
meshes used for d = 3 are the extrusion with six layers of the two-dimensional meshes
shown here.

To assess the computational performance of our approach, we solve the three-
dimensional Poisson equation on a Cartesian mesh with 3 × 3 × 3 cells with a single
core of an Intel Core i7-10875H CPU @ 2.30GHz. We plot in Figure 2.7 the runtimes,

4Unreported numerical experiments with exact patch solvers on the Kershaw mesh show
p-robust iteration counts, which increase with the level of h-refinement.
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Table 2.1: PCG iteration counts for the hybrid p-multigrid/Schwarz solver with the
FDM/sparse relaxation for varying polynomial degree p and level of uniform h-refinement
l. The patch problems are solved exactly on the Cartesian mesh.

Cartesian Unstructured Kershaw
d p \ l 0 1 2 0 1 2 0 1 2

2 3 7 8 9 12 13 14 27 35 54
7 8 8 9 16 16 17 44 56 78

15 8 9 9 19 19 19 58 69 90
31 8 9 9 21 20 21 67 80 97

3 3 12 12 12 17 17 18 54 66 102
7 12 12 12 22 21 21 98 106 158

15 12 13 25 24 131 132

Table 2.2: Estimated condition numbers for the preconditioned operator κ(P −1A) using
the hybrid p-multigrid/Schwarz solver with the FDM/sparse relaxation.

Cartesian Unstructured Kershaw
d p \ l 0 1 2 0 1 2 0 1 2

2 3 1.44 1.49 1.50 2.14 2.37 2.81 9.34 15.6 34.5
7 1.48 1.48 1.50 3.23 3.27 3.79 19.6 30.3 57.6

15 1.51 1.51 1.52 4.06 3.78 4.13 30.5 45.8 69.0
31 1.54 1.52 1.52 4.45 4.06 4.36 40.4 57.1 73.3

3 3 2.87 2.49 2.45 4.16 4.21 4.55 34.8 46.1 117
7 2.79 2.70 2.67 5.88 5.54 5.47 100 110 266

15 2.83 2.79 7.12 6.44 165 151

flop counts, and achieved arithmetic performance for the Cholesky factorization of
the patch matrices, the solution of the patch problems using this factorization (per
application of the relaxation), and the matrix-free evaluation of the residual (per
Krylov iteration, excluding the application of the global to local map) as functions
of p. The dotted lines are to indicate powers of 2p− 1, which is the number of DOFs
along each side of typical vertex-star patch not intersecting the mesh boundary.

Despite the O(p3(d−1)) computational cost of the Cholesky factorization, these
results show O(p2(d−1)) scaling for runtime up to p = 15. This speedup can be
explained mainly by data locality. The sparse Cholesky factorization is obtained by
recursively applying the block LDL⊤ decomposition up to the point where the Schur
complement is sufficiently dense. The computation of this Schur complement via
dense matrix-matrix multiplication (BLAS-3 dgemm) dominates the computational
cost. As p is increased, the utilization of arithmetic units increases in proportion to



2. Multigrid solvers for the Poisson equation 27

the dimension of the Schur complement, which explains the O(pd−1) scaling of the
achieved arithmetic performance. As the arithmetic capabilities become saturated for
p > 15, the O(p3(d−1)) scaling in the factorization runtime should become apparent.

Most of the time in the relaxation step is spent in accessing the factor matrix
from memory, given the O(p2(d−1)) sub-optimal storage per patch. The relaxation
is therefore limited by memory bandwidth and not arithmetically intense, which
explains the poor arithmetic performance. This is in contrast to the sum-factorized
residual evaluation, which has a O(pd) memory footprint and presents better
arithmetic utilization [58]. Nevertheless, the results indicate that the runtime for
the solution of the patch problems with the sparse Cholesky factorization remains
very close to that of the matrix-free residual evaluation for moderate p, being
slightly faster for p ≤ 7, mainly due to lower operation count.
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Figure 2.7: Runtimes, flop counts, and achieved arithmetic performance for the Cholesky
factorization (symbolic and numeric), solution of the patch problems within a single
application of the relaxation, and a single residual evaluation for a Cartesian mesh with
3 × 3 × 3 cells on a single CPU core. We observe that the factorization runtime scales
better than expected, close to the optimal O(pd+1) complexity.
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3.1 Primal formulation of linear elasticity

We now consider how these ideas may be applied in the more complex setting of a
nonseparable, vector-valued PDE. The equations of linear elasticity describe the
displacement u : Ω → Rd of a solid body with a reference configuration Ω ⊂ Rd.
The primal formulation is to find u − u0 ∈ V := [H1

D(Ω)]d such that

a(v,u) = L(v) ∀ v ∈ V, (3.1)

where

a(v,u) =
∫

Ω
2µε(v) : ε(u) + λ∇ · v∇ · u dx, L(v) =

∫
Ω

v · B dx. (3.2)

Here, we assume that the material is homogeneous and isotropic, and can thus be
described by the Lamé parameters µ, λ > 0; ε(u) = (∇u + ∇u⊤)/2 is the linearized
strain tensor; u0 is Dirichlet data prescribed on ΓD ⊆ ∂Ω; and B ∈ [L2(Ω)]d is a
body force. The Poisson ratio ν = λ/(2µ+ 2λ) measures the compressibility of the
material. In the incompressible limit λ → ∞ (i.e., ν → 1/2), the problem becomes
ill-conditioned, as a(·, ·) becomes insensitive to divergence-free perturbations in
the arguments.

Consider the partitioning of the stiffness matrix A into blocks that act on
each displacement component,

A =


A11 · · · A1d

... . . . ...
Ad1 · · · Add

 . (3.3)

1This chapter is extracted from [20], published in SIAM J. Sci. Comput.

28
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The diagonal block Ajj discretizes the bilinear form∫
Ω
µ∇vj · ∇uj + (µ+ λ)∂vj

∂xj

∂uj

∂xj

dx, (3.4)

where summation is not implied, and uj and vj are components of u and v,
respectively. The off-diagonal blocks Aij, i ̸= j, discretize∫

Ω
µ
∂vi

∂xj

∂uj

∂xi

+ λ
∂vi

∂xi

∂uj

∂xj

dx. (3.5)

The diagonal blocks can be diagonalized by the FDM on the interior of a Cartesian
cell when the reference axes are aligned with the physical coordinates. The same
statement does not hold true for the off-diagonal blocks, as they couple together
different displacement components. This is because they discretize products of
different first derivatives on the different components and hence are not separable.

The separate displacement components (SDC) preconditioner [17, 41] is defined
as the block diagonal matrix ASDC = diag(A11, . . . , Add). In other words, this
approach is also described as block-Jacobi in the displacement components. The
SDC preconditioner discretized with the FDM basis is sparse for Cartesian cells
aligned with the coordinate axes. On arbitrary cells, for each separate component,
we obtain an auxiliary form that is separable in the reference coordinates by
selecting constant diagonal coefficients µ̂K .

It is shown in [17] that for a homogeneous isotropic material with principal axes
parallel to the axes of the reference coordinate system, the condition number of
the preconditioned matrix will depend on the Poisson ratio:

κ(A−1
SDCA) ≤ d− 1

γ

1 − ν

1 − 2ν , (3.6)

where γ is the constant appearing in Korn’s inequality,

∥u∥2
H1(Ω)d ≤ γ

∫
Ω

u · u + ε(u) : ε(u) dx ∀ u ∈ V. (3.7)

Thus, the convergence rate of the SDC preconditioner will deteriorate for ν

approaching 1/2, the so-called nearly incompressible case.
We consider the reference configuration Ω = (0, 1)d discretized on a Cartesian

mesh with 8 cells along each direction. We specify µ = 1, a uniform downwards
body force B = −0.02e2, and homogeneous Dirichlet BCs on ΓD = {x ∈ ∂Ω, x1 =
0}. In Table 3.1 we present the PCG iteration counts required to reduce the
Euclidean norm of the residual by a factor of 108 starting from a zero initial
guess. As the preconditioner, we employ the hybrid p-multigrid/Schwarz method
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with vertex-star patches and the SDC/FDM/sparse relaxation and a coarse space
with p = 1. As expected from (3.6), the results confirm that the approach is
reasonably p-robust, but that robustness with respect to ν cannot be achieved
with SDC relaxation on vertex-star patches.

Table 3.1: PCG iteration counts for the primal formulation of the linear elasticity
problem using the SDC/FDM/sparse relaxation.

d p \ λ 0 100 101 102 103

2 3 13 14 24 70 199
7 17 17 28 76 236

15 18 19 30 81 249
31 20 20 32 84 258

3 3 20 22 39 114 362
7 25 28 48 123 381

15 27 29 51 125 373

3.2 Mixed FEM formulations of linear elasticity

In order to avoid locking in nearly incompressible continua, or impose the incom-
pressibility constraint, the standard approach is to introduce a pressure-like variable
and discretize with a mixed FEM. This is expressed by the weak formulation:
find (u − u0, p) ∈ V × Q such that

a(v,u) + b(p,v) = L(v) ∀ v ∈ V, (3.8)

b(q,u) − c(q, p) = 0 ∀ q ∈ Q, (3.9)

where

a(v,u) =
∫

Ω
2µε(v) : ε(u) dx, b(q,u) =

∫
Ω
q div(u) dx, c(q, p) =

∫
Ω
λ−1qp dx,

(3.10)
and Q = L2

0(Ω) for λ = ∞ and ΓD = ∂Ω, or Q = L2(Ω) otherwise.
In order for this problem to have a unique solution, we require the well-known

Brezzi conditions: the solution for u is unique if a(·, ·) is coercive on the kernel
of b(·, ·), and the solution for p is unique if there exists a right inverse for b(·, ·).
This is expressed in the so-called inf–sup condition or LBB condition [12, 18]: there
exists β, which might depend on Ω, such that

0 < β := inf
q∈Q

sup
v∈V

b(q,v)
a(v,v)1/2∥q∥Q

. (3.11)
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After selecting suitable finite dimensional subspaces Vh ⊂ V , Qh ⊂ Q, we obtain
a system of linear equations with the saddle point structure[

A B⊤

B −C

] [
u
p

]
=

[
f
g

]
. (3.12)

We require the analogous Brezzi conditions for the discrete problem: that a(·, ·)
is coercive on the discrete kernel of b(·, ·), and that there exists a discrete inf-sup
constant β̃ independent of the mesh but possibly depending on p such that

0 < β̃ := inf
qh∈Qh

sup
vh∈Vh

b(qh,vh)
a(vh,vh)1/2∥qh∥Qh

. (3.13)

The discretization Vh × Qh must be chosen carefully to satisfy these conditions;
the discrete inf-sup condition will not be satisfied by arbitrary discretizations. If
they are, we have the well-known error estimates

∥uh − u∥V ≤ C1

{
inf

vh∈Vh

∥vh − u∥V + inf
qh∈Qh

∥qh − p∥Q

}
, (3.14a)

∥ph − p∥Q ≤ β̃−1C2

{
inf

vh∈Vh

∥vh − u∥V + inf
qh∈Qh

∥qh − p∥Q

}
, (3.14b)

where C1, C2 > 0 are generic constants independent of the mesh parameter h. For
the use of high-order discretizations, it is desirable to choose an element pair where
β̃ does not decrease as the polynomial degree of the approximation is increased.
Such a discretization is referred to as p-stable.

In fact, p-stability is important for solvers also. Approaches based on block-
Gaußian elimination, such as the Uzawa algorithm [10] and block-preconditioned
MINRES [74], require preconditioners for the negative pressure Schur complement
S = C + BA−1B⊤. It is well known that for the Stokes system, the continuous
analogue of S, ∇ · (−∇2)−1∇, is well approximated by the identity operator [92].
It follows that S is spectrally equivalent to the pressure mass matrix, Mp,

β2
0 ≤

q⊤Sq

q⊤Mpq
≤ β2

1 ∀ q ∈ Rdim(Qh) \ {0}. (3.15)

The rate of convergence of block-preconditioned MINRES will be determined by
the ratio β1/β0. For Stokes flows with pure Dirichlet BCs, β1 = 1, and β1 =

√
d

otherwise. In general, we have β0 = β̃. Since A is spectrally equivalent to the vector
Laplacian, these results also hold for linear elasticity. We may expect solvers based
on such techniques to degrade with p-refinement if the discretization is not p-stable.

If we choose to work with the [H1(Ω)]d-conforming space Vh = [Qp]d, some
standard inf–sup stable choices for Qh are Qp−1, DQp−2 and DPp−1. DQp−2 denotes
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discontinuous piecewise polynomials of degree at most p− 2 in each direction, while
DPp−1 denotes discontinuous piecewise polynomials of total degree at most p− 1.
The choice Qh = Qp−1 gives rise to the high-order generalization of the Taylor–Hood
mixed element [95]. Here, Mp will not be block diagonal, and hence more expensive
preconditioning techniques will be required. Moreover, it is shown numerically in
[1] that the Taylor–Hood element is not p-stable. The choice Qh = DQp−2 exhibits
an asymptotic decay of β̃ ≤ Cp(1−d)/2 as p → ∞ [16], and thus is not p-stable. In
practice, it is observed that this is quite a pessimistic bound for moderate p [66]. The
choice Qh = DPp−1 is p-stable, but numerical experiments reveal that the stability
is severely affected by the cell aspect ratio, unlike the previous two choices [89].
Moreover this last space does not have tensor-product shape functions, so its efficient
implementation becomes challenging. Another choice, Qh = DQ⌊λp⌋ for fixed λ < 1,
is p-stable for p ≥ 2/(1−λ), and leads to optimal error estimates on the pressure [15].

To construct p-stable discretizations that are also robust to cell aspect ratio,
we turn to nonconforming schemes with Vh ⊂ H(div,Ω) [26, 60]. In particular we
consider the use of Raviart–Thomas elements [7] of degree p for Vh for the displace-
ment, paired with Qh = DQp−1. This pair satisfies div(Vh) = Qh, which enforces
the incompressibility constraint (3.9) exactly in the numerical approximation for
λ = ∞. The Raviart–Thomas elements are defined on the reference quadrilateral as

RTp(K̂) = HDiv(Pp(Î) ⊗ DPp−1(Î)) ⊕ HDiv(DPp−1(Î) ⊗ Pp(Î)). (3.16)

Here HDiv transforms a scalar-valued function into a vector-valued function in
the coordinate direction of the continuous axis. The analogous element in three
dimensions is referred to as the Nédélec face element [72]. The definition can be
extended to curvilinear cells via the contravariant Piola transform: for a function
û : K̂ → Rd, we define u : K → Rd as

u = Fdiv
K (û) := 1

|DFK |
DFK

(
û ◦ F−1

K

)
, (3.17)

and set

RTp(K) = Fdiv
K

(
RTp(K̂)

)
. (3.18)

These elements have superb properties, but their nonconforming nature must
be suitably addressed in the discretization. They only impose continuity of the
normal components of u across cell facets, and we therefore weakly enforce the
tangential continuity via the symmetric interior penalty (SIPG) method [4]. The
use of SIPG for the displacement requires further extension of the FDM/sparse
relaxation; in particular, we must consider the additional facet integrals arising
in the method, and show that the stiffness remains sparse.
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3.3 Extension to interior penalty DG methods

Interior penalty discontinuous Galerkin (IP-DG) methods relax the continuity
requirement of the discretization space. For instance, instead of [H1(Ω)]d, we
consider a larger function space with weaker continuity, such as [L2(Ω)]d or H(div,Ω).
As previously mentioned, in order to deal with the non-conformity, C0-continuity
is weakly enforced via the introduction of a penalty term on the set of interior
facets ΓI of the mesh Th that vanishes for C0-continuous functions. Similarly, the
weak prescription of the Dirichlet BC u = u0 on ΓD is achieved by introducing
a penalty term on ΓD.

We consider the following SIPG formulation:

a(v,u) =
∑

K∈Th

∫
K

∇v : Fv(∇u) dx

+
∑

e∈ΓI∪ΓD

∫
e
ηh−1

e

{
G⊤

}
JvK : JuK − JvK : {Fv(∇u)} −

{
G⊤∇v

}
: JuK ds,

(3.19)

L(v) =
∫

Ω
v · B dx +

∫
ΓD

ηh−1
e G⊤(v ⊗ n) : (u0 ⊗ n) −G⊤∇v : (u0 ⊗ n) ds. (3.20)

Here n is the outward-facing unit normal on ΓD and Fv(∇u) is a linear viscous flux.
For the vector Poisson equation, the viscous flux is given by Fv(∇u) = ∇u. For
the primal formulation of linear elasticity, the viscous flux corresponds to the stress
tensor Fv(∇u) = µ(∇u + ∇u⊤) + λ∇ · uI. For the mixed formulation of linear
elasticity, the (1, 1)-block of the system has viscous flux Fv(∇u) = µ(∇u + ∇u⊤).

From left to right, the terms in the surface integral in (3.19) are referred to
as the penalty, consistency, and adjoint consistency terms. The quantity G is
known as the homogeneity tensor,

Gijkl = ∂

∂uk,l

[Fv(∇u)]ij. (3.21)

For the vector Poisson equation, G is the identity tensor, and in the case of
linear elasticity, G corresponds to the compatibility tensor. We also define the
adjoint product of G with ∇v

[G⊤∇v]kl = Gijklvi,j. (3.22)

The average {·} and jump J·K operators are defined for scalar, vector, and tensor
arguments as follows. Let e be a facet of the mesh. For an interior facet, let K−
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and K+ be the two mesh cells that share it, and let w− and w+ be the traces of a
function w on e from K− and K+, respectively. On each facet we define

{w}e =


1
2(w− + w+) e ∈ ΓI ,

w otherwise,
JwKe =

w− ⊗ n− + w+ ⊗ n+ e ∈ ΓI ,

w ⊗ n otherwise,
(3.23)

where n−,n+ are the outward-facing unit normals on ΓI from K− and K+, respec-
tively. In order to ensure coercivity of a(·, ·) as we do h- or p-refinement, the penalty
term must be sufficiently large. The penalty coefficient ηh−1

e must be chosen inversely
proportional to the normal spacing of GLL nodes near the facet, i.e., η = O(p(p+1))
[91, 69]. For the reciprocal length scale in the direction normal to facet e we use

h−1
e := |e|

{
|K|−1

}
e
. (3.24)

The stiffness matrix that corresponds to a(·, ·) in the SIPG formulation is
obtained via direct stiffness summation over the cells and facets:

A =
∑

K∈Th

R⊤
KA

KRK +
∑

e∈ΓI∪ΓD

R⊤
e A

eRe, (3.25)

where AK is the cell matrix discretizing the volume integral in K, RK is the Boolean
restriction onto the DOFs of K, Ae is the facet matrix discretizing the surface integral
on e, and Re is Boolean restriction onto the DOFs of the cells sharing facet e.

To illustrate the extension of our approach to the SIPG discretization, we
consider again the scalar Poisson equation. The discrete problem is to find uh ∈
Vh = DQp(Ω) ⊂ L2(Ω). On Cartesian cells, both AK and Ae have a tensor-
product structure of the form (2.13), with matrices of operators on the interval
that can be sparsified by the FDM. To illustrate this, suppose that, for e ∈ ΓI ,
Re reorders the DOFs such that the cells K− and K+ share e along the d-th
reference coordinate axis, while leaving the other axes consistently oriented on
both cells. The facet matrices are

Ae =

Ee ⊗ B̂ if d = 2,
Ee ⊗ B̂ ⊗ B̂ if d = 3,

(3.26)

where the interval facet matrix Ee is defined in terms of the coefficients µK
j appearing

in (2.13), the 1D basis functions {ϕ̂j}, and their normal derivatives ∂
∂n
ϕ̂j on ∂Î (the

usual derivative with a sign). When e ∈ ΓD, Ee ∈ R(p+1)×(p+1) is given by

[Ee]ij = µe
(
ηϕ̂i(x̂e)ϕ̂j(x̂e) − ϕ̂i(x̂e) ∂

∂n
ϕ̂j(x̂e) − ∂

∂n
ϕ̂i(x̂e)ϕ̂j(x̂e)

)
. (3.27)
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Here µe = µK
l , where x̂l is the reference coordinate normal to e, and x̂e ∈ ∂Î

describes the facet e as the image of the plane x̂l = x̂e under FK . When e ∈ ΓI , Ee

is a 2 × 2 block matrix with blocks Ee
rs ∈ R(p+1)×(p+1), r, s ∈ {0, 1}, given by

[Ee
rs]ij = (−1)r−s

2

(
η(µe

0 + µe
1)ϕ̂i(x̂e

r)ϕ̂j(x̂e
s) − µe

sϕ̂i(x̂e
r) ∂

∂n
ϕ̂j(x̂e

s) − µe
r

∂
∂n
ϕ̂i(x̂e

r)ϕ̂j(x̂e
s)

)
.

(3.28)
Here µe

0 = µK−
l , µe

1 = µK+
m , where x̂l and x̂m are the reference directions normal

to e on K− and K+, respectively. Similarly, the facet e is the image of x̂l = x̂e
0

under FK− and that of x̂m = x̂e
1 under FK+ .

Some implementations of DQp do not feature an interior-interface decomposition
and use the Gauß–Legendre (GL) nodal basis functions. The GL nodes do not include
the endpoints, thus all basis functions have nonzero support at the facets, causing
Ee to be dense. The matrices Ee are sparse for a basis with an interior-interface
decomposition, such as the GLL Lagrange polynomials {ℓj}, the hierarchical Lobatto
polynomials {lj}, and the FDM polynomials {ŝj}. Since ϕ̂j(±1) is nonzero for a
single j ∈ {0, p}, each term in (3.28) and (3.27) corresponds to a nonzero entry, a
nonzero row, and a nonzero column of Ee, respectively, as seen in Figure 3.1.

1 5 6 10

nz = 36

1

5

6

10

Figure 3.1: Nonzero structure for the interior facet matrix Ee on the interval (p = 4).

Instead of diagonalizing the SIPG patch matrix as in [96], our FDM-based
approach produces a sparse matrix with diagonal interior blocks on (possibly)
unstructured vertex-star patches. Figure 3.2 shows the sparsity pattern of the
matrix for the SIPG formulation of the Poisson equation on a Cartesian vertex-star
patch in the FDM basis, along with its Cholesky factor. Here the matrix size is
increased from (2p − 1)d DOFs in the CG case to (2p + 2)d. At low polynomial
degrees, the interface DOFs form a large fraction of the total number, but the
proportion decreases as p increases. The computational complexity analysis of
Section 2.2.4 carries over to the SIPG case.
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(a) Aj , d = 2
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(b) chol(Aj), d = 2
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nz = 27440

216
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(c) Aj , d = 3
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nz = 115148

216

1000

(d) chol(Aj), d = 3

Figure 3.2: Nonzero structure of the SIPG stiffness matrix in the FDM basis Aj = LjL⊤
j

and its upper Cholesky factor L⊤
j for the Poisson problem on a Cartesian vertex-star

patch with p = 4. Since the space is discontinuous, the number of DOFs in a patch is
increased. The number of nonzeros in an interior row is 3d + 1, since the interior DOFs
are connected to each of the 2d facets of their corresponding cell, plus d more facets from
the adjacent cells.

For a general viscous flux, we construct an auxiliary separable form by expressing
the cell integrals in terms of the reference coordinates

aK(v,u) =
∫

K
GK

ijkl

∂vi

∂xj

∂uk

∂xl

dx =
∫

K̂
ĜK

ijkl

∂

∂x̂j

(vi ◦ FK) ∂

∂x̂l

(uk ◦ FK) dx̂, (3.29)

where ĜK is the homogeneity tensor in the reference coordinates,

ĜK
ijkl = |DFK |[DF−1

K ]jm[DF−1
K ]lnGK

imkn. (3.30)

The auxiliary form ã(·, ·) is constructed by approximating ĜK
ijkl with a piecewise

constant tensor that discards the entries where i ̸= k or j ̸= l. The corresponding
cell stiffness matrices become sparse in the FDM basis, and have a similar form as
(2.13), except that the coefficients µK

j are diagonal matrices that multiply each term
through an additional Kronecker product. Hence, we expect that preconditioners
based on the auxiliary form to be limited by the coupling between vector components,
by the mesh geometry, and by how GK varies within K.

This approach carries over to non-Cartesian cells for DG discretizations of the
Poisson equation in the same way as the CG case. Unfortunately, the extension of our
approach to vector-valued problems in H(div) on non-Cartesian cells does not yield
a good preconditioner. In this setting, we construct a block diagonal preconditioner
separating the components of the DOFs, which are in the reference coordinates. For
the vector Poisson problem on non-Cartesian cells, the Piola transform introduces
off-diagonal contributions from the volume and surface terms, which does not occur
on non-Piola-mapped elements, such as [Qp]d and [DQp]d. The excluded terms are
required for the surface integral terms to vanish for arguments with C0 continuity,
and without them the preconditioner might become indefinite on non-Cartesian cells.
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3.4 Results for mixed formulations of linear elas-
ticity

We consider the same problem as in Table 3.1, with both a conforming [Qp]d ×DQp−2

discretization and a non-conforming RTp × DQp−1 discretization. For the H(div)-
conforming discretization, the normal components of the Dirichlet BCs are enforced
strongly, while the tangential components of the BCs are weakly enforced with SIPG.
Enforcing the normal conditions strongly is crucial for achieving a divergence-free
solution in the Stokes limit λ = ∞. Following [69], we use η = p(p + 1) for the
penalty coefficient. We restrict our experiment to Cartesian cells, so that the
FDM/sparse relaxation is applicable to the H(div)-conforming discretization.

We iteratively solve the discrete system (3.12) via MINRES with a symmetric
positive definite block diagonal preconditioner,

Pdiag =
[
P1 0
0 P2

]
. (3.31)

Here P1 is a preconditioner for the displacement block A, and P2 is a preconditioner
for the scaled pressure mass matrix (µ−1 + λ−1)Mp. For P1 we employ the hybrid
p-multigrid/Schwarz method with the SDC/FDM/sparse relaxation and [Q1]d as the
coarse space. In our tests, we discretize the pressure space with the GL basis, and
employ point-Jacobi on the pressure mass matrix, i.e., P2 = (µ−1 + λ−1) diag(Mp).
When Th consists of Cartesian cells, Mp = diag(Mp) in the GL basis. The solver
is illustrated in Figure 3.3.

Krylov solver: MINRES

Block-diagonal preconditioner Pdiag

(1,1)-block: Hybrid p-multigrid/Schwarz V-cycle

Relaxation: SDC/FDM/sparse

Coarse grid: Cholesky

(2,2)-block: Mass matrix preconditioner

Relaxation: point-Jacobi

Figure 3.3: Solver diagram for the mixed linear elasticity problem.

In Table 3.2 we present MINRES iteration counts for the same configuration
considered in Table 3.1 in Section 3.1, using the [Qp]d × DQp−2 and RTp × DQp−1

elements, respectively. Both discretizations yield robust iteration counts with
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Table 3.2: MINRES iteration counts for the mixed linear elasticity problem, using the
solver in Figure 3.3.

[Qp]d × DQp−2 RTp × DQp−1
d p \ λ 100 101 102 103 ∞ 100 101 102 103 ∞

2 3 28 40 43 43 43 25 36 39 40 40
7 31 45 50 51 51 28 40 43 45 45

15 34 50 57 57 57 30 43 48 48 48
31 36 53 64 65 65 31 45 51 51 51

3 3 44 67 75 76 76 34 50 55 56 56
7 50 83 96 97 98 39 58 63 65 65

15 53 88 111 118 119 41 63 70 70 70

respect to λ; the iterations grow with the former discretization much more quickly
than the latter, especially in 3D.

The solver configuration shown in Figure 3.3 is optimized for memory usage,
employing a block diagonal preconditioner so that the short-term recurrences of
MINRES may be exploited. If one is willing to trade memory for time, one
may consider an alternative configuration shown in Figure 3.4 employing right-
preconditioned GMRES [85] with a block upper triangular preconditioner,

Pupper =
[
P1 B⊤

0 −P2

]
, (3.32)

which requires a single application of each P−1
1 , P−1

2 , and B⊤ per GMRES iteration.
Here P1, P2 refer to the same positive definite preconditioners used for Pdiag in
(3.31), therefore a minus sign is needed in front of P2, since the pressure Schur
complement is negative definite. The GMRES iteration counts are presented in
Table 3.3. For 3D, in the incompressible regime, we observe that the GMRES solver
requires fewer than half of the iterations required by the MINRES solver.

In Table 3.4 we study the performance of our solver on an unstructured mesh.
We consider the [Qp]d × DQp−2 discretization of incompressible linear elasticity
(λ = ∞). We prescribe µ = 1, a uniform downwards body force B = −0.02e2, and
homogeneous Dirichlet BCs on the displacement on the holes of the domain. The
three-dimensional mesh is obtained via extrusion by 16 layers of the two-dimensional
mesh. The iteration counts follow the same pattern as before for this element: they
are not p-robust as expected, but they remain modest even at very high degrees.
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Krylov solver: GMRES(30)

Block upper triangular preconditioner Pupper

(1,1)-block: Hybrid p-multigrid/Schwarz V-cycle

Relaxation: SDC/FDM/sparse

Coarse grid: Cholesky

(2,2)-block: Mass matrix preconditioner

Relaxation: point-Jacobi

Figure 3.4: Solver diagram for the mixed linear elasticity problem that trades memory
for iteration counts.

Table 3.3: GMRES iteration counts for the mixed linear elasticity problem, using the
solver in Figure 3.4.

[Qp]d × DQp−2 RTp × DQp−1
d p \ λ 100 101 102 103 ∞ 100 101 102 103 ∞

2 3 17 23 25 26 26 14 20 22 22 22
7 18 25 27 28 28 16 22 24 24 24

15 20 27 33 34 34 17 23 26 26 26
31 21 30 38 38 39 18 24 28 28 28

3 3 24 32 33 34 34 17 23 25 25 25
7 27 35 38 38 38 21 26 29 29 29

15 28 38 44 46 46 22 28 31 31 32

Table 3.4: GMRES iteration counts for the mixed formulation of the incompressible linear
elasticity problem on the unstructured mesh shown here, using the solver in Figure 3.4.

d p # DOFs Iter.

2 3 17 466 26
7 104 250 29

15 499 002 35
31 2 173 242 44

3 3 588 927 39
7 7 876 575 47

11 31 236 927 51



4
Optimal complexity multigrid solvers for

the de Rham complex1

4.1 Introduction

In this chapter we introduce solvers for high-order finite element discretizations
of the following boundary value problems posed on a bounded Lipschitz domain
Ω ⊂ Rd in d = 3 dimensions2:

βu− ∇ · (α∇u) = f in Ω, u = 0 on ΓD, α∇u · n = 0 on ΓN ; (4.1)

βu + ∇ × (α∇ × u) = f in Ω, u × n = 0 on ΓD, α∇ × u × n = 0 on ΓN ; (4.2)

βu − ∇ (α∇ · u) = f in Ω, u · n = 0 on ΓD, α∇ · u = 0 on ΓN ; (4.3)

where α, β : Ω → R+ are problem parameters, ΓD ⊆ ∂Ω, and ΓN = ∂Ω \ ΓD.
For α = β = 1, these equations are the so-called Riesz maps associated with
subsets of the spaces H(grad,Ω) = H1(Ω), H(div,Ω) and H(curl,Ω) respectively.
These function spaces are defined as:

H(grad,Ω) :=
{
v ∈ L2(Ω) : grad v ∈ [L2(Ω)]3

}
, (4.4)

H(curl,Ω) :=
{
v ∈ [L2(Ω)]3 : curl v ∈ [L2(Ω)]3

}
, (4.5)

H(div,Ω) :=
{
v ∈ [L2(Ω)]3 : div v ∈ L2(Ω)

}
. (4.6)

For brevity we shall write H(grad) = H(grad,Ω) etc. where there is no potential
confusion. Our problems of interest (4.1)-(4.3) often arise as subproblems in the

1This chapter is extracted from [19], submitted to SIAM J. Sci. Comput.
2Our solver strategy extends to d ∈ N+, but we describe the case d = 3 for concreteness.

40
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construction of fast preconditioners for more complex systems involving solution
variables in (4.4)-(4.6) [45, 70], and are the canonical maps for transforming
derivatives to gradients in optimization problems posed in these spaces [90].

The spaces (4.4)-(4.6) and their discretizations are organized in the L2 de
Rham complex

H(grad) H(curl) H(div) L2

Qp NCEp NCFp DQp−1

grad curl div

grad curl div

, (4.7)

where the complex property means that the image of one map (grad, curl, or div) is
contained in the kernel of the next, e.g., grad(H(grad)) ⊂ ker(curl, H(curl)). Here
Qp ⊂ H(grad), NCEp ⊂ H(curl), NCFp ⊂ H(div), and DQp ⊂ L2 are piecewise
polynomial spaces of maximum polynomial degree p on a mesh Th of tensor-product
cells (hexahedra) used for the finite element discretization of (4.1)-(4.3). NCEp

and NCFp are the discrete function spaces induced by the Nédélec edge elements
and face elements [72] respectively.

Standard multigrid relaxation schemes such as point-Jacobi and Gauß-Seidel
are not effective for high-order discretizations of these problems; these relaxations
are only effective for (4.1) at low-order, and are never effective for (4.2) and
(4.3). In particular, the convergence of the multigrid scheme is not robust with
respect to α, β, or p. However, space decompositions that experimentally exhibit
convergence robust to α, β and p are known, proposed by Pavarino [75], Arnold,
Falk & Winther (AFW) [9], and Hiptmair [44]. The relaxation schemes these space
decompositions induce require the solution of patchwise problems e.g., gathering
all DOFs around each vertex, edge, or face.

Solving these patch problems becomes challenging as p increases. The storage
and factorization of the patch matrices becomes prohibitively expensive, since
standard basis functions for Qp,NCEp, and NCFp introduce coupling between all
interior DOFs within a cell, causing O(pd) × O(pd) dense blocks in the matrix.
The Cholesky factorization of such matrices takes O(p3d) flops and O(p2d) storage.
These complexity estimates severely limit the use of very high polynomial degrees.
Here we will present an alternative strategy for solving these subproblems with
O(pd+1) flops and O(pd) storage. These complexity bounds are optimal in the
context of Krylov methods: they match the computational complexity of applying
the discretized operator via sum-factorization [73].
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(a) Agrad, standard
nz = 282720
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1176

(b) Acurl, standard
nz = 291840

1152

1344

(c) Adiv, standard

nz = 2107

216

343

(d) Agrad, FDM
nz = 13440

864

1176

(e) Acurl, FDM
nz = 13056

1152

1344

(f) Adiv, FDM

Figure 4.1: Sparsity patterns for the 2 × 2 × 2 Pavarino–Arnold–Falk–Winther patch
problem around a vertex (p = 4), for (a, d) (4.1) (b, e) (4.2) (c, f) (4.3). The top row
(a)-(c) uses standard (GLL/GL) elements, while the bottom row (d)-(f) uses the FDM
variants we propose.

Our strategy relies on three main components. First, we propose new finite
elements (with different degrees of freedom and basis functions) for building NCEp,
NCFp, and DQp with useful orthogonality properties on the reference cell. The
elements are derived from a finite element for Qp introduced in Chapter 2 via
tensor-product construction. The new finite elements are simple and convenient
to implement; by their orthogonality properties, the patch matrices on Cartesian
cells are sparse. For example, the sparsity patterns of a vertex-patch problem for
(4.1)–(4.3) with p = 4 are shown in Figure 4.1, for both the standard GLL/GL finite
elements and our proposals (referred to as ‘FDM’ elements, as they are inspired
by the fast diagonalization method [65]).

The second main component is to ensure optimal fill-in in the factorization of the
patch problems. The Cholesky factorizations of the matrices shown in Figure 4.1(d-f)
are sparse, even sparser than the Cholesky factorization of a low-order discretization
on a grid with the same number of DOFs. However, this still incurs suboptimal setup
and storage costs of O(p2d) and O(pd+1) respectively. We overcome this through the



4. Multigrid solvers for the de Rham complex 43

choice of Hiptmair space decompositions, which require smaller patch solves around
edges and faces, and through the careful use of incomplete factorizations of vertex
patch problems. Choosing edge patches in H(curl) and face patches in H(div)
(along with patches for scalar and vector potential fields, respectively) results in
patch factors with fill-in of optimal space complexity of O(pd). However, this
does not address the case of H(grad). A natural strategy is to employ incomplete
Cholesky (ICC) factorizations. The zero-fill-in ICC factorization does not work:
the factorization may fail, and even when it is computed it may not offer an
effective relaxation. Instead, we use a nested dissection ordering and impose the
sparsity pattern associated with static condensation (i.e., when the interior DOFs are
eliminated) by padding with zeros the interface block of the patch matrices, without
carrying out the elimination. Computational experiments indicate that this still
offers an excellent relaxation, while achieving optimality in both flops and storage.

The third main component is the use of auxiliary operators. The patch matrices
assembled with the FDM elements are not sparse for distorted cells and/or spatially-
varying α or β. To overcome this, we apply our preconditioner to an auxiliary
operator which is constructed so that the patch matrices are sparse. The auxiliary
operator employed in this work is different to that in Chapter 2 for solving (4.1):
here, we construct the auxiliary operator by taking diagonal approximations of mass
matrices involved in the definition of the stiffness matrices. The implementation of
this auxiliary operator is more convenient for H(curl) and H(div). The quality of
this approximation depends on the mesh distortion and the degree of any spatial
variation in coefficients. Computational experiments suggest a slow growth of
the equivalence constants with respect to p, but this growth is not fast enough
to affect optimality of the solver.

With these components we achieve optimal complexity solvers. To illustrate
this, we show in Figure 4.2 the number of flops and bytes required to solve the
Riesz maps (4.1)–(4.3) with CG and α = β = 1 on an unstructured hexahedral
mesh. The setup is described in more detail in Section 4.5.1.

For patch matrices assembled in the GLL basis (and hence with dense blocks)
and factorized, the time complexity is O(p9), and the space complexity is O(p6),
as expected. When assembled in the FDM basis in a sparse matrix format, the
time complexity is reduced to approximately O(p5) (the empirical slope between
p = 23 and p = 31 is O(p5.22) in fig. 4.2(a)), and the space complexity is O(p4)
in fig. 4.2(c). The peak memory used, as shown in fig. 4.2(b), is not yet scaling
as O(p4), indicating that the sparse Cholesky factors are not yet the dominant
term in memory. These complexities are further reduced when the FDM elements
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Figure 4.2: Flop counts, peak memory usage, and nonzeros in the sparse matrices and
patch factors in the solution of the Riesz maps on a 3D unstructured mesh with 27 cells.

are combined with ICC factorizations: the time complexity becomes O(p4) and
the space complexity O(p3), as desired.

A fourth, optional ingredient is the use of static condensation on the sparse
auxiliary operator, eliminating the interior DOFs to yield patch problems posed
only on the interfaces between cells. As shown in Figure 4.2, the time and space
complexities remain O(p4) and O(p3) respectively, but there are several advantages
nevertheless. First, the peak memory required is substantially reduced, by a factor
of 2.5–5.3 for p = 31 , thus enabling the use of modern HPC hardware with limited
RAM available per core. This reduction is caused by the fact that the patch matrices
have fewer DOFs. Second, the volume of data shared between processes is reduced,
to the same order as that required by operator application. This reduces parallel
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communication. These advantages result in a substantially faster solver.

4.1.1 Related work

The fast diagonalization method (FDM) [65] is a matrix factorization that enables the
direct solution of problems such as (4.1) in optimal complexity, whenever separation
of variables is applicable (i.e., only on certain domains and for certain coefficients
α, β). The FDM breaks down the d-dimensional problem into a sequence of one-
dimensional generalized eigenvalue problems. Our construction of finite elements
with orthogonality properties below in Section 4.2 was inspired by the FDM.

Hientzsch [42, 43] studied the extension of the FDM to the H(curl) Riesz
map (4.2). The algorithm relies on the elimination of one vector component. The
reduced system for the remaining vector component can be solved directly with
the FDM. With this approach, one has to solve one generalized eigenvalue problem
for every cell of the mesh, whereas in the H(grad) case (4.1) one solves a single
generalized eigenvalue problem on the reference cell. Unfortunately, this strategy
does not extend well to the case with three vector components, as the nested Schur
complement is no longer a sum of three Kronecker products.

Low-order-refined (LOR) preconditioners [73, 29] are well known to be spectrally
equivalent [21] to discrete high-order operators in H(grad). For problems in
H(curl) and H(div), LOR preconditioners have been studied in [32, 78]. The
auxiliary low-order problem is sparse, but even for the H(grad) case (4.1), devising
efficient relaxations is challenging [77]. This is because the low-order-refined grid is
anisotropic, and pointwise smoothers on the auxiliary low-order problem become
ineffective as p increases. To overcome this, Pazner [77] applies patchwise multigrid
with ICC relaxations to (4.1), relying on a good ordering of the DOFs. This method
has not been studied for (4.2) or (4.3), to the best of our knowledge. Instead,
Pazner, Kolev & Dohrmann apply the AMS and ADS algebraic multigrid solvers
of Hypre [36, 56, 57] to the auxiliary low-order problem, which implement the
strategy proposed by Hiptmair & Xu [46]. These LOR approaches do not naturally
combine with static condensation, since the density of the Schur complement arising
from the elimination of DOFs that are interior to the original grid counteracts
the sparsity offered by the low-order problem.

In common with the work of Schöberl & Zaglmayr [88, 99], we obtain basis
functions with local complete sequence properties, i.e., at the interior DOF level
the discrete spaces form a subcomplex of the de Rham complex. Our construction
of the basis functions for NCEp, NCFp, and DQp from that of Qp is the same, but
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we start from a different basis for Qp; Schöberl & Zaglmayr start with integrated
Lagrange polynomials on the reference interval, whereas we employ the FDM
element proposed in Chapter 2. This choice yields greater sparsity, because the
mass matrix on the reference interval decouples the interior DOFs.

4.2 Sparsity-promoting discretization

Our goal is to construct finite elements so that the discretizations of (4.1)–(4.3) are
sparse even at high p. Specifically, we desire that the number of nonzeros in the
stiffness matrix is of the same order as its number of rows or columns, in certain
cases (Cartesian cells and cellwise-constant coefficients).

4.2.1 Exterior calculus notation and weak formulation

To unify the discussion of (4.1)–(4.3), we adopt the language of the finite element
exterior calculus (FEEC) [5]. We recognize functions in H(grad), H(curl), H(div),
and L2 as differential k-forms for k = 0, 1, 2, 3 respectively, writing H(dk,Ω) =
HΛk(Ω), with the exterior derivative dk corresponding to d0 = grad, d1 = curl,
d2 = div, d3 = null (the zero map). We define the spaces

V k := {v ∈ HΛk(Ω) : tr v = 0 on ΓD}, (4.8)

where the trace operator on ∂Ω is tr v = v|∂Ω for 0-forms, tr v = (v × n)|∂Ω for
1-forms, tr v = (v · n)|∂Ω for 2-forms, and tr v = 0 for 3-forms [5], where n denotes
the outward-facing unit normal on ∂Ω. In FEEC notation, the discrete spaces
on the bottom row of (4.7) are denoted as Q−

p Λk(Th). We denote the discrete
spaces employed as V k

h,p := Q−
p Λk(Th) ∩ V k.

With this notation, the common weak formulation of (4.1)–(4.3) is to find
u ∈ V k such that

ak(v, u) := (v, βu)Ω + (dk v, α dk u)Ω = F (v) for all v ∈ V k, (4.9)

for k ∈ {0, 1, 2}, and where (·, ·)Ω denotes the L2(Ω)-inner product. The discretiza-
tion we consider is to find uh ∈ V k

h,p such that

ak(vh, uh) = F (vh) for all vh ∈ V k
h,p. (4.10)
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4.2.2 Orthogonal bases for H(grad) and L2 on the interval

In Section 2.2.2 we introduced new DOFs for Pp(Î) ⊂ H(grad, Î), the basis for the
dual (2.21) consists of point evaluation at the vertices and integral moments against
interior basis functions that are orthogonal in both the L2(Î)- and H(grad, Î)-inner
products (2.20). We recall our notation for this FDM-inspired basis {ŝj}p

j=0 and
the interior and interface index sets I = 1 : p− 1 and Γ = {0, p}. Through standard
tensor-product construction we obtain an interior-orthogonal basis for V 0

h,p = Qp for
which discretizations of (4.1) on Cartesian cells (rectangular hexahedra) are sparse,
as sparse as a low-order discretization, with a sparser Cholesky factorization. By
introduction of an additional basis for L2(Î), we will construct tensor-product
bases for V k

h,p, k ∈ 1 : 3 with interior-orthogonality properties that promote
sparsity on Cartesian cells.

We first define a basis {r̂j}p−1
j=0 for DPp−1(Î) ⊂ L2(Î) in one dimension, by

exploiting the fact that d(Pp) = DPp−1 (where d is the one-dimensional derivative
operator). We define the basis for DPp−1(Î) as the derivatives of the interior basis
functions for Pp defined above, {ŝ′

j}j∈I , augmented with the constant function:

r̂j :=

λ
−1/2
0 j = 0,
λ

−1/2
j ŝ′

j j = 1, . . . p− 1.
(4.11)

Here λ0 := |Î|, and λj := (ŝ′
j, ŝ

′
j)Î for j ∈ I are required to normalize the basis. By

construction, the set {ŝ′
j}j∈I is orthogonal in the L2(Î)-inner product. In addition

(r̂0, r̂j)Î = 0 for j ∈ I, which follows from the fact that the interior basis functions
{ŝj}j∈I vanish at the endpoints of Î:

(r̂0, r̂j)Î = (λ0λj)−1/2
∫

Î
ŝ′

j dx̂ = (λ0λj)−1/2 (ŝj(1) − ŝj(−1)) = 0. (4.12)

This dependence of the basis of DPp−1 on that of Pp becomes useful in higher
dimensions for enforcing interior-orthogonality in H(curl) and H(div).

Figure 4.3 shows the FDM basis functions for Pp and DPp−1 and the nonzero
structure of the one-dimensional differentiation matrix D̂ ∈ Rp×(p+1) that interpo-
lates the derivatives of Pp onto DPp−1 in the FDM bases.
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Figure 4.3: Plots of the FDM basis functions for p = 4 on the reference interval Î.

4.2.3 Orthogonal bases for the de Rham complex

With bases for Pp(Î) and DPp−1(Î), we construct the basis functions for V k
h,p(K̂), k ∈

0 : 3, on the reference hexahedron K̂ := Î3 in the usual tensor-product fashion [72, 6]:

V 0
h,p(K̂) = Qp(K̂) = Pp(Î) ⊗ Pp(Î) ⊗ Pp(Î), (4.13)

V 1
h,p(K̂) = NCEp(K̂) =

DPp−1(Î) ⊗ Pp(Î) ⊗ Pp(Î)
Pp(Î) ⊗ DPp−1(Î) ⊗ Pp(Î)
Pp(Î) ⊗ Pp(Î) ⊗ DPp−1(Î)

 , (4.14)

V 2
h,p(K̂) = NCFp(K̂) =

Pp(Î) ⊗ DPp−1(Î) ⊗ DPp−1(Î)
DPp−1(Î) ⊗ Pp(Î) ⊗ DPp−1(Î)
DPp−1(Î) ⊗ DPp−1(Î) ⊗ Pp(Î)

 , (4.15)

V 3
h,p(K̂) = DQp−1(K̂) = DPp−1(Î) ⊗ DPp−1(Î) ⊗ DPp−1(Î). (4.16)

We introduce tensor-product bases for each finite element space in (4.7). For
Qp(K̂) we define {ψ̂ijl} as

ψ̂ijl := ŝi(x̂1)ŝj(x̂2)ŝl(x̂3), (i, j, l) ∈ (0 : p)3. (4.17)

For NCEp(K̂) we define {Ψ̂(m)
ijl } as

Ψ̂(1)
ijl := r̂i(x̂1)ŝj(x̂2)ŝl(x̂3)e1, (i, j, l) ∈ (0 : p− 1) × (0 : p) × (0 : p),

Ψ̂(2)
ijl := ŝi(x̂1)r̂j(x̂2)ŝl(x̂3)e2, (i, j, l) ∈ (0 : p) × (0 : p− 1) × (0 : p),

Ψ̂(3)
ijl := ŝi(x̂1)ŝj(x̂2)r̂l(x̂3)e3, (i, j, l) ∈ (0 : p) × (0 : p) × (0 : p− 1).

(4.18)

For NCFp(K̂) we define {Φ̂(m)
ijl } as

Φ̂(1)
ijl := ŝi(x̂1)r̂j(x̂2)r̂l(x̂3)e1, (i, j, l) ∈ (0 : p) × (0 : p− 1) × (0 : p− 1),

Φ̂(2)
ijl := r̂i(x̂1)ŝj(x̂2)r̂l(x̂3)e2, (i, j, l) ∈ (0 : p− 1) × (0 : p) × (0 : p− 1),

Φ̂(3)
ijl := r̂i(x̂1)r̂j(x̂2)ŝl(x̂3)e3, (i, j, l) ∈ (0 : p− 1) × (0 : p− 1) × (0 : p).

(4.19)
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For DQp−1(K̂) we define {ϕ̂ijl} as

ϕ̂ijl := r̂i(x̂1)r̂j(x̂2)r̂l(x̂3), (i, j, l) ∈ (0 : p− 1)3. (4.20)

By construction, the interior basis functions of these four bases are orthonormal in
the L2(K̂)-inner product. Moreover, each horizontal arrow in (4.7) gives rise to the
following relations between the interior basis functions, where (i, j, l) ∈ (1 : p− 1)3:

grad ψ̂ijl = λ
1/2
i Ψ̂(1)

ijl + λ
1/2
j Ψ̂(2)

ijl + λ
1/2
l Ψ̂(3)

ijl , (4.21)

curl Ψ̂(1)
ijl = λ

1/2
j Φ̂(3)

ijl − λ
1/2
l Φ̂(2)

ijl ,

curl Ψ̂(2)
ijl = λ

1/2
l Φ̂(1)

ijl − λ
1/2
i Φ̂(3)

ijl ,

curl Ψ̂(3)
ijl = λ

1/2
i Φ̂(2)

ijl − λ
1/2
j Φ̂(1)

ijl ,

(4.22)

div Φ̂(1)
ijl = λ

1/2
i ϕ̂ijl, div Φ̂(2)

ijl = λ
1/2
j ϕ̂ijl, div Φ̂(3)

ijl = λ
1/2
l ϕ̂ijl. (4.23)

Therefore, the FDM bases form a local complete sequence at the interior DOF
level, i.e., for a fixed (i, j, l) ∈ (1 : p − 1)3 we can establish a subcomplex of the
discrete de Rham complex on the reference cube

Qp(K̂) NCEp(K̂) NCFp(K̂) DQp−1(K̂)

span{ψ̂ijl} span{Ψ̂(m)
ijl }3

m=1 span{Φ̂(m)
ijl }3

m=1 span{ϕ̂ijl}

grad curl div

grad curl div

.

(4.24)
Taking into account the L2(K̂)-orthogonality of the interior basis functions, (4.24)
implies that on Cartesian cells, the sparsity pattern of the stiffness matrices Ak

discretizing the bilinear form for the Riesz map ak(·, ·) in (4.9) connects each
interior DOF only to interior DOFs that share (i, j, l). Thus the interior block
of Ak has at most d nonzeros per row (for k ∈ {1, 2}) or one nonzero per row
(for k ∈ {0, 3}), as depicted in Figure 4.1.

4.3 Auxiliary sparse preconditioning

The orthogonality on the reference cell, and the subsequent sparsity of the mass
and stiffness matrices, will only carry over to cells that are Cartesian and when α, β
are cellwise constant. In this section we construct a preconditioner that extends the
sparsity we would have in the Cartesian case to the case of practical interest, with
distorted cells and spatially varying coefficients. The essential idea is to build an
auxiliary operator which is sparse in the FDM basis, by construction. To explain
this, we must first introduce some notions of finite element assembly.
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4.3.1 Pullbacks and finite element assembly

The discrete spaces V k
h,p are defined in such way that the trace is continuous across

facets. This is achieved through the pullback Fk
K : V k(K̂) → V k(K) that maps

functions on the reference cell K̂ to functions on the physical cell K. The discrete
spaces are defined in terms of the pullback,

V k
h,p(Th) :=

{
vh ∈ V k : ∀K ∈ Th ∃ v̂ ∈ V k

h,p(K̂) s.t. vh|K = Fk
K(v̂)

}
. (4.25)

The application of the pullback to a reference function can be described
as the composition of the inverse of the coordinate mapping FK : K̂ → K

with multiplication by a factor Rk
K depending on the Jacobian of the coordinate

transformation JK := DFK . Let u be a k-form on K mapped from û in K̂. Then

u(x) = Fk
K(û(x̂)) = Rk

K û(F−1
K (x)) =


û(F−1

K (x)) k = 0,
J−⊤

K û(F−1
K (x)) k = 1,

(det JK)−1JK û(F−1
K (x)) k = 2,

(det JK)−1û(F−1
K (x)) k = 3,

(4.26)

for x ∈ K mapped from x̂ ∈ K̂ via x = FK(x̂). The pullback preserves
continuity of the traces of a k-form across cell facets, which is the natural continuity
requirement for dk.

Another key property of the pullback is that it commutes with dk. The exterior
derivative dk u can be mapped from that of the reference value d̂kû,

dk Fk
K(û) = Fk+1

K (d̂kû), (4.27)

where d̂
k

is the exterior derivative with respect to the reference coordinates x̂. The
pullback is incorporated in FEM by storing reference values as the DOFs in the
vector of coefficients u = (û1, . . . , ûN )⊤ representing a discrete function on a cell K as

uh|K =
N∑

j=1
ûjFk

K(ψ̂k
j ), (4.28)

where ψ̂k
j indexes the basis functions for V k

h,p(K̂) defined in (4.17)-(4.20). The
assembly of a bilinear form involves the cell matrices

[Ak
K ]ij = ak(Fk

K(ψ̂k
i ),Fk

K(ψ̂k
j )). (4.29)
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4.3.2 Construction of sparse preconditioners

We rewrite the bilinear form ak(·, ·) in terms of reference arguments and use
the property (4.27), to obtain

ak(vh, uh) =
(
Fk

K(v̂), β Fk
K(û)

)
K

+
(
Fk+1

K (d̂kv̂), αFk+1
K (d̂kû)

)
K
, (4.30)

for vh, uh ∈ V k
h,p(K). From (4.30) we see that the second term is an inner product

of arguments in V k+1
h,p (K). This means that the cell matrices can be sum-factorized

in terms of the differentiation matrix D̂ acting on reference values, and weighted
mass matrices on V k

h,p and V k+1
h,p ,

Ak
K = Mk

β,K + D̂⊤Mk+1
α,K D̂. (4.31)

Intuitively, we want each of the matrices in the sum-factorization (4.31) to be sparse
in order to achieve sparsity in Ak

K . In higher dimensions the matrix D̂ inherits the
sparsity of the one-dimensional differentiation matrix depicted in Figure 4.3(c). On
Cartesian cells and for cellwise constant α, β, the matrices Mk+1

α,K ,M
k
β,K are sparse,

but they are not sparse when these conditions do not hold.
We rewrite (4.30) as

ak
K(v, u) =

(
v̂, β̂K û

)
K̂

+
(
d̂v̂, α̂K d̂û

)
K̂
, (4.32)

where β̂K := (det JK)Rk
K

⊤β(FK(x̂))Rk
K and α̂K := (det JK)Rk+1

K
⊤αK(FK(x̂))Rk+1

K

are Jacobian-weighted push-forwards of the bilinear form coefficients.
For the matrices Mk

β,K , Mk+1
α,K to be sparse, α̂K , β̂K must be constant and

diagonal. We propose to precondition Ak
K with a sparse stiffness matrix Ãk

K

discretizing a spectrally equivalent form

ãk
K(v, u) :=

(
v̂, β̃K û

)
K̂

+
(
d̂v̂, α̃K d̂û

)
K̂
, (4.33)

where β̃K , α̃K are constant diagonal approximations to β̂K , α̂K , respectively.
One convenient way to obtain such approximations is to assemble the diagonal

of the scaled mass matrices with cell-wise constant spaces DP0 with the appropriate
pullbacks for V k

h,p and V k+1
h,p .

We now state the spectral equivalence result between the auxiliary form ãk(·, ·)
and the original form ak(·, ·).

Theorem 4.1. There exist constants C ≥ c > 0 independent of the polynomial
degree of the discretization, that depend on α|K|/

∫
K α dx, β|K|/

∫
K β dx, and on

Th through DFK such that

c ≤ ak(v, v)
ãk(v, v) ≤ C ∀ v ∈ V k

h,p \ {0}. (4.34)
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Proof. The proof is similar to that of Theorem 2.1. Let Cβ
K , c

β
K , C

α
K , c

α
K be the

bounds for the spectra of the diagonally scaled coefficients on a given cell, such that
σ(β̃−1/2

K β̂K β̃
−1/2
K ) ∈ [cβ

K , C
β
K ] and σ(α̃−1/2

K α̂Kα̃
−1/2
K ) ∈ [cα

K , C
α
K ]. Then

cK := min{cβ
K , c

α
K} ≤ ak

K(v, v)
ãk

K(v, v) ≤ max{Cβ
K , C

α
K} =: CK ∀ v ∈ V k

h,p(K) \ {0}.

(4.35)
The spectral equivalence constants on V k

h,p are c := minK{cK}, C := maxK{CK}.

We therefore expect the convergence rate of Krylov methods using precondition-
ers based on Ãk to be robust to the polynomial degree when the problem parameters
are piecewise constant. We also expect the performance to be affected by how much
the cells are distorted with respect to the Cartesian case.

We describe an alternative strategy to obtain a sparse approximation to Ak
K ,

that does involve the mapped DP0 spaces, that we implement for our numerical
experiments. We consider a sparse approximation to Mk

β,K first. As Mk
β,K discretizes

a weighted L2(K)-inner product, we propose to assemble the matrix in terms of
a broken space V k

h,p with a fully L2-orthonormal basis. In this broken space, the
mass matrix to approximate will be diagonal in the Cartesian, constant-coefficient
case. The basis for DPp−1 was already L2-orthogonal; we define a new basis for Pp,
the broken variant of Pp, simply by orthogonalizing the interface basis functions
with respect to each other. The interface functions were already orthogonal to the
interior ones, which follows from the definition of the interior degrees of freedom
(2.21) and the duality condition (2.22).

Let Mk
β,K be the weighted mass matrix in the basis for V k

h,p(K). Then

Mk
β,K = G⊤Mk

β,KG, (4.36)

where G is a sparse basis transformation matrix from V k
h,p(K̂) to V k

h,p(K̂). This
matrix G is block diagonal with one block per vector component, where each block is
a Kronecker product of identity matrices and (sparse) basis transformation matrices
from Pp(Î) to Pp(Î). The matrix Mk

β,K is diagonal when K is Cartesian and β is
constant, unlike Mk

β,K (which is sparse, but not diagonal in this case). To obtain
a sparse approximation to Mk

β,K , we simply take the diagonal of Mk
β,K in (4.36).

This contrasts with taking the diagonal directly of Mk
β,K , which would alter the

operator even when K is Cartesian and β is constant.
Applying the same idea to Mk+1

α,K , we approximate the stiffness matrix Ak
K with

an auxiliary matrix that is sparse on any given cell, for any spatial variation
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of problem coefficients:

Ak
K ≈ P k

K := G⊤ diag(Mk
β,K)G+D⊤ diag(Mk+1

α,K)D, (4.37)

where D := GD̂.
Using this auxiliary operator ensures that the patchwise problems that we solve

in our multigrid relaxation are sparse. We describe these patchwise problems next.

4.4 Multigrid relaxation by subspace correction

4.4.1 Notation

We now introduce the preconditioners we use to solve (4.9). We express the solvers
in terms of space decompositions [97], which we summarize briefly here. Given
a discrete space V k

h,p, the preconditioner is induced by a particular choice of how
to write it as a sum of (smaller) function spaces:

V k
h,p =

∑
i

Vi. (4.38)

This notation for the sum of vector spaces means that for any vh ∈ V k
h,p, there

exist {vi ∈ Vi}i such that vh = ∑
i vi. The decomposition is not typically unique.

Given an initial guess for the solution to a variational problem posed over V k
h,p, the

Galerkin projection of the equation for the error is solved over each Vi (additively
or multiplicatively). This gives an approximation to the error in each subspace Vi,
which are combined. A cycle over each subspace constitutes one step of a subspace
correction method. For more details, see Xu [97].

In order to describe the space decompositions we will use, we require some
concepts from algebraic topology. We conceive of the mesh Th as a regular cell
complex [81, 54, 63]. This represents the mesh as a set of entities of different
dimensions, with incidence relations between them. For d = 3, the entities are
vertices, edges, faces, and cells, of dimensions k = 0, 1, 2, 3 respectively. The
incidence relations encode the boundary operator, relating an entity of dimension
k ≥ 1 to its bounding sub-entities of dimension k − 1. For example, they encode
that a cell has as its sub-entities certain faces, while a face has as its sub-entities
certain edges. Let Ek(Th) denote the set of entities of dimension k in Th. We also
define E−1(Th) := ∅ for notational convenience.

The star operation on an entity e of dimension k, denoted ⋆e, returns the union
of the interiors of all entities of dimension at least k that recursively contain e as a
sub-entity [71, §2][34]. For example, the star of a cell is simply its interior, since
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(a) vertex star (b) edge star (c) face star

Figure 4.4: The stars of (a) a vertex (b) an edge (c) a face. Solving a discrete problem
restricted to a star involves solving for all degrees of freedom contained in the star.

there are no entities of higher dimension. The star of an internal face ⋆f returns
the patch of cells formed of the two cells that share f , excluding the boundary of
the patch. Similarly, the star of a vertex ⋆v returns the union of the interiors of
all edges, faces, and cells sharing v, as well as the vertex itself; geometrically, this
forms the patch of cells sharing v, again excluding the boundary of the patch. The
stars of a vertex, edge, and face are shown in Figure 4.4.

Given a function space Vh and an entity e, we define

Vh|⋆e := {vh ∈ Vh : support(vh) ⊆ ⋆e} . (4.39)

This gives a local function space around an entity upon which a variational problem
may be solved. Informally, it defines a block employed in a block Jacobi method,
taking all the DOFs in the patch of cells around e, excluding those on the boundary.

4.4.2 Designing space decompositions

The framework (4.38) offers a great deal of freedom in designing solvers. Since the
bilinear form ak(·, ·) is symmetric and coercive, powerful and general theories are
available to guide the choice of space decomposition [97, 86, 61]; for a summary,
see [38]. We remark on some general principles here.

First, the cost of each iteration of subspace correction will depend on the
dimensions of the subspaces {Vi}. It is therefore desirable that the space decom-
position be as fine as possible, i.e., dim(Vi) be as small as possible for each i. If
V k

h,p = span{ψ1, . . . , ψJ}, then choosing Vi := span{ψi} for i = 1, . . . , J gives the
finest possible space decomposition. The subspace correction methods induced by
this space decomposition are (point) Jacobi or Gauß–Seidel iterations. However, the
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convergence of these schemes on their own (without a coarse space) is unacceptably
slow, even for the Poisson problem (4.1) with k = 0, p = 1, β = 0, ΓD = ∂Ω.

To discuss the convergence of the scheme, we introduce some notation; we
draw this discussion from [38]. Define the operator Ak : V k

h,p → (V k
h,p)∗ associated

with the bilinear form ak(·, ·) via

⟨v,Aku⟩ := ak(v, u) for all v, u ∈ V k
h,p, (4.40)

where ⟨·, ·⟩ denotes the duality pairing. For each subspace we denote the inclusion
Ii : Vi → V k

h,p and its L2 adjoint I∗
i : (V k

h,p)∗ → V ∗
i , and we define the restriction

of Ak to Vi by

⟨vi,Aiui⟩ = ⟨Iivi,AkIiui⟩ for all vi, ui ∈ Vi, (4.41)

i.e., Ai = I∗
i AkIi. The additive subspace correction preconditioner associated with

the decomposition {Vi} is then given by

D−1 =
∑

i

IiA−1
i I∗

i . (4.42)

Let T = D−1Ak be the preconditioned operator. Our goal is to estimate the
condition number κ(T ) to bound the convergence of the conjugate gradient method.
The condition number is bounded by two parameters.

The first, NO, is the maximum overlap among subspaces. For each subspace
Vi, consider its set of overlapping subspaces overlap(Vi) := {Vj : ∃ vi ∈ Vi, vj ∈
Vj s.t. a(Iivi, Ijvj) ̸= 0}; NO is the maximum over i of |overlap(Vi)|. This bounds
the maximal eigenvalue of T . It is straightforward to analyze NO by inspection
on a particular family of meshes, and NO is naturally independent of h, p, α,
and β. The second measures the stability of the space decomposition. Assume
that there exists c1 such that

inf
vi∈Vi∑
i

vi=vh

∑
i

∥vi∥2
Ai

≤ c1∥vh∥2
A for all vh ∈ V k

h,p. (4.43)

Then the minimum eigenvalue of T is bounded below by c−1
1 .

In order for the convergence of our solver to be robust, we require that c1 is
independent of h, p, α, and β. For example, the slow convergence of the Jacobi
iteration on the Poisson problem is because the space decomposition is not stable
in the mesh parameter h. This may be addressed by incorporating a global coarse
space (on a coarser mesh with H > h) into the space decomposition (as in a
two-level domain decomposition method, or a multigrid method), which gives a
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stability constant independent of h for the Poisson equation. However, this space
decomposition is still not stable in p for (4.1), nor is it stable in h, α, β for (4.2)
or (4.3). Essentially, this is because for k = 0, eigenfunctions associated with
small eigenvalues of the operator are smooth and can be well-represented on a
coarse grid, but this is not true for k ∈ {1, 2}. Building on work by Pavarino [75],
Arnold, Falk & Winther [8, 9], and Hiptmair [44], we now discuss the space
decompositions proposed by Schöberl and Zaglmayr [88, 99] that are robust in
h, p, α, and β in numerical experiments.

4.4.3 Choice of space decompositions

The Pavarino–Arnold–Falk–Winther (PAFW) decomposition is

V k
h,p = V k

h,1 +
∑

v∈E0(Th)
V k

h,p

∣∣∣
⋆v
. (4.44)

This combines solving local problems on overlapping patches of cells sharing a
vertex with a coarse solve at lowest order (p = 1). The Pavarino–Hiptmair
(PH) decomposition is

V k
h,p = V k

h,1 +
∑

e∈Ek(Th)
V k

h,p

∣∣∣
⋆e

+
∑

e′∈Ek−1(Th)
dk−1 V k−1

h,p

∣∣∣
⋆e′
. (4.45)

These decompositions (4.44) and (4.45) coincide for k = 0. For example, for
H(curl) (k = 1), the PH decomposition iterates over all edges e of the mesh, solving
patch problems on the cells sharing each edge, while e′ iterates over all vertices.
The PH decomposition involves an auxiliary problem on the local potential space
V k−1

h,p |⋆e′ : find ψ ∈ V k−1
h,p |⋆e′ such that

ak(dk−1 ϕ, dk−1 ψ) = (dk−1 ϕ, β dk−1 ψ)⋆e′ = L(dk−1 ϕ) for all ϕ ∈ V k−1
h,p

∣∣∣
⋆e′
,

(4.46)
since dk ◦ dk−1 = 0. For example, for H(curl), this becomes: for each vertex
v, find ψ ∈ V 0

h,p|⋆v such that

(gradϕ, β gradψ)⋆v = L(gradϕ) for all ϕ ∈ V 0
h,p

∣∣∣
⋆v
,

a local scalar-valued Poisson-type problem.

Remark 4.1. In the case of H(div) (k = 2), the auxiliary problem is singular, with a
kernel consisting of the curl-free functions. One alternative is to define an auxiliary
space with this kernel removed, i.e., posed on the space V k−1

h,p / dk−2 V k−2
h,p . Another

approach is to add a symmetric and positive-definite term on the kernel, such
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as (div ϕ, β divψ), as done by the Hiptmair–Xu decomposition [46], but with the
conforming auxiliary space [H(grad)]d. Our implementation deals with this problem
in a pragmatic way by simply adding a small multiple of the mass matrix for V k−1

h,p

to the patch matrix.

Remark 4.2. The p-robustness of the PAFW decomposition was proven for k = 0
in the tensor-product case by Pavarino [75] and in the simplicial case by Schöberl
et al. [87]. A similar decomposition (with geometric multigrid coarsening, not
coarsening in polynomial degree) was proposed by Arnold, Falk, & Winther for
k = 1 and k = 2 [8, 9], and proven to be robust to mesh size h and variations in
constant α and β. To the best of our knowledge the p-robustness of (4.44) and
(4.45) have not been proven for k = 1 or k = 2, although numerical experiments
indicate that they are p-robust for p ≤ 31.

To simplify notation, we drop the superscript k from the stiffness matrices Ak.
The algebraic realization of the PAFW relaxation (combined additively) reads

P−1
PAFW = R⊤

0 A
−1
0 R0 +

∑
v∈E0(Th)

R⊤
v A

−1
v Rv. (4.47)

Here R0 is the restriction matrix from (V k
h,p)∗ to (V k

h,1)∗, A0 is the stiffness matrix
for the original bilinear form ak(·, ·) rediscretized with the lowest-order element
(p = 1)3, Rv are Boolean restriction matrices onto the DOFs of each vertex-star
patch ⋆v, and Av = RvAR

⊤
v are sub-matrices of A corresponding to the rows

and columns of DOFs of the patch.
Similarly, the additive PH relaxation is implemented as

P−1
PH = R⊤

0 A
−1
0 R0 +

∑
e∈Ek(Th)

R⊤
e A

−1
e Re +D

 ∑
e′∈Ek−1(Th)

R⊤
e′B−1

e′ Re′

D⊤. (4.48)

where R0, A0 have the same meaning as in (4.47), D is the matrix tabulating the
exterior derivative dk−1 : V k−1

h,p → V k
h,p, Re, Re′ are Boolean restriction matrices onto

star patches on entities of dimension k and k − 1, respectively, Ae = ReAR
⊤
e are

patch matrices, and Be′ are patch matrices extracted from B, which is obtained
as the discretization of ak(dk−1 ϕ, dk−1 ψ). With the FDM basis it is feasible to
compute and store the D matrix, as it is sparse and applies to reference values.

3We apologize for this notation; the use of a subscript 0 to indicate the coarse grid is widely
used in the domain decomposition literature. In our case the coarse grid is formed with p = 1, not
p = 0.
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4.4.4 Statically-condensed space decompositions

As seen from Figure 4.1, the minimal coupling between interior DOFs that arises from
the orthogonality of the FDM elements invites the use of static condensation. Static
condensation yields a finer space decomposition with smaller subspaces by eliminat-
ing the interior DOFs. The overlapping subspaces only involve interface DOFs.

The statically-condensed Pavarino–Arnold–Falk–Winther (SC-PAFW) decompo-
sition is

V k
h,p = V k

h,1 +
∑
c∈I

V k
h,p

∣∣∣
c

+
∑

v∈E0(Th)
Ṽ k

h,p

∣∣∣
⋆v
. (4.49)

Here I := Ed(Th) is the set of cell interiors of Th. The cell-interior problems
do not overlap with each other and can be solved independently. We denote by
Ṽ k

h,p := (V k
h,p|I)⊥ the space of discrete harmonic functions of V k

h,p,

Ṽ k
h,p =

{
ṽ ∈ V k

h,p : ak(w, ṽ) = 0 ∀w ∈ V k
h,p

∣∣∣
I

}
. (4.50)

By definition V k
h,p = V k

h,p|I ⊕ Ṽ k
h,p; this orthogonality leads to reduced overlap of

the star patches, compared to the non-statically-condensed case.
The statically-condensed Pavarino–Hiptmair (SC-PH) decomposition is

V k
h,p = V k

h,1 +
∑
c∈I

V k
h,p

∣∣∣
c

+
∑

e∈Ek(Th)
Ṽ k

h,p

∣∣∣
⋆e

+
∑

e′∈Ek−1(Th)
dk−1 Ṽ k−1

h,p

∣∣∣
⋆e′
. (4.51)

These decompositions again coincide for k = 0.
Denote by I,Γ the sets of interior and interface (vertex, edge, and face) DOFs,

respectively. Reordering the DOFs of A yields a 2 × 2 block matrix, with inverse
obtained from its block LDL⊤ decomposition[

AII AIΓ
AΓI AΓΓ

]−1

=
[
I −A−1

II AIΓ
0 I

] [
A−1

II 0
0 S−1

] [
I 0

−AΓIA
−1
II I

]
, (4.52)

where S denotes the interface Schur complement

S = AΓΓ − AΓIA
−1
II AIΓ. (4.53)

When solvers for AII and S are available, the application of A−1 times a residual
vector can be performed with a single application of S−1 and only two applications
of A−1

II . This is because the second and third instances of A−1
II in the RHS of (4.52)

act on the same interior DOFs of the incoming residual vector.
Another way to write (4.52) gives rise to the additive interpretation of the

harmonic subspace correction step

A−1 = R⊤
I A

−1
II RI +R⊤

ΓS
−1RΓ, (4.54)
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where RI is a Boolean restriction onto the interior DOFs, and

RΓ =
[
−AΓIA

−1
II I

]
(4.55)

is the ideal restriction operator onto the discrete harmonic subspace. R⊤
Γ maps

vectors of coefficients in Ṽ k
h,p to V k

h,p. The orthogonality between Ṽ k
h,p and V k

h,p|I
is reflected by the identity RΓAR

⊤
I = 0.

Remark 4.3. In H(grad) (k = 0), the interior DOFs are fully decoupled and AII is
diagonal, for the sparse auxiliary operator constructed in Section 4.3. In general,
the cell-interior problems only couple at most d DOFs, as shown in (4.24). There
exists a reordering of the interior DOFs for which AII becomes block diagonal with
diagonal blocks of dimension at most d× d, implying that AII shares its sparsity
pattern with its inverse. Therefore AII coincides with its zero-fill-in incomplete
Cholesky factorization. Hence we may assemble and store the matrix S, even for
very high p.
Remark 4.4. We choose to use a Krylov method on A, as opposed to implementing
one on the condensed system involving S. The action of the true A−1

II involves
the iterative solution of local problems on cell-interiors, inducing O(pd+1) compu-
tational cost in the application of S. Although the sum-factorized application of
AΓΓ, AIΓ, AΓI only involves O(pd) flops, and the conditioning of the preconditioned
operator is generally better, this results in a longer runtime when compared to
using a Krylov method on A with a statically-condensed preconditioner, especially
for the case k = 1.

The SC-PAFW relaxation approximates

S−1 ≈ S−1
PAFW := R̃⊤

0 A
−1
0 R̃0 +

∑
v∈E0(Th)

R̃⊤
v S

−1
v R̃v, (4.56)

where R̃0 is the restriction matrix from (Ṽ k
h,p)∗ to (V k

h,1)∗, and R̃v are the Boolean
restriction matrices onto the interface DOFs of the vertex-star patch ⋆v, and
Sv = R̃vSR̃

⊤
v .

Similarly, the SC-PH relaxation is implemented as

S−1
PH := R̃⊤

0 A
−1
0 R̃0 +

∑
e∈Ek(Th)

R̃⊤
e S

−1
e R̃e + D̃

 ∑
e′∈Ek−1(Th)

R̃⊤
e′B̃−1

e′ R̃e′

 D̃⊤, (4.57)

where R̃0, A0 have the same meaning as in (4.56), D̃ = DΓΓ is the matrix tabulating
the exterior derivate restricted onto the interface, R̃e, R̃e′ are Boolean restriction
matrices onto the interface DOFs of star patches on entities of dimension k and k−1,
respectively, Se = R̃eSR̃

⊤
e are patch matrices, and B̃e′ are patch matrices extracted

from the interface Schur complement of the discretization of ak(dk−1 ϕ, dk−1 ψ).
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4.4.5 Achieving optimal fill-in

To achieve optimal complexity of our solver, we require that the factorizations of
the patch matrices arising in the space decomposition be optimal in storage. The
number of nonzeros in the factorizations also relates to the number of flops required
to compute them. For the PAFW space decomposition (4.44), in Figure 4.5(a-c)
we observe fill-in of O(p4) nonzeros in the Cholesky factorization of the vertex
patch problems in H(grad), H(curl), and H(div), even with a nested dissection
ordering. Moreover, computing this factorization incurs O(p6) flops. These costs
compare unfavorably with the O(p3) storage and O(p4) flops required by sum-
factorized operator application.

To overcome this, for H(grad) we employ an incomplete Cholesky factorization.
Incomplete Cholesky factorization with zero fill-in (ICC(0), depicted in blue in
Figure 4.5(a) and (d)) does not yield an effective relaxation method, even when it can
be computed. In contrast, the incomplete Cholesky factorization on the statically-
condensed sparsity pattern does yield an effective relaxation. This factorization has
O(p3) fill-in (O(p) nonzeros on O(p2) rows). It appears that this sparsity pattern
(depicted in green in Figure 4.5(d)) offers a suitable intermediate between the zero-
fill-in pattern and the full Cholesky factorization (depicted in red in Figure 4.5(a)).

For H(curl) and H(div), the PH (4.45) space decomposition is finer than PAFW:
it requires the solution of smaller vector-valued subproblems, in the stars of edges or
faces, instead of in the stars of vertices (cf. Figure 4.4). For the edge-star problems
solved for H(curl), in Figure 4.5(e) we observe O(p3) nonzeros in the Cholesky
factorization, and so the Cholesky factorization for the PH patch has optimal
storage without requiring the use of incomplete factorizations. On the auxiliary
scalar-valued problem posed on the vertex star, we employ the incomplete Cholesky
factorization described above. For the face-star problems solved in H(div), there is
no coupling at all between the face degrees of freedom in the FDM basis, and ICC(0)
offers a direct solver (Figure 4.5(f)). In fact, the SC-PH relaxation for H(div) is
equivalent to point-Jacobi applied to the interface Schur complement.

4.5 Numerical experiments

We provide an implementation of the Pp and DPp−1 elements with the FDM basis
functions on the interval in FIAT [52]. The extension to quadrilaterals and hexahedra
is achieved by taking tensor-products of the one-dimensional elements with FInAT
[47]. Code for the sum-factorized evaluation of the residual is automatically
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nz = 3844

1

127

(a) chol(A0), Q4(⋆v)
nz = 21218

1

312

(b) chol(A1), NCE4(⋆v)
nz = 7552

1

192

(c) chol(A2), NCF4(⋆v)

nz = 1009

1

127

(d) ICC(A0), Q4(⋆v)
nz = 1126

1

100

(e) chol(A1), NCE4(⋆e)
nz = 16

1

16

(f) chol(A2), NCF4(⋆f)

Figure 4.5: The interface-interface block of the patch problems arising in the PAFW
space decomposition (a-c) and the PH space decomposition (d-f) on a regular Cartesian
mesh with FDM elements. The sparsity pattern of the problem posed in the FDM basis
is coloured in blue. The additional nonzeros required by the Cholesky factorization are
colored in red or green, depending on whether they require suboptimal storage (as in (a-c))
or optimal storage (as in (e-f)). In (d) we plot the sparsity pattern of the interface Schur
complement arising in static condensation, which offers a sparsity pattern intermediate
between the zero fill-in and the full Cholesky factorization.

generated by Firedrake [82, 48], implementing a Gauß–Lobatto quadrature rule with
3(p+1)/2 points along each direction. The sparse preconditioner discretizing the aux-
iliary operator is implemented as a PETSc [13] preconditioner as firedrake.FDMPC.
The preconditioners are additive on each level and multiplicative between levels.
The Cholesky factorization of the patch matrices is computed using CHOLMOD [24]
and the ICC factorization is done with PETSc’s own implementation. Most of our
computations were performed on a single node of the ARCHER2 system, with two
64-core AMD EPYC 7742 CPUs (2.25 GHz) and 512 GiB of RAM.

Code for all examples has been archived and is available at [100].
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4.5.1 Riesz maps: robust iteration counts and optimal
complexity

We first present numerical evidence demonstrating that our preconditioner for (4.1)–
(4.3) yields CG iteration counts that are robust to mesh size h, polynomial degree
p, and the coefficients α and β. For concreteness, we present a solver diagram for
the H(curl) problem (4.2) with the SC-PH space decomposition in Figure 4.6; the
solver diagrams for the other Riesz maps and space decompositions are analogous.

Krylov solver: CG

Statically-condensed Pavarino-Hiptmair (SC-PH)

p-fine: auxiliary operator (sparse in FDM basis)

Cell-interiors: ICC(0)

Edge-star patches: Cholesky

Vertex-star patches: ICC(0)

p-coarse: geometric multigrid

Relaxation: Hiptmair–Jacobi

h-coarse: Cholesky

Figure 4.6: Solver diagram for the H(curl) Riesz map using static condensation and
incomplete Cholesky factorization on vertex patches (SC-PH/FDM/ICC).

We consider two mesh hierarchies of Ω = (0, 1)3, one structured and one
unstructured. The coarse meshes are the extrusions with six cells in the vertical of
the two-dimensional meshes depicted in Figure 2.6(a)–(b). We then uniformly refine
these l ≥ 0 times. Each run is terminated when the (natural) P−1-norm of the
residual is reduced by a factor of 108 starting from a zero initial guess. Each problem
has homogeneous Dirichlet boundary conditions on ΓD = ∂Ω and a randomized right-
hand side that is prescribed independently of α, β, through its Riesz representative

F (v) = (v, wk
h,p)Ω + (dk v, dk wk

h,p)Ω, for wk
h,p ∈ V k

h,p. (4.58)

We first consider the robustness of our solvers with respect to mesh refinement l
and polynomial degree p, in Tables 4.1–4.3. In these experiments we fix α = 1 and
β = 10−8. The results show almost complete p- and h-robustness in the Cartesian
case, and very slow growth of iteration counts in the unstructured case.

We next consider the robustness with respect to α and β for fixed p = 7,
l = 2, for the H(curl) and H(div) problems (4.2)–(4.3), in Tables 4.4–4.5. Again,
iteration counts do not vary substantially as the coefficients are varied, indicating
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the desired parameter-robustness. As expected, we observe that the iteration
counts only depend on the ratio α/β.

We next record the flop counts, peak memory usage, and matrix nonzeros for the
PH and SC-PH solvers (with either Cholesky or ICC for the H(grad) vertex-star
patches) while varying p with α = 1, β = 1 with the mesh shown in Figure 4.7.
This smaller mesh was used so that we could solve the problem at higher p using
the GLL basis. The results were reported above in Figure 4.2.

Table 4.1: CG iteration counts for the H(grad) Riesz map solved with the {chol/SC-chol;
ICC/SC-ICC} preconditioners.

Cartesian Unstructured
p \ l 0 1 2 0 1 2

1 1/1 1/1 8/8 8/8 8/8 8/8 1/1 1/1 12/12 12/12 14/14 14/14
3 14/11 14/11 15/11 15/11 15/11 15/11 18/18 18/18 18/19 18/19 18/21 18/21
7 12/9 13/10 12/9 13/10 12/9 13/10 19/21 20/21 19/23 20/23 19/24 20/24

11 11/9 12/10 11/9 12/10 –/9 –/10 20/23 22/24 19/24 22/24 –/– –/25
15 10/8 13/11 10/8 13/11 21/24 24/25 20/25 23/25

Table 4.2: CG iteration counts for the H(curl) Riesz map solved with the {PAFW/SC-
PAFW; PH/SC-PH} preconditioners.

Cartesian Unstructured
p \ l 0 1 2 0 1 2

1 2/2 2/2 13/13 11/11 14/14 12/12 2/2 2/2 18/18 16/16 20/20 19/19
3 14/11 20/14 15/12 22/16 15/12 22/16 18/20 26/23 19/22 27/24 19/23 27/25
7 13/10 20/15 14/11 21/16 14/11 21/16 21/23 33/29 21/25 32/28 21/25 32/28

11 13/10 20/15 14/11 21/16 23/25 36/31 22/26 34/30
15 13/10 20/16 14/12 21/17 24/26 37/32 –/– –/31

4.5.2 Piecewise-constant coefficients

As a test case for our H(curl) multigrid solver, we consider a definite Maxwell
problem proposed by Kolev & Vassilevski [56, §6.2] and adapted by Pazner et al. [78,
§6.4]. The problem models electromagnetic diffusion in an annular copper wire
in air, with a piecewise-constant diffusion coefficient β in (4.2). As in Pazner et
al., we employ a Q3 coordinate field. We set ΓD = ∅, α = 1, βcopper = 1, and vary
the diffusion constant of air βair. Since the SC-PH space decomposition exhibits
the best performance in the experiments of Section 4.5.1, we only consider this
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Table 4.3: CG iteration counts for the H(div) Riesz map solved with the {PAFW/SC-
PAFW; PH/SC-PH} preconditioners.

Cartesian Unstructured
p \ l 0 1 2 0 1 2

1 2/2 2/2 11/11 14/14 12/12 15/15 2/2 2/2 17/17 22/22 19/19 22/22
3 9/8 15/11 9/8 16/13 10/9 16/13 15/21 24/22 16/23 25/25 18/25 26/27
7 9/7 17/13 9/8 17/13 9/9 17/14 18/25 31/27 18/26 30/28 19/27 30/29

11 9/7 17/13 9/8 18/14 19/27 33/29 19/28 31/29
15 9/8 17/13 9/8 18/14 19/28 34/30 –/28 –/30

Table 4.4: CG iteration counts for the H(curl) Riesz map discretized with p = 7, l = 2
solved using the {PAFW/SC-PAFW; PH/SC-PH} hybrid preconditioners.

Cartesian Unstructured
β \ α 10−3 100 103 10−3 100 103

10−6 12/9 20/15 14/11 22/16 –/24 22/18 19/27 31/28 21/27 32/28 20/25 –/32
10−3 10/8 18/14 12/9 20/15 14/11 22/16 17/27 30/28 19/27 31/28 21/27 32/28
100 12/10 20/15 10/8 18/14 12/9 20/15 19/27 31/28 17/27 30/28 19/27 31/28
103 11/8 21/13 12/10 20/15 10/8 18/14 24/28 42/32 19/27 31/28 17/27 30/28
106 11/8 23/14 11/8 21/13 12/9 20/15 29/30 51/38 24/28 42/32 19/27 31/28

Table 4.5: CG iteration counts for the H(div) Riesz map discretized with p = 7, l = 2
solved using the {PAFW/SC-PAFW; PH/SC-PH} hybrid preconditioners.

Cartesian Unstructured
β \ α 10−3 100 103 10−3 100 103

10−6 8/8 15/11 9/9 17/14 10/11 17/15 16/23 26/25 19/27 30/29 19/27 30/29
10−3 6/6 12/9 8/8 15/11 9/9 17/14 12/18 20/19 16/23 26/25 19/27 30/29
100 8/7 15/11 6/6 12/9 8/8 15/11 16/22 26/23 12/18 20/19 16/23 26/25
103 7/5 21/11 8/7 15/11 6/6 12/9 18/28 38/28 16/22 26/23 12/18 20/19
106 7/4 23/10 7/5 21/11 8/7 15/11 22/31 48/33 18/28 38/28 16/22 26/23
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Figure 4.7: The mesh employed for the complexity plots in Figure 4.2 is the extrusion
with three cells in the vertical of the two-dimensional meshes shown here.

solver here, and as the p-coarse solver we apply the Hypre AMS [56] algebraic
multigrid cycle, and set a relative tolerance of 10−8.

Figure 4.8: Schematic of the definite Maxwell H(curl) problem with piecewise-constant
coefficients, obtained from [78]. The conductivity coefficient β is a piecewise constant
coefficient determined by the material of the elements.

We first consider robustness of CG iteration counts to the magnitude of the
jump in the coefficients, in Table 4.6. The results exhibit almost perfect robustness
across twelve orders of magnitude for βair and across polynomial degrees between
2 and 14. This contrasts with [78, Table 2], where the iteration counts for the
LOR-AMS solver roughly double from p = 2 to p = 6. We also tabulate the memory
and solve times required as a function of p in Table 4.7 for fixed βair = 10−6.

4.5.3 Mixed formulation of Hodge Laplacians

The Riesz maps provide building blocks for developing preconditioners for more
complex systems [45, 53, 70, 68]. In this final example, we demonstrate this by
constructing preconditioners for the mixed formulation of the Hodge Laplacians
associated with the L2 de Rham complex. For ΓD = ∅, the problem is to find
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Table 4.6: CG iteration counts for the H(curl) definite Maxwell problem with piecewise-
constant coefficients, solved with the SC-PH preconditioner.

βair
p #DOFs 10−6 10−3 100 103 106

2 516,820 25 23 21 29 33
3 1,731,408 24 22 21 26 31
4 4,088,888 25 23 21 25 31
5 7,968,340 26 24 21 28 30
6 13,748,844 27 24 21 26 29

10 63,462,980 28 25 21 27 29
14 173,920,348 28 25 22 28 25

Table 4.7: Memory usage and runtimes for the definite Maxwell problem in H(curl)
with piecewise-constant coefficients (βair = 10−6) solved with the SC-PH preconditioner.
NNZ Mat includes the number of nonzeros of the symmetric part of H(curl) and H(grad)
Schur complements, the ideal restriction matrix onto the interface of H(curl), and the
tabulation of the gradient of the interface basis functions. Memory records the storage of
all matrices across the solver. The runtime has been broken down into assembly of the
sparse Schur complements, setup of the subspace problems, and solve times.

p NNZ Mat NNZ Fact Memory (GB) Assembly (s) Setup (s) Solve (s)

2 1.73 × 107 1.47 × 107 1.03 0.42 1.31 1.11
3 5.40 × 107 6.53 × 107 2.53 0.59 1.58 1.46
4 1.25 × 108 1.73 × 108 5.45 0.90 3.47 2.73
5 2.42 × 108 3.61 × 108 10.22 1.42 6.46 4.48
6 4.16 × 108 6.49 × 108 17.28 2.22 8.49 7.64

10 1.91 × 109 3.24 × 109 76.04 9.60 31.67 34.15
14 5.23 × 109 9.16 × 109 209.86 27.08 75.10 94.90

(σ, u) ∈ V k−1 × V k such that

−(τ, σ)Ω + (dk−1 τ, u)Ω = 0 ∀ τ ∈ V k−1, (4.59)

(v, dk−1 σ)Ω + (dk v, dk u)Ω = F (v) ∀ v ∈ V k, (4.60)

where F (v) is a random right-hand side given by (4.58).
To solve this saddle point problem, we follow the operator preconditioning

framework of Hiptmair and Mardal & Winther [45, 70], employing a block diagonal
preconditioner with the Riesz maps (α = β = 1) for V k−1 and V k. We use 4
Chebyshev iterations preconditioned by the SC-PH solver for each block. For
L2, we use 4 Chebyshev iterations preconditioned by point-Jacobi in the FDM
basis for DQp−1. As outer Krylov solver we employ the minimum residual method
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(MINRES) [74], as this allows for the solution of indefinite problems using a
symmetric coercive preconditioner. The convergence criterion for the iteration
is a relative reduction of the (natural) P−1-norm of the residual by a factor of
108, starting from a zero initial guess. The iteration counts for the cases k =
1, 2, 3 are reported in Table 4.8. As for the Riesz maps, we observe robustness
with respect to both h and p.

Table 4.8: MINRES iteration counts for the mixed formulation of the Hodge Laplacians
(k = 1, 2, 3) preconditioned with the Riesz maps using 4 Chebyshev iterations of the
SC-PH solvers on each block.

H(grad) × H(curl) H(curl) × H(div) H(div) × L2

Cartesian Unstructured Cartesian Unstructured Cartesian Unstructured
p \ l 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

3 9 9 9 16 16 17 8 7 7 15 16 18 8 8 8 12 14 14
7 9 9 8 20 19 19 8 8 6 19 18 18 8 8 8 14 14 13

11 9 9 23 21 8 8 20 18 8 8 15 14
15 9 9 23 21 8 6 20 18 8 8 15 14



5
Conclusions and future work

5.1 Conclusions

We have developed multigrid solvers for the Riesz maps associated with the
L2 de Rham complex whose space and time complexities in polynomial degree
are the same as that required for operator application. Numerical experiments
demonstrate that the solvers are robust to mesh refinement, polynomial degree,
and problem coefficients, and that they remain effective on unstructured grids.
The approach relies on developing new finite elements with desirable interior-
orthogonality properties, auxiliary operators that are sparse by construction, the
careful use of incomplete factorizations, and the choice of space decomposition.
The resulting solvers can be employed in the operator preconditioning framework
to develop preconditioners for more complex problems with solution variables in
H(grad), H(curl), H(div), and L2.

A downside of our approach is its narrow applicability; it will not be effective on
more general problems, especially for nonsymmetric problems where the dominant
terms include first order derivatives. In addition, our method relies on having
a good quality mesh, with its performance depending on the minimal angle;
however, mesh generators with guarantees on the minimal angle are available
in two dimensions [62]. So far, we have only experimented with piecewise constant-
coefficient problems, but the theory of [11] suggests that our approach would remain
effective for spatially varying coefficients.

68
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5.2 Future work

5.2.1 Krylov methods on statically-condensed problems

As we pointed out in Remark 4.4, our statically-condensed solvers do not elim-
inate the interior DOFs upfront, but implement a statically-condensed space
decomposition on an auxiliary operator. Traditionally, solvers for the statically-
condensed problem rely on the availability of fast solvers for the interior DOFs. In
general, a preconditioned Krylov method on the condensed system will improve the
conditioning with respect to a non-statically-condensed solver, and thus reduce the
number of Krylov iterations. However, this comes at the cost of evaluating the Schur
complement at each iteration, which involves the solution of linear systems for each
cell interior (this can be done approximately up to a tolerance). Our preliminary
implementation of a statically-condensed Krylov method for H(grad) with point-
Jacobi/CG interior solvers was not competitive with the Krylov method on the full
set of DOFs with the statically-condensed preconditioner, as the former involves
increased work per iteration. Pursuing an efficient implementation of local solvers
based on point-block Jacobi for the de Rham complex is part of our future research.

5.2.2 DG − CG multigrid solver for H(div) × L2-conforming
elasticity on unstructured meshes

In Chapter 3 we describe an issue with the FDM/sparse relaxation applied to the
displacement block discretized with H(div)-conforming elements and the symmetric
IP-DG method on deformed cells. The main difficulty is that, in order to ensure
consistency and coercivity, the additional surface integrals must vanish for arguments
in C0. On generally-deformed cells, these surface integrals introduce off-diagonal
couplings between distinct vector components in the stiffness matrix, which will
not be sparse in the FDM basis.

Inspired by two level DG-CG multigrid schemes such as [31], an approach that
we found effective is the introduction of an additional H(grad)-conforming level
in the p-multigrid hierarchy, with sufficiently high polynomial degree on which we
implement the vertex-star relaxation. On the finest level we propose to apply a
cheap relaxation, such as point-Jacobi. We have promising preliminary results,
although these are not robust with respect to the penalty coefficient.
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5.2.3 Application to nonlinear problems

With regards to Chapter 3, we are interested in the application of the linear elasticity
solvers to the linearization of nonlinear elasticity models, such as incompressible neo-
Hookean hyperelasticity. For such nonlinear problems the Jacobian stiffness matrix is
solution-dependent, hence the coefficients in the bilinear forms are spatially varying.

We are particularly interested in computing multiple solutions of nonlinear
problems through deflated continuation [37]. This framework applies continuation
on the parameters of the problem, e.g., the magnitude of the load applied to a
structure or the viscosity of a fluid, to discover unknown branches of solutions. Such
analyses can involve thousands or tens of thousands of Newton iterations, and thus
a good preconditioner will become crucial to save valuable computational resources.

These extensions appear to be feasible, and would greatly expand the scope
of applicability of the preconditioners developed here. In this way I hope that
we will be able to solve challenging problems at much higher polynomial degrees
than are currently affordable.
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