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Abstract

This thesis consists of two parts. In the first, we develop two new strategies for
spatial white noise and Gaussian-Matérn field sampling that work within a non-nested
multilevel (quasi) Monte Carlo (ML(Q)MC) hierarchy. In the second, we apply the
techniques developed to quantify the level of uncertainty in a new stochastic model
for tracer transport in the brain.

The new sampling techniques are based on the stochastic partial differential equa-
tion (SPDE) approach, which recasts the sampling problem as the solution of an
elliptic equation driven by spatial white noise. We present a new proof of an a priori
error estimate for the finite element (FEM) solution of the white noise SPDE. The
proof does not require the approximation of white noise in practice, and includes
higher order elliptic operators and p-refinement.

Within the SPDE approach, the efficient sampling of white noise realisations can
be computationally expensive. In this thesis, we present two new sampling techniques
that can be used to efficiently compute white noise samples in a FEM-MLMC and
FEM-MLQMC setting. The key idea is to exploit the finite element matrix assembly
procedure and factorise each local mass matrix independently, hence avoiding the
factorisation of a large matrix. In a multilevel framework, the white noise samples
must be coupled between subsequent levels. We show how our technique can be used
to enforce this coupling even in the case of non-nested mesh hierarchies.

In the MLQMC case, the QMC integrand variables must also be ordered in order
of decaying importance to achieve fast convergence with respect to the number of
samples. We express white noise as a Haar wavelet series whose hierarchical structure
naturally exposes the leading order dimensions. We split this series in two terms which
we sample via a hybrid standard Monte Carlo/QMC approach.

We demonstrate the efficacy of our sampling methods with numerical experiments.
In a multilevel setting, a good coupling is enforced and the telescoping sum is re-
spected. In the MLQMC case, the asymptotic convergence rate is the same as stan-
dard Monte Carlo, but significant computational gains are obtained in practice thanks
to a pre-asymptotic QMC-like regime.

In the final part of the thesis, we employ a combination of the methods presented
to solve a PDE with random coefficients describing tracer transport within the in-
terstitial fluid of the brain. Numerical simulations support the claim that diffusion
alone cannot explain the penetration of tracers within deep brain regions as observed
in clinical experiments, even when uncertainties in the diffusivity have been accounted
for. A convective velocity field may however increase tracer transport, provided that
a directional structure is present in the interstitial fluid circulation.
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Chapter 1

Introduction and physiological
background

1.1 DPhil thesis overview

1.2 Introduction

1.2.1 CDT partner company: Simula

This thesis is based on work supported by the EPSRC Centre For Doctoral Train-
ing in Industrially Focused Mathematical Modelling (EP/L015803/1) in collaboration
with Simula Research Laboratory.

Simula is a research laboratory with the main objective of creating knowledge
about fundamental scientific challenges that are of genuine value for society. The
mission of Simula is to perform important research with long-term impact in the
fields of communication systems, scientific computing and software engineering. The
strong focus on research is combined with both teaching of postgraduate students and
the development of commercial applications1.

The Department of Numerical Analysis and Scientific Computing (SCAN) in Sim-
ula is one of the driving forces behind the FEniCS Project [6, 120]. Within SCAN,
Marie E. Rognes’ group focuses on the simulation of physiological processes that affect
human health. The expertise of the group ranges from medical research and bioengi-
neering to mathematical modelling, numerical analysis and scientific computing. One
of the group’s current interests is the simulation of the fluid dynamics within the
brain, which in this thesis we refer to as the brain ‘waterscape’.

1.2.2 Project motivation: brain disease

The motivation for our project is the analysis of the symptoms and causes that
can lead to brain diseases. In fact, anomalies in the brain waterscape are believed to

1Adapted from www.simula.no/about-simula-research-laboratory.
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be related to common diseases such as Alzheimer’s and other forms of dementia [117,
156, 174, 181].

Dementia is a generic term that describes a wide range of diseases which have
the common denominator of creating a disorder in a person’s mental processes. Ex-
amples can be memory loss, personality changes, impaired reasoning and thinking,
deterioration of social behaviour, motivation or emotional control [178]. Worldwide,
about 47 million people suffer from dementia and every year 7.7 millions more cases
are diagnosed, with an expected 75.6 million people being affected by 2030. The cost
of dementia health care is enormous. This amounts to almost $604 billion per year
in the US and around £25 billion per year in the UK, a value which is constantly
increasing [7, 178]. ‘More research is needed to develop new and more effective treat-
ments and to better understand the causes of dementia’ (World Health Organization
[178]).

The most well-known type of dementia is Alzheimer’s disease. One of the hallmark
characteristics of Alzheimer’s is the formation of plaques made up of a protein called
Amyloid-β. This protein can be normally found as a solute in the cellular cytosol
and in the brain interstitial fluid (ISF) (present in the brain extracellular space, the
space between brain cells) [124]. However, under Alzheimer’s conditions, this protein
accumulates in the brain forming plaques that may induce neuronal death.

Every cell in our body absorbs its nutrients from the blood and then releases its
metabolic wastes in the surrounding extracellular space. From there, the metabolic
waste is cleared by the lymphatic system, a network of tissues and organs specialised
in toxin and waste clearance. The only part of our body where (almost) no lymphatic
vessels are present is the brain, where some other unknown clearance mechanism is
in action. One of the leading hypotheses in Alzheimer’s research is that when this
mechanism, whatever it might be, is impaired, Amyloid-β accumulates damaging the
brain and causing Alzheimer’s. If researchers could discover what this mechanism is,
they might possibly prevent the damage and find a cure.

For this reason, over the last few years the study of the physiological mechanisms
governing the movement of fluids in the brain has gained prominence [96, 146, 147,
179]: understanding how the brain waterscape works can help discover how dementia
develops. However, experimenting with the human brain in vivo is extremely difficult
and the subject is still poorly understood. This makes this topic a highly active
interdisciplinary research area. Invasive experiments are performed on mice, but their
results are not necessarily representative of the human physiology. In addition, they
cannot be performed on people as that would be unethical. Non-invasive experiments,
instead, do not give us enough information and the measurement itself can affect the
physics of what is being observed [53]. For this reason, in silico simulations of these
phenomena are gaining popularity [9, 26, 48, 91, 92, 97, 118, 161] as they represent
an alternative avenue of investigation that is cheap and does not require human
experimentation.
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1.2.3 Model uncertainty and uncertainty quantification

Numerical simulations based on mathematical models rely on physiological infor-
mation that is obtained through in vivo measurements. Modern techniques allow the
measurement of most physical parameters with a reasonable degree of accuracy [8,
64, 72, 164]. Nevertheless, measurement errors are still present [77, 94]. This is often
the source of discordant opinions in the literature [64, 117, 153, 154]. One example
is given by the brain tissue permeability which varies up to 7 orders of magnitude in
computational models [79, 92].

Overall, one of the main challenges in brain simulation is the lack of accurate
quantitative information on the mechanical input parameters needed to set up math-
ematical models. Quantities such as brain matter permeability, interstitial fluid flow
velocity and diffusivity are only known approximately or on average. The position
of the blood vessels and capillaries can be measured, but it varies from patient to
patient and it is extremely difficult to resolve without significant expense.

The focus of this thesis is estimating how uncertainty in these input parameters
affects models and simulations’ predictions and propagates to output quantities of
clinical interest. Quantifying this uncertainty is extremely important for medical
applications. We construct surrogates for the physiological parameters that account
for the uncertainty in their values through the use of Gaussian random fields and we
use multilevel Monte Carlo methods to perform forward uncertainty quantification
(UQ) on brain fluid models. We solve the mathematical problems of interest via the
finite element method (FEM).

1.2.4 Thesis outline

The main content of this thesis can be logically divided in two parts. In the former
(chapters 3, 4 and 5) we focus on a family of numerical methods for Gaussian-Matérn
field sampling and we present a new sampling strategy to use within the framework
of multilevel Monte Carlo methods. In Chapter 5, we also develop a new multilevel
quasi Monte Carlo method for partial differential equations (PDEs) with random
coefficients. In the latter part of the thesis (Chapter 6), we apply these methods to
quantify the uncertainty in a new model for brain solute concentration and fluid flow
through the poroelastic brain matter.

We begin the thesis with a short overview of the physiological background needed
(Section 1.3). In Chapter 2, we describe the mathematical background needed for
the rest of the thesis, including a review of Monte Carlo methods and of the existing
techniques for Gaussian field sampling. Sampling Gaussian field realisations can be
extremely expensive computationally and various techniques are available [49, 62, 84,
116]. The method we focus on in our work is referred to as the SPDE approach to
Matérn field sampling [116] and it consists of recasting the Gaussian field sampling
problem as the solution of an elliptic PDE driven by spatial white noise. In Chapter
3 we derive a priori FEM convergence estimates for the solution of spatial white
noise driven elliptic PDEs. In Chapter 4 we present a novel technique for efficient
white noise sampling for MLMC with non-nested meshes. In Chapter 5 we extend
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this technique to the multilevel quasi Monte Carlo case. In Chapter 6 we consider
a convection-diffusion equation with random velocity and diffusivity fields for the
concentration of a tracer soluted in the interstitial fluid of human brain, which we
solve with the new techniques presented in the thesis. We conclude the thesis with
Chapter 7.

1.3 Physiological background

1.3.1 The fluid dynamics of the brain

The cerebral matter, or parenchyma, is comprised of two types of tissues: the
gray matter and the white matter. The former is mostly composed by neuron cell
bodies, dendrites, myelinated and unmyelinated axons, and glial cells, while the latter
is mostly comprised of myelinated cell axons connecting together various gray matter
regions. The gray matter sorrounds the white matter in the brain (see Figure 1.1).
As reported in [72], gray and white matter have different mechanical properties. In
particular, white matter is stiffer than gray matter and presents shear anisotropy,
larger regional variation, and increased viscosity.

Figure 1.1: Brain charts: white and gray matter (left), ventricles (left, light blue)
and CSF flow (right, image taken from Open Stax, Anatomy & Physiology). The ISF
flows within the parenchyma.

The human brain is influenced by three different types of flow networks: the blood
vasculature, the cerebrospinal fluid (CSF) (Figure 1.1) and the interstitial fluid (ISF).
These networks are separated by semi-permeable membranes, namely the brain-blood
barrier (ISF-blood) and the blood-CSF barrier, which selectively only allow exchange
of certain substances and liquids.

The vascular network comprises the arterial, venous, and capillary blood flow. It
carries the nutrients to the brain cells within the parenchyma (the cerebral matter)
and it is strongly related to the production of CSF, which is believed to be produced
from blood plasma in the choroid plexuses [117]. Each choroid plexus is situated
within one of the four brain ventricles, which are filled by CSF (Figure 1.1). From
the ventricles, the CSF flows in the spinal canal and in the subarachnoid space, the
space between the arachnoid and pia meninges. One hypothesis is that the CSF is
reabsorbed in the subarachnoid space by the arachnoid granulations [101](Figure 1.1).
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Brain cells absorb their nutrients from the vascular system and release metabolic
waste into the interstitial space, the space between the cells. Here, the waste is ab-
sorbed and collected by the ISF, which permeates the brain tissue [117]. The intersti-
tial space and the ISF make the parenchyma a sponge-like solid with poroviscoelastic
properties and permeated by liquid [72].

The dynamics of ISF flow has been extensively studied with the use of molecular
tracers [1], but it is not fully understood [1, 117]. One hypothesis is that the ISF
produced in the brain tissue can be reabsorbed by the capillary system so as to
regulate brain water content. This hypothesis has been used in the mathematical
literature [171]. It is also uncertain whether ISF can flow from the parenchyma to
the subarachnoid space [117].

ISF flow is believed to be driven by deformations of the arachnoid interface due
to pressure oscillations in the cerebral vasculature [117]. At every heart beat, blood
is pumped in the brain vasculature, causing a pressure rise and a volume dilatation
during systole. The pressure drops, and the brain volume contracts during diastole.
Whether this volume variation is due to volume variation in the brain tissue or in the
brain surface arteries is still debated.

1.3.2 The glymphatic hypothesis and related theories in the
mathematical and biomedical computing literature

One of the main hypothesis about brain metabolic waste clearance is called the
glymphatic hypothesis, according to which a bulk flow (which is a consequence of
advection-dominated fluid movement) of ISF has been proposed to occur through
the brain parenchyma [96]. This directional fluid movement has been named the
glymphatic system, with bulk flow being a mechanism for effective waste clearance
from the brain parenchyma. The glymphatic hypothesis is strongly dependent on
the assumption that a strong bulk flow is present within the brain and is still far
from being established. In fact, some aspects of ISF movement are still not well
understood. The exchange between CSF and ISF are believed to occur along small
fluid filled spaces surrounding large penetrating arteries in the brain parenchyma
known as paravascular spaces (PVS) [93, 145], cf. Figure 1.2. However, while evidence
of influx of tracer along paravascular spaces seems evident, the outflux route is more
debated [37].

Discovering how the brain clears itself from metabolic waste could be one of the
milestones to reach before being able to understand how Alzheimer’s disease develops.
For this reason, several attempts have been made in the mathematical and biomed-
ical computing literature to reproduce, verify or disprove the glymphatic hypothesis
[9, 26, 48, 92, 97, 118, 161]. In Chapter 6 of this thesis we also consider the glym-
phatic hypothesis: we take from the clinical experiments of Ringstad et al. [146] and
investigate whether their experimental results can be reproduced in silico under the
glymphatic hypothesis, while accounting for the uncertainty in the input parameters
of our model. We therefore conclude this chapter with a brief literature review about
the mathematical and biomedical computing studies related to brain solute movement
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Figure 1.2: A schematic of paravascular CSF circulation. Exchange between CSF and
ISF has been hypothesised to happen along paravascular spaces (also called Virchow-
Robin spaces). Reprinted by permission from RightsLink/Springer Nature: The
Glymphatic System: A Beginner’s Guide by Jessen et al., Neurochemical Research,
copyright ©2015, Springer Science & Business Media, New York [96].

and/or the glymphatic hypothesis. For a more general review about the mathemati-
cal modelling of brain mechanics, we refer to the excellent review article by Goriely
et al. [72].

A first class of numerical studies investigates the movement of CSF along the PVS
and possibly its relation to solute drainage. In [26], Bilston et al. research whether
arterial pulsations are sufficient to drive CSF flow along the PVS in the spinal cord.
They model the PVS as a radially symmetric annulus of which one boundary, the
blood vessel wall, deforms according to a train of pulse waves representing arterial
pulsations. They model PVS flow with the Navier-Stokes equation in a low Reynolds
number regime which they solve using a finite volume method on a moving mesh.

While it is now established that indeed vessel pulsations have an active role in
the CSF influx into the parenchyma, there is evidence suggesting that solutes do not
leave the parenchyma following the same route [37]. One of the leading alternative
hypothesis, the intramural periarterial drainage theory (IPAD), states that solutes are
removed from the brain along the basement membranes of capillaries and arteries.
The exact mechanism is, however, still under investigation [37]. In [48] Diem et
al. investigate whether arterial pulsations alone can be the driving force of IPAD and
conclude that a valve mechanism (e.g. directional permeability) is required to achieve
enough net reverse flow to justify the drainage. Diem et al. use Darcy’s law with a
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pressure-dependent permeability and lubrication theory to derive a one dimensional
IPAD model in cylindrical coordinates, which they solve using a finite volume method.

A second class of studies directly tackles the main assumption underlying the glym-
phatic hypothesis: the presence of a strong bulk flow of ISF across the parenchyma
transporting solutes by advection. All these numerical studies seem to conclude that
advection alone is not sufficient to explain the movement of tracer and solutes ob-
served in magnetic resonance imaging (MRI) studies, but rather that diffusion [92,
97] or a combination of both advection and diffusion [9] is the leading mechanism.
In [97], Jin et al. solve the Navier-Stokes and convection-diffusion equations using a
realistic ECS geometry in 2D to investigate short-range transport of solutes and they
conclude that a strong bulk flow requires a sustained high pressure difference, which
cannot be caused by arterial pulsations. Introducing diffusion is however sufficient to
match experimental studies. Asgari et al. in [9] use the same equations on a 3D ax-
isymmetric channel with a pulsating boundary representing arterial pulsations and a
dispersion equation in a 1D domain modelling solute movement between paraarterial
and paravenous spaces. Their results indicate that arterial pulsations are unlikely to
be driving solute transport and that instead dispersion could be responsible. Holter
et al. in [92] use Stokes and the convection-diffusion equations in a real-life 3D geom-
etry of the ECS which they solve with the FEM. Holter et al. discover that the ECS
permeability is too low to allow strong bulk flow and that diffusion is more likely to
be the primary cause of solute transport.

The third and last class of studies does not only focus on fluid movement, but also
simulates the movement of solutes within the ISF and the process of drug delivery.
Linninger et al. in [118] use MRI data to construct a 3D brain mesh on which they
simulate the effect of intraparenchymal drug delivery through a catheter. They use
the convection-diffusion equation in the catheter and across the brain combined with
the Navier-Stokes equations in the catheter and porous flow equations within the
brain tissue. Støverud et a. in [161] solve a diffusion tensor imaging assisted porous
flow model on a real-life 3D brain geometry and study how drug transport is affected
by the fact that ISF flows within a poro-elastic deformable media.

In Chapter 6 we study the effect of random spatial variations in the velocity
and diffusivity fields due to patient variability, measurement errors and/or lack of
knowledge. Additionally, we test different assumptions about ISF fluid movement and
solute clearance, including the glymphatic hypothesis and the IPAD. Until then we are
only going to consider the numerical techniques for UQ needed for this investigation.
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Chapter 2

Mathematical background

Throughout the thesis, the main objective will be to derive Monte Carlo sampling
methods for the solution of PDEs with random field coefficients that model the move-
ment of tracers and solutes within the brain interstitial fluid. These PDEs will all
take the form: find the ISF solute/tracer concentration c(t,x, ω) such that,

ċ+∇ · (v(x, ω)c)−∇ · (D∗(x, ω)∇c) + rc = f(x), ω ∈ Ω, x ∈ G, t > 0, (2.1)

with suitable boundary conditions to be discussed in Chapter 6. Here Ω is a sample
space and G ⊆ R3 is the parenchyma domain. The coefficients v(x, ω) and D∗(x, ω)
are stochastic fields (what stochastic fields are will be defined later in this chapter)
and the solution c(t,x, ω) is itself random. In this thesis we consider the estimation
of the expectation of an output functional P(c) ≡ P (ω) of the solution. We refer to
Chapter 6 for further details, but it is useful to keep in mind that solving this problem
requires the efficient sampling of v(x, ω) and D∗(x, ω) from their distribution, the
numerical solution of (2.1) via the finite element method, and the estimation of E[P ]
via Monte Carlo methods.

In this chapter we give an overview of the main theoretical and computational
ingredients needed in the rest of the thesis. First, we give an overview of the Monte
Carlo (MC), quasi Monte Carlo (QMC), multilevel Monte Carlo (MLMC) and mul-
tilevel quasi Monte Carlo (MLQMC) methods. We then introduce the concepts of
stochastic fields and generalised stochastic fields. Among these, of central importance
in this work are Matérn-Gaussian fields and Gaussian white noise. The last section
in this chapter gives a highlight of existing techniques for Gaussian field sampling
and describes in detail the SPDE approach to Matérn field sampling that we use
throughout the thesis.

2.1 Monte Carlo methods

2.1.1 Standard Monte Carlo

For a given sample space Ω, σ-algebra A and probability measure P, let (Ω,A,P)
be a probability space and let L2(Ω,R) indicate the space of scalar real-valued random
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variables with finite second moment. The Monte Carlo method (MC) is a numerical
technique used to estimate the expected value of a random variable of interest P (ω) ∈
L2(Ω,R), E [P ]. Given N independent samples P (ωn), n = 1, . . . , N , the Monte Carlo
estimator reads,

E[P ] ≈ P̂ =
1

N

N∑
n=1

P (ωn). (2.2)

It is important to know how large N should be to achieve a given error tolerance.
The error measure we adopt is the mean square error (MSE), namely,

MSE = E[(P̂ − E[P ])2]. (2.3)

This can be rewritten in a more insightful way [68] as

MSE = V[P̂ ] + E[P − P̂ ]2 =
V̄

N
+ E[P − P̂ ]2, (2.4)

where V̄ is the variance of a single Monte Carlo sample P (ωn) and the quantity
|E[P−P̂ ]| is called the weak error. The first term on the RHS depends on the variance
of the approximation, which is related to the actual variance of P . This term can
be decreased by increasing the number of samples N . The second term on the RHS
is, instead, related to the error made in the numerical approximation of P : if P (ωn)
can be sampled exactly then the weak error is zero since E[P ] = E[P̂ ]. In practical
applications, e.g. when P is the output functional of a PDE with random coefficients,
computing P exactly is not an option and the weak error must be controlled as well.

Say that we want to achieve a root MSE of O(ε2), then we would need both
variance and weak error terms to be of O(ε2). Assuming that the computational cost
required to sample P accurately enough to have an O(ε) weak error is O(ε−q), for
MSE = O(ε2) we need N = O(V̄ ε−2) samples for a total MC cost complexity of
C̄ = O(V̄ ε−2−q).

The Monte Carlo method has four big advantages: 1) provided that P ∈ L2(Ω,R)
no further assumptions are required on the smoothness of P with respect to ω, 2)
standard MC does not suffer from the curse of dimensionality when approximating
the expectation of random variables with large stochastic input dimensions, 3) each
sample in the MC estimator is independent and can therefore be computed in parallel,
4) the variance of P can be estimated by MC concurrently with the expectation
providing an approximate confidence interval for the MC approximation. However,
this comes at a price: the slow O(N−1/2) Monte Carlo convergence rate results in a
large O(V̄ ε−2−q) computational cost. Let us fix our ideas with an example: assume
that we require ε2 = 0.012 MSE accuracy and that the variance of P is O(1); we
then need approximately 104 samples of P of sufficient accuracy. If the sampling of
P requires the solution of a PDE (this is the case in this thesis), i.e. q is large, we
would then need approximately 104 PDE solves for convergence.
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2.1.2 Randomised quasi Monte Carlo

Quasi Monte Carlo. Quasi Monte Carlo (QMC) methods retain most of the ad-
vantages of standard MC while improving the convergence order with respect to the
number of samples. At the heart of QMC for estimating expectations is the rein-
terpretation/approximation of the expected value as an integral with respect to the
uniform distribution over the unit hypercube:

E[P ] =

∫
Ω

P (ω)dP(ω) ≈
∫

[0,1]s

Y (x)dx, (2.5)

for some suitable function Y . QMC methods are, in fact, nothing but quadrature
rules over the unit hypercube with N points and equal weights, approximating the
integral on the right-hand side as

I =

∫
[0,1]s

Y (x)dx ≈ 1

N

N∑
n=1

Y (xn) = IN , (2.6)

where the xn ∈ Rs are, unlike in the standard MC case, not chosen at random,
but chosen carefully and in a deterministic way so as to cover the unit hypercube
well. Informally speaking, the slow convergence order of standard MC comes from
the fact that true random points, being independent from each other, may fall on the
same regions multiple times, while leaving other portions of the domain completely
unsearched (see Figure 2.1 left). As a consequence, we have no information about the
integrand in these unexplored regions. QMC methods use point sequences that by
construction cover the whole space well (see Figure 2.1 right) and therefore achieve
better-than-MC convergence rates with respect to N .

Figure 2.1: Pseudo-random and QMC point sequences in comparison. On the left,
a sample of 256 uniform random points. On the right, the first 256 points in a 2-
dimensional Sobol’ sequence. It is clear that the points of the Sobol’ sequence are
spread more uniformly across the unit square.
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Example 2.1. According to the probability distribution of P the approximation sign
in equation (2.5) can be replaced by an equality. For instance, if P (ω) = g(Y (ω)),
where Y (ω) is a standard Gaussian random variable one can write

E[P ] =

∫
R

g(y)f(y)dy =

∫
[0,1]

g(Φ−1(x)) dx, (2.7)

where f and Φ here are the standard normal probability density function (PDF) and
cumulative density function (CDF) respectively.

More formally, classical QMC error bounds are in the form (see e.g. [114, 123],

|I − IN | ≤ D∗({xn}Nn=1)V(Y ), (2.8)

where D∗({xn}Nn=1) is the discrepancy of the point set {xn}Nn=1, which measures how
well the point sequence covers the unit hypercube, while V(Y ) is the variation of Y ,
and depends on its derivatives.

While random sequences are proven to have discrepancy of O((log logN/N)1/2)
with probability one [123], hence yielding (up to the logarithmic factor) the standard
MC convergence bound, there exist deterministic sequences that are able to achieve
discrepancies of O((logN)s/N) [123]. These sequences are called low-discrepancy
point sequences and, if used for QMC integration, yield a faster-than-MC asymptotic
rate of O(N−1+ε), for any ε > 0, provided that the integrand Y is smooth enough.
Low-discrepancy sequences include the Sobol’ sequences that we use in Chapter 5.
Often low-discrepancy sequences must be sampled in powers of 2 (or another basis) or
else they lose their good discrepancy properties. For a general description of various
QMC point rules we refer to the book by Lemieux [114].

Unlike standard MC, QMC methods are not completely dimension-independent:
for high-dimensional problems the (logN)s term in the discrepancy might dominate
for small sample sizes. If this happens, low-discrepancy sequences cease to cover the
whole hypercube well and their discrepancy temporarily falls back to a O(N−1/2) rate1

as in the random case up until N becomes impractically huge [35]. However, this is
not always the case. Caflish et al. in [35] investigate this behaviour and introduce the
notion of effective dimensionality : assume that the QMC integrand Y can be written
as

Y = Y T + Y C , where Y ≈ Y T , (2.9)

then

I = IT + IC =

∫
[0,1]s

Y T (x)dx+

∫
[0,1]s

Y C(x)dx ≈ IT . (2.10)

1Caflish et al. also report that QMC integration is almost never worse than standard MC [35].
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Further assume that Y T either only depends on the first s1 < s variables and/or can
be expressed as a sum of s2-dimensional functions with s2 < s, then

|I − IN | ≤ |IT − ITN |+ |IC − ICN | ≤ O

(
(logN)s̄

N

)
+O

(
V(Y C)

(logN)s

N

)
, (2.11)

where ITN and ICN are the QMC approximations of IT and IC respectively and s̄ =
min(s1, s2). If this is the case and s̄ � s, then Y has low effective dimensionality.
What this means is that, provided V(Y C) is small, it is possible to replace the (logN)s

term with (logN)s̄, for which the transition to a O(N−1)-like regime will already
happen for small sample sizes. The hope is then that by the time N becomes large
enough so that the second term on the right-hand side in (2.11) is appreciable, N
will also be large enough to observe the asymptotic O(N−1)-like QMC convergence
behaviour for this term as well [35].

Not all QMC error bounds are in the form (2.8). In fact, more recent QMC
convergence analysis yields error estimates that do not depend on the discrepancy of
the point set, but are worst-case error bounds in reproducing kernel Hilbert spaces
(RKHS) [47, 109, 110]. These bounds are typically in the form [47]

|I − IN | ≤ E({xn}Nn=1;H)||Y ||H, E({xn}Nn=1;H) = sup
||f ||H≤1

|I − 1

N

N∑
n=1

f(xn)|,

(2.12)

where H is a suitable RKHS to which Y belongs. The quantity E({xn}Nn=1;H) is the
worst error attainable by the QMC point rule {xn}Nn=1 over the RKHS H. Again,
note that E exclusively depends on the point set and on H, but not on Y , and there
exist QMC point rules that achieve faster than O(N−1/2) convergence on suitable
RKHSs [47]. The concept of low effective dimensionality also appears in this more
recent theory. More specifically, the RKHSs used to achieve convergence are typically
weighted, reflecting the underlying assumption that there is “some varying degree
of importance between the variables” [110]. The great advantage of this worst-case
error QMC convergence theory is that it yields error bounds that are dimension-
independent (again, in suitable RKHSs).

All things considered, it is clear that for practical applications of high-dimensional
QMC integration it is extremely important to order the integration variables in order
of decaying importance and/or reduce the dimensionality of the integrand so that
higher-than-MC convergence rates can be achieved. This will be a key aspect in the
methods we present in Chapter 5.

Randomised quasi Monte Carlo. Although theoretically useful, a bound like
equation (2.8) cannot be used in practice as the quantities involved (discrepancy
and variation measures) are extremely difficult to estimate. The quantities in 2.12
are relatively easier to work with, but their computation is still non-trivial. All in
all, QMC point sequences are deterministic and we cannot rely on the central limit
theorem as for standard MC.
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Figure 2.2: Randomised and not randomised low-discrepancy sequences in comparison.
On the left, the first 256 points in a 2-dimensional Sobol’ sequence. On the right, the
same points after random digital shifting. The randomised sequence still covers the
unit square well.

Randomised QMC methods combine MC and QMC ideas and fix these issues
by randomising the QMC point sequence used, i.e. given a fixed deterministic QMC
integration rule {xn}Nn=1, randomised QMC produces a set of M independent ran-
domised sequences {x̂n,m(ω)}n=N,m=M

n=1,m=1 so that either 1) the discrepancy of the point
set is preserved (see Figure 2.2) [114], or 2) mean-square error bounds in the RKHS
with respect to the randomised sequence can be obtained [47]. The main randomi-
sation techniques are random shifting and scrambling; see Chapter 6 of [114] for an
overview and [137] for a comparison of various techniques. The randomised sequences
are then combined into the randomised QMC estimator,

ÎM,N(ω) =
1

M

M∑
m=1

ImN (ω) =
1

M

M∑
m=1

(
1

N

N∑
n=1

Y (x̂n,m(ω))

)
. (2.13)

Since ImN (ω) is now random, provided that M is large enough a confidence inter-
val can be estimated and we retain a practical error measure as in the standard
MC case. Note that, however, while the total cost of randomised QMC is propor-
tional to NM , the asymptotic convergence order of the randomised QMC estimator
is O(log(N)s/(NM1/2)) and therefore it is always more advantageous to increase N
rather than M , and M should be kept as small as possible. Typical choices for M
range between 8 and 128. However, extra care must be taken with small values of M
when computing confidence intervals as in this case ÎM,N is not approximately normal
and the central limit theorem cannot be applied. In this work we use M = 32 unless
otherwise stated. Assuming fixed M , a given MSE tolerance ε2, a O(ε−q) cost per
sample and a QMC convergence order of O(N−1+ε) for any ε > 0, the total cost of
randomised QMC is O(ε−q−1/(1−ε)), which for small ε is almost ε−1 times better than
standard MC.
Remark 2.1. Let us quickly compare standard MC and randomised QMC: 1) QMC
convergence order and total cost are superior than MC; 2) standard MC has almost
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no smoothness requirements, while QMC requires the mixed derivative of Y to be in
L1([0, 1]s); 3) neither MC nor suitable QMC rules suffer from the curse of dimension-
ality when performing high-dimensional integration; 4) each MC and QMC sample
can be parallelised; 5) both MC and randomised QMC provide confidence intervals
for the solution.

In the rest of the thesis we will refer to randomised QMC as just QMC.

2.2 Multilevel Monte Carlo methods
While using QMC point sequences reduces the computational cost of MC by in-

creasing the convergence speed, multilevel Monte Carlo methods can make the cost
of computing one sample of P O(1) on average, i.e. multilevel methods are, under
suitable conditions, able to get rid of the O(ε−q) term in the MC cost complexity.
From applying a multilevel strategy to standard Monte Carlo we obtain the multilevel
Monte Carlo method (MLMC) [69], which can achieve O(ε−2) complexity. In certain
cases, it is possible to get the best of two worlds by combining QMC with MLMC,
yielding the multilevel quasi Monte Carlo method (MLQMC) [67] with complexity
O(ε−1/χ), where χ ≥ 1/2.

2.2.1 Multilevel Monte Carlo

The multilevel Monte Carlo (MLMC) was first introduced by Heinrich in [87] for
parametric integration and popularised by Giles for stochastic differential equations
(SDEs) in [69]. Assume that it is possible to compute realisations of P (ω) at different
accuracy levels P`(ω) for ` = 1, . . . , L of increasing accuracy and computational cost
and that the approximation of P on the finest level, PL is accurate enough. The
MLMC method estimates E[PL] through the telescopic sum,

E[P ] ≈ E[PL] =
L∑
`=1

E[P` − P`−1], (2.14)

where P0 ≡ 0. Each of the terms in the sum can be separately approximated by using
standard Monte Carlo. This yields the MLMC estimator:

E[PL] ≈
L∑
`=0

[
1

N`

N∑̀
n=1

(P`(ω
n
` )− P`−1(ωn` ))

]
. (2.15)

In a finite element context, the levels of accuracy can be defined by using a hierarchy
of meshes (h-refinement) or by increasing the polynomial degree of the finite elements
used (p-refinement).

Let C`, V` be the cost and variance of one sample P`(·) − P`−1(·) respectively.
Then, the total MLMC cost and variance are

Ctot =
L∑
`=1

N`C`, V̂ =
L∑
`=0

N−1
` V`. (2.16)
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We can minimise the estimator variance for fixed total cost. For further details we
refer to [68]. This gives that, for a fixed MSE tolerance ε2, the optimal number of
samples for each level and related total cost are,

N` =

(
ε−2

L∑
l=1

√
VlCl

)√
V`/C`, Ctot = ε−2

(
L∑
`=1

√
V`C`

)2

. (2.17)

Remark 2.2. We now compare the cost complexity of standard and multilevel Monte
Carlo for the estimation of E[PL]. Let V[PL] = O(V1), then the total cost complexity
of standard MC is O(ε−2V1CL). According to how the product V`C` varies with level,
we can have three different scenarios for MLMC:

1. The product V`C` increases with level. Then, to leading order, the total MLMC
cost is O(ε−2VLCL), for an improvement in computational cost over standard
Monte Carlo by a V1/VL factor.

2. The product is constant with the level. Then, we have a MLMC total cost of
O(ε−2L2VLCL) = O(ε−2L2V1C1). This gives a cost improvement of V1/(L

2VL) ≈
CL/(L

2C1) with respect to standard MC.

3. The product decreases with the level. Then, Ctot ≈ O(ε−2VLC1), for an im-
provement of CL/C1. For example this could be the ratio between a fine mesh
PDE solution cost and a coarse mesh PDE solution cost, which is generally
quite significant.

Remark 2.3. Note that even with MLMC we cannot improve over the N = O(ε−2)
samples required for a given accuracy, so we still need to run many PDE solves. In
case we have a good hierarchy of levels available, however, we can significantly reduce
the computational cost.

The MSE of the MLMC estimator is given by,

MSE = V̂ + E[P̂ − P ]2, (2.18)

where P̂ is the MLMC estimator of variance V̂ . To ensure thatMSE ≤ ε2, we enforce
the bounds,

V̂ ≤ (1− θ)ε2, E[P̂ − P ]2 ≤ θε2, (2.19)

where θ ∈ (0, 1) is a weight, introduced by Haji-Ali et al. in [82], that balances the
two terms so as to obtain comparable error reduction.

The convergence of MLMC is ensured by the following theorem.

Theorem 2.1 ([68], theorem 1). Let P ∈ L2(Ω,R) and let P` be its level ` approxi-
mation. Let Y` be the MC estimator of E[P` − P`−1] on level ` such that

E[Y`] = E[P` − P`−1], (2.20)
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with P0 = 0, and let C` and V` be the expected cost and variance of each of the N`

Monte Carlo samples needed to compute Y`. If the estimators Y` are independent and
there exist positive constants α, β, γ, c1, c2, c3, such that α ≥ 1

2
min(β, γ) and

|E[P` − P ]| ≤ c12−α`, V` ≤ c22−β`, C` ≤ c32γ`, (2.21)

then there exists a positive constant c4 such that, for all ε < e−1, there is a level
number L and number of samples N`, such that the MLMC estimator

P̂ =
L∑
`=1

Y`, (2.22)

has MSE with bound,

MSE = E[(P̂ − E[P ])2] ≤ ε2, (2.23)

with a total computational complexity with bound,

E[Ctot] ≤


c4ε
−2, β > γ,

c4ε
−2(log ε)2, β = γ,

c4ε
−2−(γ−β)/α, β < γ.

(2.24)

Remark 2.4. Usually, in practice, the values of α, β, γ, ci for i = 1, 2, 3, are not known
and they must be estimated. In the case in which P is an output functional of the
solution of a PDE with random coefficients solved with the finite element method
tentative values can be derived using a priori/a posteriori error estimates [31] and
iterative solver complexity results [46]. However, it is also possible to just estimate V`
and C`, and use relation (2.17) to determine the optimal number of samples needed
[68].

We can finally present the MLMC algorithm:

MLMC algorithm (taken from [68])

• Set the required tolerance ε, the maximum level Lmax, the initial number of
levels L and the initial number of samples N̄` to be taken on each of them.

• while extra samples need to be evaluated (∃` : N̄` > 0):

1. for each level, evaluate all the samples scheduled to be taken;

2. compute/update estimates for the level variance V`, ` = 1, . . . , L;

3. compute optimal number of samples N` by using (2.17) and update the
numbers of extra samples needed N̄` accordingly;

4. test for weak convergence, i.e. check whether the weak error E[P̂ − P ]2 is
below the required tolerance;

5. if not converged: if L = Lmax report failed convergence; otherwise set
L := L+ 1, update N` and N̄` and compute NL = N̄L.
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2.2.2 Multilevel quasi Monte Carlo

The idea of multilevel quasi Monte Carlo, originally presented in [67], is to com-
bine QMC and MLMC together with the objective of also combining their advantages.
Again, let {P`}L`=1 be a multilevel hierarchy of approximations. MLQMC also esti-
mates E[P ] through the same telescopic sum as MLMC,

E[P ] ≈ E[PL] =
L∑
`=1

E[P` − P`−1], P0 ≡ 0. (2.25)

The difference between MLMC and MLQMC is then in the way each expectation
in the sum is approximated: MLMC uses standard MC, MLQMC uses randomised
QMC. The MLQMC estimator is in fact obtained by approximating each term with

E[P` − P`−1] =

∫
[0,1]s`

Y`(x)dx ≈ 1

M

M∑
m=1

(
1

N`

N∑̀
n=1

Y`(x̂
`
n,m(ω))

)
=

1

M

M∑
m=1

Im,`N`
(ω),

(2.26)

where the meaning of each variable is the same as in the QMC case. The difference
compared with QMC is that now we have a hierarchy of integrands {Y`}L`=1 and of
randomised QMC point sequences {x̂`n,m}n=N`,m=M,`=L

n=1,m=1,`=1 of dimensions {s`}L`=1.
In principle, the convergence theory would carry through in roughly the same way

as in MLMC, i.e. by finding the optimal level and number of samples to achieve a
given MSE error tolerance. However, in the MLQMC case there is a key complica-
tion that makes the analysis extremely complicated: the Y` for ` > 1 represent the
difference between two different approximations and as such, might not present the
same smoothness as Y in the QMC only case. In fact, Giles and Waterhouse report
in [67] that for some financial SDE applications the QMC convergence rate decays
to O(N−1/2) and/or transitions later to a higher QMC rate as ` grows. What could
be happening is that the difference between the approximations on different levels
becomes rougher and rougher making Y` either non-smooth or of high effective di-
mensionality. The same behaviour does not necessarily occur in PDE applications
[109].

In general, proving any convergence result for MLQMC is particularly hard, to
the extent that convergence proofs are only available for a few specific problems
and specific QMC point sequences [88, 109]. For this reason, setting up a MLQMC
estimator optimally can be challenging and it might not even be clear a priori whether
resorting to a pure MLMC or QMC strategy is actually more advantageous (in the
QMC case we only deal with Y which is generally smoother) and the various methods
have to be tested. However, in the best possible case where we get a O(N−χ), 1/2 ≤
χ ≤ 1, QMC rate for each term in the telescoping sum, the benefits of MLMC and
QMC can accumulate yielding a total MLQMC computational cost of O(ε−1/χ) for
a given MSE tolerance of ε2 [88]. In this case MLQMC significantly outperforms all
the other Monte Carlo methods.

We conclude this section by presenting the MLQMC algorithm we will be using
in this thesis: let C` be the cost of evaluating Y` and let V` = V[Im,`N`

],
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MLQMC algorithm (taken from [67])

1. Set the required tolerance ε, θ ∈ (0, 1), the minimum and maximum level Lmin

and Lmax and the initial number of levels to be L = 1.

2. Get an initial estimate of VL with NL = 1 and M = 32 randomisations.

3. While
L∑̀
=1

V` > (1− θ)ε2, double N` on the level with largest V`/(C`N`).

4. If L < Lmin or the bias estimate is greater than
√
θε, set L = L+1. If L ≤ Lmax

go to 2, otherwise report convergence failure.

Remark 2.5 (Adapted from [67]). The term
∑L

`=1 V` is the total estimator variance
and the variable θ is a weight with the same meaning as in the MLMC case. The
choice of N` on each level is heuristic: doubling the number of samples will eliminate
(independently on whether we are in an MC or QMC-like convergence rate regime)
most of the estimated variance V` on level ` at a cost N`C` and we therefore double
the number of samples on the level that offers the largest variance reduction per unit
cost.

2.3 Standard and generalised stochastic fields
In this section we highlight the few notions of functional and stochastic analysis

needed in the rest of the thesis. First of all, we adopt the following notation and
definitions.

Subsets of compact closure. Given an open domain G ⊆ D, we write G ⊂⊂ D
to indicate that the closure of G is a compact subset of D.
L2 inner product. For an open domainD ⊆ Rd, we let (·, ·) denote the L2(D) in-

ner product where L2(D) is the standard Hilbert space of square-integrable functions
on D.

Sobolev spaces. For an open domain D ⊆ Rd, we indicate with W s,q(D), s > 0,
q ≥ 1 the Sobolev space of integrability order q and differentiability order s, and we
indicate with W s,q

loc (D) the space of functions which are W s,q(G), for all G ⊂⊂ D.
Furthermore, we let Hs(D) ≡ W s,2(D) and Hs

loc(D) ≡ W s,2
loc (D) and we denote with

H−s(D) the dual space of Hs
0(D), where Hs

0(D) is the space of Hs(D) functions with
zero trace on ∂D.

Hölder spaces. For an open domain D ⊆ Rd, we indicate with Ck(D), where
k ∈ N the space of k-times continuously differentiable functions defined onD and with
Ck,α(D), with α ∈ (0, 1] the space of Ck(D) functions that have α-Hölder continuous
k-th partial derivatives.

In this thesis we will be working with PDEs with random coefficients, where the
coefficients will not be mere random variables, but stochastic (or random) fields,
defined as follows.

Definition 2.1 (Stochastic field [3]). Let (Ω,A,P) be a probability space. A stochas-
tic (or random) field X = X(x, ω), x ∈ Rd, ω ∈ Ω, is a function whose values are
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random variables for each x ∈ Rd. Given a Banach space U we say that a field
X ∈ L2(Ω, U) if X(x, ·) ∈ L2(Ω,R) for almost every x ∈ D and X(·, ω) ∈ U almost
surely (a.s.).

A stochastic field is a function of space for fixed ω and the values of a stochastic
field are square integrable random variables in L2(Ω,R). If these random variables
are all jointly Gaussians, we then have a Gaussian random field:

Definition 2.2 (Gaussian random field [3]). A stochastic field is Gaussian if the
random variables that define its values are all joint Gaussian. A Gaussian field is
uniquely determined by providing a mean function µ(x) and a symmetric positive
definite covariance function C(x,y). A Gaussian field is stationary if µ is constant
and if the covariance only depends on the difference x − y, i.e. if C = C(x − y).
A Gaussian field is isotropic if it is stationary and the covariance only depends on
r = ||x− y||2, i.e. if C = C(r).

A very important family of Gaussian fields that we will use extensively in our
work is the Matérn class,

Definition 2.3 (Matérn random field [3]). A Matérn field is a Gaussian field with
covariance of the Matérn class, i.e. in the form

C(x,y) =
σ2

2ν−1Γ(ν)
(κr)νKν(κr), r = ‖x− y‖2, κ =

√
8ν

λ
, x,y ∈ D, (2.27)

where σ2, ν, λ > 0 are the variance, smoothness parameter and correlation length
of the field respectively, Γ(x) is the Euler Gamma function and Kν is the modified
Bessel function of the second kind.

The correlation length λ roughly represents the distance beyond which point val-
ues of the field are approximately uncorrelated while the parameter ν is called the
smoothness parameter as it is directly related to the smoothness of the field, as stated
in the following result,

Theorem 2.2 (Smoothness of a Matérn field [3, 150]). Let u(x, ω) be a zero-mean
Gaussian field with covariance function given by (2.27), then,

u(·, ω) ∈ Hν−ε
loc (Rd) ∩ Cdν−1e(Rd), ∀ε > 0, a.s. (2.28)

The above definitions are well-known. We now introduce the concept of generalised
stochastic fields in a less standard way: as it turns out there are two non-equivalent
definitions that can be found in the literature.

Definition 2.4 (Generalised stochastic field (type I)). Let V be a Banach space. Fol-
lowing the definition introduced by Itô [105] and extended by Inaba and Tapley [95] we
denote with L (V, L2(Ω,R)) the space of generalised stochastic fields (of type I) that
are continuous linear mappings from V to L2(Ω,R). For a given ξ ∈ L (V, L2(Ω,R))
we indicate the action (or pairing) of ξ on a function φ ∈ V with the notation
ξ(φ) = 〈ξ, φ〉. L (V, L2(Ω,R)) is a Banach space with norm

||ξ||L (V,L2(Ω,R)) = sup
v∈V, ||v||V ≤1

E[|〈ξ, v〉|2]1/2. (2.29)
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Remark 2.6 (Angle bracket notation). In this thesis we denote by 〈ξ, φ〉 the action of
a type I stochastic field against a test function φ since we believe that this notation is
more convenient than Ẇ(φ). The angle bracket notation is often used in the literature
for duality pairings, but this is not the case in this thesis.

Another definition of generalised stochastic fields which has been adopted in the
literature [140] is the following.

Definition 2.5 (Generalised stochastic field (type II)). Let U be a Banach space with
dual U∗. A mapping ξ : U×Ω→ R is a generalised stochastic field (of type II) if for all
φ ∈ U , ξ(φ, ·) is a real valued random variable and for all ω ∈ Ω, ξ(·, ω) is an element
in U∗. We denote with L2(Ω, U∗) the space of generalised stochastic fields of type
II that are elements of U∗ almost surely such that for all φ ∈ U , ξ(φ, ·) ∈ L2(Ω,R).
L2(Ω, U∗) is a Banach space with norm

||ξ||L2(Ω,U∗) = E

( sup
v∈U, ||v||U≤1

|ξ(v, ·)|
)2
1/2

= E[||ξ||2U∗ ]1/2. (2.30)

Remark 2.7 (Non-equivalence of the two definitions of generalised random fields). The
two definitions of generalised stochastic fields are not equivalent, i.e. a generalised
stochastic field of type I is not necessarily a generalised stochastic field of type II
as well and vice versa [140]. Furthermore, even if a generalised stochastic field is of
both types so that ξ ∈ L (V, L2(Ω,R)) and ξ ∈ L2(Ω, U∗) the spaces V and U do
not need to be the same (see the work by Pilipović and Seleši [140]). An example
of such a field is spatial white noise (defined next). This issue does not arise for
proper stochastic fields: all stochastic fields are also generalised stochastic fields of
both types and V ≡ U [140].

Possibly the most commonly used generalised random field is Gaussian white noise.
White noise is going to be extremely important throughout this thesis and is defined
as follows.
Definition 2.6 (White noise, see example 1.2 and lemma 1.10 in [89]). Let D ⊆ Rd

be an open domain. The white noise Ẇ ∈ L (L2(D), L2(Ω,R)) is a generalised
stochastic field of type I such that for any collection of L2(D) functions {φi}, if we
let bi = 〈Ẇ, φi〉, then {bi} are joint Gaussian random variables with zero mean and
covariance given by E[bibj] = (φi, φj).

Remark 2.8. White noise is also a generalised stochastic field of type II (see [182]).
More specifically, for any ε > 0 we have

Ẇ ∈ L (L2(D), L2(Ω,R)) and Ẇ ∈ L2(Ω, H−d/2−ε(D)). (2.31)

Drawing samples of (generalised) random fields from their distribution is in general
a computationally challenging task. We conclude this background chapter with an
overview of computational methods for Gaussian field sampling.
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2.4 Gaussian field sampling
Some of the contents of this section are adapted from our paper [43].
In this thesis, we mainly work with Gaussian fields and white noise, where the

Gaussian fields appear as coefficients of PDEs to be solved with Monte Carlo methods.
This requires the efficient sampling of Gaussian fields from their distribution. Un-
fortunately, while sampling independent Gaussian random variables is “easy” as fast
pseudo-random number generators are available in many software packages, sampling
a Gaussian field with a prescribed correlation function is much harder.

In what follows we give an overview of existing Gaussian field sampling methods
and we then describe in further detail the SPDE approach, which we use throughout
the thesis. We give an overview of the existing sampling methods in Table 2.1.

Method Set-up Memory Sample When does it work well?

direct factorisation m3 m2 m2 small problem sizes
pivoted Cholesky m2

PCm mPCm mPCm small problem sizes or smooth C(x,y)
H-matrix approx. m logm m logm m logm small problem sizes or smooth C(x,y) (†)
H2-matrix approx. m m m logm small problem sizes or smooth C(x,y) (†)
KL expansion m2

KLm mKLm mKLm small problem sizes or smooth C(x,y)
circulant embedding s log s s s log s Stationary fields on structured grids.
SPDE approach s s ks (∗) Matérn fields with small ν = 2k − d/2.

Table 2.1: A complexity comparison between the main Gaussian field sampling meth-
ods available in the literature. All complexity estimates in the table are to be under-
stood in the O(·) sense. We refer to the rest of this section for the presentation of the
various methods. KL stands for Karhunen-Loève. Both the circulant embedding and
the SPDE approach require sampling the random field on an extended domain where
s = s(m) point values of the field are needed. The k in the H-matrix approximation
row is the rank of the H-matrix approximation, while the k in the SPDE approach
row is the k such that ν = 2k − d/2. (∗) If k is a positive integer, then the sample
cost is only O(ks), if k is non-integer, then an extra O(s log s) term is needed and
the sample complexity is O(ks+ s log s) [27]. (†) For the H/H2-matrix approach it is
sufficient for C(x,y) to be asymptotically smooth [62].

2.4.1 Matrix factorisations

Let u be the Gaussian field we are interested in sampling, which we assume to
have zero mean without loss of generality. In practice, samples of u are always only
needed at discrete locations x1, . . . ,xm ∈ D. The perhaps simplest sampling strategy
consists in drawing realisations of a Gaussian vector u ∼ N (0, C) with ui = u(xi)
and covariance matrix Cij = E[u(xi)u(xj)]. This approach is usually computationally
expensive as it requires the factorisation of the dense covariance matrix C ∈ Rm×m. In
fact, if we let z ∼ N (0, I) be a standard Gaussian vector and we factorise C = HHT
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with H ∈ Rm×n, we can sample u as u = Hz since,

E[uuT ] = E[Hz(Hz)T ] = H E[zzT ]HT = HIHT = C. (2.32)

A basic form of this method uses the Cholesky factorisation of C. In this case H
is square and dense lower-triangular and the factorisation has a computational com-
plexity of O(m3), yielding an O(m3) setup cost and an O(m2) storage requirement
and cost per sample.
Remark 2.9. Usually n is taken to be equal tom so thatH ∈ Rm×n is square. However
this is not necessary for (2.32) to hold. For instance, one of the sampling strategies
we present in this thesis uses n > m.

If the field is smooth enough so that the eigenvalues of C are rapidly decaying
this method can be made competitive by using a low-rank approximation of rank
mPC instead (this can be interpreted as a discrete version of the Karhunen-Loève
expansion which we present next). Common choices are either a truncated singular
value decomposition (SVD) or the pivoted Cholesky factorisation [84]. For a fixed
tolerance ε, the pivoted Cholesky decomposition computes a low rank approximation
HHT ≈ C of C, where H ∈ Rm×mPC , such that trace(C −HHT ) ≤ ε. This gives an
overall factorisation cost of O(m2

PCm) and cost per sample and storage requirement
of O(mPCm), where mPC ≤ m. If the covariance function C(x,y) is smooth and with
large enough correlation length (e.g. Matérn covariance with ν =∞ and λ large), then
the eigenvalues of C decay quickly and a truncated decomposition with mPC � m
can be obtained, yielding a fast sampling method. If, however, the covariance is not
smooth and/or the correlation length is small (e.g. Matérn covariance with ν = 1/2
and/or small λ), the covariance matrix is effectively high rank and the mPC needed
by the algorithm will effectively be very close to m unless the application at hand can
work with a relatively high error tolerance ε.

A generalisation of the pivoted Cholesky approach consists of approximating the
covariance matrix with the closest rank k hierarchical matrix (H-matrix or H2-matrix),
which can then be factorised efficiently. This technique consists of hierarchically
dividing C into sub-blocks that are then approximated by low-rank matrices (see [62,
102, 119] for some applications to Gaussian field sampling). Note that approximation
of C by H/H2-matrices might destroy its symmetry and positive-definiteness and
extra care must be taken [81].

The hierarchical matrix approach works well under the assumption that the co-
variance function is asymptotically smooth, i.e. C∞(D×D\{x = y}) with additional
conditions on the derivatives at x = y and at infinity (see [50, 62]; Matérn fields satisfy
this requirement). In the H-matrix case, this assumption leads to an overall offline and
per-sample cost and storage complexity of O(m logm) [50, 81]. In the H2-matrix case,
two strategies are available: it is either possible to factorise the H2-matrix approxi-
mation or to not factorise it and exploit the fast matrix-vector products given by the
matrix format within an iterative solver to compute the action of the matrix square
root instead. In the former case, this yields a O(m logm) offline cost and a O(m)
memory and cost per-sample complexity. However, as reported by Feischl et al. in
[62], there is no complete error analysis available for this approach yet. In the latter
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case, we have a O(m) offline cost and memory cost and a O(m logm) per-sample cost
complexity, but precise theoretical error estimates are available [62] (hence why these
are the complexity estimates reported in Table 2.1). The H/H2-matrix approxima-
tion error analysis is quite involved and results are only available for a few particular
cases [50, 62, 81]. We remark that the accuracy and performance of this approach
deteriorates if the covariance lacks the required smoothness [81, 102].

Overall, the main advantage of these factorisation approaches is the flexibility:
they work for any collection of evaluation points x1, . . . ,xm and for any covariance
function. The downside is that the computational cost can be prohibitive when
C(x,y) is non-smooth.

2.4.2 Karhunen-Loève expansion

Instead of computing a factorisation of the covariance matrix, it is also possible to
work at the continuous level and expand the field u as a (possibly finite or truncated)
series of basis functions. Different choices of bases yield different methods. Common
choices are the basis of the eigenfunctions of C(x,y) (Karhunen-Loève expansion),
the Fourier basis (circulant embedding [49]), or a finite element basis ([27, 51, 116,
182]).

We first discuss the Karhunen-Loève (KL-) expansion approach (adapted from
Sullivan’s book [163]). Let C be the covariance operator of u, defined as follows: for
any v ∈ L2(D),

(Cv)(x) :=

∫
D

C(x,y)v(y)dy, (2.33)

where C(x,y) is the covariance function of u. The idea of the Karhunen-Loève
approach is to expand u as a series of eigenfunctions of C. Before we introduce this
expansion, it is useful to state Mercer’s theorem as it describes the properties of the
eigenvalue-eigenfunction pairs of C.
Theorem 2.3 (Mercer, adapted from [163]). Let D ⊂⊂ Rd and let C(x,y) : D×D →
R be a continuous symmetric positive semi-definite covariance function with associated
covariance operator C. Then there exists a family {(λi, φi)}i∈N of eigenpairs of C such
that ∫

D

C(x,y)φi(y)dy = λiφi(x), (φi, φj) = δij, (2.34)

(δij here is the Kronecker delta) where the λi are non-negative, the φi form an or-
thonormal basis of L2(D), and the eigenfunctions corresponding to non-zero eigenval-
ues are continuous. Furthermore,

C(x,y) =
∑
n∈N

λnφn(x)φn(x), (2.35)

and the series converges absolutely and uniformly over compact subsets of D.
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We can now state Karhunen-Loève’s theorem:

Theorem 2.4 (Karhunen-Loève, adapted from [163]). Let D ⊂⊂ Rd and let u ∈
L2(Ω, L2(D)) be a zero-mean random field with a continuous covariance function,
then

u(x, ω) =
∑
n∈N

√
λnzn(ω)φn(x), (2.36)

where {(λi, φi)}i∈N are the eigenvalue-eigenfunction pairs of the associated covariance
operator C and the series converges in L2(Ω,R) uniformly in x. The zn ∈ L2(Ω,R)
are given by √

λnzn = (u, φi), (2.37)

and are zero-mean random variables such that E[zizj] = δij.

Remark 2.10. In the case in which the field u is Gaussian, then the zi are independent
identically distributed (i.i.d.) standard Gaussian random variables.

The series is called the Karhunen-Loève (KL) expansion of u and in practice it
must be truncated after mKL terms, where mKL is the number of terms needed to
achieve a given tolerance in the L2(Ω, L2(D)) norm. This depends on the rate of
decay of the eigenvalues of C, which in turn depends on the smoothness of C(x,y)
[151].

For practical computations the eigenfunctions of C are often not known in advance
and they must be estimated after discretisation by solving a (possibly generalised)
dense eigenvalue problem (see e.g. [102] for an application with the FEM) which has
a O(m2

KLm) computational cost and O(mKLm) storage requirement, where m is the
number of locations at which point values of u are needed and/or the dimension
of the finite-dimensional approximation subspace used to approximate the φi. If the
eigenpairs are known a priori or if the φi are approximated with compactly supported
basis functions the cost per random field sample is O(mKLm).

The KL expansion method can be seen as the continuous equivalent of the fac-
torisation methods just presented with the same upsides (flexible approach, works
any point collection and almost any covariance function) and downsides (expensive if
C(x,y) is non-smooth). Additionally, the KL expansion provides a sampling method
for non-Gaussian random fields as long as the zi random variables can still be com-
puted efficiently (in the general case, they are non-Gaussian and only uncorrelated,
not necessarily independent).

2.4.3 Circulant embedding

The circulant embedding method2 was first developed by Wood and Chan [176]
and Dietrich and Newsam [49] and recently analysed by Graham et al. [73] and by

2The description that follows is adapted from [49] and [73].
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Bachmayr et al. [13]. It computes samples of a stationary Gaussian field (cf. Defi-
nition 2.2) u evaluated at equispaced points on a structured grid and relies on the
fast Fourier transform (FFT). The circulant embedding method works by the same
principle exploited by equation (2.32). However, instead of factorising the covariance
matrix C directly, it firsts embeds C, which on a structured uniform grid is block
Toeplitz up to index reordering, into a bigger s-by-s nested block circulant matrix
Q. The eigen-decomposition of Q, Q = GΛGT can be efficiently computed via the d-
dimensional FFT in O(s log s) complexity. Once the eigen-decomposition is available,
equation (2.32) can be used with H = GΛ1/2. The size of the embedding matrix s
must be large enough to ensure positive definiteness as the block circulant extension
is not necessarily positive definite [73].

We now give a brief description of the circulant embedding method for isotropic
covariances (cf. Definition 2.2). For simplicity, we only consider the sampling over
the unit interval in 1D.

The circulant embedding algorithm computes sample values of the Gaussian field
atm0+1 equispaced points x1, . . . , xm0+1 ∈ [0, 1], where xi = i/(m0 + 1). The method
requires the extension of the computational domain from [0, 1] to [0, l], where l =
m/m0 > 1, with m > m0 integer. Let R be the covariance matrix over the extended
domain at the points x1, . . . , xm+1, where xi = i/(m+ 1) and the first m0 + 1 points
coincide with the previous points. Then R with entries Rij = C(|xi−xj|) is a positive
semi-definite Toeplitz matrix and as such is uniquely determined by its first row r,
where ri = C(|x1−xi|). This matrix can be embedded within a s× s Toeplitz matrix
Q, with s = 2(m+ 1) and whose first row q is given entrywise by

qk = rk, 1 ≤ k ≤ m+ 1, (2.38)
q2(m+1)−k = rk, 0 ≤ k ≤ m. (2.39)

Q is then symmetric and circulant, and admits the eigen-decomposition Q = GΛGT ,
where G = Re(F ) + Im(F ) and F is the FFT matrix of size s with entries Fjk =
s−1/2 exp(2πijk/s) (here i =

√
−1) (lemma 4 in [76]) and Λ is the diagonal matrix of

the eigenvalues of Q, which are given by λ = Fq [49, 73].
If the extension parameter l is large enough, then all entries in Λ are positive and

a sample from the Gaussian field u can be computed as follows (taken from [73]):

1. Sample an s-dimensional standard Gaussian vector z ∼ N (0, I).

2. Compute λ = Fq by applying the FFT to q. This step can be done offline.

3. Compute w = F (
√
λ�z), where � indicates the Hadamard entrywise product

and the action of F can be computed efficiently via the FFT.

4. Set uext = Re(w) + Im(w). The vector uext contains the m0 + 1 point values
of u needed.

The overall cost complexity of the circulant embedding algorithm is O(s log s) with
an O(s) memory requirement, where s depends on the extension factor l which must
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be large enough so that all the eigenvalues of Q are positive. Graham et al. in [73]
derive conditions on C(x,y) and on l such that this happens in general dimensions.
In the Matérn case, these conditions were recently improved by Bachmayr et al. in
[13] and read:

Theorem 2.5 (Theorem 10 in [13]). Consider the Matérn covariance family (2.27)
with smoothness parameter 0 < ν <∞ and correlation length λ > 0. Then there exist
positive constants C1 and C2 dependent on d only such that Q is positive definite if

l/λ ≥ C1 + C2 max(ν1/2(1 + | log ν|), ν−1/2). (2.40)

Overall, the circulant embedding is an extremely fast algorithm and works for
quite a general class of covariance matrices provided that a finite extension factor
l can be found [73]. The downside of this method is that its efficiency depends on
the use of simple geometries. Once the field is sampled, it must be transferred to
the target mesh on which the field is required. If the sampling and target meshes are
non-nested, then interpolation or projection is needed. In [74], the authors prove that
if the uniform grid size is asymptotically equivalent to the maximum mesh size of the
target mesh and the sampled field is C1(D) or less, then multilinear interpolation can
be used without harming the overall FEM convergence order. However, for smoother
fields, we suspect that a more careful treatment would be required to prevent the
low smoothness (W 1,∞(D)) of the interpolated field to harm the convergence of the
quadrature rule (e.g. a supermesh projection could be used, cf. Chapter 4).

2.4.4 The SPDE approach to Matérn field sampling

We conclude this section by describing the finite element basis approach, called
the SPDE approach to Matérn field sampling. This is the only method we use in this
thesis.

Whittle showed in [138] that a Matérn field with covariance given by (2.27) is the
statistically stationary solution that satisfies the linear elliptic PDE,(

I − κ−2∆
)k
u(x, ω) = η Ẇ, x ∈ Rd, ω ∈ Ω, ν = 2k − d/2 > 0, (2.41)

where Ẇ is spatial Gaussian white noise in Rd (cf. Definition 2.6), k > d/4. Here
d ≤ 3 and the equality has to hold almost surely and be interpreted in the sense of
distributions. Boundary conditions are not needed as the stationarity requirement is
enough for well-posedness [116]. The constant η is a scaling factor that depends on
σ, λ and ν,

η =
σ

σ̂
, where σ̂2 =

Γ(ν) νd/2

Γ(ν + d/2)

(
2

π

)d/2
λ−d, (2.42)

where Γ(x) is the Euler gamma function [116]. Note that if d = 2 then σ̂2 = (2/π)λ−2,
and for ν →∞, σ̂2 = (2/π)d/2λ−d. In this thesis we assume the value of k in equation
(2.41) to be a positive integer, although it is possible to work with non-integer values
as well [29, 42].
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Equation (2.41) has to be solved on the whole Rd. However this is generally not
feasible and Rd is in practice truncated to a bounded domain D ⊂⊂ Rd. In this case,
artificial boundary conditions must be prescribed on ∂D. Homogeneous Dirichlet or
Neumann boundary conditions are often chosen in the literature [27, 116], although
it usually does not matter for practical purposes as the error in the covariance of
the field decays rapidly away from the boundary (see [141] for a practical study and
[103] for the theoretical analysis). In a recent study, Khristenko et al. [103] show that
homogeneous Robin boundary conditions work better in practice and are exact for
the 1D case. In what follows we assume that the Matérn field sample is needed on a
domain G ⊂⊂ D and we prescribe homogeneous Dirichlet boundary conditions on ∂D.
If D is sufficiently large in the sense that the distance between ∂D and ∂G is large
enough, then the error introduced by truncating Rd to D is negligible (cf. Remark
2.12 and [51, 103, 141]).

Once we truncate Rd to D and apply Dirichlet-type boundary conditions, (2.41)
can be rewritten in the following iterative form, u1 − κ−2∆u1 = η Ẇ in D

uj+1 − κ−2∆uj+1 = uj in D, j = 1, . . . , k − 1,
uj+1 = 0 on ∂D, j = 0, . . . , k − 1,

(2.43)

where u ≡ uk. This is the approach suggested by Lindgren et al. in [116] and requires
solving a sequence of second order elliptic problems to produce a sample of u. In the
k = 1 case (2.43) reduces to

u− κ−2∆u = η Ẇ in D,
u = 0 on ∂D.

(2.44)

Existence and uniqueness of an a.s. C0(D̄) solution to (2.44) was proven in [20] and
in [32], from which existence and uniqueness of the iterative problem (2.43) follows
from standard theory.

After the meshing of D, (2.41) and (2.43) can be solved in linear time with the
finite element method (FEM) and an optimal solver (e.g. full multigrid). This sam-
pling approach thus scales well in terms of problem size and parallel computation
provided k is not excessively large3 [51]. Moreover, the approach is especially conve-
nient if u appears as a coefficient in a PDE which is solved using the FEM as it might
be possible to reuse finite element bases and computations for both equations.

Let s be the number of degrees of freedom of the finite element subspace used to
solve (2.41). The memory and set-up cost complexity are in both cases O(s), while
the cost of computing one sample u with the SPDE approach is O(ks) provided that
we can pick k in (2.41) to be an integer and that we are using an optimal solver
such as a full multigrid method. The cost is O(ks+ s log s) otherwise as a fractional
order PDE must be solved for each sample [27]. All these considerations assume that
white noise can also be sampled in O(s) complexity. Showing how this can be done

3If k is large, then ν is large, hence the field is smooth and the other sampling methods we
presented are more efficient.
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in practice in a non-nested MLMC and MLQMC framework is one of the main topics
of this thesis and we refer to chapters 4 and 5 for the details.

Remark 2.11. In principle, if the values of u are only needed on a structured grid, one
could use FFT techniques to solve (2.41). However, in a general setting it might not
be possible to use the FFT as some applications might require either unstructured
grids or a generalised version of (2.41) with variable coefficients [116].

Remark 2.12. The error introduced by solving (2.41) on a truncated domain decreases
exponentially as the distance δ from the boundary increases with a decay proportional
to C(r)|r=2κδ = C(2κδ), where C is the Matérn covariance function of the sampled
field and κ depends on the Matérn parameters (cf. equation (2.27)) [103]. For this
reason, we assume that the domain D is always large enough so that this error is
negligible in the inner domain G where the Matérn field sample is needed. In this
thesis we always choose D to be a cube although other choices are possible.
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Chapter 3

Finite element convergence analysis
for spatial white noise driven elliptic
PDEs

In this chapter we address the proof of convergence for the FEM solution of
problem (2.43) and derive a priori FEM strong error estimates in the h- and p-
refinement cases, i.e. when either the polynomial degree of the FEM basis is fixed
and the mesh is refined or the mesh is fixed and the polynomial degree is increased.
In the first and second section we address the proof of the case k = 1 and in the third
section we deal with the k > 1 case.

Remark 3.1 (On the proof novelty and related work). The proof presented in this
chapter was derived by the author in the period between January and April of 2017.
At that time, the main result of this proof, namely that there is no need to ap-
proximate white noise in practice to ensure convergence of the FEM, was novel (the
convergence rates for h-refinement were not [36, 52, 157]). Although the structure
of the proof is still new nowadays, a more general convergence proof yielding a more
powerful result was concurrently developed by Bolin et al. in [27], originally uploaded
to the arXiv in May 2017. Among other things, Bolin et al. consider the more general
fractional case and obtain the optimal convergence order of O(hmin(ν,p+1)), where ν
is the smoothness parameter of the Matérn field and p is the polynomial degree of
the FEM basis. Our proof, unlike that of Bolin et al., also considers a p-refinement
approach in which convergence is achieved by increasing the polynomial degree of the
FEM basis on a fixed mesh. However, as we will see in this chapter, we were only able
to obtain a rate of O(p−(ν−ε)hmin(ν−ε,p+1)) for any ε > 0 arbitrarily small. It is also
worth mentioning some other more recent related work on the subject: in [28] Bolin
et al. derive a priori weak error estimates for the solution of (2.41) on a bounded
domain and in [42] Cox and Kirchner derive a priori strong error estimates and regu-
larity results in Sobolev and Hölder spaces for the solution of the same equation and
its covariance function.

The main challenge in establishing a convergence result for equation (2.43) is the
lack of smoothness of white noise. Realisations of white noise are a.s. in H−d/2−ε(D)
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for all ε > 0 (cf. Remark 2.8) and therefore cannot be paired with e.g. Lagrange
basis functions which are only W 1,∞(D) (at least for d = 3). For this reason, existing
convergence proofs approximate white noise with a sequence of smooth functions that
converges to white noise in the limit. Common choices in the literature are either a
piecewise constant approximation [36, 52, 157] or a truncated spectral series expansion
[182]. Another option, not investigated in the references just mentioned, is to avoid
sampling white noise realisations directly and to sample its action onto a test function
instead. This idea is at the heart of the convergence proof presented in this chapter.
In fact, white noise is also in L (L2(D), L2(Ω,R)), i.e. it is a linear functional from
L2(D) to the space of random variables with finite variance. Therefore its action onto
a test function v ∈ L2(D), namely 〈Ẇ, v〉(ω), is a Gaussian random variable which
is a.s. finite and can easily be sampled. Lagrange basis functions are all in L2(D)
and can all therefore be paired with white noise, provided that we sample 〈Ẇ, v〉(ω)
rather than Ẇ(·, ω) (recall Remark 2.7).

The advantage of doing this is that the white noise action can be computed exactly,
without the need for approximations. As we will show in this chapter, it is possible to
work with exact white noise and still achieve optimal FEM convergence. Furthermore,
sampling the action fits well into the MLMC and MLQMC framework we will be
presenting in chapters 4 and 5 as it simplifies the coupling of white noise on each
level.

3.1 Finite element convergence for problem (2.43):
the case k = 1

We want to investigate the FEM solution of problem (2.43). For simplicity, we set
η = 1 as this does not impact the generality of the result. We start by considering
the case of the second order linear elliptic SPDE corresponding with the case k = 1,

u− κ−2∆u = Ẇ, in D, u = 0 in ∂D. (3.1)

The solution to this problem exists and is unique in Lq(Ω, L2(D)) for all q ∈ [1,∞)
as proven in [32]. It also has the following regularity properties,

Theorem 3.1 ([32, 42, 182]). Assuming D is a bounded Lipschitz domain and d =
1, 2, 3, the (very) weak solution to equation (3.1) exists and is unique in Lq(Ω, L2(D))
for all q and it satisfies

u ∈ H2−d/2−ε(D) ∩ C
b2−d/2−εc
0 (D̄), a.s., (3.2)

As u is a.s. continuous on a compact set, it is also in Lq(D) for q ∈ [1,∞] a.s.

The main focus of the following sections is to prove convergence for the finite
element approximation of the solution of equation (3.1) with standard Lagrange ele-
ments. We simplify the exposition by introducing the following assumptions.
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3.1.1 Assumptions on the domain D

As previously stated in observation 2.12, we will consider the numerical solution
of (2.43) on a bounded domain D which is large enough to make the error introduced
by restricting Rd to D negligible in the inner region G.

We are totally free to choose the shape of the domain D. For theoretical purposes,
choosing D to be a smooth domain (i.e. a sphere) makes the convergence analysis
easier as this choice yields solutions of (2.43) which are as smooth as they can be.
For practical purposes, however, curved domain boundaries are difficult to work with
and it is much more convenient to choose D to be a cuboidal domain. This choice,
however, has the disadvantage of affecting the smoothness of the solution for large k
[78], which would then affect the FEM convergence.

In practice, the fact that we are only interested in the FEM error over G, which is
in the interior of the domain, allows us to get the best of both worlds. Assume that
there exists a subdomain1 D0 of D such that Ḡ ⊂ D0 ⊂⊂ D (see Figure 3.1), where
Ḡ is the closure of G. Standard elliptic regularity theory [56] tells us that the lack
of smoothness of ∂D only affects the solution regularity on D̄ and not on a compact
subset such as Ḡ, i.e. the smoothness of the solution in the interior is not capped by
the smoothness of ∂D.

Figure 3.1: An example of a domain D0, chosen arbitrarily such that Ḡ ⊂ D0 ⊂⊂ D
(we just need such a D0 to exist), in the case in which D is a box domain and G is
a brain domain. Although we sample the Matérn field on a large domain D, we are
only interested in its values in the interior domain G.

Nevertheless, typical FEM interior error estimates (see [129]) tell us that the
accuracy of the FEM in G still decreases as a result of the pollution effect arising
from the non-smoothness of ∂D. It turns out that in the very specific case of h- and
hp-refinement and D being a cuboidal domain, this pollution error is negligible and

1This assumption is technical, see for example the work by Nitsche and Schatz [129].
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the same convergence estimates as in the C∞ boundary case can be obtained when
considering the FEM error over G (see [129]) at the cost of a slightly more complicated
convergence analysis. In this thesis we use a box domain in practice, but, for the sake
of simplicity, we assume that D has a C∞ boundary in the FEM convergence analysis
and we will consider the FEM approximation error over D instead of over G.
Remark 3.2. In the p-refinement case, the situation is different and the pollution
error arising from a non-smooth boundary is not negligible, even in the case of a box
domain [12]. In practice, Babuška and Suri observe in [12] that the pollution error
arises if there are not enough mesh cells separating the inner region G from the points
in which ∂D is non-smooth. This effect becomes more prominent and always appears
as the polynomial degree gets larger. In this chapter, we will make the additional
simplifying assumption that there are always enough mesh cells separating G from D
so that the boundary pollution error is negligible for the range of polynomial degrees
considered. Even in the p-refinement case, we will therefore simplify the analysis by
considering D to have a C∞ boundary. In this thesis we mainly use h-refinement and
p-refinement is only used in Chapter 4.

Before proving convergence for the finite element approximation of the solution
of equation (3.1), we give a brief review of the approaches used in the literature to
prove similar results. We will be using these as a starting point in our proof.

3.1.2 Known techniques: introducing an auxiliary problem

The weak form of equation (3.1) reads: find u ∈ U such that

(u, v) + κ−2(∇u,∇v) = 〈Ẇ, v〉, a.s. ∀v ∈ V, (3.3)

where U and V are suitable Banach spaces. In this chapter we prove that taking U ≡
V ≡ H1

0 (D) is sufficient for convergence. Consider a quasi-uniform triangulation of D
of maximum cell size h and let Uh ⊆ U and Vh ⊆ V be finite element approximation
subspaces. Let uh ∈ Uh be the FEM approximation of u. The discrete weak form is:
find uh ∈ Uh such that

(uh, vh) + κ−2(∇uh,∇vh) = 〈Ẇ, vh〉, a.s. ∀vh ∈ Vh. (3.4)

The poor regularity of white noise makes a standard finite element approach dif-
ficult for d ∈ {2, 3}. Since Ẇ ∈ H−d/2−ε(D) a.s., we would need V ⊆ H

d/2+ε
0 (D) for

the weak form to make sense. However, for Lagrange finite elements, we might have
Vh 6⊆ H

d/2+ε
0 (D) and smoother elements would be needed (such as Argyris, see [31]).

This means that we cannot immediately apply Lagrange elements to solve the
weak form of equation (3.1) directly. However, inspired from previous work on the
subject [36, 52, 182], we define the auxiliary problem

um − κ−2∆um = Ẇ
m
, in D, um = 0 in ∂D, (3.5)

where now Ẇ
m

is a smooth approximation of the white noise Ẇ (in the literature
Ẇ

m ∈ L2(D) a.s. for finite m) such that Ẇ
m → Ẇ as m→∞ in some sense, where
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m is the accuracy of the approximation. We fix a relation between m, the cell size
h and the polynomial degree p of the Lagrange elements, so that m = m(h, p) and
m(h, p)→∞ as h/p→ 0.

Let umh be the finite element approximation to the solution of (3.5). As Ẇ
m

is
smooth, the weak form of (3.5) reads: find um ∈ H1

0 (D) such that

(um, v) + κ−2(∇um,∇v) = (Ẇ
m
, v), a.s. ∀v ∈ H1

0 (D), (3.6)

where we do not need the angle bracket notation since Ẇ
m

is in L2(D) a.s. (see
Lemma 3.5 in the next section for a proof). Let Vh be the FEM approximation
subspace spanned by standard Lagrange elements and let umh ∈ Vh be the FEM
approximation to um. Then umh satisfies,

(umh , vh) + κ−2(∇umh ,∇vh) = (Ẇ
m

h , vh), a.s. ∀v ∈ Vh. (3.7)

The approach used in [36, 52, 182] is to show that umh → u as h→ 0. The idea is
to bound the error between u (exact solution of (3.1)) and umh by

E[||u− umh ||2L2(D)] = E[||u− um + um − umh ||2L2(D)] (3.8)

≤ 2E[||u− um||2L2(D)] + 2E[||um − umh ||2L2(D)], (3.9)

where we used the linearity of the expected value and the triangle inequality.
If the approximation Ẇ

m
is chosen so that Ẇ

m
is smooth enough (i.e. Ẇ

m ∈
L2(D) a.s.), then equation (3.5) can be solved with Lagrange elements and conver-
gence to zero for the second term in (3.9) can be shown by using standard techniques
(more or less, see later in the section). If Ẇ

m
can also be chosen so that um con-

verges to u fast enough as m → ∞, then we get convergence for the total error
E[||u− umh ||2L2(D)].

3.1.3 The main result

The main focus of the next sections is the proof of the following theorem.

Theorem 3.2. Consider a quasi-uniform triangulation of D ⊂⊂ Rd of maximum cell
size h. Let u ∈ Hs, with s = 2 − d/2 − ε be the solution to (3.1) and let uh ∈ Vh
be the finite element approximation of u obtained using Lagrange elements of degree
p ≥ 1 on each cell, then, for all sufficiently small ε > 0 and for either fixed p or fixed
h, there exists a Ĉ(ε, s, d,D) ∈ R blowing up as ε→ 0 such that

E[||u− uh||2L2(D)]
1/2 ≤ Ĉ(ε, s, d,D)h2−d/2−εp−(2−d/2−ε). (3.10)

This is the first time a p-refinement estimate has been provided for such a problem.
However, the main novelty of Theorem 3.2 is not in the order of convergence of the
FEM approximation: an h-refinement estimate of the same convergence order as
(3.10) has been proven in many papers in the literature (see for Example [36, 52,
182] and many more). In all these papers, however, the authors do not compute the
white noise exactly, but they work with an approximated white noise. In this thesis,
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we show that in practice approximating the white noise is not needed and that it is
possible to show that the same order convergence is achievable by using Lagrange
elements as they are. A similar result with an improved convergence order without
the ε term was also derived by Bolin et al. [27] (cf. Remark 3.1).

Typical approximations used in previous work were either a truncated spectral
expansion [182] or a piecewise constant approximation of white noise [36, 52]. We use
a similar approach as in [36, 52, 182] to prove convergence, but we use an “approxi-
mation” of white noise which is exact if applied to any function in the finite element
approximation subspace Vh, i.e. (Ẇ

m
, vh) = 〈Ẇ, vh〉, for all vh ∈ Vh. As in the FEM

we only use test functions that belong to Vh, no approximation is actually needed in
practice. This also means that Uh ≡ Vh and umh ≡ uh in our case and this is why umh
does not appear in Theorem 3.2.

3.2 Proof of Theorem 3.2

3.2.1 Our “approximation” of white noise

In this section, we show that we can avoid approximating the white noise Ẇ
in practice by using the approximate Ẇ

m
exclusively as a theoretical tool. To do

this, we first need a tool commonly used in finite element practice: the orthogonal
L2-projection onto Vh.

Definition 3.1 (orthogonal projection onto Vh). Let v ∈ L2(D) and let Vh be a finite
element approximation space. Then Ph : L2(D)→ Vh such that

Phv = arg min
wh∈Vh

||v − wh||L2(D) (3.11)

is the orthogonal L2-projection onto the finite element space Vh.

Theorem 3.3 (approximation properties of Vh [12, 21, 22, 152]). Let Vh be a FEM
subspace spanned by Lagrange elements of degree p ≥ 1 on each cell of a quasi-uniform
triangulation of D of maximum mesh size h. Let v ∈ Hs(D), s > 0, then for either
fixed p or fixed h the best approximation of v in Vh satisfies,

min
wh∈Vh

||v − wh||L2(D) ≤ c(s, d,D)hµp−s||v||Hs(D), µ = min(s, p+ 1). (3.12)

Note that c is allowed to depend on s, D, d, but is independent from v, p or h.

Proof. For fixed h see the work by Babuška and Suri [12] and by Schwab [152]. For
fixed p, note that the best approximation error is lesser or equal than the global
interpolation error of v in Vh. Choosing the Clemént interpolant (see [21, 22]) yields
the bound.

Remark 3.3. Note that, by definition, we have Phvh = vh, ∀vh ∈ Vh.
We can now define our approximation to white noise:
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Definition 3.2 (projected white noise). Let Vh be the Lagrange finite element approx-
imation subspace used to discretise (3.3) and let Ph : L2(D)→ Vh be the orthogonal
projection onto Vh. Let m be the number of basis functions that span Vh, then we
define the projected white noise as the generalised stochastic field given by,

(Ẇ
m
, v) := Ẇ(Phv) ≡ 〈Ẇ, Phv〉, i.e. Ẇ

m
:= Ẇ ◦Ph, ∀v ∈ L2(D). (3.13)

Remark 3.4. The reason why we claim that Ẇ
m

is just a theoretical tool and does
not change anything from a practical aspect is that, with this choice of Ẇ

m
, we have,

for all vh ∈ Vh,

(Ẇ
m
, vh) = 〈Ẇ, Phvh〉 = 〈Ẇ, vh〉, ∀vh ∈ Vh. (3.14)

This means that Ẇ
m
coincides with Ẇ in Vh. Hence, the finite element discretisations

of (3.1) and of (3.5) are exactly the same and uh ≡ umh , where uh is the finite element
approximation of the solution of (3.1).

As we said before, we require two properties from Ẇ
m
:

1. Ẇ
m

must converge to Ẇ as m→∞ in some sense.

2. Ẇ
m

must be in L2(D) a.s. for finite m.

These two properties are proved in the following two subsections.

Ẇ
m
converges to Ẇ as m→∞ in L (Hs(D),L2(Ω,R)) for s > 0

The first property is given by the following lemma,

Lemma 3.4. Let Ẇ
m

be the projected white noise as defined in Definition 3.2. Let
Vh ⊆ L2(D) be the Lagrange finite element approximation subspace of degree p used
to discretise (3.1). Let s > 0, let v ∈ Hs(D) and µ = min(s, p + 1). Then for one
between p or h fixed the following bounds hold:

E[|〈Ẇ− Ẇ
m
, v〉|2]1/2 ≤ c(s, d,D)p−shµ||v||Hs(D), (3.15)

|| Ẇ− Ẇ
m ||L (Hs(D),L2(Ω,R)) ≤ c(s, d,D)p−shµ. (3.16)

Proof. We have that, for all v ∈ L2(D),

E[|〈Ẇ− Ẇ
m
, v〉|2] = E[|〈Ẇ, v〉 − 〈Ẇ, Phv〉|2] (3.17)

= E[|〈Ẇ, v − Phv〉|2] = ||v − Phv||2L2(D), (3.18)

by the definition of Ẇ and the definition of the projected white noise Ẇ
m
. As Phv is

the best approximation to v in the L2(D) norm in the finite element approximation
space Vh the first bound follows from Theorem 3.3.
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For the second bound, Theorem 3.3 gives,

|| Ẇ− Ẇ
m ||L (Hs(D),L2(Ω,R)) = sup

||v||Hs(D)≤1

E[|〈Ẇ− Ẇ
m
, v〉|2]1/2 (3.19)

= sup
||v||Hs(D)≤1

||v − Phv||L2(D) ≤ c(s, d,D)p−shµ sup
||v||Hs(D)≤1

||v||Hs(D) ≤ c(s, d,D)p−shµ,

(3.20)

where the suprema are taken over all v ∈ Hs(D).

This means that the action of Ẇ
m
onto smooth enough test functions (at least in

Hs(D) for s > 0) converges to the action of Ẇ as we refine the mesh or as we increase
the polynomial degree.

Ẇ
m
is in L2(D) a.s. for finite m

The second property is given by the following lemma,

Lemma 3.5. Let Ẇ
m

be the projected white noise as defined in Definition 3.2. Let
Vh ⊆ L2(D) be the finite element approximation space used to discretise (3.1). Let m
be the number of basis functions that span Vh. Then, Ẇ

m ∈ L2(Ω, L2(D)) for finite
m and for all q ∈ (0,∞),

E[|| Ẇm ||qL2(D)]
1/q = ϕ(m, q)

√
m, where ϕ(m, q) =

(
Γ(m/2 + q/2)

Γ(m/2)(m/2)q/2

)1/q

.

(3.21)

The function ϕ(m, q) satisfies the following properties: for all fixed q ∈ (0,∞),
ϕ(m, q) ∼ 1 as m → ∞; for q ≤ 2, ϕ(m, q) ≤ 1 for all m and ϕ(m, 2) ≡ 1. We
therefore have

E[|| Ẇm ||2L2(D)]
1/2 =

√
m. (3.22)

Proof. We know that

|| Ẇm ||L2(D) = sup
||v||L2(D)≤1

|(Ẇm
, v)| = sup

||v||L2(D)≤1

|〈Ẇ, Phv〉|, (3.23)

by the properties of projected white noise (see Definition 3.2).
We know that the projection operator Ph is stable in L2(D), i.e.,

||Phv||L2(D) ≤ ||v||L2(D), ∀v ∈ L2(D), (3.24)

see for Example [55]. By using stability, we have the following equivalence,

{vh ∈ Vh : ∃v ∈ L2(D), ||v||L2(D) ≤ 1, vh = Phv} ≡ {vh ∈ Vh : ||vh||L2(D) ≤ 1}.
(3.25)
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Hence, equation (3.23) becomes

|| Ẇm ||L2(D) = sup
||v||L2(D)≤1

|〈Ẇ, Phv〉| = sup
vh∈Vh

||vh||L2(D)≤1

|〈Ẇ, vh〉|. (3.26)

Now, let {φi}, i = 1, . . . ,m, be the basis functions that span Vh. Without loss of
generality, we can assume that they are orthonormal in L2(D). Therefore, for every
vh ∈ Vh, there exists a vector of coefficients a ∈ Rm such that vh =

∑
i aiφi, with

||vh||L2(D) = |a|2, by Parseval’s equality. Thanks to the definition of white noise, we
obtain

〈Ẇ, vh〉 =
∑
i

ai〈Ẇ, φi〉 = aTz, where z ∼ N (0, I), ∀vh ∈ Vh. (3.27)

We then have

|| Ẇm ||L2(D) = sup
vh∈Vh

||vh||L2(D)≤1

|〈Ẇ, vh〉| = sup
a∈Rm
|a|2≤1

|aTz|, a.s. (3.28)

The inner product |aTz| is maximised for fixed z when a = z/|z|2, hence

|| Ẇm ||L2(D) = sup
a∈Rm
|a|2≤1

|aTz| = |z|2, a.s. (3.29)

The random variable |z|2 is a chi random variable with m degrees of freedom and
density 21−m/2xm−1 exp(−x2/2)/Γ(m/2)1{x>0}(x), where Γ(x) is the Euler Gamma
function and 1{x>0}(x) is the indicator function of the set {x > 0} [63]. We then
conclude

E[|| Ẇm ||qL2(D)]
1/q = E[|z|q2]1/q =

 ∞∫
0

xm−1+qe−x
2/2

2m/2−1Γ(m/2)
dx

1/q

=
√
mϕ(m, q), (3.30)

where ϕ(m, q) =

(
Γ(m/2 + q/2)

Γ(m/2)(m/2)q/2

)1/q

. (3.31)

For fixed q, ϕ(m, q) ∼ 1 as m→∞; for q ∈ (0, 2], ϕ(m, q) ≤ 1 and ϕ(m, 2) ≡ 1 [175].
Consequently Ẇ

m ∈ L2(Ω, L2(D)) for finite m and therefore Ẇ
m ∈ L2(D) a.s. for

finite m, and this concludes the proof.

Remark 3.5 (Why is this result important?). The fact that Ẇ
m ∈ L2(D) a.s. for finite

m is extremely important as this implies, under suitable conditions, that um ∈ H2(D)
a.s. ([78]). As we will be using the finite element method to approximate um, we know
that the smoother um is, the faster its finite element approximation will converge.
Furthermore, the FEM approximation of linear elliptic equations with L2(D) right-
hand side has been studied extensively and we can apply standard results.
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Elliptic regularity

The property um ∈ H2(D) (a.s.) comes from a property of elliptic equations
called elliptic regularity, which can be expressed in the following way (see the work
by Hackbusch [80] or by Grisvard [78] for further details).

Theorem 3.6 (elliptic regularity [78, 80, 126]). Let s ≥ −1 be an integer and let
Lu = f be a second order linear elliptic PDE in the form

Lu = −
d∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+ a0u = f, a0 ≥ 0 a.e. in D, f ∈ Hs(D), (3.32)

d∑
i,j=1

aij ξ̄iξ̄j ≥ α|ξ̄|22, α > 0, ∀x ∈ D, ∀ξ̄ ∈ Rd, (3.33)

with homogeneous Dirichlet boundary conditions. If aij ∈ W s+1,∞(D), a0 ∈ W s,∞(D)
(a0 ∈ L∞(D) if s = −1) and the domain D is of class Cs+1,1, then u ∈ Hs+2(D) ∩H1

0 (D)
and ||u||Hs+2(D) ≤ c∗(s, d,D)||f ||Hs(D). If the coefficients are constant2 and the do-
main is of class Cdse+1,1 this result also holds for s real (for further details, see [80]).

If s < −1 things get more complicated. However, it is still possible to obtain a
similar result even in the case in which the right-hand side is a measure. In this case,
the following result holds,

Theorem 3.7 (elliptic regularity with measure data [38]). Let d ∈ {2, 3} and consider
the same assumptions as in Theorem 3.6 in the case in which s = −1, but take f to
be a Radon measure instead (i.e. f ∈ (C0

0(D))∗), then a unique (very weak) solution
u of the PDE exists and satisfies u ∈ W 1,q

0 (D) with q = d/(d−1)− ε/2 for any ε > 0,
where by W 1,q(D) we indicate the usual Sobolev space of order q and

||u||H2−d/2−ε(D) ≤ c∗(ε, s, d,D)||u||W 1,q(D) ≤ c̃(ε, s, d,D)||f ||(C0
0 (D))∗ . (3.34)

The constant c̃ blows up as ε→ 0.

Proof. The second inequality was proved by Casas in [38]. The first inequality is
obtained through the use of the Sobolev imbedding theorem, see for Example [78].

3.2.2 Main part of the proof

We can now finally proceed to the main part of the proof of Theorem 3.2. Recalling
equation (3.9), the total error E[||u− uh||2L2(D)], can be written down as

E[||u− umh ||2L2(D)] ≤ 2E[||u− um||2L2(D)] + 2E[||um − umh ||2L2(D)], (3.35)

where we used the fact that umh ≡ uh by the definition of projected white noise
(Definition 3.2). The proof of Theorem 3.2 is divided in two parts: in the first part
we prove convergence of the first term on the RHS and in the second part we prove
convergence of the second term.

2or under other suitable conditions, see [80].

38



Convergence of E[||u− um||2L2(D)]

Lemma 3.8. Let Vh be the Lagrange finite element approximation subspace used to
discretise (3.1). For any sufficiently small ε > 0, if we let s = 2 − d/2 − ε, we have
for either p or h fixed,

E[||u− um||2L2(D)]
1/2 ≤ c̄(ε, s, d,D)p−shs, with c̄(ε)→∞, as ε→ 0. (3.36)

Proof. Let g(x,y) be the Green’s function of equation (3.5) over D. Then g(x,y)
satisfies, for any fixed y ∈ D,

g(x,y)− κ−2∆xg(x,y) = δ(x− y), x ∈ D, g(x,y) = 0, x ∈ ∂D, (3.37)

where δ is Dirac’s delta distribution. By definition, the delta function is a Radon mea-
sure, i.e. δ ∈ (C0

0(D))∗ (the continuity of test functions makes their point-evaluation
well-defined). Theorem 3.7 then gives us g(x,y) ∈ Hs(D) for fixed y ∈ D.

As Ẇ
m

is in L2(D) a.s. for finite m, then um ∈ H2(D) a.s. for finite m and the
L2 norm of u − um is finite a.s.. In particular, Fubini-Tonelli’s theorem allows us to
exchange the order of expectation and integration, giving us

E[||u− um||2L2(D)] = ||E[|u− um|2]||L1(D). (3.38)

By using the Green’s function, we can write down analytic expressions for u and
um (see also [32]),

u = 〈Ẇ, g(x,y)〉x, um = (Ẇ
m
, g(x,y))x = 〈Ẇ, P x

h g(x,y)〉x, (3.39)

where by 〈·, ·〉x, (·, ·)x and by P x
h we mean that the pairing, inner product and orthog-

onal projection are taken with respect to the variable x. This gives us, by linearity,

u− um = 〈Ẇ, g(x,y)− P x
h g(x,y)〉x = 〈Ẇ− Ẇ

m
, g(x,y)〉x. (3.40)

Lemma 3.4 then gives us

E[||u− um||2L2(D)] = ||E[|〈Ẇ− Ẇ
m
, g(x,y)〉x|2]||L1(D), y (3.41)

≤ (c(s, d,D)p−shs)2

∫
D

||g(x,y)||2Hs, x dy. (3.42)

To conclude the proof, we need to show that the integral on the right-hand side is
bounded. To do so, we will now show that ||g(x,y)||2Hs, x ≤ c̃(ε) for all y ∈ D, where
c̃(ε) does not depend on y, but it blows up as ε→ 0.

Combining theorems 3.6 and 3.7 we obtain

||g(x,y)||Hs, x ≤ c̃(ε, s, d,D)||δ(x− y)||(C0
0 (D))∗, x, (3.43)

where in the d = 1 case we exploited the fact that the (C0
0(D))∗ norm is stronger

than the H−1/2−ε(D) norm since H1/2+ε
0 (D) ⊂ C0

0(D) ⊂ (C0
0(D))∗ ⊂ H−1/2−ε(D).
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For all y ∈ D we now have

||δ(x− y)||(C0
0 (D))∗, x = sup

||v||
C0
0(D)

≤1

|〈δ(x− y), v(x)〉x| = sup
||v||

C0
0(D)

≤1

|v(y)| = 1. (3.44)

Therefore,∫
D

||g(x,y)||2Hs(D), x dy ≤
∫
D

(c̃(ε, s, d,D) · 1)2 dy = |D|c̃(ε, s, d,D)2, (3.45)

and we conclude

E[||u− um||2L2(D)]
1/2 ≤ c̄(ε, s, d,D)p−shs, (3.46)

with c̄ = |D|1/2cc̃, which is the proposition.

Remark 3.6. Note that the convergence proof of the term E[||u−um||2L2(D)] ultimately
boils down to the question “How regular is the Green’s function of the linear operator
of the PDE and how accurately can one approximate it?”. It is then easy to generalise
this result to more general problems.
Remark 3.7. The fact that the constant appearing in the estimate of Lemma 3.8
blows up as ε → 0 is the reason why the constant in the final estimate of Theorem
3.2 also blows up. This is an artefact of the technique used in this proof and can be
removed. Bolin et al. in [27] solve this problem by introducing another “approxima-
tion” of white noise given by the expansion of white noise with respect to the discrete
eigenbasis of the elliptic operator of (3.1) and showing that this is equivalent to Wm

in L2(Ω, L2(D)). The use of the discrete eigenbasis expansion allows one to derive
estimates in which the ε term does not appear, as also shown by Zhang et al. [182]
for the continuous eigenbasis case.

Convergence of E[||um − um
h ||2L2(D)]

Lemma 3.9. Let umh be the finite element approximation to (3.5) obtained using
Lagrange elements of degree p on each element and a quasi-uniform triangulation of
D of maximum mesh size h. Then, for either fixed p or fixed h,

E[||um − umh ||2L2(D)]
1/2 ≤ c̃(d,D)p−(2−d/2)h2−d/2. (3.47)

Note that m here is a function of h and p and m→∞ and h/p→ 0.

Proof. We know from Lemma 3.5 that the projected white noise is in L2(D) a.s. for
finite m. As the domain is regular, elliptic regularity results (see Theorem 3.6) allow
us to use the Aubin-Nitsche trick [12, 31] and obtain the convergence estimate

||um − umh ||L2(D) ≤ C(d,D)p−2h2||um||H2(D), a.s., (3.48)

for m large enough (i.e. h/p small enough). Again, elliptic regularity (see Theorem
3.6) gives us the bound

||um||H2(D) ≤ c∗(d,D)|| Ẇm ||L2(D), a.s. (3.49)
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Hence,

||um − umh ||L2(D) ≤ c∗(d,D)C(d,D)p−2h2|| Ẇm ||L2(D), a.s. (3.50)

We can then apply the expected value on both sides and use Lemma 3.5 to obtain

E[||um − umh ||2L2(D)]
1/2 ≤ c∗Cp−2h2 E[|| Ẇm ||2L2(D)]

1/2 = c∗Cp−2h2
√
m. (3.51)

For a Lagrange finite element discretisation on a quasi-uniform mesh, the number m
of basis functions needed is related to h and p, namely there exist C∗ ∈ R dependent
only on D such that m ≤ C∗pdh−d. This yields

E[||um − umh ||2L2(D)]
1/2 ≤ c∗Cp−2h2

√
m ≤ c̃(d,D)p−(2−d/2)h2−d/2, (3.52)

where c̃ = c∗C
√
C∗, which is the proposition.

Remark 3.8. Note that the problem of proving the order of convergence for this error
term is strongly related to the question “How accurately can one solve the PDE with
an L2(D) forcing term by using finite elements?".

Conclusion of the proof

We can finally conclude the proof of Theorem 3.2.

Proof of Theorem 3.2. Let s = 2− d/2− ε. The total error E[||u− uh||2L2(D)], can be
written down as,

E[||u− umh ||2L2(D)] ≤ 2E[||u− um||2L2(D)] + 2E[||um − umh ||2L2(D)] (3.53)

≤ 2(c̄(ε, s, d,D)p−shs)2 + 2(c̃(d,D)p−(2−d/2)h2−d/2)2 ≤ (Ĉ(ε, s, d,D)p−shs)2, (3.54)

where Ĉ =
√

2 max(c̄, c̃). Taking the square root on both sides concludes the proof.

3.3 Finite element convergence for problem (2.43):
the case k > 1

The general case k > 1 is just a slight generalisation of the k = 1 case. In this
section, we will prove the following result.

Theorem 3.10. Let uh1 ∈ Vh ⊆ H1
0 (D) be the FEM approximation of the solu-

tion of equation (3.1) obtained using continuous Lagrange elements of degree p on
each cell and a quasi-uniform triangulation of D of maximum mesh size h. Let
a(u, v) : H1

0 (D)×H1
0 (D)→ R be the bilinear form given by a(u, v) = (u, v)+κ−2(∇u,∇v).

Consider the sequence of FEM approximations uhj ∈ Vh for j = 1, . . . , k such that

a(uhj+1, vh) = (uhj , vh), a.s. ∀vh ∈ Vh, j = 1, . . . , k − 1. (3.55)
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Let uk be the solution of problem (2.43), and let s = 2k − d/2 − ε for any ε > 0
sufficiently small, then uk ∈ Hs(D) and for either fixed p or fixed h,

E[||uk − uhk||2L2(D)]
1/2 ≤ c(ε, s, d,D)p−shµ, µ = min(s, p+ 1), (3.56)

where the constant c blows up as ε→ 0.

The proof uses the same strategy as in the k = 1 case: we split the problem in
two by considering the FEM solution of problem (2.43) obtained by using projected
white noise as the initial forcing term. We will now prove two lemmas, analogous to
lemmas 3.8 and 3.9.

Lemma 3.11. Let Vh be the Lagrange finite element approximation subspace used to
approximate the solution of problem (2.43). Let umk be the exact solution of problem
(2.43) in which white noise is replaced with projected white noise. For any sufficiently
small ε > 0, if we let s = 2k− d/2− ε and µ = min(s, p+ 1), we have, for either fixed
p or fixed h,

E[||uk − umk ||2L2(D)]
1/2 ≤ c̄(ε, s, d,D)p−shµ, with c̄(ε)→∞, as ε→ 0. (3.57)

Proof. The proof is substantially the same as the one of Lemma 3.8 and we therefore
omit the details. The only difference is that if we let gk be the Green’s function of
problem (2.43), then gk is smoother than in Lemma 3.8 as here gk ∈ Hs(D) (note
that here s is larger) and Lemma 3.3 yields a higher convergence rate. The higher
smoothness comes again from elliptic regularity (see theorems 3.6 and 3.7).

Lemma 3.12. Let Vh be the Lagrange finite element approximation subspace used to
approximate the solution of problem (2.43). Let umk be the exact solution of (2.43) in
which white noise is replaced with projected white noise and let um,hk ∈ Vh be its finite
element approximation. Let s̄ = 2k − d/2 and let µ̄ = min(s̄, p + 1), then, for either
fixed p or fixed h,

E[||umk − um,hk ||2L2(D)]
1/2 ≤ c̃k(d,D)p−s̄hµ̄. (3.58)

Proof. In the proof of Lemma 3.9 we showed that

||um1 ||H2(D) ≤ c∗1(d,D)|| Ẇm ||L2(D), a.s. (3.59)

By repeatedly applying elliptic regularity estimates (see Theorem 3.6) it is then
straightforward to show by induction that

||umj ||H2j(D) ≤ c∗j(d,D)|| Ẇm ||L2(D), a.s., j = 1, . . . , k, (3.60)

since umj−1 is the right-hand side for the second order elliptic PDE which is solved by
umj . We also know that the following standard FEM error bound holds for the FEM
approximation of um1 (see [12, 31]),

||um1 − um,h1 ||H1(D) ≤ c̄1(d,D)p−1h||um1 ||H2(D) a.s.. (3.61)
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We now claim that for j = 1, . . . , k,

||umj − um,hj ||H1(D) ≤ c̄j(d,D)p−(2j−1)hmin(2j,p+1)−1||umj ||H2j(D) a.s. (3.62)

Combining (3.60) and (3.62) for j = k we then obtain

||umk − um,hk ||H1(D) ≤ c̄k(d,D)c∗k(d,D)p−(2k−1)hmin(2k,p+1)−1|| Ẇm ||L2(D) a.s. (3.63)

As the domain is assumed to be regular, the Aubin-Nitsche argument (see [31, 152])
gives us

||umk − um,hk ||L2(D) ≤ c̄k(d,D)c∗k(d,D)p−2khmin(2k,p+1)|| Ẇm ||L2(D) a.s. (3.64)

The proof is then concluded by using the same argument as in Lemma 3.9 by noting
that the L2 norm of projected white noise is bounded by

√
C∗pd/2h−d/2 a.s.. Squaring

then both sides, taking the expectation and the square root gives the proposition.
The last thing to show is that the claim (3.62) actually holds. Consider equation

(3.55): each approximate solution um,hj+1 is obtained by solving an elliptic PDE in
which the right-hand side um,hj is being approximated as well. The convergence of
um,hj+1 will then also depend on how well is um,hj approximated by the FEM scheme. In
particular, Strang’s first lemma (see [31]) gives us that

||umj+1 − um,hj+1||H1(D) ≤
(

1 +
ca

ca

)
inf
vh∈Vh

||umj+1 − vh||H1(D) + ||umj − um,hj ||H−1(D), (3.65)

a.s., where ca = max(1, κ−2) and ca = min(1, κ−2) are the continuity and coercivity
constants of a(·, ·) respectively. It is a standard result (see [12, 31, 152]) that the first
term on the right is a.s. bounded by

inf
vh∈Vh

||umj+1 − vh||H1(D) ≤ c1,j+1(d,D)p−(2(j+1)−1)hmin(2(j+1),p+1)−1||umj+1||H2(j+1)(D).

(3.66)

For the second term, we use a duality argument. Let φ ∈ H1
0 (D) and let wφ be the

solution of the adjoint problem a(v, wφ) = (v, φ) for each v ∈ H1
0 . Then, Galerkin

orthogonality gives: for any wh ∈ Vh,

(umj − um,hj , φ) = a(umj − um,hj , wφ) = a(umj − um,hj , wφ − wh)
≤ ca||umj − um,hj ||H1(D)||wφ − wh||H1(D), a.s.

(3.67)

Standard convergence estimates and elliptic regularity [12, 31, 152] give us that

||wφ − wh||H1(D) ≤ c3(d,D)p−2h2||wφ||H3(D) ≤ c4(d,D)p−2h2||φ||H1(D) a.s. (3.68)

We now assume by an induction argument that the claim (3.62) holds for j. Com-
bining this and equations (3.67) and (3.68) we obtain

(umj − um,hj , φ) ≤ cac4(d,D)c̄j(d,D)p−(2(j+1)−1)hmin(2(j+1),p+3)−1||φ||H1(D), a.s. (3.69)
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Taking the supremum over all φ ∈ H1
0 (D) we get a bound for the H−1(D) norm of

umj − um,hj , namely,

||umj − um,hj ||H−1(D) ≤ cac4(d,D)c̄j(d,D)p−(2(j+1)−1)hmin(2(j+1),p+3)−1, a.s. (3.70)

Using this with equation (3.65) and (3.66) we prove the case j + 1 and we conclude
the induction step. Since the base case of the induction argument is given by equation
(3.61), claim (3.62) is proved.

We now have all the ingredients to prove Theorem 3.10.

Proof of Theorem 3.10. The proof is the same as in Theorem 3.2: the proposition
(3.56) comes from splitting the error ||uk−um,hk ||L2(D) in the two terms ||uk−umk ||L2(D)

and ||umk − um,hk ||L2(D) and by noting that since projected white noise coincides with
white noise if applied to any vh ∈ Vh we have uhk ≡ um,hk . The two error terms can be
bounded with the convergence estimates in lemmas 3.11 and 3.12 respectively.

The result uk ∈ Hs(D) comes by noting that u1 ∈ H2−d/2−ε(D) (see Theorem
3.1) and by repeatedly applying elliptic regularity results to the sequence of problems
generating u2, . . . , uk in problem (2.43).
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Chapter 4

Efficient white noise sampling and
coupling for MLMC

The contents of this chapter are taken from our paper [43] and are novel unless
otherwise indicated.

All the numerical results in this chapter have been produced with the software
FEMLMC, a software for parallel forward uncertainty quantification for PDEs with
random coefficients entirely written by the author that contains all the new methods
presented in this thesis.

In Chapter 2 we introduced the SPDE approach to Matérn field sampling and
in Chapter 3 we showed that the finite element method converges at the essentially
optimal rate when applied to the white noise PDEs (3.1) and (2.43). In this chapter,
we investigate the use of the SPDE approach within a non-nested MLMC framework
and we present an efficient algorithm for the sampling and MLMC coupling of white
noise realisations.

4.1 Background and existing literature
Let us recall the white noise PDE (2.41),(
I − κ−2∆

)k
u(x, ω) = η Ẇ, x ∈ Rd, ω ∈ Ω, ν = 2k − d/2 > 0. (4.1)

The main focus of this chapter is the generation of white noise samples Ẇ(·, ω)
for a given sample point ω ∈ Ω. More precisely, we study the efficient sampling of
the action 〈Ẇ, vh〉(ω) of white noise onto a FEM test function vh. While solving
equations (3.1) and (2.43) is relatively straightforward, the sampling of white noise
realisations is not as it requires the sampling of a Gaussian vector with a finite element
mass matrix M as covariance. If the finite element spaces involved are other than
piecewise constants, M will be sparse, but not diagonal. Hence, its Cholesky factor is
usually dense and the sampling requires an offline computational and memory storage
cost of O(m3) for the factorisation and an online cost of O(m2) for each sample.

To resolve this challenge, different approaches have been adopted in the literature.
Generally, the idea has been to use a diagonal mass matrix instead; i.e. an approximate
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representation using piecewise constants or mass-lumping. Osborn et al. [132] use a
two-field reformulation of (4.1) for k = 1 with Raviart-Thomas elements combined
with piecewise constants, while Lindgren et al. [116] use continuous Lagrange elements
and mass lumping. Both methods compute (or approximate) the action of white noise
on the FEM test functions. Another option, adopted in [51, 52, 141], is to approximate
the white noise itself by a piecewise constant random function that converges in an
appropriate weak sense to the exact white noise.

The sampling becomes more complicated when the Matérn field u is needed within
a multilevel Monte Carlo framework [68, 69] which requires the coupling of the field
between different approximation levels (i.e. the same sample point ω must be used
on both levels). In turn, this requires the white noise samples on each level to be
coupled. Drzisga et al. [51] enforce this coupling in the nested grid case with the use of
a piecewise constant approximation of white noise [149]. Osborn et al. [132] present
a technique that enforces the coupling between nested meshes by using techniques
from cell-based algebraic multigrid (AMG). Their approach does not require a user-
provided hierarchy of nested grids as the hierarchy is constructed algebraically. This
operation aggregates the cells of a single user-provided grid into clusters which then
constitute the cells of the coarse meshes. The resulting aggregated meshes are non-
simplicial. Furthermore, Osborn et al. [133] use a hierarchy of nested structured
grids on which they enforce the white noise coupling and solve the SPDE (4.1). The
techniques used for the coupling are the same as presented in [132]. The sampled
Matérn fields are then transferred to a non-nested agglomerated mesh of the domain
of interest via a Galerkin projection.

The main new contributions in this chapter are the following. First, we present
a sampling technique for white noise that is exact and that is applicable for a wide
range of finite element families, including all types of Lagrange elements. Our tech-
nique does not require the expensive factorisation of a global mass matrix or a costly
two-field splitting of the Laplacian and has linear complexity in the number of de-
grees of freedom, hence justifying the complexity results in Table 2.1. Second, we
introduce a technique for coupling white noise between nested or non-nested meshes,
applicable for the same class of finite element families. If non-nested meshes are used,
this coupling technique requires the use of a supermesh construction [59, 60, 61].
Third, we prove that the number of cells of a supermesh between two quasi-uniform
meshes constructed with a local supermeshing algorithm [59] is bounded by the sum
of the number of cells of the parent meshes, improving the complexity bounds of
the algorithm. Finally, the existing literature generally focuses on white noise cou-
pling in the h-refinement case, i.e. when the MLMC hierarchy is defined by meshes
of decreasing cell size [39, 41]. In this chapter we also consider the case in which the
MLMC levels are defined by increasing the polynomial degree of the FEM interpolant
(p-refinement).

Although Osborn et al. [132] also work with non-nested meshes, our approach
differs significantly from theirs. Osborn et al. start from one single mesh and alge-
braically coarsen it to obtain the grid hierarchy. The MLMC levels are thus generated
algebraically. Our approach operates on a given arbitrary mesh hierarchy and the
MLMC levels are defined geometrically. In our case, every mesh in the hierarchy is
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simplicial, and it is thus possible to use standard FEM error estimates (if available)
to estimate a priori the MLMC convergence parameters [39, 166].

We adopt the same embedded domain strategy as Osborn et al. [132]. The ad-
vantage of this strategy is that the sampled Matérn field can be transferred to the
computational domain of interest exactly and at negligible cost. However, in practi-
cal applications defined over complex geometries, a sequence of nested meshes might
not be available, making the white noise coupling challenging. This motivated us
to design an algorithm that can be used to enforce the coupling between non-nested
meshes as well.

The rest of the chapter is structured as follows. In Section 4.2 we describe the
white noise sampling problem for the cases where both independent and coupled
realisations are needed. In Section 4.4 we describe our new sampling technique that
allows the sampling of independent and coupled white noise realisations efficiently.
In Section 4.5 we present numerical results corroborating the theoretical results and
demonstrating the performance of the technique. Finally we summarise the results
of the chapter in Section 4.6.

4.2 The white noise sampling problem
In this section we describe the practical aspects of the numerical solution of (4.1)

when either independent (standard Monte Carlo) or coupled (MLMC) Matérn field
samples are needed. As we will see, the main complication lies in the sampling of
white noise realisations.

4.2.1 Finite element solution of elliptic PDEs with white noise
forcing

The solutions of the linear elliptic PDE (4.1) correspond to a Matérn field with
covariance given by (2.27). As the main focus of this chapter is on white noise
sampling, we will restrict our attention to the k = 1 case and we will set η = 1 from
now on for simplicity, although our white noise sampling method generalises to any
k > d/4.

Solving (4.1) over the whole of Rd is generally not feasible. Instead, Rd is typically
truncated to a bounded domain D ⊂⊂ Rd and some boundary conditions are chosen,
usually homogeneous Neumann or Dirichlet [27, 116]. In what follows, we assume
that the Matérn field sample is needed on a domain G ⊂⊂ D (recall Figure 3.1). If D
is sufficiently large in the sense that the distance between ∂D and ∂G is larger than
the correlation length λ then the error introduced by truncating Rd to D is negligible
(cf. Remark 2.12). After truncating the domain, (4.1) for k = 1 reduces to

u− κ−2∆u = Ẇ in D,
u = 0 on ∂D.

(4.2)

Existence and uniqueness of solutions to (4.2) was proven in [20] and in [32].
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We will solve (4.2) using the finite element method, as described in Chapter 3. Let
Vh = span(φ1, . . . , φm) ⊆ H1

0 (D) be a continuous Lagrange approximation subspace.
A discrete weak form of (4.2) then reads: find uh ∈ Vh such that

(uh, vh) + κ−2(∇uh,∇vh) = 〈Ẇ, vh〉 for all vh ∈ Vh. (4.3)

The coefficients of the basis function expansion for uh, i.e. the ui such that
uh =

∑m
i=1 uiφi, are given by the solution of a linear system

Au = b, with Aij = (φi, φj) + κ−2(∇φi,∇φj), bi = 〈Ẇ, φi〉. (4.4)

This linear system (4.4) can be solved in O(m) time by using an optimal solver such
as full multigrid.

Remark 4.1. In the general k > 1, k ∈ N case, then we must solve equation (2.43). In
this case the elliptic operator is the same in all equations and the same finite element
basis and solver can be reused to compute all the uj.

By Definition 2.6, b satisfies

b ∼ N (0,M), Mij = (φi, φj), (4.5)

i.e. b is a zero-mean Gaussian vector with the finite element mass matrix M as
covariance matrix. Sampling white noise realisations can thus be accomplished by
sampling a Gaussian vector of mass matrix covariance.

In Section 4.4, we present a factorisation of M in the form HHT (cf. (2.32)) that
is both sparse and computationally efficient to compute, thus allowing for efficient
sampling of white noise.

4.2.2 Multilevel white noise sampling/white noise coupling
condition

We now consider the case in which coupled Matérn field realisations are needed
in a MLMC setting, i.e. we want to draw samples of u`(x, ω) and u`−1(x, ω) at two
different levels of accuracy ` and ` − 1 for the same ω ∈ Ω. To understand the
challenge, we first recall the MLMC estimator 2.15: let P(u) = P (ω) be a functional
of interest depending on the solution u of (4.2), then the MLMC estimator for E[P ]
reads

E[P ] ≈ E[PL] ≈
L∑
`=1

[
1

N`

N∑̀
n=1

(P`(ω
n
` )− P`−1(ωn` ))

]
, (4.6)

where P` = P(u`) for all ` = 1, . . . , L.
The increased efficiency of MLMC with respect to standard Monte Carlo relies on

the assumption that on fine levels (large `) the variance is small due to the fact that the
levels are coupled, i.e. the sample point ωn` is the same for both P`(ωn` ) and P`−1(ωn` ).
The coupling makes P`(ωn` ) and P`−1(ωn` ) strongly correlated. This diminishes the
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variance of their difference, and therefore fewer samples are required to estimate the
expected value. In fact, MLMC can be seen as a variance reduction technique in
which the coupling between the levels is one of the key elements. If the coupling
is not enforced correctly so that the samples of P` and P`−1 become independent,
then the variance of each term of the telescoping sum in (2.15) increases, significantly
harming its efficiency and convergence properties.

Since the only stochastic element present in (4.2) is white noise, it is sufficient to
use the same white noise sample on both levels to enforce the coupling requirement.
More precisely, let V ` and V `−1 be the finite element spaces on level ` and ` − 1
respectively for ` > 1. We consider the following two variational problems coupled by
a common white noise sample: find u` ∈ V ` = span(φ`1, . . . , φ

`
m`

) and u`−1 ∈ V `−1 =

span(φ`−1
1 , . . . , φ`−1

m`−1
) such that for ωn` ∈ Ω

(u`, v`) + κ−2(∇u`,∇v`) = 〈Ẇ, v`〉(ωn` ), for all v` ∈ V `, (4.7)

(u`−1, v`−1) + κ−2(∇u`−1,∇v`−1) = 〈Ẇ, v`−1〉(ωn` ), for all v`−1 ∈ V `−1. (4.8)

where the terms on the right-hand side are coupled in the sense that they are cen-
tred Gaussian random variables with covariance E[〈Ẇ, vl〉〈Ẇ, vs〉] = (vl, vs) for l, s ∈
{`, `− 1}, as given by Definition 2.6.

Let u` ∈ Rm` and u`−1 ∈ Rm`−1 be the vectors of the finite element expansion
coefficients of u` and u`−1, respectively. Following the same approach as in Section
4.2.1, we note that the coefficient vectors solve the following block-diagonal linear
system, [

A` 0

0 A`−1

][
u`
u`−1

]
=

[
b`
b`−1

]
. (4.9)

Alternatively, by letting u = [u`, u`−1]T , b = [b`, b`−1]T and A = diag(A`, A`−1), we
can write this as

Au = b. (4.10)

This system can be solved in linear time with an optimal solver [54].
Furthermore, by Definition 2.6,

b ∼ N (0,M), (4.11)

where M can be expressed in block structure as

M =

[
M ` M `,`−1

(M `,`−1)T M `−1

]
, with M `,k

ij = (φ`i , φ
k
j ) and Mk

ij = (φki , φ
k
j ). (4.12)

If we were using independent white noise samples for (4.7) and (4.8), then the off-
diagonal blocks of M would vanish. Conversely, the presence of the mixed mass
matrix M `,`−1 stems from the use of the same white noise sample on both levels. For
this reason, we will refer to equations (4.11) and (4.12) as the coupling condition.
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Thus, the problem of sampling coupled Matérn fields in the context of MLMC
again reduces to the sampling of a Gaussian vector with a mass matrix as covariance.
However, two additional complications arise. First, M is potentially much larger and
not necessarily of full rank (consider the case in which V ` = V `−1, thenM ` = M `−1 =
M `,`−1). Second, to assemble M `,`−1 we need to compute integrals involving basis
functions possibly defined over different, non-nested meshes, which is non-trivial. In
Section 4.4, we present a sampling technique that addresses both issues. A supermesh
construction [60, 61] is required in the non-nested mesh case.

4.2.3 Embedded meshes and non-nested grids

We adopt the same embedded mesh strategy as presented by Osborn et al. [132].
We assume that the Matérn field sample is needed on a user-provided mesh Gh of
the domain G and we take D to be a larger d-dimensional box such that the distance
between ∂G and ∂D is at least λ. With modern meshing software, such as Gmsh [65],
it is possible to then triangulate D and obtain a mesh Dh in such a way that Gh is
nested within Dh, i.e., each cell and vertex of Gh is also a cell or vertex of Dh. We
then refer to Gh as embedded in Dh or to Gh as an embedded mesh (in Dh). The main
advantage of an embedded Gh in Dh is that once (4.2) is solved on Dh the sampled
Matérn field u can be exactly transferred onto Gh at negligible cost. Conversely, if
Gh is not embedded in Dh, an additional interpolation step would be required, thus
increasing the cost of each sample.

In the MLMC framework with h-refinement, we assume that we are given a pos-
sibly non-nested user-provided mesh hierarchy {G`

h}L`=1. We accordingly generate a
hierarchy of meshes {D`

h}L`=1 on which to perform the sampling. If the {D`
h}L`=1 are

nested, then the techniques used in [51] and [132] can be used to couple the white
noise between MLMC levels. However, in the case in which the user-provided meshes
{G`

h}L`=1 are non-nested, these methods are not compatible with the embedded mesh
strategy.

Clearly, non-nested grid hierarchies appear naturally in practical computations on
complex geometries. For instance, grid hierarchies generated from CAD geometries
or through coarsening of a single fine mesh are generally non-nested. Thus tackling
couplings across non-nested meshes is crucial for non-trivial applications. As previ-
ously said, such couplings can be achieved at a small offline cost via a supermesh
construction [60, 61].

4.3 Supermesh constructions between quasi-uniform
meshes

In what follows we consider the general setting in which the MLMC levels are
defined using h-refinement and the mesh hierarchy {D`

h}L`=1 is non-nested. At the
end of the next section, we will provide some remarks on the simpler cases in which
the function spaces that define the hierarchy are nested (e.g. the grids are nested or
p-refinement is used).
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Consider the case of sampling b ∼ N (0,M), where M ∈ Rm×m is given by (4.12).
The assembly of the off-diagonal blocks ofM requires the computation of inner prod-
ucts between basis functions of different FEM approximation subspaces. To address
this problem, we use a supermesh construction defined as follows.

Definition 4.1 (Supermesh, [60, 61]). Let D ⊂⊂ Rd be an open domain and let T a,
T b be two tessellations of D. A supermesh Sh of T a and T b is a common refinement
of T a and T b. More specifically, S is a triangulation of D such that:

1. vertices(T a) ∪ vertices(T b) ⊆ vertices(Sh),

2. volume(eS ∩ e) ∈ {0, volume(eS)} for all cells eS ∈ Sh, e ∈ (T a ∪T b).

The first condition means that every parent mesh vertex must also be a vertex of
the supermesh, while the second states that every supermesh cell is completely con-
tained within exactly one cell of either parent mesh [61]. The supermesh construction
is not unique [61]. We show an example of supermesh construction in Figure 4.1. Ef-
ficient algorithms for computing the supermesh are available [121].

Figure 4.1: An example of a supermesh construction. The first two meshes on the
left are the parent meshes and the mesh on the right is a supermesh. As stated in
[61, Lemma 2], every supermesh cell is completely contained within a unique pair of
parent mesh cells.

Evaluating (4.12) involves L2-inner products of functions that are only piecewise
polynomial on each cell of D`

h and D`−1
h . This lack of smoothness affects the con-

vergence of standard quadrature schemes. The supermesh construction provides a
resolution to this problem: on each cell of a supermesh of D`

h and D`−1
h the inte-

grands are polynomial and standard quadrature schemes apply.
Overall, a key ingredient of our strategy for evaluating (4.12) is therefore to con-

struct a supermesh of each pair of meshes D`
h, D

`−1
h . If the supermesh construction

is performed with a local supermeshing algorithm, then its complexity is O(n` +K),
where n` is the number of cells of D`

h and K = I(D`
h, D

`−1
h ) is the number of inter-

secting cells between D`
h and D`−1

h [59]. As stated in [61, Lemma 2], supermesh cells
always lie within the intersection of a single pair of parent mesh cells and therefore
the number of supermesh cells is proportional to the number of intersecting cells and
is thus O(K) [61].
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To our knowledge, the only bound for K available in the literature is given by
K ≤ c(d)n`n`−1, where n`−1 is the number of cells of D`−1

h and c(d) is the minimum
worst-case number of simplices that the intersection between two parent mesh cells
can be triangulated into. For simplicial meshes we have c = 4 in 2D and c = 45 in 3D
[59, 61]. In practice, this is a pessimistic bound and we will now show that under the
additional assumption that the input meshes are quasi-uniform, the number of cells
of the supermesh is bounded by a constant times the sum of the cells of the parent
meshes, n`+n`−1. This in turn means that for practical computations the supermesh
construction and the number of supermesh cells is O(n`) (since here n` > n`−1).

Let us first recall the definition of quasi-uniformity.

Definition 4.2 (definition 4.4.13 in [31]). Let D be a given domain and let {T ĥ}, be
a family of tessellations of D such that for 0 < ĥ ≤ 1,

max{diam e : e ∈ T ĥ} ≤ ĥ diamD, (4.13)

where diamD is the diameter of D. The family is said to be quasi-uniform if there
exists ∞ > ρ̂ > 0 (independent from ĥ) such that

min{diamBe : e ∈ T ĥ} ≥ ρ̂ĥ diamD, (4.14)

where Be is the largest ball contained in e such that e is star-shaped with respect to
Be (cf. definition 4.2.2 in [31]).

To simplify the exposition of what follows, it is more convenient to use the follow-
ing property of quasi-uniform tessellations:

Lemma 4.1. Let D be a given domain and let {T h} be a quasi-uniform family of
tessellations. Then there exist h and ρ ∈ (0,∞) with 0 < h ≤ cd =

√
2d/(d+ 1) such

that

max{diamBe : e ∈ T h} ≤ h diamD, (4.15)

where Be is the smallest ball containing e and

min{diamBe : e ∈ T h} ≥ ρh diamD, (4.16)

where Be is the largest ball contained in e such that e is star-shaped with respect to
Be.
Proof. Jung’s Theorem [99, 100] states that for any compact set e ⊂ Rd,

diamBe ≤
√

2d

d+ 1
diam e = cd diam e. (4.17)

Therefore

max{diamBe : e ∈ T h} ≤ cd max{diam e : e ∈ T h} ≤ cdĥ diamD, (4.18)

where we have used equation (4.13) in the last step. Equation (4.14) also gives us,

min{diamBe : e ∈ T h} ≥ ρ̂ĥ diamD. (4.19)

Equations (4.18) and (4.19) are the same as (4.15) and (4.16) respectively after setting
h = cdĥ and ρ = ρ̂/cd.
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In what follows we also need the following auxiliary lemma, stating that the con-
stants h and ρ appearing in Lemma 4.1 also provide a lower and upper bound for the
number of cells of a quasi-uniform mesh.

Lemma 4.2. Let Dh be a quasi-uniform tessellation of a domain D ⊂ Rd with n cells
and let cD = 2−d|D|/(cπ(d)diam(D)d) with cπ = 2 in 1D, cπ = π in 2D and cπ = 4π/3
in 3D, then

cDh
−d ≤ n ≤ cDρ

−dh−d, (4.20)

where h and ρ are the constants appearing in Lemma 4.1.

Proof. Let ei ∈ Dh for i = 1, . . . , n be the cells of Dh. We compute a lower bound
for n by noting that the measure of each cell is smaller or equal to the volume of the
smallest ball containing it, which gives

|D| =
∑
i

|ei| ≤ cπ2−d
∑
i

diam(Bei)d ≤ cπ2−dnhd diam(D)d, (4.21)

where we have used equation (4.15) in the last step. The lower bound is obtained by
solving for n. Similarly we obtain an upper bound by noting that the volume of each
cell is larger than the volume of any ball it contains. This gives,

|D| =
∑
i

|ei| ≥ cπ2−d
∑
i

diam(Bei)d ≥ cπ2−dnρdhd diam(D)d, (4.22)

where we used equation (4.16) in the last step. Solving for n yields an upper bound
and concludes the proof.

We now prove the following theorem, stating that the number of intersections
K = O(n` + n`−1). To the author’s knowledge, this result is novel.

Theorem 4.3. Let Ah and Bh be two quasi-uniform tessellations of the same domain
D with nA and nB be the number of cells of Ah and Bh respectively and let I(Ah, Bh)
be the number of intersecting pairs between Ah and Bh. There exists c(d,D) > 0
independent from nA and nB such that I(Ah, Bh) ≤ c(d,D)(nA + nB).

Proof. Since Ah and Bh are quasi-uniform, we have by Lemma 4.1,

max{diamBe : e ∈ Ah} ≤ hA diamD = h̃A, (4.23)

max{diamBe : e ∈ Bh} ≤ hB diamD = h̃B, (4.24)

min{diamBe : e ∈ Ah} ≥ ρAhA diamD = ρAh̃A, (4.25)

min{diamBe : e ∈ Bh} ≥ ρBhB diamD = ρBh̃B, (4.26)

for some hA, hB ∈ (0, cd], ρA, ρB > 0 independent from hA, hB. For a given cell
ei ∈ Ah, let I(Bh, ei) be the number of cells of Bh that intersect with ei, we then have
that

I(Bh, Ah) ≤ nA max
i
I(Bh, ei). (4.27)
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Now, maxi I(Bh, ei) is bounded above by the maximum number P(Bh,Bd̃) of cells of
Bh that can be packed within a ball Bd̃ of diameter d̃ = h̃A+2h̃B without overlapping,
since all cells eAi ∈ Ah can be entirely contained within a ball of diameter h̃A and no
cell eBj ∈ Bh can intersect eAi if the maximum distance between eAi and the points of
eBj is larger than h̃B, i.e.

|eAi ∩ eBj | = 0, if max
x∈eBj

dist(x, eAi ) > h̃B, (4.28)

which gives,

|eAi ∩ eBj | = 0, if ∃Bh̃B ⊇ eAi s.t. max
x∈eBj

dist(x,Bh̃A) > h̃B. (4.29)

From these considerations and (4.27) we get I(Bh, Ah) ≤ nAP(Bh,Bd̃), where we
can bound

P(Bh,Bd̃) ≤P(BρB h̃B ,Bd̃), (4.30)

where with abuse of notation we indicate with P(BρB h̃B ,Bd̃) the number of balls of
diameter ρBh̃B that can be packed within Bd̃ without overlapping. This bound holds
since all cells of Bh entirely contain BρB h̃B by quasi-uniformity and Lemma 4.1. Note
that Bd̃ is always larger than BρB h̃B . Finding the sharpest possible upper bound for
P(BρB h̃B ,Bd̃) is a classical, yet extremely complicated problem in geometry called
the ball packing problem (see e.g. [168] for a survey). A crude upper bound is given
by

P(BρB h̃B ,Bd̃) ≤ δd
| Bd̃ |
| BρB h̃B |

≤ δd

(
h̃A + 2h̃B

ρBh̃B

)d

≤ δdρ
−d
B

(
2 +

hA
hB

)d
(4.31)

where δd ≤ 1 is the packing density of congruent balls in Rd and we removed the
tildes since the diamD term simplifies out in the ratio. Putting everything together
yields

I(Bh, Ah) ≤ δdρ
−d
B

(
2 +

hA
hB

)d
nA. (4.32)

By Lemma 4.2, we have that

cDh
−d
A ≤ nA, and nB ≤ cDρ

−d
B h−dB . (4.33)

We can now use the above to compute an upper bound for hA/hB as follows. First
compute an upper bound for hA and a lower bound for hB,

hA ≤
(
nA
cD

)−1/d

, by (4.33) left. hB ≥
1

ρB

(
nB
cD

)−1/d

, by (4.33) right. (4.34)
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Then combine the above into

hA
hB

=
1

hB
hA ≤ ρB

(
nB
cD

)1/d(
nA
cD

)−1/d

= ρB

(
nB
nA

)1/d

. (4.35)

Plugging this into (4.32) we obtain

I(Bh, Ah) ≤ δdρ
−d
B

(
2n

1/d
A + ρBn

1/d
B

)d
≤ c(d,D)(nA + nB), (4.36)

which concludes the proof. Here c(d,D) = δdC̄ for some constant C̄ > 0 such that(
2ρ−1

B n
1/d
A + n

1/d
B

)d
≤ C̄(nA + nB). (4.37)

Corollary 4.4. Let Ah and Bh be two quasi-uniform tessellations of the same do-
main D with nA and nB be the number of cells of Ah and Bh respectively and let
Sh be a supermesh with n cells constructed from Ah and Bh via a local supermeshing
algorithm [59]. There exists C(d,D) > 0 independent from nA and nB such that
n ≤ C(d,D)(nA + nB).

Proof. For a local supermeshing algorithm (cf. [59]) we have n ≤ c(d) I(Bh, Ah),
where c(d) > 0 is the minimum worst-case number of simplices that the intersection
between two cells of Ah and Bh can be triangulated into [61]. The proposition follows
from Theorem 4.3.

Remark 4.2. The constant in the bound derived in Theorem 4.3 is not sharp. However,
a sharper constant can be estimated in practice, cf. Section 4.5.

Remark 4.3. Generalising the theorem to non-nested meshes of different overlapping
domains is straightforward as it is sufficient to bound the number of intersections in
the region in which the meshes are overlapping.

We therefore conclude that the supermeshing cost and the number of cells n of a
supermesh constructed from D`

h and D`−1
h by using a local supermeshing algorithm

[59] are both O(n`) since n` > n`−1. This is an important result because the sampling
strategy for coupled white noise realisations that we present in the next section has
cost complexity linear in the number of supermesh cells. Consequently, the method
we propose is linear in n`.

4.4 White noise sampling
In this section we introduce a new technique for sampling white noise efficiently.

We first address the basic case in which independent white noise samples are needed
before considering the more complicated case in which coupled samples are required.
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4.4.1 Sampling of independent white noise realisations

As discussed in the previous section, the sampling of independent white noise
realisations defined over a meshed domain can be cast as the sampling of a Gaussian
vector b of covariance matrix given by a finite element mass matrix M ∈ Rm×m.
In turn, efficient sampling of such a Gaussian vector typically involves computing a
factorisation of M = HHT . If a Cholesky factorisation is used, such sampling may
become costly, with a O(m3) factorisation cost and O(m2) cost per sample. In what
follows, we present an alternative factorisation strategy which has O(m) fixed cost
and O(m) cost per sample.

The core idea is to work cell-wise instead of factorizing a global mass matrix. To
illustrate, consider a standard finite element assembly of M over a mesh with n cells
and me degrees of freedom on each cell. Local mass matrices Me of size me ×me are
computed on each mesh cell e before aggregation to form the global mass matrix M .
The overall assembly operation can be written in matrix form,

M = LT diage(Me)L, (4.38)

(see e.g. [173]), where diage(Me) is a block diagonal matrix of size nme × nme with
the local mass matrices on the diagonal and L is a Boolean assembling matrix of
size nme ×m such that LT = [LT1 . . . LTn ] and the Le are Boolean matrices of size
me×m that encode the local-to-global map. Note that each row of L has exactly one
non-zero entry [173].

We can now factorise each local mass matrix Me independently with a standard
Cholesky factorisation to obtain Me = HeH

T
e for each cell e. We then have

M = LT diage(HeH
T
e )L = (LT diage(He))(L

T diage(He))
T = HHT , (4.39)

with H ≡ LT diage(He), and we can sample b by computing

b = Hz, with z ∼ N (0, I), z ∈ Rmen, (4.40)

since, cf. (2.32),

E[bbT ] = H E[zzT ]HT = (LT diage(He))I(LT diage(He))
T = M. (4.41)

Remark 4.4. This sampling strategy allows the splitting of a large global sampling
problem into separate small local sampling problems. In fact, if for each cell e we
let ze ∼ N (0, I) be a small standard Gaussian vector of length me, we can rewrite
b = Hz as

b = Hz =
n∑
e=1

LTeHeze =
n∑
e=1

LTe be, (4.42)

where be ∼ N (0,Me) is sampled locally. The problem of sampling a global mass
matrix covariance Gaussian vector then eventually reduces to the sampling of n in-
dependent local mass matrix covariance Gaussian vectors. This sampling approach
is therefore trivially parallelisable.
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Note that this sampling strategy is efficient since the local Cholesky factorisations
can be computed in O(m3

en) time and the Le factors can be applied matrix-free for a
total O(m3

en) factorisation cost and an O(m2
en) memory and sampling cost.

Remark 4.5. In the case in which the transformation to the reference cell is affine
(such as with Lagrange elements on simplices) this operation can be made much
more efficient by noting that the local mass matrices on each cell are always the same
up to a multiplicative factor, namelyMe/|e| = const for all e, where |e| is the measure
of the cell. It is therefore sufficient to factorise a single local mass matrix and to store
its Cholesky factor, yielding a negligible O(m3

e) and O(m2
e) factorisation and memory

cost respectively.

We note that the standard Gaussian vector z used to compute b is of size men
which is larger than if a Cholesky factorisation was used (a Cholesky factor would
be of size m ×m, yielding a standard Gaussian vector of length m). In fact, unlike
the Cholesky factor, the matrix H here is not square. However, in comparison to the
cost of solving (4.2), the sampling cost of the extra Gaussian variables is negligible.

4.4.2 Sampling coupled white noise realisations for MLMC

We now turn to consider the case of sampling coupled white noise. In what
follows we consider the general setting in which the MLMC levels are defined using
h-refinement and the mesh hierarchy is non-nested. At the end of the section, we
provide some remarks on the simpler cases in which the function spaces that define
the hierarchy are nested (e.g. the grids are nested or p-refinement is used).

Supermesh construction and global mass matrix assembly

We now consider the case of sampling b ∼ N (0,M), where M ∈ Rm×m is given
by (4.12). The assembly of the off-diagonal blocks of M requires the computation of
inner products between basis functions of different FEM approximation subspaces.
As stated in the previous section we use a supermesh construction between each pair
of meshes D`

h, D
`−1
h to address this problem.

Note that each supermesh cell lies in the intersection of exactly one pair (e`, e`−1)
of parent mesh cells e` ∈ D`

h, e`−1 ∈ D`−1
h , hence we only need to account for the basis

functions that are non-zero over e` and e`−1. Let me` and me`−1
denote the number

of degrees of freedom defined by the finite element spaces V ` and V `−1 over cells e`
and e`−1 respectively. Then, only the inner products between me = me` +me`−1

basis
functions will be non-zero.

We can thus assemble M given by (4.12) by the following two-step algorithm.

1. Let n be the number of supermesh cells. For each supermesh cell e, use quadra-
ture rules over e to compute the local mass matrix

Me =

[
M `

e M `,`−1
e

(M `,`−1
e )T M `−1

e

]
, (M `,`−1

e )ij =

∫
e

φ`iφ
`−1
j dx, (4.43)
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where {φ`i}
me`
i=1 and {φ`−1

j }
me`−1

j=1 are sets of the basis functions of V ` and V `−1

respectively that have non-zero support over e. Me is of size me ×me, M `
e is of

size me` ×me` , M `−1
e is of size me`−1

×me`−1
and M `,`−1

e is of size me` ×me`−1
.

2. Let L` and L`−1 be the supermesh assembling matrices of the finite element
spaces V ` and V `−1 respectively, mapping the local supermesh cell degrees of
freedom to the global degrees of freedom of V `. Assemble the local supermesh
contributions together with

M =

[
(L`)T diage(M `

e)L
` (L`)T diage(M `,`−1

e )L`−1

(L`−1)T diage(M `,`−1
e )TL` (L`−1)T diage(M `−1

e )L`−1

]
. (4.44)

Observe that (4.44) and (4.12) agree since

M s = (Ls)T diage(M s
e )Ls, for s ∈ {`, `− 1},

M `,`−1 = (L`)T diage(M `,`−1
e )L`−1.

(4.45)

Note that the above is again just the assembly of the contributions of each supermesh
cell to the global mass matrices in matrix form. As we will see next, we actually do
not need to assemble M , but only the local mass matrices M `

e and M `,`−1
e for each

supermesh cell e.

From global to local: the local coupling condition

We again use a divide-and-conquer strategy to split the global sampling problem
into smaller local subproblems (cf. Remark 4.4). Suppose that we can sample a local
Gaussian vector be ∼ N (0,Me) on each supermesh cell e. We can then separate be
into two Gaussian vectors b`e and b`−1

e such that be = [(b`e)
T , (b`−1

e )T ]T and

b`e ∼ N (0,M `
e), b`−1

e ∼ N (0,M `−1
e ), E[b`e(b

`−1
e )T ] = M `,`−1

e . (4.46)

Since (4.46) is the local equivalent of (4.11), we refer to it as the local coupling
condition. Finally, we can use the same approach as in (4.42) and assemble the
coupled vectors b` and b`−1 as

b` =
n∑
e=1

(L`e)
Tb`e, b`−1 =

n∑
e=1

(L`−1
e )Tb`−1

e , (4.47)

where n is the number of supermesh cells. This enforces the correct distribution
since sums of Gaussian random variables are Gaussian and the covariance structure
is correct. In particular,

E[bs(bs)T ] =
n∑

i,j=1

(Lsi )
T E[bsi (b

s
j)
T ]Lsj =

n∑
i=1

(Lsi )
T E[bsi (b

s
i )
T ]Lsi

= (Ls)T diagi(M
s
i )Ls = M s, for s ∈ {`, `− 1},

(4.48)

58



and,

E[b`(b`−1)T ] =
n∑

i,j=1

(L`i)
T E[b`i(b

`−1
j )T ]L`−1

j =
n∑
i=1

(L`i)
T E[b`i(b

`−1
i )T ]L`−1

i

= (L`)T diagi(M
`,`−1
i )L`−1 = M `,`−1,

(4.49)

where we have used that bli and blj are independent for i 6= j for l ∈ {`, ` − 1} and
that b`i is independent from b`−1

j if i 6= j. Thus, again the global sampling problem
can be recast as a series of much smaller, independent, local sampling problems.

Finally, it remains to devise a strategy for sampling realisations of the local vectors
be on a given supermesh cell e. The following result demonstrates that the covariance
matrix of be is singular and how such sampling can be simplified.

Lemma 4.5. Let V ` and V `−1 be finite element spaces over two tessellations D`
h,

D`−1
h of the same domain. Let Sh be a supermesh of D`

h and D`−1
h . Let φ`i, φ

`−1
j

for i = 1, . . . ,me`, j = 1, . . . ,me`−1
be the basis functions of V ` and V `−1 respec-

tively that have non-zero support over e. Let V `|e = span(φ`1|e, . . . , φ`me` |e) and
V `−1|e = span(φ`−1

1 |e, . . . , φ`−1
me`−1

|e) be the restrictions of V ` and V `−1 to e. Assume
that V `−1|e ⊆ V `|e, i.e. that the restrictions are nested, then

rank(Me) = rank(M `
e) and M `−1

e = (M `,`−1
e )T (M `

e)
−1M `,`−1

e . (4.50)

Proof. Since V `−1|e ⊆ V `|e, then we have that, for all j, φ`−1
j ∈ V `|e, which in turn

means that there exists a set of coefficients rji ∈ R such that φ`−1
j =

∑
i rjiφ

`
i . Now,

let Re be a me`×me`−1
matrix such that (Re)i,j = rji, and define the vector functions

φ`−1 =

 φ`−1
1
...

φ`−1
me`−1

 , φ` =

 φ`1
...

φ`−1
me`

 . (4.51)

We then have that

φ`−1 = RT
e φ

`. (4.52)

This implies that we can now rewrite M `−1
e as

M `−1
e =

∫
e

φ`−1(φ`−1)Tdx = RT
e

∫
e

φ`(φ`)Tdx Re = RT
eM

`
eRe, (4.53)

since Re is constant. Similarly, for M `,`−1
e we have,

M `,`−1
e =

∫
e

φ`(φ`−1)Tdx =

∫
e

φ`(φ`)Tdx Re = M `
eRe. (4.54)

Combining (4.53) and (4.54) with the fact that M `
e is invertible thus yields the

second equation in (4.50), since

(M `,`−1
e )T (M `

e)
−1M `,`−1

e = RT
eM

`
e(M

`
e)
−1M `

eRe = RT
eM

`
eRe = M `−1

e . (4.55)
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Pulling (4.43), (4.53) and (4.54) together we can now express Me as,

Me =

[
M `

e M `
eRe

RT
eM

`
e RT

eM
`
eRe

]
=

[
I 0

RT
e I

][
M `

e 0

0 0

][
I Re

0 I

]
, (4.56)

where we have used the fact thatM `
e is symmetric. SinceMe is symmetric and the two

block triangular matrices on the right-hand side of (4.56) are invertible, Sylvester’s
law of inertia [162] gives that

rank(Me) = rank

([
M `

e 0

0 0

])
= rank(M `

e), (4.57)

which concludes the proof.

The assumptions of Lemma 4.5 are mild and are satisfied by most finite element
families e.g. Lagrange elements.

Using Lemma 4.5 we can now sample be = [(b`e)
T , (b`−1

e )T ]T by enforcing the local
coupling condition (4.46) as follows. For each supermesh cell e:

1. Compute M `,`−1
e and the Cholesky factorisation M `

e = HeH
T
e .

2. Sample ze ∼ N (0, I) of length me` and set b`e = Heze.

3. Compute b`−1
e as b`−1

e = (M `,`−1)TH−Te ze.

Note that the b`e and b`−1
e sampled this way satisfy the local coupling condition (4.46)

since, by (4.50) and the fact that He is the Cholesky factor of M `
e , we have that

E[b`e(b
`
e)
T ] = He E[zez

T
e ]HT

e = M `
e , (4.58)

second,

E[b`−1
e (b`−1

e )T ] = (M `,`−1
e )TH−Te E[zez

T
e ]H−1

e M `,`−1
e

= (M `,`−1
e )T (HeH

T
e )−1M `,`−1

e

= (M `,`−1
e )T (M `

e)
−1M `,`−1

e = M `−1
e ,

(4.59)

and third,

E[b`e(b
`−1
e )T ] = He E[zez

T
e ]H−1

e M `,`−1
e = HeH

−1
e M `,`−1

e = M `,`−1
e . (4.60)

In the case in which the transformation to the reference cell is affine (such as
with Lagrange elements on simplices) the sampling can be made more efficient by
sampling white noise directly on the supermesh and then interpolating it onto the
parent mashes. This strategy exploits the following result.
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Corollary 4.6 (of Lemma 4.5). Let V ` and V `−1 be FEM approximation subspaces
over two triangulations D`

h, D
`−1
h of the same domain. Let Sh be a supermesh of

D`
h and D`−1

h and let V S be a FEM approximation subspace over Sh. With the same
notation as in Lemma 4.5, for each supermesh cell e let V S|e, V `|e and V `−1

e be the
restrictions of V S, V ` and V `−1 to e. Let MS

e be the local mass matrix over V S|e.
Assume that V `|e, V `−1|e ⊆ V S|e, i.e. that the parent mesh restrictions are nested
within the supermesh restriction. Then there exist local interpolation matrices (R`

e)
T

and (R`−1
e )T such that

M `
e = (R`

e)
TMS

e R
`
e, M `−1

e = (R`−1
e )TMS

e R
`−1
e , M `,`−1

e = (R`
e)
TMS

e R
`−1
e . (4.61)

Proof. Let l ∈ {`, `− 1}. The proof for the first two equations in (4.61) follows from
the first part of the proof of Lemma 4.5 by replacing `− 1 with l and ` with S. This
argument gives us that

φl = (Rl
e)
TφS, (4.62)

from which we also obtain the last relation in (4.61) since

M `,`−1
e =

∫
e

φ`(φ`−1)Tdx = (R`
e)
T

∫
e

φS(φS)Tdx R`−1
e = (R`

e)
TMS

e R
`−1
e . (4.63)

By using this result and the strategy highlighted in Remark 4.5, we can sample
ble for l ∈ {`, `− 1} by computing

ble = (Rl
e)
THr|er|−1/2|e|1/2ze, with ze ∼ N (0, I), (4.64)

since Remark 4.5 yields the relation MS
e /|e| = HrH

T
r /|er| = const, where Hr is the

Cholesky factor of the local mass matrix over the reference cell er. Note that Hr

has to be computed only once. The advantage of performing this operation is that it
avoids the assembly and factorisation of each supermesh cell local mass matrix.
Remark 4.6 (Simpler cases: nested meshes and p-refinement). In the case in which
the meshes of the MLMC hierarchy are nested, everything discussed is still valid by
taking the supermesh to be the finer of the two meshes that define the MLMC level.
In the case in which the MLMC hierarchy is constructed by using p-refinement there
is only one mesh in the hierarchy and everything still applies by taking this mesh
to be the ‘supermesh’. In both cases a supermesh construction is not required in
practice.
Remark 4.7. The coupling approach presented can also be used to couple the same
white noise sample over the whole hierarchy of meshes. This enables the use of
geometric full-multigrid [169] to solve the problem given by (4.7)–(4.8) on the finer
grid with optimal multigrid complexity.
Remark 4.8. The sampling approaches just presented have linear cost complexity in
the number of mesh cells (in the independent case) and of supermesh cells (in the
coupled realisation case). In turn, thanks to Corollary 4.4, the sampling strategy in
the coupled case is linear in the number of cells of the finer of the parent meshes.
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4.5 Numerical results
In this section we investigate the performance of the techniques presented. We

consider the following PDE:

−∇ · (eu(x,ω)∇q(x, ω)) = 1, x ∈ G = (−0.5, 0.5)d, ω ∈ Ω,
q(x, ω) = 0, x ∈ ∂G, ω ∈ Ω,

(4.65)

where u is a Matérn field as given by (2.27) with mean and variance chosen so that
eu(x,ω) has mean 1 and standard deviation 0.2. We choose D = (−1, 1)d as the outer
computational domain on which to solve (4.2). The output functional of interest we
consider here is the L2(G) norm of q squared, namely P (ω) = ‖q‖2

L2(G)(ω).
We approximate the coefficient u in (4.65) by solving (4.2) using the FEM. We

solve (4.2) and (4.65) with the FEniCS software package [120] and we discretise
the two problems by using continuous Lagrange finite elements of the same degree.
For the linear solver, we use the BoomerAMG algebraic multigrid algorithm from
Hypre [57] as a preconditioner and the conjugate gradient routine of PETSc [15] for
all equations. As convergence criterion for the solver we require that the absolute
size of the preconditioned residual norm is below a tolerance of 10−10. We use the
libsupermesh software package [121] for the supermesh constructions.

Remark 4.9. In our work we did not investigate the effect of the quadrature error
arising from the FEM linear system assembly. However, the FEniCS software au-
tomatically chooses enough quadrature nodes so that all the integrals are computed
exactly given the polynomial degree of the FEM approximation subspaces involved.
This is of course more costly than it should be, but makes all of the numerical results
in this chapter free from quadrature error. We leave the analysis of quadrature error
for future research.

When using h-refinement, we construct the MLMC mesh hierarchies {D`
h}L`=1 and

{G`
h}L`=1 in such a way that G`

h is embedded within D`
h for all `, but D`−1

h and G`−1
h

are not nested respectively within D`
h and G`

h for all ` > 1. As the meshes are non-
nested, a supermesh construction is required to couple each MLMC level. The mesh
hierarchies we use are composed of L = 9 meshes in 2D and L = 5 meshes in 3D. The
coarsest mesh in each hierarchy is uniform, while the other meshes are non-uniform
and unstructured. We take our sampling domain to be (−1, 1)d. This, and the
values of the Matérn parameters chosen in this section ensures that the error in the
covariance due to domain truncation is below machine precision in 2D and around
10−15 in 3D, cf. [103]. Since the convergence behaviour of the FEM is dependent
on the quality of the mesh used, we try to sanitise our numerical results from this
effect by choosing meshes whose quality indicators do not vary excessively throughout
the hierarchies. Basic properties of the different meshes and number of cells of the
constructed supermeshes are summarised in Tables 4.1 and 4.2. Note that, as stated
by Corollary 4.4, the number of cells in the supermesh is in practice always bounded
by a constant times the number of cells of the finer parent mesh. This constant is
dimension-dependent, and larger in 3D than 2D (cf. table 4.2). We do not compare
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` (2D) h` n` (RRmin, RRmax) nS`/n`

1 0.707 32 (0.83, 0.83) n/a
2 0.416 120 (0.61, 1) 2.03
3 0.194 500 (0.61, 1) 2.32
4 0.098 2106 (0.55, 1) 2.45
5 0.049 8468 (0.45, 1) 2.44
6 0.024 33686 (0.46, 1) 2.46
7 0.012 134170 (0.41, 1) 2.46
8 0.006 535350 (0.42, 1) 2.46
9 0.003 2143162 (0.42, 1) 2.47

Table 4.1: Properties of the 2D mesh hierarchy: mesh level `, maximal cell size h`,
number of cells n`, minimal and maximal cell radius ratios RRmin and RRmax, and
the number of cells of the supermesh constructed using the meshes on levels ` and
`−1 as parent meshes nS` . RR is computed as d×rein/recirc, where rein and recirc are the
in-radius and the circumradius of cell e respectively. Note that the cell size roughly
decreases proportional to 2−`.

` (3D) h` n` (RRmin, RRmax) (DAmin, DAmax) nS`/n`

1 0.866 384 (0.72, 0.72) (0.79, 1.57) n/a
2 0.437 7141 (0.22, 1) (0.21, 2.82) 17
3 0.280 22616 (0.18, 1) (0.21, 2.83) 66
4 0.138 190081 (0.13, 1) (0.21, 2.85) 42
5 0.070 1519884 (0.12, 1) (0.21, 2.85) 46

Table 4.2: Properties of the 3D mesh hierarchy: mesh level l, maximal cell size h`,
number of cells n`, minimal and maximal cell radius ratios RRmin and RRmax, the
minimum and maximum cell dihedral angles DAmin and DAmax respectively, and the
number of cells of the supermesh constructed using the meshes on levels ` and `− 1
as parent meshes. Note that the cell size of the last three levels roughly decreases
proportional to 2−`.

this constant with the quasi-uniformity constants here as the constant in the bound
given by Theorem 4.3 is not sharp.

In Tables 4.3 and 4.4 we present some representative average CPU timings over
N = 1000 realisations of coupled white noise and Matérn field samples in 2D and
3D over (−1, 1)d and with ν = 2 − d/2. These timings have been obtained in serial
by using a single thread on a computing node with an Intel® Xeon® Gold 6140
CPU (2.30GHz). We consider both uniform structured, and non-nested unstructured
hierarchies, but we do not exploit the structuredness of the first hierarchy in the
implementation. These timings do not include offline one-off costs such as the assem-
bly of the coupled linear systems deriving from the discretisation of Equations (4.7)
and (4.8). We note that in 2D and in the nested case in 3D the cost of sampling
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white noise realisations is always lower than the cost of solving the coupled linear
system. However, in the non-nested case in 3D, the sampling of white noise becomes
more expensive (by a factor of 20 approximately), mainly due to the larger number
of supermesh cells, cf. Table 4.2. However, there is most likely room for improvement
since our implementation of the white noise sampling routine is currently Python-
based (while the solver uses PETSc routines which are heavily optimised). We leave
a more efficient implementation to future work.

Remark 4.10. The MLMC method presented is designed to work with non-nested
unstructured grid hierarchies. In this setting, a supermesh construction might be
unavoidable even in the case in which the field is sampled via an alternative method
such as e.g. circulant embedding [49], since this is the only way in which the sampled
field can be integrated exactly on the target non-nested unstructured grid. For low
smoothness fields (ν ≤ 1), Graham et al. have proved that there is no loss in the
convergence rate due to non-nested interpolation [74]. However, this operation, albeit
faster, still introduces extra bias, and it is likely to still harm convergence when
smoother fields are used. All in all, we remark that the high white noise sampling costs
observed in the non-nested 3D case stem directly from the supermesh construction,
and that similar timings would also be observed if a supermesh construction were
used to integrate a field sampled on a structured grid over a target non-nested mesh.

` 2 3 4 5 6 7 8 9

Ẇ sample (NU) 2× 10−4 3× 10−4 4× 10−4 8× 10−4 2× 10−3 8× 10−3 0.004 0.25

Ẇ sample (NN) 5× 10−4 6× 10−4 2× 10−3 8× 10−3 0.031 0.130 0.508 2.09
solver (NU) 5× 10−4 6× 10−4 1× 10−3 5× 10−3 0.017 0.087 0.421 1.86
solver (NN) 6× 10−4 9× 10−4 3× 10−3 0.010 0.046 0.212 0.947 3.98

Table 4.3: Average timings over 1000 realisations for the coupled sampling of coupled
white noise and Matérn fields (ν = 1) for MLMC in the nested uniform (NU) and non-
nested (NN) case in 2D. The timings do not include offline one-off costs, such as the
set-up of the linear solver. The meshes used for the non-nested case are the same as
in Table 4.1, the meshes used for the nested case are structured uniform grids of the
domain (−1, 1)2 with 22`+5 triangles per grid. We note that the cost of sampling white
noise is always lower than the cost of solving (4.7) and (4.8).

When using p-refinement, we define the MLMC levels by taking the coarsest mesh
in the 2D hierarchy and by increasing the polynomial degree of the FEM subspaces
linearly so that p` = ` for ` = 1, . . . , L, with L = 9. We do not consider p-refinement
in the 3D case as it does not offer any additional complications other than an increased
computational cost.

4.5.1 Matérn field convergence

We first address the convergence of the solution of (4.2) to the Matérn field of
interest. For this purpose, we fix E[u] = 0 and σ2 = 1. In practice, the exact solution
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` 1 2 3 4 5

Ẇ sample (NU) 3× 10−4 5× 10−4 2× 10−3 0.013 0.12

Ẇ sample (NN) 4× 10−4 0.06 0.56 4.3 34.1
solver (NU) 4× 10−4 1× 10−3 9× 10−3 0.078 0.63
solver (NN) 4× 10−4 4× 10−3 0.027 0.23 1.85

Table 4.4: Average timings over 1000 realisations for the coupled sampling of coupled
white noise and Matérn fields (ν = 1/2) for MLMC in the nested uniform (NU) and
non-nested (NN) case in 3D. The timings do not include offline one-off costs, such as
the set-up of the linear solver. The meshes used for the non-nested case are the same
as in Table 4.2, the meshes used for the nested case are structured uniform grids of
the domain (−1, 1)3 with 5

√
3× 23` triangles per grid.

of (4.2) is not known, so we consider the coupled equations (4.7) and (4.8) instead.
We monitor the quantities∣∣∣E [‖u‖2

L2(G) − ‖u`−1‖2
L2(G)

]∣∣∣ , V
[
‖u`‖2

L2(G) − ‖u`−1‖2
L2(G)

]
. (4.66)

Note that the value of E[‖u‖2
L2(G)] is known up to the error introduced by truncating

Rd to D since we can exchange the order of expectation and integration:

E
[
‖u‖2

L2(G)

]
= E

[∫
G

u2 dx
]

=

∫
G

E[u2] dx ≈ σ2|G|, (4.67)

where we have used the fact that E[u2] ≈ σ2 for all x ∈ G (the relation only holds
approximately due to domain truncation error).

We derived theoretical estimates for the expected strong error convergence rates
in Chapter 3. The quantity on the left in (4.66) is called the weak error and its
convergence rate generally twice that of the strong error (see [28] for the case k ≤ 1),
provided that the polynomial degree of the FEM basis is large enough. We are
not aware of any error estimates in the literature for the variance in (4.66), but the
convergence order observed in practice is usually twice that of the expectation (see for
Example [41]), provided that the polynomial degree of the FEM basis is sufficiently
high.

We consider the convergence behaviour of the FEM approximation of the solution
of (4.1) in the h-refinement case with the sampling strategy described in Section 4.4.
We fix λ = 0.2 and we consider Matérn fields of smoothness ν = 1, ν = 3 (k = 1 and
k = 2 respectively in 2D) and ν = 1/2 (k = 1 in 3D). For the ν = 1 and ν = 1/2
cases we use continuous piecewise linear (P1) elements, while for the ν = 3 case we
use continuous piecewise quadratic (P2) elements.

Since each sample drawn by solving (4.1) is computationally expensive we are
unable to take large numbers of samples as is generally done for 1D stochastic differ-
ential equations [68]. We therefore take N` = 5000 Monte Carlo samples on all levels
in 2D and N` = 1000 samples in 3D. To verify that these numbers of samples are
sufficient for accurate representation, we compute approximate 99.73% confidence

65



intervals (CIs) for all the quantities of interest as 3σ̄`/
√
N`, where σ̄` is the sam-

ple standard deviation of the output functional of interest on level `. In all cases
considered here but one, the FEM error dominates and the confidence intervals are
negligibly small (so small that they would not be visible on the convergence plots).
The relatively small number of samples only becomes a problem in the ν = 3 case
where the FEM convergence is much faster and the Monte Carlo error dominates. In
this case we replace the ‖u‖L2(G) term in the expectation in (4.66) with ‖u`‖L2(G),
and we instead monitor the convergence of the following quantity,∣∣∣E [‖u`‖2

L2(G) − ‖u`−1‖2
L2(G)

]∣∣∣ . (4.68)

The advantage of doing this is that the variance of this error measure decreases with
the level (see Figure 4.2) and 5000 samples are enough to obtain good accuracy.

Results are shown in Figures 4.2 (2D) and 4.3 (3D). For both the 2D and 3D
experiments, we observe the theoretically predicted convergence rates in terms of the
mesh size (after a pre-asymptotic regime). However, we note how convergence is
less regular than expected (especially in the 3D case) because of the unstructured
meshes employed. This behaviour does not appear when uniform meshes are used
(not shown). Apart from the ν = 3 case, the convergence order of the variance
seems to be twice the convergence order of the expectation. In the ν = 3 case we
observe order 6 for the variance with P2 elements (Figure 4.2) and order 8 with P3
elements (not shown). We conjecture that the variance convergence order is bounded
by 2(p+ 1), where p is the polynomial degree of the FEM basis functions.

In Figure 4.4, we compare the covariances of the coupled Matérn fields obtained
by solving (4.7) and (4.8) on the finest level of the MLMC hierarchy with the exact
Matérn covariance given by (2.27). The estimated covariances match each other and
the exact expression closely, demonstrating that our coupling technique is accurate
also in practice.

As a final verification step, we check that the coupled fields are consistent with
the telescoping sum in (2.15), i.e. if we let a, b, c be the MC approximations of
E[‖u`‖2

L2(G) − ‖u`−1‖2
L2(G)], E[‖u`‖2

L2(G)] and E[‖u`−1‖2
L2(G)] respectively, we aim to

verify that

a− b+ c ≈ 0, (4.69)

at least to within the Monte Carlo accuracy. In Figure 4.5, we plot the quantity

T (a, b, c) ≡ |a− b+ c|
3(
√
Va +

√
Vb +

√
Vc)

, (4.70)

for different levels and Matérn smoothness parameters ν, where Va, Vb and Vc are the
Monte Carlo approximations of the variances of a, b and c. The probability of this
ratio T being greater than 1 is less than 0.3% (for further details, see [68]). We observe
that T ranges between 0 and 0.4 for the levels and smoothness parameters tested
(Figure 4.5), and in particular is well below 1. This indicates that our implementation
of the MLMC algorithm correctly satisfies the telescoping summation formulation.
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Figure 4.2: Convergence behaviour of the FEM approximation to (4.1) with h-
refinement in 2D. Plots show (the natural logarithm of) the expected value E (left)
and variance V (right) versus maximal mesh size h`. For each level `, the fields u` and
u`−1 have been sampled by coupling white noise realisations as described in Section
4.4. As mentioned in the text, to compute the expected value in the ν = 3 case we
have replaced ‖u‖L2(G) with ‖u`‖L2(G).

Figure 4.3: Convergence behaviour of the FEM approximation to (4.1) with h-
refinement in 3D. Plots show (the natural logarithm of) the expected value E (left)
and variance V (right) versus maximal mesh size hl. The fields u` and u`−1 have been
sampled by coupling white noise realisations as described in Section 4.4.
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Figure 4.4: Plot of exact covariances and sample covariances vs distance r of the FEM
solutions of (4.7) and (4.8) for three different values of ν in the h-refinement case.
The exact covariance C(r) is given by (2.27). For the ν = 3 case, an extra elliptic
PDE solve is needed, see (2.43).
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Figure 4.5: Telescoping sum consistency check. Plot of T (a, b, c) as defined
by (4.70) versus level l for a = E[‖u`‖2

L2(G) − ‖u`−1‖2
L2(G)], b = E[‖u`‖2

L2(G)] and
c = E[‖u`−1‖2

L2(G)] for different smoothness parameters ν.
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4.5.2 MLMC convergence

We now consider the convergence of the multilevel Monte Carlo method applied
to (4.65). In the case where u is sampled exactly, the assumptions of the MLMC
convergence theorem (Theorem 2.1) hold for the h-refinement case with constants
α = 2 and β = 4 [39]. Furthermore, since we use multigrid to solve (4.65) and (4.2)
we have γ = d. In the case where ν > 1, the Matérn field smoothness increases [3]
and we expect higher convergence rates for the solution of (4.65). For integer ν and
exact sampling of u, if the domain G is of class Cν+1, then the MLMC parameter
values are given by α = min(ν + 1, p + 1) and β = 2α, where p is the polynomial
degree of the Lagrange elements used [115].

In our case, u is approximated with the FEM and this could affect convergence.
To verify that this is not what happens in practice, we first solve (4.1) with FEM for
the same parameter values as in SubSection 4.5.1, namely λ = 0.2, ν = 1 and ν = 3
(k = 1 and k = 2 respectively in 2D) and ν = 1/2 (k = 1 in 3D) using P1 elements
for ν = 1/2 and ν = 1 and P2 elements for ν = 3. We then use the approximated
Matérn fields computed this way as coefficients in (4.65), which we solve again using
the same choice of finite elements.

Results are shown in Figures 4.6 and 4.7. We observe that the convergence is
unaffected by the approximation of the Matérn fields and that the estimated conver-
gence orders agree with the theory [39] apart from some discrepancies in the 3D case.
This irregular behaviour is probably due to the non-uniformity of the hierarchy (as
we see from Table 4.2, the quality of the 3D meshes decreases with the level). This
issue does not arise if the same numerical experiment is performed using a uniform
hierarchy instead (hierarchy mesh sizes given by h` = 1.732× 2−`, see Figure 4.8).

Figure 4.6: Convergence behaviour of the FEM approximation to the solution of
(4.65) with h-refinement in 2D. The estimated convergence orders agree with the
theory [39, 115].
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Figure 4.7: Convergence behaviour of the FEM approximation to the solution of
(4.65) with h-refinement in 3D.

Figure 4.8: Convergence behaviour of the FEM approximation to the solution of
(4.65) with h-refinement in 3D using a hierarchy of uniform meshes. The estimated
convergence orders agree with the theory [39]. The mesh sizes are given by h` =
1.732× 2−`.
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Figure 4.9: MLMC convergence for the solution of (4.65). In the plot on the left we
show how the MLMC algorithm automatically selects the optimal number of samples
N˜̀ on each level to achieve a given tolerance ε. Note that the MLMC routine uses
the second mesh in the hierarchy described in Table 4.1 to define the first level ˜̀.
The first mesh in Table 4.1 is dropped since it is too coarse and it would not bring
any significant advantage to the performance of MLMC [68]. In the plot on the right
we compare the efficiency of MLMC with standard MC for different tolerances. The
savings of MLMC with respect to standard Monte Carlo are considerable.

We now investigate how MLMC performs in practice. We use standard Monte
Carlo and MLMC to estimate E[‖q‖L2(G)] at the same accuracy for ν = 1 (2D), P1
elements and for different mean square error tolerances ε. Again, the coefficient u of
(4.65) is also approximated with the FEM. We keep track of the total computational
cost Ctot and, in the MLMC case, of the number of samples N` taken on each level.

Results are shown in Figure 4.9. We observe that the number of levels used
increases as the tolerance ε decreases (Figure 4.9, left). This behaviour reflects the
targeted weak error accuracy [68]: the number of samples is chosen by the MLMC
algorithm so as to optimise the total computational effort [69] and it decreases with
the level, with many samples on the coarse levels and only a few on the fine levels. As
β > γ (cf. Theorem 2.1), we expect the total cost of the MLMC algorithm Ctot to be
proportional to ε−2. Figure 4.9 (right) shows ε2Ctot versus ε, where Ctot is computed
using pseudo-costs as

∑L
`=1 2γ`N`. Indeed, we observe a near constant ε2Ctot for the

MLMC algorithm across multiple choices of ε. Figure 4.9 also compares the MLMC
cost with the cost of obtaining an estimate of the same accuracy with standard Monte
Carlo. We observe that the MLMC algorithm offers significant computational savings
compared to standard Monte Carlo, with an improvement in the total cost Ctot of up
to 3 orders of magnitude (Figure 4.9, right).

Finally, we consider the convergence of MLMC with p-refinement. We follow the
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same procedure as in the h-refinement case and solve (4.65) after approximating the
coefficient u by solving (4.1) with FEM. This time, however, we fix the mesh to be
the coarsest mesh in the 2D hierarchy (cf. Table 4.1) and we consider a hierarchy
of continuous piecewise polynomial elements of increasing polynomial degree p =
1, . . . , 8. We investigate the convergence behaviour for different values of ν, namely
ν ∈ {1, 7, 31} (corresponding to k ∈ {1, 3, 15}).

We observe in Figure 4.10 that convergence is geometric (the error decreases expo-
nentially as the polynomial degree p grows). The solution of (4.65) is actually almost
surely not analytic and we would therefore expect algebraic convergence (i.e. the error
decreases polynomially as p grows), cf. Chapter 3 and [12]. We hypothesise that this
better-than-expected convergence is in fact pre-asymptotic behaviour and that the
geometric convergence will eventually plateau and switch to a slower algebraic rate
that depends on the smoothness of u (the larger ν, the faster the convergence) [80,
152]. However, apart from the ν = 1 case for which the convergence plot begins to
tail off, this is not observed for the polynomial degrees considered. We note that the
larger the smoothness parameter ν is, the faster the expected value converges. The
variance convergence order, on the other hand, seems to be unaffected by the value
of ν.

Figure 4.10: Convergence behaviour of the FEM approximation to the solution of
(4.65) with p-refinement in 2D. The approximate FEM solution q` on level ` is ob-
tained by using Lagrange elements of degree p = `. For the polynomial degrees
considered we are only able to observe a pre-asymptotic behaviour in which the con-
vergence is geometric. The straight lines (dashed and full) in the left plot indicate
the estimated convergence order of the expected value (for ν = 1 and ν = 31 respec-
tively). The straight line in the right plot indicates the estimated convergence order
of the variance for all the values of ν considered.
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4.6 Chapter conclusions
In this chapter, we have presented a new sampling technique for efficient computa-

tion of the action of white noise realisations, even when coupled samples are required
within an MLMC framework. This technique applies for general L2-conforming fi-
nite element spaces, and allows the coupling of samples between non-nested meshes
without resorting to a computationally costly interpolation or projection step. The
numerical results show that our technique works well in practice: the convergence
orders observed agree with existing theory, the number of supermesh cells grows lin-
early with the finer parent mesh size, the covariance structure of the sampled fields
converges to the exact Matérn covariance and the consistency of the telescoping sum
is respected. We note that our sampling technique is not limited to Matérn field
sampling, but extends naturally to any application in which spatial white noise real-
isations are needed within a finite element framework.

In the following chapter we extend the method to the multilevel quasi Monte Carlo
case.
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Chapter 5

Multilevel quasi Monte Carlo
methods for white noise driven
elliptic PDEs

The contents of this chapter are novel unless otherwise mentioned.
All the numerical results in this chapter have been produced with the software

FEMLMC, a software for parallel forward uncertainty quantification for PDEs with
random coefficients entirely written by the author that contains all the new methods
presented in this thesis.

In this chapter we present the extension of the methods presented in Chapter 4
to the multilevel quasi Monte Carlo case (MLQMC). The idea is to express white
noise as a Haar wavelet series expansion that we divide in two parts. The first
part is sampled using quasi-random points and contains a finite number of terms in
order of decaying importance to ensure good QMC convergence. The second part
is a correction term which is sampled using standard pseudo-random numbers. We
show that the MLQMC method proposed performs better than MLMC in practical
experiments.

5.1 Related work
In this chapter we consider the solution of elliptic PDEs in which Matérn fields

sampled via the SPDE approach appear as coefficients. For instance, a typical prob-
lem in the UQ literature reads: find E[P ], where P (ω) = P(p) and P is a Fréchet
differentiable functional of the function p that satisfies,

−∇ · (F (u(x, ω))∇p(x, ω)) = f(x), x ∈ G ⊂⊂ Rd, ω ∈ Ω, (5.1)

with suitable boundary conditions, where u(x, ω) is a Matérn field sampled by solving
the Whittle SPDE (2.41) over D ⊃⊃ G, the function f and the domain G are suitably
smooth and F ∈ C0(R) is a positive locally Lipschitz function.

The main focus of this chapter is the presentation of a new QMC and MLQMC
method for the estimation of E[P ] based on the efficient sampling of the white noise
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term in (2.41) with a hybrid quasi/pseudo-random sequence. As mentioned in Sec-
tion 2.1, it is extremely important for QMC applications for the QMC integrand to
have low effective dimensionality and to order the QMC integrand variables in order
of decaying importance. For this reason, a common approach in the existing litera-
ture about MLQMC methods for elliptic PDEs is the expansion of the random field
coefficients as an infinite series of basis functions of L2(D) that naturally exposes
the leading order dimensions in the integrands [47, 75, 108, 109]. If the random
field is smooth, the coefficients in the (e.g. Karhunen-Loève) expansion quickly decay
and a truncated expansion provides both the variable ordering and the low-effective
dimensionality required by QMC methods.

When using the SPDE approach, the only source of randomness is white noise and
we therefore must expand Ẇ to achieve the required variable ordering. In this case,
the KL-expansion does not provide a feasible route since white noise is not smooth
and the eigenvalues in the expansion do not decay. A good alternative in this case is
offered by a wavelet expansion of Ẇ.

Wavelets in general form a multi-resolution orthogonal basis of L2(D) and are
commonly employed within QMC algorithms as their hierarchical structure exposes
the leading order dimensions in the integrands while allowing fast O(m) or O(m logm)
complexity operations (according to whether the wavelets are compactly supported
or not [45]). A classical example on the efficacy of wavelet expansions of white
noise (in time) within a QMC method is offered by the Lévy-Ciesielski (or Brow-
nian bridge) construction of Brownian motion. Ubiquitous in Mathematical Finance,
it is commonly used to solve stochastic differential equations with QMC [67, 71].
Inspired by this technique, we choose to expand white noise into a Haar wavelet
expansion1, although the generalisation of our approach to higher degree wavelets
should be straight-forward.

In a MLQMC framework, wavelets are used by Kuo et al. to sample random fields
efficiently, yielding a cost per sample of O(m logm) using nested grids [108]. In [88],
Hermann and Schwab use a truncated wavelet expansion of white noise to sample
Gaussian fields with the SPDE approach within a nested MLQMC hierarchy. Their
work is possibly the closest to ours as they also work with the SPDE approach to
Matérn field sampling and use a wavelet expansion of white noise [88].

Generally speaking, all the randomised MLQMC methods for elliptic PDEs pre-
sented in the above papers are strongly theory-oriented. They use randomly shifted
lattice rules and derive MLQMC complexity bounds using a pure QMC approach,
truncated expansions and nested hierarchies on simple geometries. Our work is dif-
ferent in spirit and strategy. Firstly, our focus is practice-oriented and we do not
derive any MLQMC complexity estimates2, but we design our method to work in the
general case in which the multilevel hierarchy is non-nested and the domain geometries
are non-trivial. Nevertheless, we can still sample white noise (and consequently the
Matérn field) in linear cost complexity (or log-linear, according to the Haar wavelet

1Note that the hat functions used in the Lévy-Ciesielski construction are piecewise linear wavelets,
their derivatives are Haar wavelets and white noise in time is the derivative of Brownian motion.

2Some of our numerical experiments are outside of the MLQMC convergence theory presented in
[88].
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type). We leave the choice of QMC point sequence to the user.
Secondly, we handle the expansion differently: we do not just truncate it, but we

work with the whole infinite expansion of white noise by adding a correction term
to the truncation. The truncation term is finite-dimensional and we sample it with
a randomised low-discrepancy sequence; the correction term is infinite-dimensional
and a QMC approach is not feasible. However, the covariance of the correction is
known and we can sample it using pseudo-random numbers with an extension of the
technique presented in Chapter 4.

We therefore adopt a hybrid MC/QMC approach. The advantage of doing so is
that we can sample white noise exactly, independently from the truncation level and
the wavelet degree considered (e.g. while we use Haar wavelets, Hermann and Schwab
in [88] consider higher degree wavelets), without introducing any additional bias into
the MLQMC estimate. In contrast, in the aforementioned MLQMC algorithms the
expansion must be truncated after enough terms to make the truncation error negli-
gible. Naturally, this advantage comes at a price: since we are using pseudo-random
numbers as well, the asymptotic convergence rate of our method with respect to the
number of samples N is still the standard MC rate of O(N−1/2). Nevertheless, we
show that large computational gains can be recovered in practice in a pre-asymptotic
QMC-like regime in which the convergence rate is O(N−χ), χ ≥ 1/2, and we derive a
partial convergence result that explains this behaviour in the QMC case.

Wavelets are used in both [108] and [88], but no comment is made about how to
work with the wavelet basis in practice if this is not nested within the FEM approxi-
mation subspace. In fact, if the field is sampled on a structured grid, this would only
typically be piecewise smooth and naively using or transferring such a low-regularity
field onto a non-nested grid might cause the quadrature/interpolation/projection er-
ror to harm convergence3. Furthermore, when working with complex geometries and
graded meshes it is desirable for the sampled Matérn field to have the same local
accuracy as the solution of the PDE of interest (e.g. (5.1)). For this purpose, it is
advantageous to sample the Matérn field on an unstructured mesh with similar prop-
erties as the FEM mesh on which it is needed. To address this problem, we again
adopt the embedded mesh technique by Osborn et al. [132] so that in the MLQMC
hierarchy each mesh of G is nested within the corresponding mesh of D and we deal
with the non-nestedness of the FEM and wavelet spaces via a supermesh construction.
In the independent white noise realisation case we construct a two-way supermesh
between the graded FEM mesh of interest and a uniform “wavelet” mesh and we sam-
ple white noise in a consistent way between the FEM and the wavelet subspaces4. In
the MLQMC coupled realisation case, we construct a three-way supermesh between
the two non-nested FEM meshes and the “wavelet” mesh.

The supermesh constructions can be simplified when the meshes involved are
nested and if all meshes are nested no supermesh is required. In any case, owing to
Theorem 4.3, the number of supermesh cells is still linear in the number of cells of the

3Note that this is not a problem for fields with low regularity since the FEM error dominates in
this case, cf [74]

4This is done in a similar way as in the coupled realisation case in Chapter 4. This time we
replace one of the FEM subspaces with the wavelet subspace.
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parent meshes. We remark that the same supermeshing strategy can be employed to
sample the truncated white noise expansion used in [88] in the general non-uniform
case as our technique easily generalises to higher degree wavelets.

This chapter is structured as follows: in Section 5.2 we introduce the Haar wavelet
expansion of white noise and its splitting into a truncated term and a correction
term. In Section 5.3 we introduce our sampling technique for independent white noise
realisations. A partial QMC convergence result is described in Section 5.4, in which
we show that the QMC integration error also splits in two terms, one QMC-like term
converging at a faster-than-MC rate and one MC-like term that decays at a standard
O(N−1/2) rate with respect to the number of samples and exponentially fast with
respect to the wavelet series truncation. We extend the white noise sampling method
to MLQMC in Section 5.5, where we show how coupled white noise realisations can
be sampled efficiently. The algorithms introduced are supported by numerical results,
which we present and discuss in Section 5.6. We conclude the chapter with a brief
summary of the methods and results presented in Section 5.7.

5.2 Haar wavelet expansion of spatial white noise
Low-discrepancy sequences are extremely uniform in the first few dimensions and

in low-dimensional projections, but less so across the whole hypercube. Consequently
QMC works best when the integrand has low effective dimension [98]. For good
QMC convergence we need to order the dimensions of the QMC integrand in order of
decaying importance so that the largest error components are on the first dimensions
[47, 71]. In what follows we expand white noise into a Haar wavelet series so that the
hierarchical structure of Haar wavelets can naturally provide the variable ordering
needed for QMC integration.

We start by introducing the Haar wavelet basis. Let 1A(x), be the indicator
function of a set A and let Ψ(x) for x ∈ R be the Haar mother wavelet (see Figure
5.1),

Ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x) =


1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x < 1,

0, otherwise.
(5.2)

Let N̄ = {−1} ∪ N and let x+ = max(x, 0). The Haar wavelets Hl,n for l ∈ N̄,
n = 0, . . . , (2l− 1)+ can be expressed in terms of the mother wavelet through shifting
and rescaling as follows.{

H−1,0(x) = 1[0,1)(x), l = −1, n = 0

Hl,n(x) = 2l/2Ψ(2lx− n), l ∈ N, n = 0, . . . , 2l − 1.
(5.3)

The Haar wavelets have support size | supp(Hl,n)| = 2−l
+ and form an orthonormal

basis of L2((0, 1)). The Haar system can be generalised to higher dimensions by
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Figure 5.1: Haar mother wavelet.

taking the tensor product of the 1D Haar basis with itself: let l ∈ N̄d and n ∈ N we
can define the family of d-dimensional Haar wavelets Hl,n(x) for x ∈ Rd as

Hl,n(x) =
d⊗
i=1

Hli,ni(xi), with ni ∈ {0, . . . , (2li − 1)+} ∀i. (5.4)

The d-dimensional Haar wavelets have support size | supp(Hl,n)| = ∏d
i=1 2−l

+
i = 2−|l

+|1

and they form an orthonormal basis of L2((0, 1)d).

Remark 5.1 (General boxed domains). It is also possible to construct an orthonormal
basis for L2((0, a)) by defining the wavelets as

Ha
−1,−1(x) =

1√
a
1[0,a)(x), l = −1, n = 0

Ha
l,n(x) =

2l/2√
a

Ψ

(
2l

a
x− n

)
, l ∈ N, n = 0, . . . , 2l − 1,

(5.5)

where x ∈ [0, a). In other words, it is sufficient to rescale: Ha
l,n = a−1/2Hl,n(x/a).

Remark 5.2 (On the compactly supported Haar wavelet basis). It is worth mentioning
that there is another way of extending the 1D Haar basis to higher dimensions. The
d-dimensional wavelets we have introduced are sometimes called the standard Haar
basis and are not compactly supported for d > 1. This can be disadvantageous from a
numerical point of view since there are exactly (L + 2)d non-zero wavelets of integer
level |l|∞ ≤ L at any point x ∈ D. If the evaluation of the wavelets becomes an issue,
a better option is to use the non-standard (or compactly supported) Haar basis, first
introduced by Daubechies in [45]. The non-standard Haar wavelets are obtained by
direct scaling and shifting of the d-dimensional standard Haar wavelets of level 0 and
have the advantageous property of being compactly supported for all L (for further
details, see [23, 45]). Only (2d− 1)L + 2d non-standard wavelets are non-zero at any
given point x ∈ D. For a numerical comparison between the two types of bases, see
e.g. [23]. Although in our numerical implementation we used the standard basis, the
algorithms we are about to introduce work for both.
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Let |l| = maxi(li). We can now express white noise in [0, 1]d as the generalised
stochastic field of type II (cf. Definition 2.5) given by the Haar wavelet expansion,

Ẇ =

|l|=∞∑
|l|=−1

(2l−1)+∑
n=0

zl,n(ω)Hl,n(x), (5.6)

where zl,n = 〈Ẇ, Hl,n〉 for all l, n, making the zl,n be i.i.d. standard Gaussian random
variables. The second summation in (5.6) is to be intended as the sum over all n with
components ni such that 0 ≤ ni ≤ max(2li − 1, 0) for all i. The same Haar wavelet
expansion can be used to write the action of white noise as (recall the definition of
type I generalised stochastic fields, Definition 2.4)

〈Ẇ, v〉 =

|l|=∞∑
|l|=−1

(2l−1)+∑
n=0

zl,n(Hl,n, v), ∀v ∈ L2(D). (5.7)

Let L ∈ N̄. We now divide the series in two terms,

Ẇ = ẆL + ẆR =

|l|=L∑
|l|=−1

(2l−1)+∑
n=0

zl,n(ω)Hl,n(x) +

|l|=∞∑
|l|=L +1

(2l−1)+∑
n=0

zl,n(ω)Hl,n(x). (5.8)

Here the term ẆL is a “proper” stochastic field in L2(Ω, L2(D)), while ẆR is again
a generalised stochastic field of type I with action defined by

〈ẆR, v〉 =

|l|=∞∑
|l|=L +1

(2l−1)+∑
n=0

zl,n(Hl,n, v), ∀v ∈ L2(D). (5.9)

The idea is then to sample the Gaussian variables in the expression for ẆL by using
a hybrid QMC/MC combination of quasi-random (e.g. Sobol) and pseudo-random
numbers and to sample ẆR with pseudo-random numbers only by extending the
work in Chapter 4.

The reasoning behind this splitting is that it is important to keep the dimen-
sionality of the QMC point sequence relatively low: 1) as we will see in the next
section, the sampling of Ẇ expressed this way requires a supermesh construction and
smaller dimensions imply faster Ẇ samples; 2) some QMC point sequences cannot
readily be sampled in high dimensions5 and 3) the approximation properties of some
quasi-random sequences deteriorate as the dimensionality grows [47, 71].

5.3 Sampling independent realisations for QMC
Again, we want to solve equation (2.41), namely

Lu = u− κ−2∆u = η Ẇ, x ∈ D, (5.10)
u = 0, x ∈ ∂D.

5For example, the state-of-the-art Sobol’ sequence generator, Broda, can generate the largest
dimensional Sobol’ sequences with 65536 dimensions [160]. This might still be too low for an infinite-
dimensional PDE setting.
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From now on we introduce the simplifying assumptions that D = [0, 1]d. Relaxing
this assumption to general boxed domains is straight-forward, but considering more
general cases is non-trivial (more on this later on in Remark 5.19). Since we are
interested in Matérn field sampling we are free to choose any domain shape (as we
are truncating Rd to an arbitrary D anyway) so this is not really a restriction. It is
useful for what comes next to introduce the concept of a Haar mesh (see Figure 5.2):

Definition 5.1 (Haar mesh). Let D = [0, 1]d and let L ∈ N̄. The Haar mesh DL is
the uniform quadrilateral mesh of D whose cells are all regular polyhedra of volume
|�H | = 2−d(L +1). Note that for a given L there are exactly as many cells in DL as
terms in the wavelet expansion (5.8) for ẆL , namely NL = 2d(L +1).

Figure 5.2: The Haar mesh in the d = 2, L = 0 case. The Haar cells are coloured
according to the values of the H0,0 = Ψ(x)Ψ(y) wavelet: yellow for +1, blue for −1.

Let Dh be a mesh of D, not necessarily nested within the Haar mesh DL , let
V ⊆ L2(D) and let Vh = span(φ1, . . . , φm) ⊆ V be the FEM subspace used to solve
equation (5.10) on Dh. In what follows we will refer to Dh as the FEM mesh and we
assume for simplicity that there are always me degrees of freedom of Vh on each cell
of Dh.

We can now focus on the sampling of ẆL and ẆR. As in our previous work (see
Chapter 4), we address the sampling of the action of ẆL and ẆR against the basis
functions of Vh, i.e. we sample the two zero-mean Gaussian vectors bL and bR with
entries given by

(bL )i = (ẆL , φi), (bR)i = 〈ẆR, φi〉. (5.11)

Note the difference between the brackets. This is because the sum in the expression
(5.8) for ẆL is finite, hence ẆL is a “proper” Gaussian field in L2(Ω, L2(D)), while
ẆR is still a generalised stochastic field (of both types) and the angle bracket notation
(cf. Definition 2.4) is still needed.

Remark 5.3. When the FEM mesh is non-nested within the Haar mesh, the com-
putation of integrals involving products of Haar wavelets and FEM basis functions
becomes difficult since the quantities involved are only piecewise smooth. To solve this
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problem, a supermesh construction between the FEM and Haar meshes is required to
split the support of the wavelets and FEM basis functions into smooth portions that
can be integrated with high accuracy. For this reason, the methods we present in this
chapter always rely on a supermesh construction whenever the two meshes are not
nested. From now on we assume without loss of generality that the support of each
φi ∈ Vh is entirely contained in a single Haar mesh cell, i.e. that each basis function
φi ∈ Vh has been split into the sum of the restrictions of φi to each cell of DL by
using a supermesh construction. We will indicate with Sh the constructed supermesh
and with abuse of notation we will still assume these “splitted” basis functions to be
m.

Remark 5.4. Note that the supermesh construction is not only specific to our algo-
rithms, but it might also be required by other methods that produce Gaussian field
samples on a uniform grid to transfer (or integrate) the sampled field to (or over) the
non-uniform mesh of interest. If the sampled fields have lower than H1(D) regularity
non-nested interpolation can also be used without harming the overall convergence
rate [74], although this operation is likely to marginally increase the bias.

5.3.1 Sampling of ẆL

We now consider the efficient sampling of ẆL . Let VH = span(ψ1, . . . , ψNL
)

with ψk = 1�k be the space of piecewise constant functions over the cells �k of the
Haar mesh DL . It turns out that ẆL ∈ VH almost surely and that therefore it
can be expressed in terms of the basis functions of VH as ẆL =

∑NL

k=1 wkψi, where
wk is the value of ẆL over the Haar cell �k. In practice, rather than computing
the inner products of each Haar wavelet with the basis functions of Vh, it is more
straightforward to just compute each entry of bL as (bL )i = wκ(i)

∫
D
φi dx. Here

κ(i) is the index k of the Haar cell that contains the support of φi and wκ(i) must
be computed from each sample of the coefficients in the expansion for ẆL . Before
explaining how this is actually done in practice, we prove that ẆL can be interpreted
as the projection of white noise onto VH and therefore ẆL does indeed belong to VH .

Lemma 5.1. Let VH = span(ψ1, . . . , ψNL
) with ψi = 1�i be the space of piecewise

constant functions over the cells �i of the Haar mesh DL . Let PH be the L2 projection
onto VH and define the projected white noise PH Ẇ (similarly as in Lemma 3.4) as
follows (recall that the angle bracket notation indicates the action of the white noise
operator),

(PH Ẇ, v) := Ẇ(PHv) ≡ 〈Ẇ, PHv〉, ∀v ∈ L2(D). (5.12)

We then have that ẆL ≡ PH Ẇ in L2(Ω, L2(D)).

Proof. We note that all the Haar wavelets in the expansion for ẆL can be repre-
sented as a linear combination of basis functions of VH . Since there are exactly as
many wavelets as basis functions of VH (see Definition 5.1) and since these wavelets
are linearly independent, we conclude that the Haar wavelets form a basis of VH .
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Therefore ẆL ∈ L2(Ω, VH) and 〈ẆR, v〉 = 0 for all v ∈ VH (cf. equation (5.9)).
Furthermore, for all v ∈ L2(D),

(ẆL , v) = (ẆL , PHv + v⊥) = (ẆL , PHv) = 〈Ẇ, PHv〉 =: (PH Ẇ, v), (5.13)

almost surely since 〈ẆR, PHv〉 = 0 for all v ∈ L2(D) (cf. equation (5.9)). Here we
used the fact that all v ∈ L2(D) can be split as v = PHv + v⊥, where v⊥ ∈ V ⊥H .

Note that the dimension of the space VH is NL = 2d(L +1), which is quite a large
number. If we were to sample ẆL with a pure QMC approach, we would therefore
need a NL -dimensional QMC point sequence, that we might not be able to sample
given the restrictions of some modern QMC point generators (cf. Remark 5.6). In
the interest of reducing the QMC dimension, we reorder the terms in the expression
for ẆL in (5.8) with respect to a total degree ordering rather than a full tensor grid
ordering (i.e. we reorder them with respect to the 1 norm of l rather than the max
norm) and we then only sample the Haar coefficients with |l|1 ≤ L which are always
much less than those with |l| ≤ L , cf. Remark 5.6. To fix the notation, for s ∈ N̄,
we define the set

H(s) := {l ∈ N̄d : |l|1 = s, |l| ≤ L }, with H(−1) = {−1}. (5.14)

This is the set of all Haar level vectors in the expansion for ẆL of a given total
degree. After reordering the terms in the expression for ẆL in (5.8) with respect to
the 1-norm of l we obtain:

ẆL =
s=L∑
s=0

∑
l∈H(s)

(2l−1)+∑
n=0

zl,n(ω)Hl,n(x) +
s=dL∑
s=L +1

∑
l∈H(s)

(2l−1)+∑
n=0

zl,n(ω)Hl,n(x), (5.15)

where we sample the coefficients in the first sum on the right hand side with QMC
and the remaining coefficients with a standard MC approach. We therefore adopt a
hybrid sampling technique for ẆL .

In order to achieve good convergence with respect to the number of QMC samples
we order the QMC dimensions according to s so that the first dimension corresponds
to z−1,0, the second batch of dimensions correspond to the terms with s = 0, the third
batch of dimensions to the terms with s = 1 and so on up until s = L . We map each
sampled low-discrepancy sequence point (in our case Sobol with digital shifting [71])
to a Gaussian-distributed sequence by applying the inverse Normal CDF. We sample
the remaining coefficients independently using a pseudo-random number generator.
To fix ideas, we show a schematic of our sampling choices for the coefficients of Ẇ in
Figure 5.3.

Remark 5.5. Note that both orderings (max and 1 norm) are essential: the white
noise expansion (5.6) must be split according to the max norm so that ẆL can be
interpreted as the projection of white noise onto VH . In principle, the max norm
could also be used to enforce the ordering required for QMC convergence. However,
this would involve sampling for an extremely high dimensional QMC point sequence.
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Figure 5.3: A schematic of the sampling strategy for the Haar coefficients of Ẇ in
2D. The coefficients in the square are the coefficients for ẆL , while those in the
unbounded “L-shaped” domain belong to ẆR. The region coloured in green corresponds
to the coefficients with |l|1 ≤ L which are sampled with a low-discrepancy sequence.
The others, corresponding to the regions in light blue, are sampled with independent
pseudo-random numbers.

Ordering the terms in the expansion for ẆL according to the 1 norm instead allows
us to still enforce a good QMC ordering while reducing the dimension of the QMC
point rule used.

Remark 5.6. To get an idea of the numbers, note that there are 2d(L +1) wavelets
satisfying |l| ≤ L , but only 2L−1(L + 3) and 2L−2(L 2 + 9L + 16) satisfying
|l|1 ≤ L in 2D and 3D respectively6. The Sobol’ generator we use is based on Joe
and Kuo’s direction number sets [98] and can get up to 21201 dimensions. If we
wanted to sample all the coefficients in ẆL with Sobol’ points, we would be unable
to go past L = 6 in 2D and L = 3 in 3D. By sampling only the coefficients with
|l|1 ≤ L we can get up to L = 11 in 2D and L = 9 in 3D. This argument is still
valid even if we use the more advanced generator Broda that can get up to 65536
dimensions [160].

6We omit the the derivation of these expressions as it is a simple, yet tedious counting exercise.
Note that in 1D | · | ≡ | · |1.
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We now propose the following algorithm for sampling ẆL :

Algorithm for the sampling of ẆL :

1. Compute the supermesh between the FEM mesh and the Haar mesh and split
the support of the basis functions of Vh to obtain {φi}mi=1 each of which with
support entirely contained within a single Haar cell. Compute the scalar map
κ(i) that maps each i to the index k of the Haar cell �k that contains the
support of φi and compute

∫
D
φi dx for all i = 1, . . . ,m. This step can be done

once and for all as an offline step.

2. Sample the vector zL ∈ RNL of the coefficients in the expression (5.8) for
ẆL as zL = [zTQMC, z

T
MC]T , where zQMC is obtained by applying the inverse

Gaussian CDF to a randomised low-discrepancy sequence point of dimension
equal to the number of coefficients with |l|1 ≤ L and zMC is independently
sampled with a pseudo-random number generator.

3. We sample the values wk of ẆL over each Haar mesh cell �k as follows.
Let J(l,n) be the index map that given (l,n) returns the index j such that
zl,n = (zL )j (the two vectors are the same up to reordering) and definemk ∈ Rd

to be the coordinate vector of the midpoint of �k. For each k = 1, . . . ,NL and l
with |l| ≤ L , there is only one wavelet with level vector l with non-zero support
over �k. For i = 1, . . . , d, its wavelet number is given by (n̄k(l))i = b(mk)i2

lic
and its sign over �k by s̄k(l) =

∏d
i=1 sk(li), where the sk(li) are the signs of the

1D Haar wavelets in the tensor product for Hl,n̄k(l), namely

sk(li) = 1− 2(b(mk)i2
li+1c (mod 2)). (5.16)

This expression comes from the fact that Haar wavelets are positive on even
Haar cells and negative on odd cells. We set for all k = 1, . . . ,NL ,

wk =

|l|≤L∑
l=0

s̄k(l)zJ(l,n̄k(l))2
|l+|1/2 (5.17)

4. For all i = 1, . . . ,m, set (bL )i = wκ(i)

∫
D
φi dx.

Remark 5.7 (Exploiting the structure in DL ). In point 1 and 3 above we exploit the
fact that the Haar mesh is uniform and structured. For instance, we can readily obtain
the Haar mesh cell in which any point p ∈ D lies: it belongs to the b(p)i2

L +1c-th
Haar cell from the origin in the i-th coordinate direction. When supermeshing this
makes the search for candidate intersections [61] inexpensive as we always know for a
given cell of Dh exactly which Haar cells it intersects. The expressions for n̄k(l) and
s̄k(l) in point 3 above also derive from the same considerations.

Remark 5.8 (Complexity of the sampling of ẆL ). Let NS be the number of cells
of the supermesh between the Haar and FEM meshes and let me be the number of
degrees of freedom of the FEM basis on each supermesh cell e. Let NL = 2d(L +1)
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be the number of cells in the Haar mesh and let NL = (L + 2)d be the number of
wavelets that are non-zero over a given Haar cell. In general, it is possible to sample
ẆL in O(NSme+NL NL ). Owing to Theorem 4.3, whenDh is quasi-uniform we have
NS ≤ aNh + bNL , where Nh is the number of cells of Dh and a, b > 0. This gives a
cost complexity of order O((aNh+bNL )me+NL NL ) which is linear in the number of
cells of Dh and log-linear in the number of cells of DL since NL = O((log2(NL )/d)d).
The log-linear term can be replaced with a linear term in case the compactly supported
Haar wavelets (cf. Remark 5.2) are used: in this case it is possible to use a multi-
dimensional generalisation of the Brownian bridge construction (of which ẆL is the
derivative) which is well known in the computational finance literature [71].

5.3.2 Sampling of ẆR

We now consider the efficient sampling of ẆR. Dealing with an infinite summa-
tion is complicated. However, we can circumvent this problem by noting that the
covariance of ẆR is known7 since, as ẆL is independent from ẆR by construction,
for all u, v ∈ L2(D) we have

E[〈ẆR, u〉〈ẆR, v〉] = E[〈Ẇ, u〉〈Ẇ, v〉]− E[(ẆL , u)(ẆL , v)], (5.18)

where the covariance of Ẇ is known by Definition 2.6 and the covariance of ẆL is
given by the following lemma.

Lemma 5.2. Let �i for i = 1, . . . ,NL be the i-th cell of DL of volume
|�i| = 2d(L +1) = |�H | for all i (see Definition 5.1). Then, for all u, v ∈ L2(D),

CL (u, v) = E[(ẆL , u)(ẆL , v)] =

NL∑
i=1

1

|�i|

∫
�i

u dx
∫
�i

v dx. (5.19)

Proof. Let PH be the L2 projection onto VH , then for all u ∈ L2(D) we have that
PHu =

∑NL

i=1 uiψi satisfies

(PHu, vH) = (u, vH), ∀vH ∈ VH . (5.20)

A standard FEM calculation gives that the coefficients ui are given by

ui =
1

|�i|
(u, ψi) =

1

|�i|

∫
�i

u dx. (5.21)

We conclude by using Lemma 5.1 to show that, for all u, v ∈ V such that PHu =∑NL

i=1 uiψi and PHv =
∑NL

i=1 viψi,

E[(ẆL , u)(ẆL , v)] = E[〈Ẇ, PHu〉〈Ẇ, PHv〉] = (PHu, PHv)

=

NL∑
i,j=1

uivj(ψi, ψj) =

NL∑
i=1

|�i|uivi =

NL∑
i=1

1

|�i|

∫
�i

u dx
∫
�i

v dx. (5.22)

7As we saw in Chapter 4, knowing the covariance matrix of a Gaussian vector is a key ingredient
needed for its sampling.
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Remark 5.9. The sampling strategies for ẆL and ẆR presented in this work are
conceptually different. In the ẆL case we use the Haar wavelet representation to
make sure that the variables in the quasi-random sequence are ordered correctly.
Therefore the use of the Haar representation is crucial in the sampling of ẆL . In the
ẆR case, instead, the ordering is irrelevant as ẆR is sampled by using pseudo-random
numbers. For this reason we can “forget” about the wavelet representation in this case
and sample ẆR as it is done for any standard Gaussian field, i.e. by factorising its
covariance matrix after discretisation.

It is then readily shown from Lemma 5.2 and from (5.18) that the covariance of
ẆR is given by:

CR(u, v) = E[〈ẆR, u〉〈ẆR, v〉] = (u, v)−
NL∑
i=1

1

|�i|

∫
�i

u dx
∫
�i

v dx, (5.23)

for all u, v ∈ L2(D). From Lemma 5.2 and from Definition 2.6 we deduce that if the
supports of u and v never share the same Haar mesh cell, then

E[(ẆL , u)(ẆL , v)] = E[〈Ẇ, u〉〈Ẇ, v〉] = E[〈ẆR, u〉〈ẆR, v〉] = 0, (5.24)

i.e. the action of ẆL is exactly the same as the action of white noise in this case and
the correction term ẆR is not needed. This means that the restrictions of ẆL and
ẆR to separate Haar mesh cells are statistically independent from each other. We can
draw a quick comparison with white noise: the restrictions of white noise to disjoint
regions of D are always independent, while the restrictions of ẆL and ẆR to disjoint
regions are still dependent if these regions belong to the same Haar mesh cell. Thanks
to this property, we can consider each Haar cell separately and only account for the
correlations among the pairings of ẆR with test functions that belong to the same
cell. Since the computations on separate Haar cells are independent, these operations
can be performed simultaneously in parallel.

Before proceeding, we show that CR is a proper covariance function, i.e. that it is
positive semi-definite.

Lemma 5.3. The covariance of ẆR, CR, is positive semi-definite.

Proof. With the same notation as in the proof of Lemma 5.2, we have that, for all
u ∈ L2(D),

CR(u, u) = E[(〈ẆR, u〉)2] = E[(〈Ẇ−PH Ẇ, u〉)2] = E[(〈Ẇ, u− PHu〉)2] = ||u− PHu||2L2(D),

(5.25)

since ẆR = Ẇ− ẆL = Ẇ−PH Ẇ. Hence CR(u, u) is always non-negative and it is
zero if and only if u ∈ VH .

From the proofs of lemmas 5.2 and 5.3, we see that we can interpret ẆL as the
L2-projection of white noise onto VH , in formulas

(ẆL , v) = (PH Ẇ, v) := 〈Ẇ, PHv〉, ∀v ∈ L2(D). (5.26)

As a consequence, the same arguments as in the proofs of lemmas 3.4 and 3.8 essen-
tially apply and the following results hold.
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Lemma 5.4. Let s > 0, let v ∈ Hs(D) and µ = min(s, 1). Then

E[|〈Ẇ− ẆL , v〉|2]1/2 ≤ c(s, d,D)|�H |µ/d||v||Hs(D). (5.27)

Proof. We have that, for all v ∈ L2(D),

E[|〈Ẇ− ẆL , v〉|2] = E[|〈Ẇ, v〉 − 〈Ẇ, PHv〉|2] (5.28)

= E[|〈Ẇ, v − PHv〉|2] = ||v − PHv||2L2(D), (5.29)

by the definitions of Ẇ and the interpretation of ẆL as L2-projection onto VH . As
PHv is the best approximation to v in the L2(D) norm in VH the result follows by
standard FEM theory [21, 22].

Lemma 5.5. Let u be the solution to (5.10) and let uL be the solution to (5.10)
in which Ẇ has been replaced with ẆL . For any sufficiently small ε > 0, if we let
s = 2− d/2− ε and µ = min(s, 1), we have that for all finite 1 ≤ q ∈ N

E[||u− uL ||qLq(D)]
1/q ≤ c̄(ε, s, d,D)|�H |µ/d, (5.30)

wher c̄ blows up as ε→ 0 when µ = s.

Proof. The proof is essentially the same as that of Lemma 3.8. Let g(x,y) be the
Green’s function of equation (5.10) over D. Then we can write down analytic expres-
sions for u and uL (see also [32]),

u = 〈Ẇ, g(x,y)〉x, uL = (ẆL , g(x,y))x = 〈Ẇ, P x
Hg(x,y)〉x, (5.31)

where by 〈·, ·〉x, (·, ·)x and by P x
H we mean that the pairing, inner product and orthog-

onal projection are taken with respect to the variable x. This gives us, by linearity,

u− uL = 〈Ẇ, g(x,y)− P x
Hg(x,y)〉x = 〈Ẇ− ẆL , g(x,y)〉x. (5.32)

Fubini-Tonelli’s theorem allows us to exchange the order of expectation and integra-
tion, giving us

E[||u− uL ||qLq(D)] = ||E[|u− uL |q]||L1(D) = ĉ(q)||E[|u− uL |2]q/2||L1(D), (5.33)

where we have used the fact that the q-th moment of a zero-mean Gaussian random
variable is proportional to its standard deviation to the q-th power. Lemma 5.4 then
gives us

E[||u− uL ||qLq(D)] = ĉ(q)||E[|〈Ẇ− ẆL , g(x,y)〉x|2]q/2||L1(D), y (5.34)

≤ ĉ(q)(c(s, d,D)|�H |µ/d)q
∫
D

||g(x,y)||qHµ, x dy. (5.35)

As in the proof of Lemma 3.8, we can use elliptic regularity estimates to bound∫
D

||g(x,y)||qHµ(D), x dy ≤ |D|c̃(ε, s, d,D)q, (5.36)
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where c̃ blow up as ε −→ 0 when µ = s (in 2D and 3D). In 1D the Green’s function
is more regular than H1(D) so the constant does not blow up. We finally conclude

E[||u− uL ||qLq(D)]
1/q ≤ c̄(ε, q, s, d,D)|�H |µ/d, (5.37)

with c̄ = |D|1/qcĉ1/q c̃, which is the proposition.

Remark 5.10. Thanks to these results we deduce that if DL is fine enough (or if
Vh ≡ VH), the correction ẆR is not needed at all. However, Haar wavelets are only
piecewise constant and we can only expect at most first order convergence of ẆL

to Ẇ: large QMC dimensions and an extremely fine Haar mesh are needed to make
the correction term ẆR negligible and this translates into very expensive samples of
ẆL . If we also compute samples of ẆR, however, the Haar level can be kept small.

The sampling of ẆR can be performed independently on each Haar cell. If we
focus our attention only on the basis functions φ1, . . . , φmk ∈ Vh of support entirely
contained within a given Haar cell �k, we note that the expression (5.23) for CR
simplifies to

CR(φi, φj) = (φi, φj)−
1

|�k|

∫
�k

φi dx
∫
�k

φj dx, for all i, j ∈ {1, . . . ,mk}. (5.38)

Similarly as in Chapter 4, the sampling of ẆR over �k boils down to sampling a zero-
mean Gaussian vector bkR with entries (bkR)i = 〈ẆR, φi〉 and with covariance matrix
Ck
R of entries (Ck

R)ij given by

bkR ∼ N (0, Ck
R), (Ck

R)ij = CR(φi, φj). (5.39)

If we let Mk be the local mass matrix over the space spanned by the {φi}mki=1, with
entries (Mk)ij = (φi, φj) and if we let the vector Ik ∈ Rmk be given by

Ik =

[∫
�k

φ1 dx, . . . ,
∫
�k

φmk dx
]T
, (5.40)

we can write Ck
R as

Ck
R = Mk −

1

|�k|
Ik(Ik)T . (5.41)

Note that a consequence of Lemma 5.3 is that Ck
R is positive semi-definite with null-

space spanned by the vector 1 ∈ Rmk , the length mk vector of all ones (piecewise
constant functions over DL are constant over each Haar cell and are in the null-space
of the covariance). The sampling of a Gaussian vector with this covariance through
factorisation is expensive as direct factorisation of Ck

R (e.g. truncated Cholesky [84] or
singular value decomposition) has an O(m3

k) and O(m2
k) cost and memory complexity

respectively and it is therefore to be avoided.
We now show how bkR can be sampled efficiently by extending the techniques

presented in Chapter 4. The main idea is to first sample a Gaussian vector with
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covariance Mk in linear complexity and then perform an efficient update to obtain a
sample of bkR. We can write the action of ẆR against each φi as

〈ẆR, φi〉 = 〈Ẇ− ẆL , φi〉 = 〈Ẇ, φi〉 − 〈ẆL , φi〉 = (bkM)i − wk(Ik)i, (5.42)

where Ik is given by (5.40), wk by

wk =
1

|�k|
〈Ẇ,1�k〉, wk ∼ N

(
0,

1

|�k|

)
, (5.43)

and the vector bkM ∈ Rmk is given entrywise by

(bkM)i = 〈Ẇ, φi〉, i = 1, . . . ,mk. (5.44)

The variables wk and bkM are by Definition 2.6 all zero-mean joint Gaussian variables
with covariance

E[wkwk] =
1

|�k|
, E[bkMwk] =

Ik

|�k|
, E[bkM(bkM)T ] = Mk. (5.45)

Thanks to these relations and to (5.42), if we set

bkR = bkM − wkIk, (5.46)

then the covariance of bkR is correct (cf. equation (5.41)) since

E[bkR(bkR)T ] = E[(bkM − wkIk)(bkM − wkIk)T ]

= E[bkM(bkM)T ]− E[bkMwk](I
k)T − Ik E[bkMwk]

T + E[wkwk]I
k(Ik)T

= Mk −
1

|�k|
Ik(Ik)T . (5.47)

In what follows, we assume that constants can be represented exactly by the FEM
subspace Vh, i.e. c ∈ Vh for all c ∈ R. This assumption is satisfied by most commonly
used finite element subspaces (e.g. Lagrange). Let φk = [φ1, . . . , φmk ]

T . This means
that for each Haar cell �k there exists a vector ck ∈ Rmk such that 1�k ≡ ck · φk. It
is then straightforward to obtain wk from bkM since

ck · bkM =

mk∑
i=1

〈Ẇ, (ck)iφi〉 = 〈Ẇ, ck · φk〉 = 〈Ẇ,1�k〉 = |�k|wk, (5.48)

hence wk = |�k|−1ck · bkM . Note that ck is always known, e.g. for Lagrange basis
functions on simplices we have ck = 1 ∈ Rmk .

We can now sample ẆR from its distribution by using the following algorithm, in
which we exploit the same strategy presented in Chapter 4:
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Algorithm for the efficient sampling of ẆR.

1. Loop over each Haar cell �k.

2. Use the technique presented in Chapter 4 for the independent case to work
supermesh cell by supermesh cell and sample a Gaussian vector bkM ∼ N (0,Mk)
in linear cost complexity.

3. Set wk = |�k|−1ck · bkM and compute bkR = bkM − wkIk.
Remark 5.11. This algorithm has O(NSm

3
e) cost and O(NSm

2
e) memory complexity,

where NS is the total number of supermesh cells (cf. Chapter 4). As in Remark 5.8
we expect NS to be in practice of O(Nh + NL ), where Nh and NL are the number
of cells of Dh and of DL respectively.
Remark 5.12 (QMC in the affine case). Let VS be a FEM subspace of the same
family of Vh, but defined over the supermesh Sh. In what we have presented so
far we showed how to sample the action of ẆL and ẆR against functions in Vh.
An alternative strategy that is particularly advantageous in the case in which the
mapping to the reference cell of the FEM basis chosen is affine (e.g. Lagrange elements
on simplices) consists of computing the action of ẆL and ẆR against basis functions
of the supermesh space VS instead and then transfer (by interpolation or projection)
the result onto Vh. This transfer operation can be performed in linear time and it is
exact since Vh is nested within VS by construction. The advantage in doing this is
that, in the affine case, as shown in Chapter 4, for each supermesh cell e, the local
mass matrices Me and local vectors Ie = [

∫
D
φ1 dx, . . . ,

∫
D
φme dx]T of the space VS

are constant up to a scalar volume factor. This allows us to save a great deal of
computations by pre-computing a single Ie vector and a single Cholesky factorisation
of a Me (see remark 4.2 and corollary 4.3 in [43]).

5.4 A partial QMC convergence result
The white noise sampling strategy we just presented is hybrid in the sense that

both a randomised QMC point rule and a pseudo-random sequences are used. It is
then unclear what the order of convergence with respect to the number of samples
should be. The hope is, of course, to achieve something better than the standard
MC rate of convergence or otherwise there would be no use for the QMC method
presented. Proving convergence results with respect to the number of samples for
QMC (and MLQMC) in a PDE setting is non-trivial and results have so far been
established only for a limited class of QMC point sequences [88, 109].

Although deriving a convergence estimate is outside of the scope of this work,
in what follows we try to build up intuition about what is likely to be happening
in practice. As an example problem, consider the following elliptic PDE with log-
normal diffusion coefficient (already in weak form): find p(·, ω) ∈ H1

0 (G) such that
for all v ∈ H1

0 (G),

a(p, v) = (D∗(x, ω)∇p,∇v) = (f, v), a.s., D∗(x, ω) = eu(x,ω), (5.49)
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where for a given sampling domain D ⊂⊂ Rd we have that G ⊂⊂ D is a domain of
class C1,ε for any ε > 0, f ∈ L∞(G) (these hypotheses imply p ∈ C1,ε(Ḡ) a.s. for
any ε > 0, see theorem 8.34 in [66]) and u(x, ω) is a Matérn field satisfying equation
(5.10) over D, and assume that we are interested in computing the expectation of a
possibly nonlinear output functional of p, namely P (p). We will now establish the
following result:

Theorem 5.6. Let p ∈ W 1,∞(G) a.s. be the solution of (5.10) where u ∈ Hs(G)
a.s. has been sampled using the hybrid QMC technique presented in this chapter. Let
uL be the solution of (5.10) obtained by using the same ẆL sample as for u and by
setting ẆR = 0, and let pL (·, ω) ∈ H1

0 (G) satisfy, for all v ∈ H1
0 (G),

aL (pL , v) = (D∗L (x, ω)∇pL ,∇v) = (f, v), a.s., D∗L (x, ω) = euL (x,ω). (5.50)

Let µ = min(s, 1) and let L be the Haar level used to sample u. Assume that the
functional P is continuously Fréchet differentiable and let P̂ , P̂L and P̂ − PL be the
QMC estimators for E[P ], E[PL ] and E[P − PL ] respectively, obtained by using N
QMC points. Here, P = P (p) and PL = P (pL ). If there exist constants c > 0 and
q ≥ 1, N0 > 1 such that the QMC estimators satisfy for N > N0,

V[P̂ ] ≤ c
V[P ]

N
, V[P̂L ] ≤ c

V[PL ]

N q
, V[P̂ − PL ] ≤ c

V[P − PL ]

N
, (5.51)

i.e. the QMC estimators are never asymptotically worse than standard Monte Carlo,
then there exists a sufficiently large constants L0 such that the statistical error V[P̂ ]
also satisfies for N > N0, L > L0,

V[P̂ ] ≤ c

N q
+

c̄

N
2−µL , (5.52)

where c̄ > 0 is independent from L and N .

Remark 5.13. Condition (5.51) is satisfied by most randomised QMC point sets,
e.g. randomised digital nets and sequences and randomly shifted lattice rules [112,
134, 135, 136].

Proof. In this proof, we work pathwise for fixed ω ∈ Ω. We start with essentially
the same duality argument that yields lemma 3.2 in [166]. Let v, v̄ ∈ H1(G) and let
DvP (v̄) be the Gateaux derivative of P at v̄, namely

DvP (v̄) := lim
ε→0

P (v̄ + εv)− P (v̄)

ε
, (5.53)

define the average derivative of P on the path from p to pL ,

DvP (p, pL ) =

1∫
0

DvP (p+ θ(pL − p)) dθ, (5.54)
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and introduce the dual problem: find z(·, ω) ∈ H1
0 (G) s.t.

a(v, z) = DvP (p, pL ), ∀v ∈ H1
0 (G). (5.55)

The fundamental theorem of calculus for Fréchet derivatives then yields,

P − PL =

1∫
0

Dp−pL
P (p+ θ(pL − p)) dθ = Dp−pL

P (p, pL ) = a(p− pL , z), a.s.

(5.56)

Applying Hölder’s inequality gives,

|P − PL | = |a(p− pL , z)| ≤ ||D∗||L∞(G)(ω)|z|H1(G)|p− pL |H1(G) a.s. (5.57)

We now need a bound for |p− pL |H1(G). Note that, a.s. for all v ∈ H1
0 (G),

0 = a(p, v)− aL (pL , v) = a(p− pL , v) + a(pL , v)− aL (pL , v). (5.58)

Setting v = p− pL gives

0 ≤ a(p− pL , p− pL ) = aL (pL , v)− a(pL , v) = ((D∗L −D∗)∇pL ,∇(p− pL )) a.s.
(5.59)

Both quantities can be bounded as follows: let D∗min(ω) = infx∈D |D∗(·, ω)|,

0 ≤ D∗min|p− pL |2H1
0 (G) ≤ a(p− pL , p− pL ) (5.60)

((D∗L −D∗)∇pL ,∇(p− pL )) ≤ ||D∗ −D∗L ||L2(G)||∇pL ||L∞(G)|p− pL |H1(G), (5.61)

almost surely, hence yielding, after division by |p− pL |H1(G),

|p− pL |H1(G) ≤ β
||D∗||αL∞(G)

D∗min

||∇p||L∞(G)||u− uL ||L2(G), a.s., (5.62)

for some α, β ≥ 1. Here we used the fact that since uL converges to u in C2−d/2−ε(D)
for any ε > 0 [42] (and consequently in C2−d/2−ε(G)), there exists a Haar level L0

such that for all L > L0 there exists a constant α ≥ 1 independent from L such
that ||uL ||L∞(G) ≤ α||u||L∞(G)., hence

||D∗ −D∗L ||L2(G) ≤ emax(||u||L∞(G),||uL ||L∞(G))||u− uL ||L2(G) (5.63)
≤ ||D∗||αL∞(G)||u− uL ||L2(G), a.s. (5.64)

Similarly, we also used that for sufficiently large L , we have ||∇pL ||L∞(G) ≤ β||∇p||L∞(G)

for some β ≥ 1 since pL converges to p in W 1,∞(G). Putting (5.57) and (5.62) to-
gether yields,

|P − PL | ≤ C(ω)||u− uL ||L2(G), a.s., (5.65)
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where C(ω) and is given by

C(ω) = β
||D∗||α+1

L∞(G)

D∗min

||∇p||L∞(G)|z|H1(G). (5.66)

Note that since all terms involved are in Lt(Ω,R) for all t ∈ (0,∞) (see proposition
2.4 and theorem 3.4 in [39]), we have that C(ω) ∈ Lt(Ω,R) for all t ∈ [1,∞) due to
the generalised Hölder inequality. We now note that

V[P̂ ] = V[P̂L + P̂ − P̂L ] = V[P̂L ] + Cov(P̂ + P̂L , P̂ − P̂L )

≤ V[P̂L ] + V[P̂ + P̂L ]1/2 V[(P̂ − PL )]1/2 (5.67)

≤ c
V[PL ]

N q
+
cc̃

N
V[P ]1/2 V[P − PL ]1/2. (5.68)

where we used the Cauchy-Schwarz inequality, hypothesis (5.51) and the fact that
since P converges to PL as L → ∞ a.s. and in Lt(Ω,R) for t ∈ (1,∞), there
exists a Haar level L0 s.t. for all L > L0 there exists c1 > 0 s.t. V[PL ] ≤ c1 V[P ]
and consequently another constant c̃ > 0 s.t. V[P + PL ]1/2 ≤ c̃V[P ]1/2. Combining
equation (5.65) with Cauchy-Schwarz and the embedding L4(G) ⊂ L2(G) gives that

V[P − PL ]1/2 ≤ |D|1/4 E[C(ω)4]1/4 E[||u− uL ||4L4(G)]
1/4. (5.69)

Now, owing to Lemma 5.5, we have that

E[||u− uL ||4L4(G)]
1/4 ≤ C̄(s,D, d)|�H |µ/d, (5.70)

for some constant C̄. Note that by construction |�H | = 2−dL . We can now pull
together equations (5.67), (5.69) and (5.70) to obtain,

V[P̂ ] ≤ c
V[PL ]

N q
+

c̄

N
2−µL , (5.71)

where

c̄ = cc̃|D|1/4C̄(s,D, d)E[C(ω)4]1/4 V[P ]1/2. (5.72)

and this concludes the proof.

Theorem 5.6 states that the statistical error introduced by approximating E[P ]
with our hybrid QMC technique can be split in two terms, where the former is the
statistical error of a pure randomised QMC estimator and might converge faster than
O(N−1/2) and the second is a standard MC error correction term that exhibits the
usual Monte Carlo rate, but decays geometrically as the Haar level increases. This
splitting of the error directly relates to the splitting of white noise as the first term
in 5.52 only depends on the truncation ẆL . If ẆL well approximates Ẇ, then we
expect a pure QMC rate in the pre-asymptotic regime, while if the approximation is
poor (small L ), then only a O(N−1/2) rate can be expected.
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Another way of interpreting our hybrid approach is that we are splitting white
noise into a smooth part ẆL and a rough part ẆR. QMC is effective at reducing
the statistical error coming from the smooth part, but performs poorly when ap-
proximating the rough part and we are better off with directly using pseudo-random
points. This aspect can be seen as another instance of the effective dimensionality
principle that we introduced in Section 2.1 and it was experimentally investigated by
Beentjes and Baker in [19]. Beentjes and Baker observe that when applying QMC
to integrands that can be separated into a smooth and a rough component an ini-
tial QMC-like rate is seen, which asymptotically decays into a standard Monte Carlo
rate as the number of samples is increased. Beentjes and Baker also observe that
integrands with smaller rough components will transition later to the lower O(N−1/2)
convergence rate. Similarly, Theorem 5.6 states that the larger L is, the smaller
the rough correction component ẆR will be and the later the fast O(N−q) rate will
switch to a slow O(N−1/2) rate.

As we will see further on in this chapter, even if the asymptotic rate is still
O(N−1/2), large gains are still obtained in practice in the pre-asymptotic QMC-like
regime, especially in a MLQMC setting (presented next) where not that many samples
are needed on the finest levels.

5.5 Sampling coupled realisations for MLQMC
We now generalise the QMC sampling algorithm just presented to the MLQMC

case. Compared to standard Monte Carlo, both MLMC and QMC already bring a
significant computational improvement. When the two are combined into MLQMC,
it is sometimes possible to obtain the best of two worlds and further improve the
computational complexity and speed. However, to do so, we must be able to satisfy
the requirements and assumptions underlying both QMC and MLMC: we must order
the dimensions of our random input in decaying order of importance as in QMC and
introduce an approximation level hierarchy and enforce a good coupling between the
levels as in MLMC. We now show how this can be done with white noise sampling.

In what follows we assume we have a MLQMC hierarchy of possibly non-nested
FEM approximation subspaces {V `}L`=1 over the meshes {D`

h}L`=1 and of accuracy
increasing with `. Since as in the MLMC case (see Chapter 4) the only stochastic
element in (5.10) is white noise, on each MLQMC level we must be able to draw
Matérn field samples u` ∈ V ` and u`−1 ∈ V `−1 for ` > 1 that satisfy the following
variational problems coupled by the same white noise sample: for a given ωn` ∈ Ω,
find u` ∈ V ` and u`−1 ∈ V `−1 such that

(u`, v`) + κ−2(∇u`,∇v`) = 〈Ẇ, v`〉(ωn` ), for all v` ∈ V `, (5.73)

(u`−1, v`−1) + κ−2(∇u`−1,∇v`−1) = 〈Ẇ, v`−1〉(ωn` ), for all v`−1 ∈ V `−1. (5.74)

where the terms on the right-hand side are coupled in the sense that they are centred
Gaussian random variables with covariance E[〈Ẇ, vs〉〈Ẇ, vs〉] = (vs, vs) for s, s ∈
{`, ` − 1}, as given by Definition 2.6. Again we order the dimensions of white noise
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by expanding it in the Haar wavelet basis as in (5.6), but this time we allow the Haar
level to possibly increase with the MLQMC level and we split the expansion at the
finer Haar level between the two MLQMC levels, L`,

Ẇ = ẆL`
+ ẆR` , (5.75)

where the splitting of the expansion is done in the same way as in equation (5.8). The
choice of Haar levels L` on each MLQMC level is problem-dependent. We discuss this
further in Section 5.6. From now on we assume that L`−1 ≤ L`, although extending
the methods presented to decreasing Haar level hierarchies as well is straight-forward.
Note that the splitting of the expansion at the MLQMC level ` is done at Haar level
L` independently from the value of L`−1, i.e. Ẇ on the coarser grid is always sampled
with Haar level L` on MLQMC level ` and not with Haar level L`−1. However, this
does not affect the MLQMC telescoping sum since Ẇ is always sampled without bias
on all levels owing to the correction term ẆR` .

Let {φ`i}m`i=1 and {φ`−1
j }

m`−1

j=1 be the basis functions spanning V ` and V `−1 respec-
tively. Sampling white noise on both MLQMC levels again means to sample the
vectors b`L , b`−1

L , b`R and b`−1
R , with entries given by,

(bs
L )i = 〈ẆL`

, φs
i〉, (bs

R)i = 〈ẆR` , φ
s
i〉, for i = 1, . . . ,ms, s ∈ {`, `− 1}. (5.76)

Since we both require a multilevel coupling and a Haar wavelet expansion, this
time we need to construct a three-way supermesh Sh between DL`

, D`
h and D`−1

h

(note that DL`−1
is always nested within DL`

so there is no need for a four-way
supermesh). Thanks to the supermesh construction we can split the support of all
the basis functions so that each φ`i and φ

`−1
j has support entirely contained within a

single Haar cell. In fact, we will assume for simplicity from now on that the supports
of all basis functions have this property. The sampling of Ẇ in the MLQMC case is
extremely similar to that of the QMC case with only a few differences concerning the
sampling of ẆR` which we will now highlight.

Again, portions of ẆR` on separate Haar cells of DL`
are independent and we can

therefore sample ẆR` Haar cell-wise. For each Haar cell �k and for s ∈ {`, ` − 1},
let φs

1, . . . , φ
s
ms
k
be the basis functions with non-zero support over �k and define the

Haar cell correction vectors bs
R,k with entries (bs

R,k)i = 〈Ẇ, φs
i〉 for i ∈ {1, . . . ,ms

k}
and covariances given by,

E[bs
R,k(b

s
R,k)

T ] = M s
k −

1

|�k|
Iks (Iks )T , E[b`R,k(b

`−1
R,k )T ] = M `,`−1

k − 1

|�k|
Ik` (Ik`−1)T ,

(5.77)

where (M s
k)ij = (φs

i, φ
s
j), (M `,`−1

k )ij = (φ`i , φ
`−1
j ) and (Iks )i =

∫
D
φs
i dx. If we define wk

as in (5.43) we can again write

bs
R,k = bs

M,k − wkIks , for s ∈ {`, `− 1}, (5.78)

where bs
M,k ∼ N (0,M s

k). If we assume that constants can be represented exactly by
both V ` and V `−1, i.e. that for all c ∈ R and for all s ∈ {`, `−1}, we have that c ∈ V s,
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then there exist two vectors c`k and c`−1
k such that 1�k ≡ c`k ·φ`k ≡ c`−1

k ·φ`−1
k , where

φs
k = [φs

1, . . . , φ
s
ms
k
]T for s ∈ {`, ` − 1}. The same argument used to derive equation

(5.48) then gives

wk =
1

|�k|
c`k · b`M,k =

1

|�k|
c`−1
k · b`−1

M,k. (5.79)

We can now proceed with the coupled sampling of Ẇ for MLQMC as follows:

Algorithm for the efficient sampling of Ẇ for MLQMC.

1. Compute the three-way supermesh between the FEM meshes and the Haar
mesh DL`

and split the support of the basis functions of V ` and V `−1 to obtain
{φs

i}m
s

i=1 for s ∈ {`, `− 1} each of which with support entirely contained within
a single Haar cell. Compute the scalar maps κs(i) that map each i to the index
k of the Haar cell �k that contains the support of φs

i and compute
∫
D
φs
i dx for

all i = 1, . . . ,ml and for s ∈ {`, ` − 1}. This step can be done once and for all
as an offline step.

2. Let NL`
be the number of cells of DL`

. Sample the vector zL`
∈ RNL` of the

coefficients in the expression for ẆL`
as zL = [zTQMC, z

T
MC]T , where zQMC is a

randomised QMC point of dimension equal to the number of coefficients with
|l|1 ≤ L` and zMC is sampled with a pseudo-random number generator.

3. Compute the Haar cell values w̄k of ẆL over all �k for k = 1, . . . ,NL`
in the

same way as in the QMC case (this step does not depend on the FEM meshes).

4. Use the technique presented in Chapter 4 for the coupled case to work supermesh
cell by supermesh cell and sample in linear cost complexity the coupled Gaussian
vectors b`M,k and b`−1

M,k with covariance,[
b`M,k

b`−1
M,k

]
=

[
M `

k M `,`−1
k

(M `,`−1
k )T M `−1

k

]
. (5.80)

5. For all s ∈ {`, `−1}, compute (bs
L )i = w̄κs(i)

∫
D
φs
i dx for all i = 1, . . . ,ms, then

set wk = |�k|−1c`−1
k · b`−1

M,k and compute bs
R,k = bs

M,k − wkIks .

Remark 5.14 (Complexity of the sampling of Ẇ for MLQMC). The overall complexity
of this sampling strategy is O(NSme+NL`

NL`
) in the standard Haar wavelet case and

O(NS`m
`
e+NL`

) in the compactly supported case (cf. Remark 5.2), where (cf. Remark
5.8) NS` is the number of cells of the three-way supermesh on the MLQMC level `,
m`
e is the number of dofs of V ` per cell of D`

h and NL`
is the number of wavelets that

have non-zero support over any of the NL`
cells of DL`

. Again, thanks to Theorem
4.3, we have that NS` = O(N `

h + NL`
), where N `

h is the number of cells of D`
h,

i.e. the number of cells of the supermesh is bounded above by a linear function of the
number of cells of the parent meshes. Again, as in Remark 5.8, picking L` on each
MLQMC level so that N `

h dominates yields an overall O(N `
h ) linear cost complexity

for the sampling.
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Remark 5.15 (MLQMC in the affine case). Similarly as in Remark 5.12, in the case
in which the mapping to the reference cell of the FEM basis chosen is affine (e.g. La-
grange elements on simplices) a simpler, more efficient sampling strategy consists in
sampling Ẇ on the supermesh and then transfer the result onto the parent FEM
meshes. The sampling of ẆL is then the same as in the affine QMC case (see 5.12),
but on the three-way supermesh. The sampling of ẆR is also very similar and relies
on the affine MLMC strategy presented in Chapter 4 for point 4 of the sampling
algorithm above.
Remark 5.16 (Simpler cases: nested meshes and p-refinement). When the MLQMC
mesh hierarchy is nested and/or the hierarchy is composed by taking a single mesh
and increasing the polynomial degree of the FEM subspaces we have V `−1 ⊆ V `. In
this case everything we discussed still applies with the following simplifications: only
a two-way supermesh between D`

h and DL`
is needed on each MLQMC level in the

h-refinement case. In the p-refinement case we only have one FEM mesh Dh and
a single two-way supermesh construction is needed between Dh and the finest Haar
mesh DLL

.
Remark 5.17 (Non-nested mesh hierarchies and embedded domains). In practice, we
assume that we are given a user-provided hierarchy {G`

h}L`=0 of possibly non-nested
FEM meshes of the domain G on which we need the Matérn field samples. From this
we construct a boxed domain D s.t. G ⊂⊂ D and a corresponding hierarchy of Haar
meshes {DL`

}L`=0 and of FEM meshes of D, {D`
h}L`=0. As in Chapter 4, it is convenient

to construct each D`
h so that G`

h is nested within it, so that each Matérn field sample
can be transferred exactly and at negligible cost on the mesh on which it is needed
(this is the embedded domain strategy proposed in [132]). For simple problems, it is
also possible to avoid a three-way supermesh construction by either using a nested
mesh hierarchy of G and/or by solving equation (5.10) on a uniform structured mesh
hierarchy so that each Haar mesh is nested within the corresponding D`

h. The former
simplification is typically not an option in many practical computations on complex
geometries where a nested hierarchy is normally not available (cf. Section 4.2.3). The
latter simplification is inadvisable when the user-provided hierarchy {G`

h}L`=0 is made
of graded or locally refined meshes as it is desirable for the Matérn field to be sampled
with the same accuracy as the solution of the PDE for which the sample is needed.
Remark 5.18 (General wavelets). We expect the generalisation of the presented sam-
pling methods to generic wavelets to be straight-forward, although it is unclear as to
whether this would bring any considerable advantage. We leave this investigation to
future research.
Remark 5.19 (General domains). We briefly speculate on the extension of the methods
presented to more general domains. The same sampling method could be generalised
to general convex domains by introducing “generalised” Haar wavelets and meshes,
obtained by partitioning a mesh into sub-regions and defining the cells of DL through
aggregation of the cells of Dh. Establishing any theoretical results in this case would
be more complex, but the same algorithm should carry forward after accounting
for the fact that the “Haar cells” obtained through aggregation would have variable
volume. The advantage of doing this is that no supermesh would then be required
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in the QMC case (the Haar mesh would be nested within Dh by construction) and
only one supermesh construction would be needed (between D`

h and D`−1
h ) in the

non-nested MLQMC case. We leave the implementation of this extension to future
work.

5.6 Numerical results

5.6.1 Testing the supermesh construction

As mentioned in remarks 5.8 and 5.14, the sampling strategies presented have
linear cost complexity in the number of supermesh cells. In turn this number is
proportional to the number of cells of each of the parent meshes. Before testing the
sampling algorithms just presented, we therefore use the libsupermesh [121] library
to get an idea of how large the proportionality constant can be in practice.

Unfortunately there is no dedicated three-way supermeshing algorithm in libsu-
permesh and we therefore first compute a two-way supermesh between the FEM
meshes and then another two-way supermesh between this “FEM” supermesh and
the Haar mesh. We recall that since the Haar mesh is structured knowing for each
“FEM” supermesh cell which Haar cells it intersects is inexpensive (cf. Remark 5.7).
However, our approach is likely to produce three-way supermeshes with more cells
than actually needed (the optimal strategy would be to mesh the intersection of cells
from all the three meshes involved at the same time).

We take the same non-nested unstructured mesh hierarchies of the domain D =
(−1, 1)d that we used in Chapter 4 and we count the number of cells resulting from the
constructions needed for both the QMC and MLQMC sampling strategies. Results
are shown in Tables 5.1 and 5.2 for the 2D and 3D case respectively. We gradually
increase the Haar level with the MLQMC level so that the Haar meshes have cell
size comparable to the finer of the two FEM meshes on each MLQMC level. In 2D,
the ratio R` = NS`/(N

`
h + NL`

) plateaus to a constant value in both the QMC and
MLQMC case and no significant difference is seen when increasing the Haar levels of
the whole hierarchy.

In 3D the behaviour as the MLQMC level increases looks similar, although it is
harder to be sure given the smaller hierarchy. What is different though is that the
ratio R` seems to increase as the Haar level increase. We therefore investigate this
behaviour further by studying how the ratios R` and NS`/NL`

behave as the Haar
level L` increases for a fixed pair of FEM meshes (the first two in the unstructured
hierarchy). Results are shown in Figure 5.4. Both ratios appear to be asymptotically
bounded as L` grows showing that NS` = O(N `

h + NL`
) as stated by Theorem

4.3. Both Table 5.2 and Figure 5.4 suggest, however, that in 3D the proportionality
constant is fairly large. Whether the sub-optimal supermeshing approach used (see
above) is to be blamed for such a large constant is unclear and we leave this to future
research.

In Tables 5.1 and 5.2 we report the number of supermesh cells of MLQMC hier-
archy in which the Haar level is increased as the FEM mesh is refined so that Haar
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cells and FEM cells have comparable sizes. As we see further on in this section, in
the MLQMC case there is little benefit in using high Haar levels on fine MLQMC
levels and the Haar level can be kept low on fine MLQMC levels. If this is the case,
the effect of including the Haar mesh in the supermesh construction is negligible and
the number of cells in the three-way supermesh is comparable to the number of cells
of the two-way supermesh between the FEM meshes only (cf. Tables 4.1 and 4.2 in
Section 4.5).

R` (L` = `) R` (L` = `+ 1)

` (2D) h` |�L`
|1/2 n` QMC MLQMC QMC MLQMC

1 0.707 1 32 0.67 n/a 1.33 n/a
2 0.416 0.5 120 1.63 2.26 2.47 2.88
3 0.194 0.25 500 2.69 4.38 3.41 4.84
4 0.098 0.125 2106 3.41 5.82 3.96 6.02
5 0.049 0.0625 8468 3.77 6.44 4.24 6.52
6 0.024 0.03125 33686 3.95 6.77 4.36 6.75
7 0.012 0.01563 134170 4.05 6.93 4.43 6.85
8 0.006 0.00781 535350 4.09 7.01 4.46 6.91
9 0.003 0.00391 2143162 4.11 7.05 4.47 6.94

Table 5.1: Testing a 2D unstructured non-nested hierarchy over (−1, 1)2: mesh level
`, maximal cell size h`, Haar cell size |�L`

|1/2 for L` = `, number of FEM mesh cells
n`, ratio R` = NS`/(N

`
h +NL`

). Note that the FEM mesh cell size roughly decreases
proportional to 2−` and the ratio R` seems to plateau asymptotically as ` grows.

R` (L` = `− 1) R` (L` = `)

` (3D) h` |�L`
|1/3 n` QMC MLQMC QMC MLQMC

1 0.866 1 384 0.98 n/a 0.86 n/a
2 0.437 0.5 7141 4.09 16.8 19.7 53.6
3 0.280 0.25 22616 10.5 195 43.3 413
4 0.138 0.125 190081 13.3 153 48.2 326
5 0.070 0.0625 1519884 14.8 173 51.0 358

Table 5.2: Testing a 3D unstructured non-nested hierarchy over (−1, 1)3 (part 1):
mesh level `, maximal cell size h`, Haar cell size |�L`

|1/3 for L` = `, number of FEM
mesh cells n`, ratio R` = NS`/(N

`
h +NL`

). Note that the FEM mesh cell size roughly
decreases proportional to 2−`.

In Tables 5.3 and 5.4 we present some representative average CPU timings over
multiple (N = 1000 in 2D and N = 100 in 3D) realisations of white noise (both
ẆL and ẆR terms) and Matérn field samples in 2D (L = ` + 1) and 3D (L = `
and L = 4) over (−1, 1)d and with ν = 2 − d/2. These timings have been obtained
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Figure 5.4: Testing a 3D unstructured non-nested hierarchy over (−1, 1)3 (part 2):
we fix the FEM meshes with ` = 1, 2 in Table 5.2 and we increase the Haar level
L . NS is the number of supermesh cells. In the QMC case (left) this is a two-way
supermesh between the Haar mesh and the FEM mesh for ` = 2; in the MLQMC case
(right), this is a three-way supermesh between the Haar mesh and the FEM meshes
for ` = 1, 2. NL is the number of Haar cells and Nh is the number of cells of the
FEM mesh with ` = 2. Both ratios appear to be bounded as the Haar level L grows.
The ratio NS/(Nh + NL ) (dashed line) initially increases with the Haar level before
decreasing again, mirroring the behaviour observed for R` in the last four columns of
Table 5.2.

in serial by using a single thread on a computing node with an Intel® Xeon® Gold
6140 CPU (2.30GHz). We consider both the QMC and MLQMC case. For the
latter, the timings correspond to the cost of sampling coupled realisations of white
noise and Matérn field samples on MLQMC levels ` and ` − 1. These timings do
not include offline one-off costs such as the assembly of the coupled linear systems
deriving from the discretisation of Equations (5.73) and (5.74). We note that both
in 2D and in 3D the cost of sampling white noise realisations is always larger than
the cost of solving the coupled linear system. However, there is most likely room for
improvement considering that: 1) our implementation of the white noise sampling
routine is currently Python-based (while the solver uses PETSc routines which are
heavily optimised). 2) The three-way supermeshing algorithm used is suboptimal. We
expect that in the 2D case it should be possible to compute white noise samples faster
than solving (5.73) and (5.74). In the 3D MLQMC case, capping the maximum Haar
level could bring further improvements since this does not seem to affect MLQMC
convergence (see next subsection). Overall, these timings could largely benefit from
a more efficient implementation, which we leave to future work.

Remark 5.20. The QMC and MLQMC methods presented are designed to work with
non-nested unstructured grid hierarchies. In this setting, a supermesh construction
might be unavoidable even in the case in which the field is sampled via an alternative
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method such as e.g. circulant embedding [49], since this is the only way in which the
sampled field can be integrated exactly on the target non-nested unstructured grid.
For low smoothness fields (ν ≤ 1), Graham et al. have proved that there is no loss in
the convergence rate due to non-nested interpolation [74]. However, this operation,
albeit faster, still introduces extra bias, and it is likely to still harm convergence when
smoother fields are used. All in all, we remark that the high white noise sampling
costs observed in the QMC case stem directly from the supermesh construction, and
that similar timings would also be observed if a supermesh construction were used to
integrate a field sampled on a structured grid over a target non-nested mesh. From
this point of view, the MLQMC sampling costs are “only” a factor of 10 more expensive
than for QMC. Finally, in our (ML)QMC sampling strategy, the white noise term is
always sampled exactly (on the FEM space) independently on the Haar level choice.
This might enable the use of lower Haar levels than for algorithms that sample white
noise inexactly since for our strategy we are not restricted by bias.

` 2 3 4 5 6 7 8 9

Ẇ sample (QMC) 1× 10−3 3× 10−3 8× 10−3 0.030 0.13 0.58 2.54 10.9

Ẇ sample (MLQMC) 1× 10−3 5× 10−3 0.020 0.089 0.38 1.36 5.84 23.9
solver 6× 10−4 9× 10−4 3× 10−3 0.010 0.05 0.21 0.95 3.98

Table 5.3: Average timings over 1000 realisations for the coupled sampling of coupled
white noise and Matérn fields (ν = 1) for QMC and MLQMC in 2D. The timings do
not include offline one-off costs, such as the set-up of the linear solver. The meshes
used are the same as in Table 5.1 and we use L` = ` + 1. We note that the cost of
sampling white noise is larger than the cost of solving (5.73) and (5.74) by a factor of
3 for QMC and of 6 for MLQMC.

` 1 2 3 4 5

Ẇ sample (QMC) 2× 10−3 0.04 0.52 4.89 40.8

Ẇ sample (MLQMC) 2× 10−3 0.16 5.51 61 495

Ẇ sample (MLQMC) L = 4 0.051 0.71 5.51 21 125
solver 4× 10−4 4× 10−3 0.03 0.23 1.85

Table 5.4: Average timings over 100 realisations for the coupled sampling of coupled
white noise and Matérn fields (ν = 1/2) for QMC and MLQMC in 3D. The timings
do not include offline one-off costs, such as the set-up of the linear solver. The
meshes used are the same as in Table 5.2 and we use L` = ` and L = 4 (only where
indicated). We note that the cost of sampling white noise is much larger than the
cost of solving (5.73) and (5.74). This stems from the large number of cells of the
supermeshes involved, cf. Table 5.2. The cost on the fine levels can be decreased by
capping the Haar level on the finer MLQMC levels since this does not seem to affect
MLQMC convergence (but it does affect QMC, see next subsection).

101



1 2 3 4 5 6 7 8 9 10 11
MLQMC level ℓ

−35

−30

−25

−20

−15

−10

lo
g 2
|E
|

O(h−2)

Pℓ

Pℓ − Pℓ−1

(a)

2 3 4 5 6 7
MLQMC level ℓ

−22.5

−20.0

−17.5

−15.0

−12.5

−10.0

lo
g 2
|E
|

O(h−2)

Pℓ

Pℓ − Pℓ−1

(b)

1 2 3 4
MLQMC level ℓ

−16

−15

−14

−13

−12

−11

lo
g 2
|E
|

O(h−2)

Pℓ

Pℓ − Pℓ−1

(c)

Figure 5.5: Logarithm of the absolute value of the expected value of P` and P` − P`−1

as a function of the MLQMC level ` in (a) 1D, (b) 2D and (c) 3D. We observe a
decay rate of O(h2) in all dimensions. These results are independent from the Haar
level chosen as we always compute the exact action of white noise independently from
the choice of L .

5.6.2 Testing the sampling strategies

We now test our sampling algorithms. We consider test problem (5.49) over the
domain G = (−0.5, 0.5)d with forcing term f = 1, i.e. we solve

−∇ · (eu(x,ω)∇p(x, ω)) = 1, x ∈ G = (−0.5, 0.5)d, ω ∈ Ω,
p(x, ω) = 0, x ∈ ∂G, ω ∈ Ω,

(5.81)

where u(x, ω) is a Matérn field sampled by solving equation (5.10) over D = (−1, 1)d

with λ = 0.25 and mean and standard deviation chosen so that E[eu] = 1, V[eu] = 0.2.
For simplicity, we take P (ω) = ||p||2L2(G)(ω) as our output functional of interest.

As in Chapter 3, we solve equations (5.10) and (5.81) with the FEniCS software
package [120]. For simplicity, we stick to the h-refinement case and we discretise the
equations using continuous piecewise linear Lagrange elements. We employ the con-
jugate gradient routine of PETSc [15] preconditioned by the BoomerAMG algebraic
multigrid algorithm from Hypre [57] for the linear solver for both equations. Again,
we declare convergence when the absolute size of the preconditioned residual norm is
below a tolerance of 10−10. We still use the libsupermesh software package [121] for
the supermesh constructions. We use random digital shifted Sobol’ sequences sampled
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with a custom-built Python and C wrapper of the Intel® Math Kernel Library Sobol’
sequence implementation augmented with Joe and Kuo’s primitive polynomials and
direction numbers [98] (maximum dimension = 21201).

We construct the mesh hierarchies {G`
h}L`=0 and {D`

h}L`=0 so that, for all MLQMC
levels `, G`

h is nested within D`
h, yet G

`−1
h and D`−1

h are not nested within G`
h and D`

h

respectively. Even if we do not exploit it anywhere in our implementation, we take all
the meshes in both hierarchies to be simplicial, uniform and structured for simplicity
with mesh sizes h` = 2−(`+1) in 1D, h` = 2−1/2 2−` in 2D and h` =

√
3 2−(`+1) in 3D.

5.6.3 MLQMC convergence

Unlike in Section 4.5, we do not consider functionals of the Matérn field u and
we directly focus on the estimation of E[P ]. The reason is that in 2D and 3D the
smoothness of u is low and we only observe standard Monte Carlo convergence rates
in numerical experiments (not shown).

We first study how the quantities |E[P`]| and |E[P`−P`−1]| vary as the MLQMC
level is increased. As in Section 4.5, assuming u can be sampled exactly, we expect
the MLMC parameter value α to be α = min(ν + 1, p + 1) [80]. Numerical results
are shown in Figure 5.5 where observe a decay rate of α = 2 in 1D, 2D and 3D. In
3D we might have expected the rate to be 1.5 due to the lack of smoothness of the
coefficient u which is only in C0.5−ε(Ḡ) for any ε > 0 [80]. However, at the discrete
level the FEM approximation of u is in C1,ε(G) a.s. for any ε > 0 and we might be
observing a pre-asymptotic regime.

As a next step, we analyse the convergence behaviour of QMC and MLQMC with
respect to the number of samples. In Theorem 5.6 we showed that in the QMC case
we expect an initial QMC-like convergence rate followed by a standard MC rate of
O(N−1/2) and that the higher the Haar level is, the later the transition between the
two regimes happens. No results regarding the MLQMC case were derived, but we
expect a similar behaviour to occur. Furthermore, we would like to determine whether
the multilevel technique can improve on QMC by bringing further variance reduction.

We draw inspiration from the original MLQMC paper by Giles and Waterhouse
[67] and we study the convergence behaviour of both QMC and MLQMC as the
MLQMC level is increased. Results are shown in Figure 5.6. We increase the Haar
level with the MLQMC level so that the Haar mesh size is always proportional to
the FEM mesh size, but we consider two different strategies: 1) we choose the Haar
mesh size to be comparable to the FEM mesh size (Figures 5.6a, 5.6c, 5.6e) and 2) we
pick the Haar mesh size to be smaller than the FEM mesh size (Figures 5.6b, 5.6d,
5.6f). For both scenarios, we compute the variance V` of the (ML)QMC estimator
on MLQMC level ` by using M = 128 (M = 64 in 3D) randomisations of the Sobol’
sequence used and we monitor the quantity log2(N V`) as the number of samples N
is increased. Various colours are used in Figure 5.6 to indicate the different sample
sizes. The horizontal lines correspond to QMC and the oblique lines to MLQMC.

For standard Monte Carlo and MLMC, we have V` = O(N−1), giving a log2(N V`)
of O(1). For this reason, if we were observing a MC-like convergence rate, we would
see the different coloured lines of Figure 5.6 overlapping. The fact that this does not
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happen means that we are in fact observing a QMC-like rate which is faster than
O(N−1) (for the variance). However, it is clear by looking at Figures 5.6a, 5.6c and
5.6e that as N grows the lines start overlapping, marking a decay to a O(N−1) rate
of convergence (for the variance) as predicted by Theorem 5.6. By comparing the
figures on the left hand side to those on the right-hand side, it is also clear that
increasing the Haar level delays the occurrence of this behaviour both in the QMC
case (as predicted by Theorem 5.6) and in the MLQMC case. Furthermore, it appears
that in the MLQMC case the convergence rate decays sooner than in the QMC case.
Finally, we note that MLQMC indeed benefits from the combination of QMC and
MLMC: the variance of the MLQMC estimator on any level is always smaller than the
corresponding QMC estimator for the same number of samples, with large variance
reductions on the fine levels.

In Figure 5.7 we take a closer look at the 2D examples from Figure 5.6 and we com-
pare the observed (ML)QMC convergence rate with the rate that would be expected
in a standard MC regime. We monitor the standard deviation of the (ML)QMC
estimators for P` (left figures) and P` − P`−1 (right figures). Initially, a QMC-like
convergence rate is observed for both quantities, which eventually decays to a stan-
dard MC rate. This transition occurs later when the Haar level is larger. To see
this, compare the top (lower Haar level) and bottom (higher Haar level) plots and
the different colour lines (in this test case a higher (ML)QMC level corresponds to a
higher Haar level) in Figure 5.7.

We now focus on the 2D case only for simplicity and see how both QMC and
MLQMC perform in practice when applied to equation (5.81). In Figure 5.8 we
study the adaptivity and cost of (ML)QMC as the root mean square error tolerance ε
is decreased for the same FEM hierarchy, but for two different Haar level hierarchies.
The top plots in the figure correspond to the choice of Haar meshes with mesh size
comparable to the FEM mesh size (|�L`

|1/2 = 2−`). The results in the bottom plots
are instead obtained by fixing the Haar level to L` = 6 for all `. In both cases we fix
the number of randomisations to be M = 32.

In the plots on the left hand side in Figure 5.8 we see how MLQMC automatically
selects the number of samples according to the greedy strategy highlighted in Section
2.2 so as to satisfy the given error tolerance. As in the MLMC case, more samples are
taken on coarse levels and only a few on the fine levels. The second Haar level strategy
(plot on the bottom right) uses higher Haar levels on the coarse MLQMC levels,
which corresponds to a later decay to a O(N−1/2) rate (cf. Figure 5.6). Therefore this
strategy requires lower sample sizes (compare with the top left plot).

In the plots on the right-hand side we show the overall cost of QMC and MLQMC
as the root mean square error tolerance ε is reduced. More specifically, we plot
the quantity ε2Ctot, where Ctot is the total cost. The reason is that the total cost
complexity of MLMC for this problem (MLMC parameters: β = 2α = 4, γ = 2,
cf. Section 2.2) is O(ε−2), giving the ε2Ctot factor to be O(1) for all ε. The fact that
the MLQMC cost line is not horizontal, but decreases as ε is reduced shows that the
total complexity of MLQMC is better than ε−2, i.e. that our MLQMC algorithm has
a better-than-MLMC complexity. This improved complexity stems from the fact that
we are observing a QMC-like convergence rate with respect to N .
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Figure 5.6: Convergence behaviour of (ML)QMC with respect to the number of samples
N in 1D (a)-(b) and 2D (c)-(d) (M = 128), and in 3D (e)-(f) (M = 64). Plots
(a),(c),(e) (on the left) are obtained by choosing Haar mesh sizes comparable to the
FEM mesh sizes: |�L`

| = 2−(`+1) in 1D (a), and |�L`
|1/d = 2−` in 2D (c) and 3D

(e). Plots (b),(d),(f) (on the right) are obtained by choosing Haar meshes which are
finer than the corresponding FEM meshes: |�L`

| = 2−(`+2) in 1D (b), |�L`
|1/2 =

2−(`+2) in 2D (d) and |�L`
|1/3 = 2−(`+1) in 3D (f). The (approximately) horizontal

and oblique lines correspond to QMC and MLQMC respectively. Different colours
indicate different sample sizes. On the y-axis we monitor (the logarithm of) the
product between N and the (ML)QMC estimator variance on level `. This product is
O(1) when the convergence rate is MC-like and therefore the coloured lines overlap if
a O(N−1/2) MC rate is observed. In the figure we observe a pre-asymptotic QMC-
like convergence rate that then tails off to a standard MC rate (the lines initially do
not overlap, but they start overlapping as N is increased). This phenomenon always
occurs (cf. Theorem 5.6), but it happens later when the Haar level is increased (figures
on the right). 105
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Figure 5.7: Convergence behaviour of (ML)QMC with respect to the number of sam-
ples N in 2D. The top and the bottom plots correspond to the same problem and
(ML)QMC set-up considered in Figures 5.6c and 5.6d respectively. The continuous
lines correspond to the standard MC rate. In the figures on the left, we plot the stan-
dard deviation (SD) of the QMC estimator for P` as a function of the number of
samples. In order to make the figures clearer, we normalise this value by dividing by
the SD of the estimator when N = 1. The actual values can be recovered by looking at
the horizontal orange lines in Figures 5.6c and 5.6d. In the figures on the right, we
plot the SD of the MLQMC estimator for P`−P`−1 as a function of N (dashed lines)
and we compare them with the theoretical standard MC convergence behaviour (contin-
uous lines). Overall, we observe a pre-asymptotic QMC rate that eventually decays to
a O(N−1/2) standard MC rate. By comparing the different figures and the behaviour
on different levels (here larger (ML)QMC levels correspond to larger Haar levels), we
note how this decay occurs later for larger Haar levels, as expected (cf. Theorem 5.6).
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Figure 5.8: MLQMC convergence for the solution of (5.81). We take M = 32 and
consider two Haar level hierarchies: L` = 2+` (top plots) and L` = 6 for all ` (bottom
plots). In the plots on the left we show how the MLQMC algorithm automatically
selects the optimal number of samples N` on each level to achieve a given tolerance
ε. Note that we have dropped the first mesh of the hierarchy as it is too coarse and
it would not bring any significant advantage to the performance of MLQMC (same
reasoning as for MLMC, see [68]). We observe that on the finest levels only one sample
is used, making MLQMC equivalent to plain MLMC on these levels. In the plot on
the right we compare the efficiency of MLQMC with QMC for different tolerances.
MLQMC appears to have a better-than-O(ε−2) total cost complexity and significantly
outperforms QMC.
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As ε is decreased, we expect the cost complexity to decay to an ε−2 rate: for
extremely fine tolerances very large sample sizes are required yielding the asymptotic
O(N−1/2) standard MC rate and harming the overall cost complexity. However, even
in this case, the overall MLQMC cost benefits from the pre-asymptotic regime and
MLQMC still outperforms MLMC (see Figure 5.9). Similarly, QMC initially benefits
from a faster convergence rate with respect to N . As the tolerance is decreased, the
QMC rate decays to a standard MC rate and the total cost of QMC starts increasing
faster than O(ε−2).

Comparing the costs between the top and bottom of Figure 5.8, it appears that
increasing the Haar level on the coarse MLQMC levels improves the total MLQMC
cost while, in the QMC case, decreasing the Haar level harms convergence. This
suggests that the Haar level choice has a considerable impact on the overall MLQMC
and QMC performance. We investigate this in Figure 5.9, where we show the total
cost of (ML)QMC for different Haar level hierarchies and we compare it with the cost
of standard MLMC. The x-axis and the black lines in both plots are the same. We
present the costs of two versions of MLMC: the black dash-dotted line corresponds to
standard MLMC, while the black dashed line corresponds to a MLMC algorithm in
which the number of samples are restricted to be in powers of 2. Since this restriction
also applies to MLQMC, we believe the comparison between MLMC and MLQMC
to be fairer in this case, but we present both lines for completeness. We note that
MLQMC outperforms MLMC by a factor of approximately 8, depending on the Haar
level choice.

Remark 5.21. The results shown in Figures 5.8 and 5.9 do not account for differences
in the cost per sample due to variations in the number of supermesh cells. If the cost of
solving the PDE with random coefficients of interest (e.g. equation (5.81)) dominates
over the cost of sampling white noise realisations, these results are still valid as is.
Otherwise, extra care must be taken when using Haar meshes which are much finer
than the corresponding FEM meshes since this results in a large number of supermesh
cells. In the figures this would apply to Haar levels greater than L` = {4, . . . , 10}
(gray line in the plot on the right) and there is clearly a trade-off since large L means
faster decay with respect to N , but larger costs per sample as well.

Recall the convergence results with respect to the number of samples shown in
Figure 5.6: even if the convergence rate decreases as N` increases, it is clear from
Figure 5.8 (left) that this only happens on the coarse levels where more samples are
needed. Since for problem (5.81) and the FEM discretisation chosen we are in the
“good” case of the MLMC theorem (i.e. β > γ, cf. Theorem 2.1), the multilevel cost
is dominated by the sample cost on the coarse levels. We therefore expect to obtain
computational gains by increasing the Haar level on the coarse MLQMC levels. At
the same time, we do not expect to lose in computational efficiency if we decrease the
Haar level on the fine levels as these are not dominating the total cost. Note that in
the QMC case there is only one level and the only possible strategy is to keep the
Haar level as high as required.

By looking at Figure 5.9 it is clear that our expectations are met. In the QMC case
(plot on the left) we see that a small Haar level results in significant cost increase for
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Figure 5.9: MLMC, QMC and MLQMC total computational cost needed for the solu-
tion of (5.81) with the same FEM mesh hierarchy as in Figure 5.8. In the (ML)QMC
case, we take M = 32 and consider different Haar level hierarchies which correspond
to different computational costs. The x-axis and the MLMC lines are the same in
both plots. MLQMC outperforms MLMC which in turn outperforms QMC.

small tolerances, while for large Haar levels we retain good convergence with respect
to N and a cost complexity which looks just slightly worse than O(ε−2). For the
tolerances considered, there seems to be little advantage in increasing the Haar level
beyond the L = 8 threshold. For this specific problem, the optimal strategy would
be to increase the Haar level as the mesh is refined and set L` = {4, 5, 6, 6, 8, 8} so
that the Haar level is increased only when needed. Generally speaking, we believe
that it is never advantageous to use Haar meshes much finer than the FEM meshes
(cf. Remark 5.21).

In the MLQMC case (plot on the right in Figure 5.9), we note that increasing the
Haar level on the coarse levels indeed brings computational advantages (e.g. compare
the gray and pink lines) and decreasing it on the fine levels does not seem to affect
the total cost (e.g. compare the pink with the orange line), as predicted. The optimal
strategy therefore consists of increasing the Haar level on the coarse levels and either
keeping it constant across the MLQMC hierarchy or possibly even decreasing it (there
is little computational advantage in decreasing it if the FEM meshes on the fine levels
are already much finer than the Haar mesh). For the MLQMC hierarchy, a good choice
seems to fix L` = 6 for all ` since a larger Haar level would significantly increase the
number of supermesh cells (cf. Remark 5.21).

Overall, our MLQMC strategy outperforms MLMC, which in turn outperforms
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QMC. Standard MC is always worse than QMC, by up to two orders of magnitude
for small ε (not shown).

Remark 5.22. The optimal Haar strategy is likely to change if the problem to be solved
belongs to the other two cases of the MLMC theorem (Theorem 2.1), i.e. β = γ or
β < γ. In the former case (β = γ), the total multilevel cost is simultaneously
dominated by all levels in the multilevel hierarchy and we believe in this case that
the optimal strategy is to use a Haar mesh hierarchy of mesh sizes comparable to the
FEM mesh sizes (e.g. as for the gray line in the right plot of Figure 5.9). In the latter
case (β < γ), the total multilevel cost is dominated by the fine levels. In this case it
might be advantageous to keep the Haar level low on the coarse levels and to increase
it on the fine levels. We remark that all these considerations are qualitative and to
obtain more precise statements on the exact Haar level choice a stronger MLQMC
convergence theory than that presented in Section 5.4 would be required. However,
establishing such a theory is complicated (the low smoothness of some of the Matérn
fields considered is even outside of the theory presented by Hermann and Schwab
[88]) and we leave this to future research.

Remark 5.23. If we are in the β > γ case, then the Haar level is capped on the fine
levels. Therefore, as previously mentioned in remarks 5.8 and 5.14, the overall white
noise sampling complexity is asymptotically linear with respect to the number of cells
of the FEM mesh considered even in the case in which we are not using compactly
supported Haar wavelets (cf. Remark 5.2). In the other cases of the MLMC theorem
(Theorem 2.1), it might be detrimental to cap the Haar level and compactly supported
Haar wavelets are to be preferred in case we cannot afford the additional logarithmic
term in the complexity estimate.

5.7 Chapter summary and conclusions
In this chapter we presented a novel algorithm to efficiently compute the action of

white noise and sample Matérn fields within a QMC and MLQMC framework. This
algorithm retains the computational efficiency of the MLMC case (cf. Chapter 4) and
still enforces the required multilevel coupling in a non-nested mesh hierarchy. The
numerical results show that our technique works well in practice, that the convergence
orders observed agree with the theory and that MLQMC outperforms MLMC and
has a better cost complexity in the pre-asymptotic regime. As in the MLMC case, we
remark that the sampling technique presented extends naturally to any application
in which spatial white noise realisations are needed within a finite element framework
provided that the solution is smooth enough. An open problem is the derivation of a
close-form expression for the optimal number of samples on each MLQMC level and
for the optimal Haar level hierarchy, but we leave this to future research.

110



Chapter 6

Uncertainty quantification of tracer
distribution in the brain using
random interstitial fluid velocity fields

The contents of this chapter are novel unless otherwise indicated. Part of this
chapter has been adapted from the paper by C., Vinje and Rognes [44], which is
to appear in Fluids and Barriers of the CNS and was written in collaboration with
Vegard Vinje, a PhD student/employee from the author’s InFoMM partner company,
Simula Research Laboratory. Within this paper, the biological and medical aspects
were Vinje’s responsibility, while the numerical and stochastic aspects were the re-
sponsibility of the thesis’ author who produced most of the numerical results including
all the Monte Carlo simulations. The mathematical modelling and the write-up was
done jointly. The contents of this chapter that do not appear in the paper, including
the extension to multilevel and quasi Monte Carlo, are novel contributions and were
produced by this thesis’ author. These research extensions were supported by the
NOTUR grant NN9316K.

In this chapter we have a two-fold objective: we aim to gain insights of clinical
relevance and we want to test and compare the methods presented in chapters 4 and
5. While working on the solution of the problem of interest with the co-authors of
[44], it became apparent that the initial results obtained with standard Monte Carlo
were already accurate enough to make conclusions of clinical relevance (only a few
digits of accuracy are needed in practice). Given the fact that more advanced Monte
Carlo methods would have still obtained the same conclusions, we decided that, for
the sole objective of comparing these methods, considering, for the sake of simplicity,
a variant of the forward UQ problem of interest was sufficient.

6.1 Introduction
Over the last decade, there has been a significant renewed interest in the wa-

terscape of the brain; that is, the physiological mechanisms governing cerebrospinal
fluid (CSF) and interstitial fluid (ISF) flow in (and around) the brain parenchyma. A
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number of new theories have emerged including the glymphatic system [93, 96] and
the intramural periarterial drainage (IPAD) theory [5, 37] (cf. Section 1.3.2), along
with critical evaluations [14, 90, 159]. A great deal of uncertainty and a number of
open questions relating to the roles of diffusion, convection and clearance within the
brain parenchyma remain.

The glymphatic hypothesis is still far from being established as some aspects of
ISF movement are still not well understood. According to the glymphatic hypothesis
a bulk flow (which is a consequence of advection-dominated fluid movement) of ISF
has been proposed to occur through the brain parenchyma from paraarterial to the
paravenous spaces [96]. This directional fluid movement has been named the glym-
phatic system, with bulk flow being a mechanism for effective waste clearance from
the brain parenchyma, which might be related to Alzheimer disease (cf. Chapter 1).
The glymphatic hypothesis is strongly dependent on the assumption that a strong
bulk flow is present within the brain.

The exchange between CSF and ISF are believed to occur along small fluid filled
spaces surrounding large penetrating arteries in the brain parenchyma known as par-
avascular spaces (PVS; recall Figure 1.2) [93, 145]. However, while evidence of influx
of tracer along paravascular spaces seems evident, the outflux route is more debated.
Carare et al. [37] found evidence of solutes draining from the brain parenchyma along
basement membranes of capillaries and arteries, going in the opposite direction of
blood flow and possible PVS fluid movement. This flow is however not facilitated by
arterial pulsations [48], but by the movement of smooth muscle cells.

One of the main experimental tools used to study brain fluid flow is magnetic
resonance imaging (MRI), which is used to track the movement of injected tracer
particles. In fact, all of the in-vivo studies that we mentioned so far have used contrast
agents to track the movement of fluid within the intracranial space. However, this
might not be the most accurate approach: injection of tracer at rates as low as 1
µL/min can already cause a significant increase of local intracranial pressure [172],
which may lead to pressure gradients driving bulk flow. Furthermore, net movement
of tracer does not necessarily require bulk flow and can be explained with dispersion,
a combination of diffusion and local mixing [9]. It is therefore not clear whether the
recorded evidence for the existence of a glymphatic pathway could have been affected
by measurement errors.

For this reason, other experimental methodologies have been used [85]. An alter-
native avenue of investigation is offered by computational models. Numerical simula-
tions have been employed to assess the possibility of bulk flow within the parenchyma
[92], finding it to be dominated by diffusion and not by bulk flow (advection). Smith
et al. [159] came to the same conclusion by experimenting with very low infusion
rates.

Even though computational models can distinguish between diffusion and bulk
flow or advection, there are a vast number of unknown parameters and boundary
conditions needed to accurately predict the movement of ISF in the brain parenchyma.
For instance, the permeability of brain tissue used in computational models varies
from 10−10 to 10−17 m2 [79, 92]. Because the permeability is directly linked to the
Darcy fluid velocity in these models, this parameter choice could result in a difference
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of 7 orders of magnitude in predicted ISF flow velocities. In addition, CSF dynamics
vary between subjects [16] and human CSF production has been reported to increase
in the sleeping state [128] which may alter ISF flow.

In a recent review, Abbott and colleagues [2] concluded that bulk flow is likely to
be restricted to PVS and possibly white matter tracts, but not in the gray matter.
Earlier studies have reported a bulk flow velocity of less than 1 µm/sec, while Bedussi
and colleagues [17] recently reported average net bulk flow of 17 µm/sec, the latter
study only focusing on PVS. Nevertheless, since tracer movement in in vivo studies
does not necessarily directly reflect fluid flow, and because model parameters are
uncertain with large variability, the exact velocity field governing ISF flow in the
brain remains unknown.

For this reason it has recently been pointed out that there is an overarching need to
reduce uncertainty when characterizing the anatomy and fluid dynamics parameters
in models considering the glymphatic circulation [155]. This study is a first step in
this direction: we aim to rigorously quantify how the aforementioned uncertainties
in the physiological parameters and in ISF flow affect the spread of a tracer from
the subarachnoid space (SAS) into the brain parenchyma. We assume movement of
tracer in the brain parenchyma to occur by diffusion and/or convection. To account
for uncertainty and variability, we circumvent the lack of precise parameter values
by modelling velocity and diffusivity as Matérn stochastic fields. We then set up
a convection-reaction-diffusion model with these stochastic fields as coefficients and
quantify the uncertainty in the model prediction via a combination of the Monte
Carlo and Gaussian field sampling methods presented in the previous chapters. We
employ standard MC, MLMC and QMC, but we leave the comparison with MLQMC
to future work.

More specifically, we model the contrast MRI study performed by Ringstad et
al. [146] assessing glymphatic function in the human brain. We derive a baseline
convection-reaction-diffusion PDE, which we then extend by modelling its coefficients
according to different hypotheses on CSF flow and clearance, including the relative
importance of diffusion, the glymphatic system, possible capillary absorption, and
uncertainty within each hypothesis. A total of five different coefficient models (from
now on just “models”) were investigated, each with random coefficients. For each
model, we compute the expected values, the probability density functions, and 99.73%
prediction intervals for different functionals of interest of the tracer concentration.
The results reported in the study by Ringstad et al. are compared with the range
of uncertainty in our model, solved on a real-life 3D brain FEM mesh derived via
MRI. We find that although the uncertainty associated with diffusion yields great
variability in tracer distribution, diffusion alone is not sufficient to explain transport
of tracer deep into the white matter as seen in experimental data. A glymphatic
velocity field may increase tracer concentration deep into the brain, but only when
adding a directional structure to the glymphatic circulation.

Replacing PDE parameters subject to uncertainty with spatially correlated ran-
dom fields is a common modelling choice in the UQ literature [39, 41, 166] and Monte
Carlo methods have been successfully used in biology to quantify how uncertainty
in model input propagates to uncertainty in model output. However, these methods
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have mainly been applied to simulations of the cardiovascular system [24, 142] and,
to our knowledge, there has only been one study in which Monte Carlo methods have
been used for UQ in brain modelling [86]. To the author’s knowledge, there has been
no previous work in which multilevel Monte Carlo or QMC methods have been ap-
plied to brain simulation and this is the first study in which forward UQ is applied
to simulations of tracer transport within the brain parenchyma.

The outline of the chapter is as follows. In Section 6.2 we derive 5 stochastic
models for brain tracer movement inspired by the MRI study of Ringstad et al. [146].
We describe the numerical strategy employed for their solution in section 6.3. In
Section 6.4 we present the simulation results and their clinical implications. We
conclude the chapter with Section 6.5 where we compare the performance of our
MLMC and QMC sampling strategies when applied to two variants of the models of
interest.

6.2 Stochastic modelling of brain tracer concentra-
tion

We model the MRI-study of Ringstad et al. [146]. In their experiments, 0.5 mL
of 1.0 mmol/mL of the radioactive tracer gadobutrol was injected in the spinal canal
(intrathecally) of 15 hydrocephalus1 patients and eight reference subjects. In this
study we only consider the healthy patient case. The localisation of the tracer was
found with MRI at 4 different time periods, at 1, 3, 4.5, and 24 hours following the
injection. After 3 hours, tracer was localised in the lower region of the cranial SAS,
and had started to penetrate into the brain parenchyma of the reference subjects.
The following day it had spread throughout the brain tissue. Tracer was found to
penetrate along large arteries in all study subjects, and a low proportion of tracer
was found in the upper regions of the brain.

6.2.1 The baseline model

We consider the following partial differential equation with random coefficients to
model transport of tracer in the brain parenchyma under uncertainty: find the tracer
concentration c = c(t,x, ω) for x ∈ G, ω ∈ Ω and t ≥ 0 such that

ċ(t,x, ω) +∇ · (v(x, ω)c(t,x, ω))−∇ · (D∗(x, ω)∇c(t,x, ω)) + rc(t,x, ω) = 0. (6.1)

Here, G ⊂ R3 is the brain parenchyma domain, the superimposed dot represents
the time derivative, D∗ is the effective diffusion coefficient of the tracer in the tissue
(depending on the tracer free diffusion coefficient and the tissue tortuosity) [127], v
represents a convective fluid velocity and r ≥ 0 is a drainage coefficient potentially
representing e.g. capillary absorption [130] or direct outflow to lymph nodes [146].
We assume that the parenchymal domain contains no tracer initially: c(0,x, ω) = 0.

1A brain disease in which CSF accumulates within the brain causing migraine, incontinence,
behavioural changes and mild dementia.
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Model D∗ v r

D1 Random variable 0 0
D2 Random field 0 0
V1 Constant Random influx and outflux field 0
V2 Constant Model V1 + directional velocity field 0
V3 Constant Random influx field r > 0

RF1 Random field Model V1 + directional velocity field 0
RF2 Random field Random influx field r > 0

Table 6.1: Summary of stochastic model variations with effective diffusion coefficient
D∗, convective fluid velocity v, and drainage coefficient r in (6.1). Models RF1 and
RF2 are only used for comparing the Monte Carlo methods presented in the previous
chapters and have less clinical relevance.

To investigate and compare different hypotheses for parenchymal ISF flow and
tracer transport, we consider 5 stochastic model variations of (6.1) including two
models with random diffusion (model D1 and D2) and three models with stochastic
velocity fields (models V1, V2, and V3). The diffusion-only models D1 and D2
correspond to negligible ISF bulk flow in the parenchyma and the absence of capillary
absorption or other direct outflow pathways. For the velocity models (V1, V2 and
V3), we consider a constant diffusion coefficient in order to isolate the effects of
the stochastic velocity fields. We also consider two more complicated models with
random diffusivity and velocity, models RF1 and RF2, that we use to test the different
sampling techniques presented in the previous chapters. A summary of the models
is presented in Table 6.1, while the mathematical modelling aspects are described in
further detail in the following sections.

Domain and geometry

We define the computational domain G as the union of white and gray matter
(cf. Section 1.3) from the generic Colin27 human adult brain atlas FEM mesh [58]
version 2 (Figure 6.1a). This domain includes the cerebellum. The levels of the brain
regions from which measurements were taken in the study by Ringstad et al. (foramen
magnum, the sylvian fissure and the precentral sulcus) are well represented by the
x3- or z-coordinates -0.1, 0 and 0.1 m, respectively. The plane z = 0 corresponds
approximately to the level of the lateral ventricles (cf. Figure 6.1).

Boundary conditions modelling tracer movement in the SAS

Let ∂G be the boundary of G and let ∂G = ∂GS ∪ ∂GV , with ∂GS representing
the interface between the brain parenchyma and the subarachnoid space (SAS), and
∂GV representing the interface between the brain parenchyma and cerebral ventricles,
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a) b)

c)

Figure 6.1: Computational domain and random diffusion coefficient. a) The com-
putational domain representing the brain parenchyma including the cerebellum. The
interior lateral ventricles are marked (dark pink) in the central region of the domain.
Two smaller regions of interest Sg and Sw, in the gray and white matter respectively,
are marked in green (leftmost region: Sw, rightmost region: Sg). b) Assumed proba-
bility distribution of the homogeneous effective diffusion coefficient D∗ used in model
D1. The expected value E[D∗] is 1.2 × 10−10 m2/s. c) Sample of the heterogeneous
effective diffusion coefficient (sagittal, axial and coronal slices ordered from left to
right) modelled as a random field and used in model D2.

respectively. We consider the following boundary conditions for (6.1):

c = g(t,x, ω) on ∂GS, (6.2)
D∗∇c · n = 0 on ∂GV , (6.3)

where n is the unit normal vector pointing outward from ∂G. In particular, we assume
that a tracer concentration is given at the SAS interface (6.2) and no ventricular
outflux (6.3).

The boundary condition (6.2) models the movement of tracer starting from the
lower cranial SAS (recall that the tracer was injected in the spinal canal) and traveling
upward in the CSF surrounding the brain as observed in the study by Ringstad et
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al. [146]. In particular, we let

g(t,x, ω) = cCSF(t, ω)h(t,x),

h(t,x) =

(
0.5 +

1

π
arctan(−a(x3 − z0 − υzt))

)
,

(6.4)

for x = (x1, x2, x3). Here, at time t, cCSF(t) is the average tracer concentration in
the SAS and depends on c (as detailed below), while h(t,x) represents its spatial
distribution.

The expression for h is based on the following considerations. We assume that the
diffusive and/or convective movement of tracer from the spinal to the cranial SAS
over time is known, and we thus model h(t,x) as a smooth step function upwards (in
the x3- or z-direction). In (6.4), υz represents the speed of tracer movement upwards
in the SAS, and a reflects the rate of change of tracer concentration from the lower to
the upper cranial SAS. Finally, we assume that at time t = 0, the tracer has spread
up to a relative distance of z0 from the lateral ventricles. This specific expression for
h(t,x) and the values of parameters a, z0 and υz are based on the spread of tracer
seen in the MR-images in the study by Ringstad et al. [146]. In particular, we use
a = 20 m−1, υz = 1.5 × 10−5 m/sec and z0 = −0.2 m. These parameters were
chosen to match time to peak in three different regions in the CSF space in reference
individuals [146].

To derive an expression for cCSF in (6.4), we consider the conservation of tracer
mass. We model the spread of n0 = 0.5 mmol tracer in the CSF, assuming a vol-
ume of VCSF = 140 mL CSF in the human SAS and ventricles [177]. The average
concentration in the SAS right after injection is thus cCSF(0) = 0.5 mmol/140 mL =
3.57 mol/m3. At any given time, we assume that the total amount of tracer in the
brain and in the SAS plus or minus the tracer absorbed or produced stays constant
in time, and is equal to the initial amount n0 = 0.5 mmol (almost surely). Applying
a conservation of tracer molecules principle gives∫

G

c(t,x, ω) dx+ cCSF(t, ω)VCSF +

∫ t

0

∫
G

rc(τ,x, ω) dx dτ = n0. (6.5)

Solving for cCSF, we thus obtain

cCSF(t, ω) =
1

VCSF

(
n0 −

∫
G

c(t,x, ω) dx−
∫ t

0

∫
G

rc(τ,x, ω) dx dτ

)
. (6.6)

Quantities of interest

To evaluate the speed and characteristics of tracer movement into and in the brain
parenchyma, we consider a set of functionals describing different output quantities of
interest. To quantify the overall spread of tracer in the gray and white matter, we
consider the total amount of tracer in the gray matter Qg and in the white matter
Qw at time points τ :

Qg(ω) =

∫
Dg

c(τ,x, ω) dx, Qw(ω) =

∫
Dw

c(τ,x, ω) dx. (6.7)
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We pay particular attention to the times τ ∈ {3, 5, 8, 24} as they correspond to the
times considered in the study by Ringstad et al. To further differentiate, we also
defined two localised functionals at each time τ : the average tracer concentration qg
in a small subregion of the gray matter Sg and analogously qw for a small subregion
of the white matter qw:

qg =
1

Vg

∫
Sg

c(τ,x, ω) dx, qw =
1

Vw

∫
Sw

c(τ,x, ω) dx, (6.8)

where Vg and Vw is the volume of the gray and white matter subregions, respectively.
The size and relative location of the subregions Sg and Sw within the computational
domain are illustrated in Figure 6.1a. To further quantify the speed of propagation,
we define the white matter activation time Fw:

Fw(ω) = {min t |
∫

Ωw

c(t,x, ω) dx/n0 > Υ1}, (6.9)

where n0 is the total amount of tracer injected into the SAS (0.5 mmol) and Υ1 is
a given percentage. Given the time course of the expected tracer distribution to the
white matter [147], we here chose Υ1 = 10%. Finally, we also define the analogous
regional (white matter) activation time

fw(ω) = {min t | 1

Vw

∫
Sw

c(t,x, ω) dx > Υ2}, (6.10)

where we choose Υ2 = 10−3 mol/m3 (choice inspired by [147]).
For plotting the boundary tracer concentration over time, we define three axial

planes along the z-axis (z = −0.1, 0, 0.1 m) to represent the level of three different
regions of interests within the brain (foramen magnum, sylvian fissure and precentral
sulcus, respectively).

6.2.2 Stochastic diffusion modelling

The parenchymal effective diffusion coefficient of a solute, such as e.g. gadobutrol,
is heterogeneous [170] (varies in space) and individual-specific (varies from individual
to individual). To investigate the effect of uncertainty in the diffusion coefficient, we
consider two approaches: first, to model the diffusion coefficient as a random variable
and second, to model the diffusion coefficient as a random field, thus allowing for
tissue heterogeneity. Both approaches are described in further detail below.

Effective diffusion coefficient modelled as a random variable

First, we consider the simplifying but common assumption that the effective dif-
fusion coefficient is spatially homogeneous: D∗(ω) ∈ R+ a.s. We account for the
uncertainty in its value by modelling it as a random variable:

D∗(ω) = 0.25×D∗Gad +D∗γ(ω), (6.11)
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where D∗Gad = 1.2 × 10−10 m/s2 is a fixed parenchymal gadobutrol diffusivity [147]
and D∗γ(ω) has a Gamma distribution with shape k = 3 and scale θ = 0.75×D∗Gad/k.
The choice of shape and scaling parameters ensures that (i) the diffusion coefficient
is positive, (ii) its expected value matches reported values of parenchymal gadobutrol
diffusivity [147], and (iii) its variability allows for values up to 2–3 times larger or
smaller than the average with low probability. The last modelling choice reflects diffu-
sivity values in the range 1-10 × 10−10 m/s2 in agreement with previous reports [127].
The probability distribution of D∗ is shown in Figure 6.1b-c.

Effective diffusion coefficient modelled as a random field

In order to represent spatial heterogeneity in the diffusion coefficient, we next
model D∗ as a continuous random field. Again, we set

D∗(x, ω) = 0.25×D∗Gad +D∗f (x, ω), (6.12)

where D∗f now is a random field such that for each fixed x ∈ G, D∗f (x, ω) is a gamma-
distributed random variable with the same parameters as D∗(ω) in (6.11). To enforce
continuity and to easily sample the random field from its distribution, we draw sam-
ples of D∗γ by first sampling a Matérn field X(x, ω) using the techniques presented
in chapters 4 and 5, and then transform it into a gamma random field by using a
copula [125]. This consists in setting D∗γ(x, ω) = F−1(Φ(X(x, ω))), where F−1 is the
inverse CDF of the target (gamma) distribution, Φ is the CDF of the standard normal
distribution and X(x, ω) is a standard (zero mean, unit variance) Matérn field with
smoothness parameter ν = 2.5 and correlation length λ = 0.01 m, cf. (2.27). Note
that Φ maps any standard normal random variable to a standard uniform random
variable and that F−1 maps any standard uniform random variable to the target
distribution, hence the function F−1(Φ(x)) maps standard random variables to the
target gamma distribution. Samples of D∗γ(x, ω) obtained this way will preserve the
same Spearman correlation and smoothness properties of X(x, ω), but will present a
different covariance structure [125] (F−1(Φ(x)) is non-linear, but smooth and mono-
tone).

6.2.3 Stochastic velocity modelling

In what follows we introduce three different models for the velocity field, each
representing a different hypothesis regarding intraparenchymal ISF/CSF movement.
We emphasise that each model represent a homogenised velocity field averaged over
physiological structures.

Glymphatic velocity model: arterial influx and venous outflux

To define a stochastic homogenised velocity model representing the glymphatic
pathway, we assume that ISF follows separate inflow and outflow routes: entering the
brain along paraarterial spaces and exiting along paravenous spaces [96]. We further
suggest that
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1. Substantial changes within the velocity field happen after a distance propor-
tional to the mean distance between arterioles and venules.

2. The blood vessel structure is random and independent from the position within
the parenchyma in the sense that the presence of paraarterial or paravenous
spaces are equally likely at any point in space. Mathematically, this assumption
requires the expected value of each of the velocity components to be zero.

3. The velocity field varies continuously in space and is divergence-free (∇·v = 0),
i.e. no CSF/ISF leaves the system e.g. through the bloodstream.

4. We set the expected velocity magnitude |v|2 =
√
v2
x + v2

y + v2
z to be vavg =

0.17µm/s and we allow for up to 2-3 times larger and up to 10 times smaller
values with low probability [127].

Although ISF/CSF velocities in paravascular regions may be higher [122] that what
we propose, the velocity field here models an averaged bulk flow over a larger area
(comprised of e.g. PVS and adjacent tissue). Bulk flow velocities in rats have been
reported to be in the range of approximately 0.1-0.24 µm/s [1, 127].

To address these stipulations, we define the stochastic glymphatic circulation ve-
locity field

v(x, ω) = vavg · η̄(λ)
√
U(ω)

∇×
 X(x, ω)
Y (x, ω)
Z(x, ω)

 , (6.13)

where η̄(λ) = λ/
√

8 is a scaling constant chosen such that the magnitude of v satisfies
E[|v|22]1/2 = vavg (we omit the mathematical derivation of this constant), U(ω) is a
standard uniform random variable and X(x, ω), Y (x, ω) and Z(x, ω) are standard
i.i.d. Matérn fields with ν = 2.5 and correlation length λ = 1020µm. A sample of the
glymphatic circulation velocity field together with the velocity magnitude distribution
is shown in Figure 6.2a-b.

The factor
√
U(ω) is an ad-hoc term to enforce the variability requirement defined

by point 4) above. The use of Matérn fields enforces spatial variability in a continuous
manner and taking the curl operator ensures that the resulting velocity is divergence-
free, hence addressing point 3). It can be proven that the field within the brackets
in (6.13) is still Gaussian, has zero mean (hence satisfies point 2) and has the same
correlation length as the original Matérn fields, albeit it presents a slightly different
covariance structure. To see this, note that the partial derivative ∂X/∂xi of a zero-
mean Gaussian field X(x, ω) with a twice differentiable covariance C(x,y) is still a
zero-mean Gaussian field with covariance given by ∂2C(x,y)/(∂xi∂yi) (cf. section 2.3
in [3]). The curl components are therefore just sums of independent Gaussian fields,
and hence Gaussian as well. Their covariance function is proportional to a second
partial derivative of the Matérn covariance function (2.27) and hence the correlation
length is preserved, although the resulting covariance is not Matérn anymore and the
components of v cease to be independent.
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Figure 6.2: Stochastic aspects of the glymphatic circulation velocity fields (models
V1 and V2). a) Probability density of the glymphatic circulation velocity magnitude
|v|2 cf. (6.13). b) Streamlines of a corresponding velocity field sample. c) Velocity
magnitude and streamlines for the directional velocity field vdir as given by (6.14). The
flow field is assumed to follow cardiovascular pulses upwards along the brain. After
entering the deeper parts of the brain, the bulk flow spreads out at reduced velocity.
From left to right: sagittal, coronal and transverse view.

The choice of correlation length was guided by the following considerations. The
mean distance between arterioles and venules was reported to be 280 µm in rhesus
monkeys [4], although the value 250 µm has been used as a representative distance
in humans in recent modeling papers [97, 144]. We estimated the mean distance
in humans by considering differences in brain and artery size between monkey and
human (Table 6.2). We find a factor close to 2 between CCA and arteriole diameter,
while a similar ratio was found for the cube root of the brain mass. Thus, the
correlation length should be greater than 250 − 560 µm to address point 1) above.
Combining these physiological considerations with the corresponding requirements on
the numerical resolution, we let λ = 1020µm.
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Species Brain mass (g) dCCA (mm) dA (µm) ∆AV (µm)

Mouse 0.3 [148] 0.47 [111] 25 [94] 40∗
Monkey 88 [148] 3.5[180] 35.5 [4] 280 [4]
Human 1350 [148] 6.3 [106] 40-250 [11] 1020∗

Table 6.2: Brain-related parameters of three species. ∗: Estimated values. dCCA:
diameter of the common carotid artery, dA: arteriole diameter ∆AV: distance between
arteriole and venule.

Glymphatic velocity model with additional directional velocity field

Above we assumed that the blood vessel distribution was independent of the
spatial position within the parenchyma and that bulk flow from arterial to venous PVS
occurs on a small length scale proportional to the mean distance between arterioles
and venules. However, transport of tracer might also happen on a larger length scale
along larger vascular structures present in given physical regions (such as e.g. circle
of Willis2). As CSF is hypothesised to enter the brain along penetrating arteries, the
direction of cardiac pulse propagation may induce a directionality of the (glymphatic)
ISF circulation as well. The cardiac pulse follows the vessels of larger arteries entering
the brain from below, and from there spreads out almost uniformly [104, 143]. The
pulses also seem to traverse deep gray matter regions on the way up towards the
ventricles.

To model such behavior, we introduce a directional velocity field vdir, with char-
acteristics qualitatively similar to what is described in the literature [104, 143]:,

vdir(x) = −vf

 arctan(15x1)(|x1| − 0.1)
arctan(15x2)(|x2| − 0.1)

−0.9x3 + 0.06−
√
x2

1 + x2
2

 , (6.14)

where vf = 2 × 10−6 m/s. For a plot of vdir, see Figure 6.2c. The velocity field vdir

induces a net flow out of the parenchyma at the very low rate of 0.007 mL/min. We
superimpose this deterministic directional velocity field on the stochastic glymphatic
circulation velocity field to define the stochastic glymphatic directional velocity field:

v(x, ω) = vV1(x, ω) + vdir(x), (6.15)

where vV1 is given by (6.13). This velocity model thus takes into account both the
“randomness” of small arteries, but also the “deterministic” presence of large arteries
and possibly other structures of blood flow propagation [104, 143].

2A large interconnection of vascular channels that provides oxygenated blood to the brain.
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Capillary filtration model V3: arterial inflow with a homogeneous sink
throughout the brain

Several independent studies demonstrate that CSF may enter the brain parenchyma
along spaces surrounding penetrating arteries [5, 18, 96, 122]. However, the glym-
phatic outflux hypothesis of an advection-dominated flow of CSF through the extra-
cellular space and recirculation into the SAS through paravenous spaces has been
severely questioned [5, 90, 92, 158]. As a variation, we here therefore also consider a
stochastic velocity model representing paraarterial influx without a direct return route
to the CSF. Instead, we assume that ISF/CSF is drained inside the brain parenchyma
along some alternative outflux pathway. This pathway may include the capillaries or
separate spaces along the PVS directly into the lymphatic system at cervical lymph
nodes.

In light of this, we consider the following alternative velocity assumptions. (1)
There is a net flow of CSF into the brain and (2) ISF is cleared within the parenchyma
via some, here unspecified, route. For instance, it has been proposed that produc-
tion and absorption is present all over the CSF system and that capillaries and ISF
continuously exchanges water molecules [131]. However, drainage of large molecules
through this route is unlikely [90]. It has also been reported that lymph vessels may
be capable of also draining larger molecules from brain tissue into deep cervical lymph
nodes, possibly through paravenous spaces [10]. In addition, other outflow routes may
exist [165].

Figure 6.3: Sample model V3 velocity field. Velocity magnitude and streamlines for
the velocity field as given by (6.16). Flow is assumed to occur from the cortex towards
the ventricles with reduced velocity along the way due to clearance. From left to right:
sagittal, coronal and transverse view.

To address these assumptions, we define a stochastic arterial inflow velocity field
as a radially symmetric field pointing inwards from the SAS interface to the brain
region around the lateral ventricle. This central region is modelled in what follows
as a sphere of radius R = 8 cm and center given by xc in the lateral ventricles.
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Mathematical experimentation lead to the following ansatz for such velocity:

v(x, ω) = v̄(ω) exp

(
− 3(R− ||x− xc||)2

R2 − (R− ||x− xc||)2

)
(xc − x), (6.16)

where v̄(ω) is a gamma random variable chosen such that the probability distribution
of the velocity magnitude is comparable to that of the glymphatic circulation velocity
defined by (6.13). The shape parameter k = 2 and the scale parameter is set such
that again E[|v|22]1/2 = vavg. Note that in this case, the expected value of the velocity
components are non-zero. To satisfy (2), we model the drainage of tracer by setting
r = 1× 10−5 s−1, which typically results in 40% drainage of the injected tracer over
48 hours.

6.3 Numerical solution of the stochastic models
Two different objectives

In this chapter we aim to: 1) solve problem (6.1) to sufficient accuracy, including
the estimation of the PDFs of all the output functionals considered, and 2) test and
compare the methods presented in chapters 4 and 5. To address point 1, high accu-
racy is not needed since only a few digits are sufficient to obtain visual convergence
of the numerical simulations and draw conclusions of clinical relevance [44]. As a
consequence, it became apparent that the initial exploratory results that we obtained
with standard Monte Carlo were already accurate enough and that no extra insights
would have been found with the use of more advanced methods. We therefore decided
that for the sole purpose of making the comparison in point 2, considering, for the
sake of simplicity, a variant of the numerical problem at hand was sufficient.

In what follows, we detail the two numerical approaches adopted for the solution
of (6.1).

Weak form and discretisation

Let H1
S(G) := {s ∈ H1(G) s.t. s = 0 on ∂GS} and, for c, s ∈ H1(G), let

a(c, s) = (∇ · (vc), s) + (D∗∇c,∇s) + (rc, s). (6.17)

After time discretisation, the weak form of (6.1) reads: find cn ∈ H1(G) such that
for all s ∈ H1

S(G) and a.s.,(
cn − cn−1

∆t
, s

)
+

1

2
(a(cn, s) + a(cn−1, s)) = 0, (6.18)

c0 ≡ 0, cn = cnCSFh(tn,x) on ∂GS, (6.19)

where cn is the FEM approximation to c(tn, ·, ω) with tn = n∆t for n = 0, . . . , nT − 1
and nT − 1 = T/(∆t) and cnCSF is an explicit approximation of cCSF(tn, ω), defined
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in (6.6). We approximate cnCSF explicitly by approximating the time integral in (6.6)
with the trapezoidal rule:

cCSF(tn, ω) ≈ cnCSF =
1

VCSF

(
n0 −

∫
G

cn−1 dx

−∆t

2

(
2
n−2∑
i=1

∫
G

rci dx+

∫
G

rcn−1 dx

))
.

(6.20)

Since this boundary condition is discretised explicitly, this results in a first-order
scheme in time. A second-order discretisation in time is also feasible, but requires
an implicit discretisation of the non-local boundary condition, which can be done by
either introducing a Lagrange multiplier or by manually modifying the FEM linear
system matrix. The first-order discretisation is accurate enough to address point 1.
For point 2, we still keep the main PDE with random coefficients (6.1), but we replace
the non-local boundary condition with a Dirichlet boundary condition obtained by
solving a deterministic version of equation (6.1) in which each random coefficient is
replaced by its expected value. This “overkill” solution is computed by using the
first-order in time scheme with an extremely small time step (∆t = 30× 2−6 min) on
the finest mesh available (see later in this section for a description of the meshes and
time step sizes used).

Remark 6.1. Changing the boundary condition to Dirichlet turns the time discreti-
sation (6.18) into a second order scheme, which in turn allows us to avoid the “bad”
γ > β case of the MLMC theorem (cf. Theorem 2.1). In fact, a first-order in time and
second-order in space discretisation would yield MLMC parameter values of α = 2,
β = 4, γ = 5. This is assuming that a perfect multigrid solver and a geomet-
ric mesh hierarchy is used so that h ∝ 2−` and that we fix the time step so that
∆t ∝ 2−2`. A second-order in space and time discretisation instead gives γ = β = 4
(for h,∆t ∝ 2−`), which is the “borderline” case of the MLMC theorem and has a
better total cost complexity estimate. The downside of changing the boundary con-
dition is that this affects the PDF of the solution, which is what we are also trying to
estimate as part of point 1. For this reason, we introduce this change only to address
point 2 for which the actual probability density of the solution is not important.

We discretise (6.18) in space by using the FEM. Given a FEM approximation
subspace Vh ⊆ H1

S(G), the fully discrete weak form of (6.1) reads: find cnh ∈ Vh such
that, for all sh ∈ Vh and a.s.,(

cnh − cn−1
h

∆t
, sh

)
+

1

2
(a(cnh, sh) + a(cn−1

h , sh)) = 0, (6.21)

c0
h ≡ 0, cnh = cn,hCSFh(tn,x) on ∂GS, (6.22)

where cn,hCSF is given by (6.20) in which cn−1 and ci are replaced by cn−1
h and cih respec-

tively.
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Meshes and time step sizes used

We discretise the domain G by using various refinements of the Colin27 human
adult brain atlas simplicial mesh [58] (version 2). To address point 1, we use an
adaptively refined version of this brain mesh with 1 875 249 vertices and 9 742 384
cells and a time step of ∆t = 15 min. To address point 2, we construct a multilevel
hierarchy in which the coarsest level is given by one uniform refinement of the original
brain mesh and the other 2 levels are obtained through uniform refinement. On level
`, we fix (∆t)` = 15 × 2−` min. The finest mesh in the hierarchy has 127 672 832
cells and 22 282 705 vertices. Since the Matérn fields need to be sampled on an
extended domain, we embed each brain mesh into a mesh of a larger box domain
of size sufficiently large to make the domain truncation error negligible (dimensions
0.16 × 0.21 × 0.17 m3) [103]. Each outer box mesh is constructed with the meshing
software Gmsh [65] (dev version 4.2.3-git-023542a) so that the corresponding brain
mesh is nested within it. Furthermore, the box meshes are graded so that the cell
size gradually gets larger away from the brain boundary (Matérn field values are only
needed in the brain domain).

Numerical stabilisation

We choose the FEM subspaces to be spanned by continuous piecewise linear basis
functions. We remark that a stabilisation here is not needed since the problem is only
mildly convection-dominated, with an upper estimate of the Péclet number of

Pe ≈ L̂vavg

D∗Gad

= O(102), (6.23)

where L̂ ≈ 0.084 m is half the diameter of the computational domain, vavg =
0.17µm/s, and D∗Gad = 1.2 × 10−10 m/s2. Given the small mesh sizes we get a
low-probability worst-case cell Péclet numbers of ≈ 43× 2−` on level ` of the MLMC
hierarchy used in point 2 and of O(10) for the mesh used in point 1. In numerical ex-
perimentations, numerical instabilities were never observed, not even on the coarsest
mesh used. One of the reasons could be that the FEM approximation of the solution
of the white noise PDE (2.41) appears to underestimate the second moment of the
sampled fields on coarse meshes3. This in turn makes the Péclet number smaller since
the velocity magnitude directly relates to the second moment of the sampled fields.
In fact, E[|v|22] = E[v2

x + v2
y + v2

z ] = 3E[v2
x], given the fact that vx, vy and vz all have

the same second moment. On finer meshes, the velocity magnitude is more accurate,
but the mesh size is small enough to keep the cell Péclet number small.

What we do observe in numerical simulations is that the FEM solution under-
shoots near the boundary, attaining negative concentration values. This is a known
phenomenon in the literature and it does not depend on the velocity field, but it is
typical of diffusion problems with Dirichlet-type boundary conditions [167]. We solve

3For instance, in all the bias convergence plots of Chapter 4 the MC-FEM approximation to
E[||u2||2L2 ] is monotonically converging to the exact value from below.
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this problem by resorting to mass-lumping, which is known to reduce this effect [167].
This ill-behaviour disappears as the mesh is refined to the extent that no undershoot-
ings are observed on the mesh used for point 1 and on the finer levels of the MLMC
hierarchy. Note that in the MLMC case, it is immaterial whether non-physical be-
haviour is observed on the coarse levels as long as they still act as a good control
variate for the finer levels.

Solver and software

For the computations, we use a combination of the University of Oxford Math-
ematical Institute computing servers and the Abel supercomputing cluster4. We
employ the FEniCS FEM software [120] and we solve the resulting linear system by
using the PETSc [15] implementation of the GMRES algorithm preconditioned with
the BoomerAMG algebraic multigrid algorithm from Hypre [57]. For the Matérn field
sampling solver, we declare convergence when the absolute size of the preconditioned
residual norm is below a tolerance of 10−8. For point 1, we estimate the PDFs of the
output functionals with the kernel density estimation routines from the scikit-learn
software [139].

Further details

To address point 1, we solve models D1-2 and V1-3 by taking N = 3200 MC
samples. This ensures that, for all output functionals considered, we have a root
mean square error below 1% of the expected value. We terminate the simulations
after t has reached the value of T1(ω), given by the maximum between 1 day and the
maximum between the two activation times, cf. (6.9) and (6.10). In the model V3
case, these activation times might never occur and we just terminate the simulation
after 1 day as soon as the total concentration in the white matter starts decreasing5.
Convergence of the numerical solver for point 1 was verified with a convergence test
comparing different mesh refinements and time steps for a set of deterministic worst-
case models (with large velocities and small diffusion coefficients). Results are shown
in the supplementary material of [44], but they are not reported in this thesis.

To address point 2, we only consider the more complex problems RF1 and RF2,
but we do not consider the approximation of the PDFs of the output functionals and
we do not compute the activation maps (6.9) and (6.10) as their lack of smoothness
is likely to affect both MLMC and QMC convergence. MLMC techniques for density
estimation are available [25, 70, 107], but they are not necessary here as the main ob-
jective is to compare the different Monte Carlo methods. Since we are not considering
the activation maps, we always terminate the simulations after T2 = 1 day.

Some extra care must be taken in the QMC case: for QMC we consider the mesh of
the coarsest MLMC level and we assume that the number of QMC samples needed is

4Owned by the University of Oslo and Uninett/Sigma2, and operated by the Department for
Research Computing at USIT, the University of Oslo IT-department http://www.hpc.uio.no/.
This research is supported by the NOTUR grant NN9316K.

5In this case we observe empirically that the white matter concentration starts to monotonically
decrease to 0 because of the sink term in equation (6.1).
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the same across levels, as suggested by Figure 5.6. We take a fixed Haar level L = 4
(Haar cell size roughly the same as the average mesh size). Since we have up to
3 + 1 input random fields (velocity + diffusivity), each of QMC dimensions Nf = 272
(cf. Remark 5.6), and 1 input random variable, enforcing a correct variable ordering
becomes complicated. Let nv and nf be the number of input random variables and
fields of the problem considered. We sample a nv+nfNf dimensional Sobol’ sequence
and we take the first nv dimensions to correspond to the random variables. We then
assign the (nfk + i)-th dimension of the remaining nfNf dimensions to the k-th
QMC dimension of the i-th field for i = 1, . . . , nf and k = 0, . . . , Nf − 1. This way
the remaining Sobol’ point dimensions are spread equally among the input fields and
a correct variable ordering is enforced6.

6.4 Clinical results: standard Monte Carlo simula-
tions

6.4.1 Numerical results

We now present the results obtained by using standard Monte Carlo to quantify
the uncertainty in the predictions of 5 different models (D1, D2, V1, V2, V3). Since
the models are many, we now just show the numerical results obtained and we defer
their discussion until the next subsection.

Deterministic diffusion as a baseline for parenchymal solute transport

To establish a baseline for the study, we first simulate the evolution of a tracer
spreading in the SAS and in the parenchyma via diffusion only, using a deterministic
and constant effective diffusion coefficient for gadobutrol (D∗ = 1.2 × 10−10 m2/s).
The resulting parenchymal tracer spread over 24 hours is shown in Figure 6.4. The
tracer concentration increases first in inferior regions and in the gray matter, but does
not penetrate deep into white matter regions within this time frame. In the sagittal
plane (top), tracer concentration is higher as the cutting plane chosen is close to the
fissure between the two brain hemispheres. This fissure is filled by free-flowing CSF
in which the tracer spreads faster.

Figure 6.5a shows the tracer concentration on the boundary of the domain (con-
centration in the SAS) over time at the levels of three brain regions of interests (fora-
men magnum, z = −0.1 m; sylvian fissure, z = 0 m; and precentral sulcus, z = 0.1
m). During the first few hours, the boundary tracer concentration in the lower parts
of the brain (foramen magnum) increases and peaks rapidly, while boundary tracer
concentrations close to the other regions are lower, and with a longer time to peak.
This is expected since we are simulating the injection of tracer in the spinal canal
and tracer is therefore spreading upwards.

6See e.g. pg. 13-14 of http://people.maths.ox.ac.uk/~gilesm/mc/mc/lec13.pdf for a similar
ordering strategy applied to multi-dimensional Brownian motion.
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Figure 6.4: Tracer concentration in the parenchyma after (from left to right) 1, 3,
8 and 24 hours of diffusion in (from top to bottom) sagittal, transverse and coronal
planes. Initially, most of the tracer is found in the lower regions. After 24 hours,
tracer has penetrated substantially into the gray matter, but not into the deep, central
regions.

In Figure 6.5b, concentration profiles are shown for three points within the parenchyma
at different distances from the brain surface. The points are chosen along a line in the
transverse plane (z = 0) going from the outer surface to the ventricles. The tracer
concentration at these points steadily increases after a few hours. This happen faster
in regions closer to the SAS (green line). After 24 hours, the tracer concentration in
all three points is still increasing, indicating that it is still not at steady-state.

Quantifying the effect of uncertainty in effective diffusion magnitude

We first aim to quantify the effect of uncertainty in the magnitude of the effective
diffusion coefficient on the time evolution of tracer in the gray and white matter. In
particular, we now compute the tracer concentration and the other output functionals
in the absence of a velocity field (v = 0), but with a gamma-distributed random
variable as the diffusion coefficient (model D1).

The amount of tracer found in the gray and white matter differs both in magnitude
and variability (Figure 6.6a-c). The expected amount of tracer in the gray matter
increases rapidly and plateaus after approximately 15 hours, while the white matter
does not reach steady state within the 24 hours of the simulation. There is little
variability in the amount of tracer in gray matter throughout the 24 hour time span.

129



a) b)

Figure 6.5: Tracer concentrations. (a) Tracer concentration in the SAS boundary
(cCSF) at the level of the lower brain regions (forament magnum, FM), middle regions
(sylvian fissure, SF) and upper regions (precentral sulcus, PS). In the lower SAS,
tracer concentration peaks at around 3 hours, while at the upper levels, peak concen-
tration occurs later. Following peak values, the concentration in the SAS decreases as
tracer enters the parenchyma. The SAS concentration on the boundary is modeled by
(6.4) (b) Tracer concentration over time in three different points at a given distance
from the brain surface. The points were chosen along a line lying on the transverse
plane (z = 0) going from the brain boundary to the ventricles.

We note that the prediction intervals shrink in Figure 6.6a as time increases, which
matches the time evolution of the PDFs of the total amount of tracer (Figure 6.6c):
as time evolves, the PDFs start concentrating over one value. This is because the
concentration reaches the same constant steady state independently from the choice
of diffusion coefficient. The PDFs become left skewed because the concentration
approaches, but never surpasses the steady state value.

The amount of tracer in the white matter is initially almost constant, but starts
increasing after 3 hours. The 99.73% prediction intervals are much larger in this case
suggesting that for this model the value of the diffusivity strongly affects how much
tracer can penetrate in the deeper regions of the brain.

The estimated PDF and CDF for the white matter activation time (i.e. time for
10% of tracer to reach the white matter) is shown in Figure 6.6d. We observe that the
most likely white matter activation time is approximately 14 hours although there is
quite some variability. Ten percent of the total injected tracer is therefore likely to
penetrate within the white matter regions between 9.5 and 25 hours.
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Figure 6.6: Model D1 results. Total tracer concentration in the (a) gray matter Qg

and (b) white matter Qw over time (cf. equation (6.7)). The blue curves show the ex-
pected value, while the light blue vertical bars indicate 99.73% prediction intervals for
the expectation computed using the estimated PDFs of the output functionals. (c) The
estimated PDFs of Qg at 3, 5, 8 and 24 hours after tracer injection. (d) Histogram of
white matter activation time Fw (cf. equation (6.9)) (bars), corresponding estimated
PDF using kernel density estimation (orange curve), and corresponding CDF. Uncer-
tainty in the magnitude of the effective diffusion coefficients substantially impacts the
amount of tracer found in the gray and white matter and the white matter activation
time.

Quantifying the effect of uncertainty in heterogeneous diffusivity

Brain tissue is heterogeneous [170], varies from individual to individual, and is
clearly not accurately represented by a single diffusion value. To further investigate
the effect of uncertainty in the diffusion coefficient and in particular to study the effect
of spatial heterogeneity, we now consider the diffusion coefficient to be a spatially-
varying random field (model D2).

The expected tracer concentration found in gray and white matter for model D2
are nearly identical to those resulting from model D1 (data shown later cf. Figure
6.9), but with substantially less variability and smaller prediction intervals.

However, when we turn to look at the tracer amount in the two smaller regions of
interest (cf. (6.8)), variability in model D2 increases drastically (Figure 6.7). This is,
perhaps, expected: each random field sample is a.s. comprised of many small regions
(of size proportional to the correlation length) which are almost independent from
each other. Consequently, the spatial average of the field across the whole brain can
almost be seen as a “statistical” average between these regions, for which the variance
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Figure 6.7: Model D2 results. The average tracer concentration in a small region
within the (a) gray matter qg and (b) white matter qw as defined by (6.8). The blue
curves show the expected value. The light blue vertical bars indicate the 99.73% predic-
tion intervals. The dashed orange lines in (a) and (b) indicate the analogous expected
value curve resulting from model D1 (constant diffusion only), for comparison. (c)
The PDFs corresponding to qg at 3, 5, 8 and 24 hours after tracer injection. (d) His-
togram of white subregion activation time fw as defined by (6.10) (bars), corresponding
estimated PDF (orange curve), and CDF.

decreases as the number of regions grows. This means that smaller correlation lengths
result in smaller regions and therefore smaller variability after integration. If we only
average the field across a small region, the variability will instead be larger.

In the gray and white matter regions (Figure 6.7a), the expected average tracer
concentration increases steadily with time. The expected average tracer concentration
in the white matter is much smaller than in the gray matter (Figure 6.7b) and starts
increasing much later, remaining close to zero after 24 hours. For the white region
activation time, we observe reduced variability with respect to the model D1 case
(Figure 6.7d), but a comparable mean.

Quantifying the effect of glymphatic circulation

We now investigate the uncertainty surrounding ISF/CSF flow in paravascular
spaces and the potential ISF flow in extracellular spaces, by considering a non-zero
random velocity field. To investigate the effect of uncertainty in a glymphatic velocity
model, we defined a random velocity field with correlation length corresponding to
the typical distance between parenchymal arterioles and venules (model V1).
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Figure 6.8: Model V1 results. The average tracer concentration in a small region
within the (a) gray matter qg and (b) white matter qw as defined by (6.8). The blue
curves show the expected value. The light blue vertical bars indicate the 99.73% predic-
tion intervals. The dashed orange lines in (a) and (b) indicate the analogous expected
value curve resulting from model D1 (constant diffusion only), for comparison. Ex-
pected values for qg are nearly identical as for model D1 and D2, but variability is
much lower. Expected values for qw are lower than for model D1 and variability is
much lower (c) The PDFs corresponding to qg at 3, 5, 8 and 24 hours after tracer
injection. The PDFs all have a very narrow support. (d) Histogram of white subre-
gion activation time fw as defined by (6.10) (bars), and corresponding estimated PDF
(orange curve) and CDF.

The expected amounts of tracer found in the whole gray and whole white mat-
ter for model V1 are nearly identical to those found for model D2 and model D1,
while the variability is minimal (data shown later cf. Figure 6.9). Thus, on average,
small random variations in fluid velocity did not increase (or decrease) the tracer
distribution into the parenchyma on a global scale.

We observe that the expected qg increases marginally faster in the V1 glymphatic
velocity model than for pure diffusion, cf. Figure 6.8a-b: at 24 hours, qg is 2.5% higher
for V1 than for D1. On the other hand, the expected qw increases faster with pure
diffusion: at 24 hours, qw is 34% lower for V1 than for D1.

The variability in both gray and white local space-average tracer concentration is
extremely small (cf. Figures 6.8a-c), and the activation time fw shows low variability
(figure 6.8d) as well (the activation time of all samples lies between 15 and 16 hours).
This shows that uncertainty in the velocity field has a much smaller impact on the
solution uncertainty than in the random diffusion case.

133



a) b)

c) d)

Figure 6.9: Model V2 results. Model V2 (red) in comparison with models D1 (orange)
and V1 (blue). The total amount of tracer in the (a) gray matter Qg and (b) white
matter Qw, as defined by (6.7), over time. The average tracer concentration in a
subregion of (c) gray matter qg and (d) white matter qw, as defined by (6.8), over
time. The curves show the expected values while vertical bars indicate the 99.73%
prediction intervals of the different models.

Quantifying the effect of glymphatic directionality

We now investigate the hypothesis that glymphatic circulation has a directionality
given by large vascular structures [104, 143]. To assess whether and how such a direc-
tionality affects the tracer distribution, we remove the assumption that the velocity
field has zero-mean and we add a net flow field to the velocity field representing the
directionality in the glymphatic circulation (model V2).

With more fluid entering the brain from below, as illustrated by the streamlines
of Figure 6.2c, the total amount of tracer in the brain increases. For the expected
amount of tracer in gray matter, however, model V2 was in very good agreement with
models D1 and V1 (Figure 6.9a). After 13 hours, the amount of tracer found in the
gray matter is higher for model D1 than for model V2. In model V2, more of the
tracer is found deeper in the gray matter and eventually moves to the white matter.
We note that the uncertainty associated with the velocity fields barely propagates to
the amount of tracer in the gray and white matter (Figure 6.9a-b).

The expected amount of tracer in the white matter Qw increases substantially
by the introduction of the directional velocity field (Figure 6.9b). The expected
value curve starts deviating from the other models after 4-5 hours, and the difference
increases with time. At 24 hours, the expected amount of tracer found in the white
matter Qw is 50% larger for model V1 as for model D1, although still within the
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Figure 6.10: Model V3 results. The total amount of tracer in the (a) gray matter Qg

and (b) white matter Qw over time; Qg and Qw as defined by (6.7). The blue curves
show the expected value. The light blue vertical bars indicate the 99.73% prediction
intervals. The dashed orange lines in (a) and (b) indicate the analogous expected
value curve resulting from model D1 (constant diffusion only), shown for comparison.
Large variations in the white matter is found depending on the inflow velocity. (c) The
estimated PDFs corresponding to Qg at 3, 5, 8 and 24 hours after tracer injection. (d)
Histogram of white matter activation time Fw as defined by (6.9) (bars), corresponding
estimated PDF (orange curve), and CDF. We note that the plotted CDF does not
reach 1 since some samples (roughly the 3%) never reach the white region activation
threshold.

99.73% prediction interval. The directional velocity field also induces an increase
in the expected average tracer concentration in the gray subregion qg (Figure 6.9c),
while for qw model V1 and V2 are in close agreement (Figure 6.9d).

Quantifying the effect of paraarterial influx with drainage

A number of open questions remain in the context of glymphatic and paravascular
outflux routes. To further investigate potential ISF outflux pathways, we finally
consider a model representing paraarterial influx combined with ISF drainage (model
V3).

In model V3 (paraarterial inflow with drainage) the amount of tracer found in the
parenchyma for the early time points is larger than in the other model (Figure 6.10).
However, in this case, the concentration reaches a peak and then starts to decrease
monotonically because of the sink term.
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For the white matter, the expected amount of tracer increases with time faster
than with pure diffusion, and seems to peak at approximately at around 20 hours
before slowly decreasing. The level of uncertainty in the white matter concentration
is large, and the expected value is larger than in the other models. However, after 24
hours the concentration values predicted by both models seem to agree.

The white matter activation time is, on average, lower for model V3 compared to
previous models (Figure 6.10d), but there is substantial variability as in some cases
the activation time is never reached (in 3% of the computed samples).

6.4.2 Discussion

We now compare our simulations with the healthy patient MRI study by Ringstad
et al. [146]. We remark that the MRI-study only provides quantitative values of
“signal intensity” and that the map between signal intensity and tracer concentration
is typically a non-linear function (unknown in this case) [40]. We are thus unable to
make a direct comparison between these two quantities. However, we can still assume
that a peak in signal intensity corresponds to a peak in tracer concentration and that
a comparison of the time to peak between the model results and experiments is still
possible.

Remark 6.2. Since obtaining quantitative concentration measurements via MRI is
extremely difficult, adopting a Bayesian approach to estimate the input parameters
given concentration measurements is extremely complicated and thus the only feasible
approach for the moment is the UQ forward problem.

Similarly as in the MRI study by Ringstad et al. [146], the tracer first spreads to
the lower regions of the brain that are closer to the tracer injection site and does not
reach the ventricles. In models with diffusion only, the amount of tracer in the gray
matter peaks at approximately 15 hours, while in the MRI study, the time to peak
in selected regions of interest is between 12 and 24 hours [146]. However, unlike in
the clinical experiments, white matter concentration does not peak within 24 hours
of simulation in models D1 and D2 and the predicted uncertainty in the white matter
concentration cannot explain this discrepancy. This suggests that a mechanism other
than diffusion is in action to transport tracer into deeper regions of the brain.

In our glymphatic circulation model (model V1), the stochastic velocity field does
not increase tracer distribution to the brain on average. However, when we focus
our attention to the smaller regions, tracer concentration may increase by up to 13%
compared to diffusion alone. These results compare favourably with a clinical study
by Iliff et al. [94] and can mathematically be expected: the effect of a zero-mean
velocity field (E[v] = 0) is averaged out when integrating the concentration over
regions of size much larger than the field correlation length λ, yielding results which
are comparable to the pure diffusion case (v = 0). However, this averaging effect
does not occur when looking at a region of size proportional to or smaller than λ.

Remark 6.3. We recall that the choice of a zero-mean field comes from the assumption
(assumption number 2 in model V1) that the blood vessel structure is independent
from the location within the parenchyma. Let us now re-interpret each Monte Carlo
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sample as one measurement from a patient. These results then suggest that clinical
experiments willing to investigate the presence of ISF bulk flow across the brain
must be designed so that measurements are taken in regions where the vasculature
is consistent across patients, e.g. always close to an artery rather than at random
locations. This way the effect of a convective velocity will not be averaged out when
taking the mean between the measurements.

When modelling paraarterial influx combined with drainage (model V3), the time
to peak is reduced to 6-8 hours in the gray matter. Although we lack quantitative
information about the drainage parameter, we observe that drainage/clearance would
reduce both the time to peak and relative tracer concentration in the brain compared
to diffusion alone. In the glymphatic directionality model (model V2), the presence
of a paravascular directional velocity also decreases the expected time to peak tracer
concentration in gray matter down to 11 hours (compared to 15 hours for pure dif-
fusion). Thus, when experimental data suggests a time to peak shorter than for
diffusion alone, it is not clear whether this is due to increased glymphatic function or
increased clearance by parenchymal drainage.

In our models, the white matter (and the small regions) is where the effect of a
convective velocity becomes most prominent. The only model modification causing
an expected time to peak in white matter of approximately 24 hours is with a paraar-
terial inflow and drainage (model V3). In this model, the upper limit of the 99.73%
prediction interval peaks at approximately 12 hours, which is more comparable to
the rapid increase in tracer concentration observed in the white matter of healthy
subjects [147].

In our experiments it is evident that uncertainty in the diffusion parameter sig-
nificantly affects the model predictions, while uncertainty in the velocity field does
not seem to substantially propagate to the output. Furthermore, even if the expected
concentrations of models D1 and D2 appear to be the same, the uncertainty in the
concentration values is lower for D2 (random field) than for D1 (random variable).
This suggests that: 1) having an accurate estimate of tracer diffusivity is essential to
be able to trust what is predicted by deterministic models, and 2) the tracer distribu-
tion to large brain regions can still be well approximated using a constant diffusion
value, provided that the diffusion coefficient is estimated accurately. If accurate mea-
surements are not possible, considering a heterogeneous diffusion coefficient estimated
with multiple measurements in different brain regions can significantly help to reduce
the uncertainty.

Although diffusion may act as the main transport mechanism in the parenchyma
[92, 159], it is also clear that diffusion alone is not sufficient to transport tracer
deep into the parenchyma and that net bulk flow (i.e. advection) is also needed to
enhance tracer penetration (as in models V2 or V3). Our results therefore support
the hypothesis that solutes within the ISF spread due to a combination of diffusion
and convection.
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6.4.3 Section conclusions

In this study we investigated the variability in brain tracer concentration result-
ing from uncertainty in the diffusion and convection parameters. We designed five
computational models, each representing different diffusion and convection regimes
and different assumptions about ISF fluid movement and we used standard Monte
Carlo to compute the probability distributions of all output functionals of interest.

The results from this study show that uncertainty in the diffusion parameters
substantially impact the amount of tracer in gray and white matter, and the average
tracer concentration in small regions within the gray and white matter. Consequently,
multiple or more accurate measurements of the diffusion coefficient are needed to re-
duce the uncertainty in model predictions. Nevertheless, even with moderate uncer-
tainty in the diffusion coefficient and a resulting four-fold variation in white matter
tracer concentration, discrepancies between simulations of pure diffusion and experi-
mental data are too large to be attributed to uncertainties in the diffusion coefficient
alone.

A convective velocity field, representing the glymphatic circulation, increases
tracer concentration in the brain as compared to pure diffusion. However, this in-
creased concentration depends on a directional structure of the velocity field and
more accurate ISF flow measurements would be needed to establish whether such a
flow structure is effectively present. Overall, more quantitative experimental data are
needed to obtain a deeper understanding of the brain glymphatic function.

6.5 Computational comparison of the methods pre-
sented in this thesis

6.5.1 Numerical results

We now compare the efficiency of standard MC, QMC and MLMC when employed
to solve models RF1 and RF2. In what follows, we let T = {30k min}k=48

k=1 and define

Q = {Qg(t), t ∈ T } ∪ {Qw(t), t ∈ T } ∪ {qg(t), t ∈ T } ∪ {qw(t), t ∈ T }, (6.24)

to be the set of all the output functionals of interest considered (cf (6.7) and (6.8)),
with the exception of the activation maps (6.9) and (6.10).

To begin with, we estimate the MLMC parameters α, β and γ of Theorem 2.1.
Since we are considering the estimation of multiple output functionals, we estimate
α and β by monitoring the quantities

max
Q∈Q
|E[Q` −Q`−1]|, max

Q∈Q
V[Q` −Q`−1]. (6.25)

We expect α = 2, β = 2α = 4 and γ = 4 since we have a second-order method
in both time and space in this case and we are using a multigrid-preconditioned
Krylov method (cf. Section 6.3). To estimate the bias and variance in (6.25) we
take N = 4000 samples on the first two levels and N = 100 on the finest level. The
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number of vertices on the finest level of the MLMC hierarchy is quite large (22 282 705
vertices), resulting in a memory burden of ≈ 50 GB to just load the mesh, the box
mesh in which the brain mesh is embedded (cf. Section 4.2.3) and the FEM subspaces
required. Additionally, solving one instance of equation (6.1) on this mesh takes more
than 24 hours in serial. We thus compute 100 samples for each model on the finest
level.

In Figures 6.11 and 6.12 we show the convergence behaviour of the (logarithm of
the) quantities in (6.25) for model RF1 and RF2 respectively. We see that almost all
estimated convergence orders match with our predictions apart from the bias of model
RF1 that decays more rapidly than expected. In this case, we are likely observing
a pre-asymptotic regime and the higher-than-expected bias convergence rate seems
to be decaying as ` increases. The estimated variance convergence order for both
models is around β̂ ≈ 4.15, which is just slightly above the theoretical value. When
estimating γ by taking the average wall-clock time of each sample as a proxy, we
obtain γ̂ ≈ 4.09, which is close to the γ = 4 expected.
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Figure 6.11: Convergence behaviour of the FEM approximation to the solution of
model RF1. The estimated convergence order for the variance agrees with our predic-
tions and with what expected by the theory in the diffusion-only case [166]. The bias
convergence order observed is instead higher than expected. Estimated parameters via
linear regression: α̂ ≈ 4.16, β̂ ≈ 4.15.

Note that we have a finite number of meshes available and consequently the version
of MLMC considered here is “weaker” than the true MLMC algorithm presented in
Section 2.2. In fact, we are unable to reduce the bias below the threshold given by the
finest mesh of the hierarchy without resorting to more advanced techniques (cf. Re-
mark 6.4). However, we can still balance the relative weight of bias and statistical
error by choosing two different values of the MLMC weight parameter θ introduced by
Haji-Ali et al. in [82] (cf. Section 2.2). The mean square error for an output functional
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Figure 6.12: Convergence behaviour of the FEM approximation to the solution of
model RF2. The estimated convergence orders agree with our predictions and with
what expected by the theory in the diffusion-only case [166]. Estimated parameters via
linear regression: α̂ ≈ 2.09, β̂ ≈ 4.18.

Q is given by

MSE = V̂ + E[Q̂−Q]2, (6.26)

where Q̂ is the MLMC estimator for E[Q] and V̂ is the estimator variance. To ensure
a MSE below ε2, we therefore impose

V̂ ≤ (1− θ)ε2, E[Q̂−Q]2 ≤ θε2, (6.27)

with θ ∈ (0, 1) weighting the two terms. Small values of θ reduce the number of
samples needed and are therefore preferred when the bias is small. Conversely, large
values are beneficial when the bias is large as they allow to achieve smaller tolerances
without adding finer levels to the hierarchy. Here, we are unable to take more than
100 samples on the finest level, which further restricts the amount of effort we can
dedicate to reducing the statistical error. For this reason, we choose the largest values
of θ that do not make the number of samples on the finest level exceed 100. Numerical
experimentation yields the values θ = 0.04 for model RF1 and θ = 0.7 for RF2. Note
that in the model RF1 case, the bias is much smaller (compare Figures 6.11 and
6.12), hence why the chosen θ is smaller as well. In the standard MC and QMC case,
we also require that V̂ ≤ (1 − θ)ε2, where V̂ in this case is the estimator of either
method.

Remark 6.4. In practice, it is possible to reduce the MLMC estimator bias by aug-
menting MLMC with Richardson-Romberg extrapolation [69, 113]. However, we leave
this enhancement for future research.
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Figure 6.13: Convergence of standard MC, QMC and MLMC for the solution of
model RF1 (θ = 0.04). In the plot on the left we show how the MLMC algorithm
automatically selects the optimal number of samples N` on each level to achieve a
given tolerance ε. In the plot on the right we compare the efficiency of the methods
for different tolerances. The savings of MLMC with respect to standard MC and QMC
are considerable, while QMC barely improves on standard MC (see main text).

In the plots on the left in Figures 6.13 and 6.14, we show the optimal number of
samples chosen automatically by MLMC on each level as the root mean square error
tolerance ε is reduced. The maximum level chosen is increased as ε decreases in order
to satisfy the bias tolerance. Note that the smallest values of ε considered correspond
to the lowest bias tolerance that standard MLMC can achieve with an upper limit of
100 samples on the finest level (cf. Remark 6.4).

In the plots on the right in Figures 6.13 and 6.14 we compare the total compu-
tational cost Ctot of standard MC, MLMC and QMC for the solution of model RF1
and RF2 respectively. Since we are in the β = γ case, we expect an overall MLMC
complexity of ε−2(log ε)2 for a root mean square error tolerance of ε (cf. Theorem 2.1.
For this reason, we plot the quantity ε2(log ε)−2Ctot on the y-axis as this should be
O(1) in the MLMC case, giving a horizontal MLMC cost line. In fact, the MLMC cost
lines shown in the figures slightly oscillate, but they are well-fitted by a horizontal
line (estimated slope ≈ −0.04, considering just the 4 smallest tolerances).

We note that for both models MLMC significantly outperforms both QMC and
standard MC, with a O(100) factor of improvement with respect to standard MC.
While the qualitative behaviour of standard MC and MLMC is consistent between
the two models, QMC behaves differently: in the model RF2 case (Figure 6.14) we see
QMC considerably improving with respect to standard MC. In the model RF1 case
(Figure 6.13), instead, the improvement is negligible and QMC performs essentially
the same as standard MC. This behaviour could, perhaps, be expected by looking
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Figure 6.14: Convergence of standard MC, QMC and MLMC for the solution of
model RF2 (θ = 0.7). In the plot on the left we show how the MLMC algorithm au-
tomatically selects the optimal number of samples N` on each level to achieve a given
tolerance ε. In the plot on the right we compare the efficiency of the methods for dif-
ferent tolerances. MLMC significantly outperforms QMC, which in turn considerably
outperforms standard MC.

at the formulations of models RF1 and RF2 (cf. Table 6.1). While the stochastic
input in model RF2 is comprised by 1 random field and 1 random variable, model
RF1 depends on 4 random fields and 1 random variable. Given the performance
observed in the figures, it is clear that this higher input dimensionality is affecting
the good convergence properties of QMC, causing the convergence rate to decay
to a O(N−1/2) standard MC rate. The fact that QMC performance degrades with
high input dimensions is well-known [35] and was discussed in this thesis in Section
2.1. It therefore appears that the (ML)QMC method presented in Chapter 5 is not
robust with respect to the number of random field inputs, at least in 3D where the
dimensionality is larger7.

Remark 6.5. Adding a coarser level to the mesh hierarchy, given by the original
Colin27 human adult brain atlas mesh [58] (version 2) did not improve the perfor-
mance of MLMC.

Remark 6.6. In this section we did not consider MLQMC. From the results in Figure
6.13 it is however clear that no additional improvement can be achieved in the model
RF1 case. On the other hand, the model RF2 case (cf. 6.14) seems to be amenable
to MLQMC, but we leave this investigation for future research.

7We did not observe this ill-behaviour in analogous numerical tests performed on a convection-
diffusion PDE with random coefficients on a square domain.
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6.5.2 Section conclusions

In this section we have considered the solution of two models of interest with most
of the sampling methods presented in the thesis (with the exception of MLQMC).
Even under a restriction on the maximum number of samples on the finest level and on
the finest mesh available MLMC significantly outperforms all other methods, yielding
an improvement factor of roughly 100 with respect to standard MC. QMC outperforms
standard MC by a factor of approximately 10 in the model RF2 case. However, in
the model RF1 case QMC barely improves on standard MC, possibly because of the
high number of input random fields in 3D, which make the problem extremely high-
dimensional. Overall, for this application, MLMC achieves the best performance and
should be preferred. Possibly MLQMC could bring additional computational gains
for small numbers of input random fields.

143



Chapter 7

Conclusions and future research
directions

7.1 Summary of results
In this thesis we focused on two main problems: 1) the efficient sampling of

spatial white noise and Matérn field realisations within Monte Carlo methods, and
2) the quantification of uncertainty in simulations of brain tracer transport. We
mainly considered the Whittle SPDE approach to Matérn field sampling, for which
the sampling problem is recast as the numerical solution of an elliptic PDE driven by
spatial white noise.

In Chapter 3, we presented a new derivation of an a priori error estimate for the
finite element solution of the Whittle SPDE. At the time in which it was derived, this
result improved with respect to the existing literature in multiple regards: the proof
did not require the approximation of white noise in practice, and higher order elliptic
operators and the p-refinement case were considered.

Within the SPDE approach, the sampling of white noise realisations can become
the main computational bottleneck. In fact, when continuous Lagrange elements
are used, the mass matrix is sparse, but typically not diagonal and computing its
Cholesky factorisation has O(m3) cost complexity. In Chapter 4 we presented a new
algorithm for sampling white noise realisations with optimal linear complexity even
in the case in which the FEM mass matrix is not diagonal. Furthermore, we showed
how coupled white noise realisations can still be sampled with the same complexity
even within a non-nested MLMC hierarchy. In this case, a supermesh construction is
required and the overall sampling cost is linear in the number of supermesh cells. As
an auxiliary result, we also proved that when the parent meshes are quasi-uniform,
the number of cells of the supermesh is in turn linear in the number of cells of the
parent meshes. This result is new, improves on previously known bounds, and is
useful in the complexity analysis of other applications of supermeshes.

In Chapter 5 we extended this framework to the QMC and MLQMC case. We
showed that by using a Haar wavelet expansion of white noise and a hybrid MC/QMC
approach it is possible to obtain considerable computational gains in a pre-asymptotic
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regime. Within this regime, which depends on the Haar level chosen, the convergence
with respect to the number of samples is faster than O(N−1/2). For this method,
a two-way and a three-way supermesh is required in the QMC and MLQMC case
respectively. However, the overall sampling complexity remains linear with respect to
the number of supermesh cells which is in turn linear in the number of parent mesh
cells.

Finally, in Chapter 6 we applied these new methods (with the exception of MLQMC)
to the solution of a new PDE model with random coefficients. This model describes
the movement of a tracer within the ISF and was solved on a real-life brain geometry
derived via MRI in 3D. We first solved 5 different “clinical” instances of this model by
using standard MC. Each of these reflects a different hypothesis proposed in the med-
ical literature regarding ISF movement and brain solute clearance. We then applied
standard MC, QMC and MLMC to assess which algorithm was the most efficient.
MLMC resulted to be the most computationally advantageous, outperforming both
QMC and standard MC.

The investigation on the 5 different “clinical” models revealed that the diffusion
coefficient is the largest source of uncertainty in the PDE, showing that accurate
diffusivity values are needed if deterministic models are to be trusted. Nevertheless,
the discrepancies between the diffusion-only models and experimental data were too
large to be solely attributed to diffusion uncertainty. In fact, our results suggest that
the presence of a convective velocity field is needed to justify the presence of tracer
deep into the brain white matter. To the author’s knowledge, this was the first time
that advanced Monte Carlo methods have been used for UQ in brain modelling and
the first UQ study ever performed on simulations of tracer transport within the brain.

7.2 Future research directions
In this thesis we only considered the SPDE approach to Matérn field sampling.

However, many more methods are available in the literature, as discussed in Chapter
2. For each method, leading-order complexity estimates are available, but the pro-
portionality constants are often difficult to estimate theoretically. A computational
comparison aimed at assessing which method performs the best in which situation
would extremely insightful. To the author’s knowledge, no such comparison has ever
been performed in the literature.

Even though the numerical results of Chapter 5 support the efficacy of the (ML)QMC
algorithm presented, only a partial convergence result was derived. It would be in-
teresting to derive a full convergence theory for the proposed strategy, possibly by
using randomly shifted lattice rules and extending the theory derived by Hermann
and Schwab [88]. Such a result would yield formulas for the optimal number of sam-
ples and optimal Haar level on each MLQMC level, which in turn would increase the
efficiency of MLQMC. In Chapter 6 we saw how the performance of QMC degraded
when the number of input random fields was increased. A full convergence theory
considering multiple inputs could improve our understanding of this behaviour.

From a more practical point of view, it would be interesting to extend our (ML)QMC
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algorithm to general higher degree wavelets and domains (cf. remarks 5.18 and 5.19).
The first enhancement (general wavelets) could possibly improve the convergence rate
with respect to the number of samples, while the second (general domains) would re-
duce the supermeshing complexity and consequently the white noise sample cost. An-
other way to reduce the MLQMC sampling complexity is to implement a dedicated
three-way supermeshing algorithm: the strategy we used (computing two two-way
supermeshes) is likely to be suboptimal.

In this thesis, we mainly considered spatial white noise driven SPDE with integer-
order operators. However, so as to be able to sample fields with the whole range of
Matérn covariances, we must also be able to deal with the fractional case efficiently.
There are three main approaches used in the literature: the first consists in rewriting
the inverse fractional operator as a Dunford-Taylor contour integral in the complex
plane whose integrand only depends on the inverse of an integer-order operator. This
integral can then be approximated via exponentially convergent quadrature rules for
which the number of quadrature nodes increases with the mesh size [27, 30, 42,
83]. The second approach uses the Caffarelli–Silvestre extension of the PDE from
Rd to Rd×[0,∞) [34]. This yields a standard integer-order PDE, to be solved on
the extended Rd×[0,∞) domain, for which standard FEMs can be used. Finally,
the third consists in employing a rational Krylov subspace method [33]. Using any
of these techniques results in an increased sampling cost, which could however be
mitigated by developing more advanced MLMC sampling techniques.

There is great need for more UQ in brain simulations and other models could be
investigated. An option would be to consider the multiple-network poroelastic theory
equations that simultaneously describe the movement of multiple brain fluids and
the evolution of brain matter displacement [171]. Finally, given suitable experimental
data, it would be extremely insightful to also solve the inverse UQ problem and obtain
a better estimate of the physiological parameters of the brain of medical interest, such
as the velocities of various brain fluids or brain matter permeability.
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