Lecture 1: Introduction to bifurcation analysis

Patrick E. Farrell

University of Oxford

May 29
Can you conduct an experiment twice . . .

. . . and get two different answers?
Can you conduct an experiment twice . . .

. . . and get two different answers?

Axial displacement test of an Embraer aircraft stiffener.
Can you conduct an experiment twice . . .

. . . and get two different answers?

Two different, stable configurations.
When a problem has multiple solutions, it is usually crucial.

The AIAA/NASA high lift prediction test case (Kamenetskiy et al., 2013)
When a problem has multiple solutions, it is usually crucial.

The AIAA/NASA high lift prediction test case (Kamenetskiy et al., 2013)
When a problem has multiple solutions, it is usually crucial.

The AIAA/NASA high lift prediction test case (Kamenetskiy et al., 2013)
When a problem has multiple solutions, it is usually crucial.

A PDE with two unknown solutions
When a problem has multiple solutions, it is usually crucial.

Start from some initial guess
When a problem has multiple solutions, it is usually crucial.

We converge to one solution, our prediction.
When a problem has multiple solutions, it is usually crucial.

But nature has chosen another (unknown) solution!
When a problem has multiple solutions, it is usually crucial.

We have encountered unexpected multiple solutions in both simple and complex configurations in computational fluid dynamics (CFD); this phenomenon is both extremely important and not well understood. It has serious implications for the use of CFD as a predictive tool.

— Venkat Venkatakrishnan
Computational Aerodynamic Optimization
Boeing Research & Technology
Section 2

Scope
Mathematical formulation

Compute the multiple solutions $u^*$ of a stationary nonlinear equation

$$F(u^*, \lambda) = 0$$

$$F \in C^1(X \times \mathbb{R}, Y)$$

as a function of a parameter $\lambda \in \mathbb{R}$. 
Mathematical formulation

Compute the multiple solutions $u^*$ of a stationary nonlinear equation

$$F(u^*, \lambda) = 0$$

$$F \in C^1(X \times \mathbb{R}, Y)$$

as a function of a parameter $\lambda \in \mathbb{R}$.

<table>
<thead>
<tr>
<th>Case #1: aircraft stiffener</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u^*$ displacement, $\lambda$ loading, $F$ hyperelasticity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case #2: aircraft wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u^*$ velocity and pressure, $\lambda$ angle of attack, $F$ Navier–Stokes</td>
</tr>
</tbody>
</table>
Mathematical formulation

Compute the multiple solutions $u^*$ of a stationary nonlinear equation

$$F(u^*, \lambda) = 0$$

$$F \in C^1(X \times \mathbb{R}, Y)$$

as a function of a parameter $\lambda \in \mathbb{R}$.

$F \in C^1$ means that it is Fréchet-differentiable: there exists a function

$$F_u : X \times \mathbb{R} \to L(X, Y)$$
Mathematical formulation

Compute the multiple solutions $u^*$ of a stationary nonlinear equation

$$F(u^*, \lambda) = 0$$

$$F \in C^1(X \times \mathbb{R}, Y)$$

as a function of a parameter $\lambda \in \mathbb{R}$.

$F \in C^1$ means that it is Fréchet-differentiable: there exists a function

$$F_u : X \times \mathbb{R} \to L(X, Y)$$

with the approximation property

$$\lim_{v \to 0} \frac{\|F(u + v, \lambda) - F(u, \lambda) - F_u(u, \lambda)v\|}{\|v\|} = 0 \text{ for all } v \in X.$$
Mathematical formulation

Compute the multiple solutions $u^*$ of a stationary nonlinear equation

$$F(u^*, \lambda) = 0$$

$$F \in C^1(X \times \mathbb{R}, Y)$$

as a function of a parameter $\lambda \in \mathbb{R}$.

$F \in C^1$ means that it is Fréchet-differentiable: there exists a function

$$F_u : X \times \mathbb{R} \to L(X, Y)$$

with the approximation property

$$\lim_{v \to 0} \frac{\|F(u + v, \lambda) - F(u, \lambda) - F_u(u, \lambda)v\|}{\|v\|} = 0 \quad \text{for all } v \in X.$$ 

Moreover $F_u$ is continuous. The same holds for $F_\lambda$. 
Compute the multiple solutions $u^*$ of a stationary nonlinear equation

$$F(u^*, \lambda) = 0$$

$$F \in C^1(X \times \mathbb{R}, Y)$$

as a function of a parameter $\lambda \in \mathbb{R}$.

**Warning**

We (usually) can't guarantee to find all solutions. But finding many is better than finding one.
Lecture 1

Introduction to bifurcation theory; great theorems of nonlinear functional analysis.
Lecture 1
Introduction to bifurcation theory; great theorems of nonlinear functional analysis.

Lecture 2
Classical numerical algorithms for computing bifurcation diagrams. Branch continuation, bifurcation detection and localisation, branch switching.
Lecture 1
Introduction to bifurcation theory; great theorems of nonlinear functional analysis.

Lecture 2
Classical numerical algorithms for computing bifurcation diagrams. Branch continuation, bifurcation detection and localisation, branch switching.

Lecture 3
Deflation techniques for computing disconnected bifurcation diagrams.
What is *not* in scope:

- time-dependent problems (dynamical systems);
What is *not* in scope:

- time-dependent problems (dynamical systems);
- bifurcations in maps (discrete systems);
What is *not* in scope:

- time-dependent problems (dynamical systems);
- bifurcations in maps (discrete systems);
- bifurcations of high codimension (multiple parameters);
What is *not* in scope:

- time-dependent problems (dynamical systems);
- bifurcations in maps (discrete systems);
- bifurcations of high codimension (multiple parameters);
- algorithms that only work for ODEs/coarse discretisations.
What is not in scope:

- time-dependent problems (dynamical systems);
- bifurcations in maps (discrete systems);
- bifurcations of high codimension (multiple parameters);
- algorithms that only work for ODEs/coarse discretisations.
- the relationship between symmetries and bifurcations.
What is not in scope:

- time-dependent problems (dynamical systems);
- bifurcations in maps (discrete systems);
- bifurcations of high codimension (multiple parameters);
- algorithms that only work for ODEs/coarse discretisations.
- the relationship between symmetries and bifurcations.

Goal for the course

Develop practical numerical methods for computing multiple solutions of fine discretisations of nonlinear BVPs.
Example: Liouville–Bratu–Gelfand problem

\[ u'' + \lambda e^u = 0, \quad u(0) = 0 = u(1). \]
Example: Liouville–Bratu–Gelfand problem

\[ u'' + \lambda e^u = 0, \quad u(0) = 0 = u(1). \]

Solutions of the Bratu problem

Fold bifurcation

\[ \lambda = \lambda_{\text{crit}} \]

\[
\begin{cases}
1 & \lambda \in \{0, \lambda_{\text{crit}}\}, \\
2 & \lambda \in (0, \lambda_{\text{crit}}), \\
0 & \text{otherwise}.
\end{cases}
\]
Example: Liouville–Bratu–Gelfand problem

\[ u'' + \lambda e^u = 0, \quad u(0) = 0 = u(1). \]

# solutions = \[ \begin{cases} 
1 & \lambda \in \{0, \lambda_{\text{crit}}\}, \\
2 & \lambda \in (0, \lambda_{\text{crit}}), \\
0 & \text{otherwise}. 
\end{cases} \]
Example: Carrier’s problem

$$\lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0, \quad u(-1) = 0 = u(1).$$
Solutions of $\lambda^2 u'' + 2(1-x^2)u + u^2 - 1 = 0$
Solutions of $\lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0$

- Pitchfork bifurcation
- Fold bifurcation
Solutions of $\lambda^2 u'' + 2(1-x^2)u + u^2 - 1 = 0$
Solutions of $\lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0$
Section 3

Great Theorems of Nonlinear Functional Analysis
We now review some theory about the solution of nonlinear PDE:
We now review some theory about the solution of nonlinear PDE:

- the Newton–Kantorovich theorem;
We now review some theory about the solution of nonlinear PDE:

- the Newton–Kantorovich theorem;
- the Rall–Rheinboldt theorem;
We now review some theory about the solution of nonlinear PDE:

▶ the Newton–Kantorovich theorem;
▶ the Rall–Rheinboldt theorem;
▶ the implicit function theorem.
We now review some theory about the solution of nonlinear PDE:

- the Newton–Kantorovich theorem;
- the Rall–Rheinboldt theorem;
- the implicit function theorem.

Primary references.
Subsection 1
The *Newton–Kantorovich* algorithm is an algorithm for solving nonlinear equations on the *infinite-dimensional* level (for a fixed parameter value).
The *Newton–Kantorovich* algorithm is an algorithm for solving nonlinear equations on the *infinite-dimensional* level (for a fixed parameter value).

This will target the solution of the nonlinear problem by solving a sequence of linear problems. Each of these linear problems can then be discretised (e.g. with a finite element method).
The *Newton–Kantorovich* algorithm is an algorithm for solving nonlinear equations on the *infinite-dimensional* level (for a fixed parameter value).

This will target the solution of the nonlinear problem by solving a sequence of linear problems. Each of these linear problems can then be discretised (e.g. with a finite element method).

First, let’s recall Newton’s method in $\mathbb{R}$ and $\mathbb{R}^N$. 
Core idea: solve succession of linearised rootfinding problems.
Core idea: solve succession of linearised rootfinding problems.

\[ f(x) \]

\[ x \]

\[ t_0 \]

\[ t_1 \]
Core idea: solve succession of linearised rootfinding problems.
Core idea: solve succession of linearised rootfinding problems.

\[
\text{solve } f'(x_k)\delta x_k = -f(x_k); \quad \text{update } x_{k+1} = x_k + \delta x_k.
\]
Termination

The algorithm terminates if $f(x_k) = 0$, as desired.
Termination

The algorithm terminates if $f(x_k) = 0$, as desired.

Invertibility

We require $f'(x_k)$ to be nonzero at every iteration.
Termination

The algorithm terminates if $f(x_k) = 0$, as desired.

Invertibility

We require $f'(x_k)$ to be nonzero at every iteration.

Poor global convergence

The initial guess matters. With poor initial guesses, Newton’s method may diverge to infinity, or get stuck in a cycle.
Termination
The algorithm terminates if $f(x_k) = 0$, as desired.

Invertibility
We require $f'(x_k)$ to be nonzero at every iteration.

Poor global convergence
The initial guess matters. With poor initial guesses, Newton’s method may diverge to infinity, or get stuck in a cycle.

Good local convergence
If $f$ is smooth, the solution is isolated, and the guess close, Newton converges quadratically.
Far from a solution, Newton’s method can get stuck in a loop.
Far from a solution, Newton’s method can get stuck in a loop.
This geometric reasoning is hard to generalise to higher dimensions. Let’s look at a derivation that \textit{does} extend.
This geometric reasoning is hard to generalise to higher dimensions. Let’s look at a derivation that does extend.

Consider the Taylor expansion of $f$ around $x_k$:

$$f(x_k + \delta x_k) = f(x_k) + f'(x_k)\delta x_k + O(\delta x_k^2).$$
This geometric reasoning is hard to generalise to higher dimensions. Let’s look at a derivation that does extend.

Consider the Taylor expansion of $f$ around $x_k$:

$$f(x_k + \delta x_k) = f(x_k) + f'(x_k)\delta x_k + \mathcal{O}(\delta x_k^2).$$

Linearise the model by ignoring higher-order terms:

$$f(x_k + \delta x) \approx f(x_k) + f'(x_k)\delta x_k$$
This geometric reasoning is hard to generalise to higher dimensions. Let’s look at a derivation that does extend.

Consider the Taylor expansion of $f$ around $x_k$:

$$
    f(x_k + \delta x_k) = f(x_k) + f'(x_k)\delta x_k + \mathcal{O}(\delta x_k^2).
$$

Linearise the model by ignoring higher-order terms:

$$
    f(x_k + \delta x) \approx f(x_k) + f'(x_k)\delta x_k
$$

and find $\delta x$ such that $f(x_k + \delta x) \approx 0$:

$$
    0 = f(x_k) + f'(x_k)\delta x_k.
$$
This geometric reasoning is hard to generalise to higher dimensions. Let’s look at a derivation that \textit{does} extend.

Consider the Taylor expansion of $f$ around $x_k$:

\[
f(x_k + \delta x_k) = f(x_k) + f'(x_k)\delta x_k + O(\delta x_k^2).
\]

Linearise the model by ignoring higher-order terms:

\[
f(x_k + \delta x) \approx f(x_k) + f'(x_k)\delta x_k
\]

and find $\delta x$ such that $f(x_k + \delta x) \approx 0$:

\[
0 = f(x_k) + f'(x_k)\delta x_k.
\]

This yields

\[
\delta x_k = [f'(x_k)]^{-1}f(x_k).
\]
This naturally extends to $F \in C^1(\mathbb{R}^N; \mathbb{R}^N)$. Newton’s method is to solve

$$F_x(x_k) \delta x_k = -F(x_k); \quad \text{update} \quad x_{k+1} = x_k + \delta x_k,$$

where $F_x$ is the Jacobian of $F$. 
This naturally extends to $F \in C^1(\mathbb{R}^N; \mathbb{R}^N)$. Newton’s method is to solve

$$F_x(x_k)\delta x_k = -F(x_k); \text{ update } x_{k+1} = x_k + \delta x_k,$$

where $F_x$ is the Jacobian of $F$.

For the iteration to be well-defined, we need $F_x(x_k)$ to be invertible.
Newton’s method has an important property that becomes apparent in higher dimensions.
Newton’s method has an important property that becomes apparent in higher dimensions.

Given $F : \mathbb{R}^N \to \mathbb{R}^N$, and $x_0 \in \mathbb{R}^N$, we construct the sequence $x_0, x_1, \ldots$. 

Now imagine that we change units or coordinate systems for our outputs $F$. Instead of solving $F(x) = 0$, we want to solve $\tilde{F}(x) = 0$, where $A \in \mathbb{R}^{N \times N}$ is constant and nonsingular. Of course, this doesn’t change the roots $x^\star$. 

Theorem (Affine covariance)

Premultiplying $F$ by a constant nonsingular $A \in \mathbb{R}^{N \times N}$ does not change the Newton sequence.
Newton’s method has an important property that becomes apparent in higher dimensions.

Given $F : \mathbb{R}^N \rightarrow \mathbb{R}^N$, and $x_0 \in \mathbb{R}^N$, we construct the sequence $x_0, x_1, \ldots$.

Now imagine that we change units or coordinate systems for our outputs $F$. Instead of solving $F(x) = 0$, we want to solve $\tilde{F}(x) = AF(x) = 0$, where $A \in \mathbb{R}^{N \times N}$ is constant and nonsingular. Of course, this doesn’t change the roots $x^*$. 
Newton’s method has an important property that becomes apparent in higher dimensions.

Given \( F : \mathbb{R}^N \rightarrow \mathbb{R}^N \), and \( x_0 \in \mathbb{R}^N \), we construct the sequence \( x_0, x_1, \ldots \).

Now imagine that we change units or coordinate systems for our outputs \( F \). Instead of solving \( F(x) = 0 \), we want to solve \( \tilde{F}(x) = AF(x) = 0 \), where \( A \in \mathbb{R}^{N \times N} \) is constant and nonsingular. Of course, this doesn’t change the roots \( x^* \).

**Theorem (Affine covariance)**

*Premultiplying \( F \) by a constant nonsingular \( A \in \mathbb{R}^{N \times N} \) does not change the Newton sequence.*
Let $\tilde{F}(x) := AF(x)$. Newton’s method applied to $\tilde{F}$ from $x_0 = \tilde{x}_0$ generates a sequence
\[\tilde{x}_0, \tilde{x}_1, \tilde{x}_2, \ldots.\]

**Proof.**

For $i = 0$, we have $x_i = \tilde{x}_i$ by assumption.
Let $\tilde{F}(x) := AF(x)$. Newton’s method applied to $\tilde{F}$ from $x_0 = \tilde{x}_0$ generates a sequence

$$\tilde{x}_0, \tilde{x}_1, \tilde{x}_2, \ldots.$$ 

**Proof.**

For $i = 0$, we have $x_i = \tilde{x}_i$ by assumption.

Assume the claim is true at iteration $i$. Then the Newton update for $\tilde{F}$ satisfies

$$[\tilde{F}_x(\tilde{x}_i)]^{-1} \tilde{F}(\tilde{x}_i) = [AF_x(x_i)]^{-1} AF(x_i)$$
Let \( \tilde{F}(x) := AF(x) \). Newton’s method applied to \( \tilde{F} \) from \( x_0 = \tilde{x}_0 \) generates a sequence

\[ \tilde{x}_0, \tilde{x}_1, \tilde{x}_2, \ldots \]

Proof.

For \( i = 0 \), we have \( x_i = \tilde{x}_i \) by assumption.

Assume the claim is true at iteration \( i \). Then the Newton update for \( \tilde{F} \) satisfies

\[
[\tilde{F}_x(\tilde{x}_i)]^{-1} \tilde{F}(\tilde{x}_i) = [AF_x(x_i)]^{-1}AF(x_i)
= [F_x(x_i)]^{-1}A^{-1}AF(x_i)
\]
Let $\tilde{F}(x) := AF(x)$. Newton’s method applied to $\tilde{F}$ from $x_0 = \tilde{x}_0$ generates a sequence

$$\tilde{x}_0, \tilde{x}_1, \tilde{x}_2, \ldots$$

**Proof.**

For $i = 0$, we have $x_i = \tilde{x}_i$ by assumption.

Assume the claim is true at iteration $i$. Then the Newton update for $\tilde{F}$ satisfies

$$[\tilde{F}_x(\tilde{x}_i)]^{-1} \tilde{F}(\tilde{x}_i) = [AF_x(x_i)]^{-1}AF(x_i)$$

$$= [F_x(x_i)]^{-1}A^{-1}AF(x_i)$$

$$= [F_x(x_i)]^{-1}F(x_i).$$
Let $\tilde{F}(x) := AF(x)$. Newton’s method applied to $\tilde{F}$ from $x_0 = \tilde{x}_0$ generates a sequence

$$\tilde{x}_0, \tilde{x}_1, \tilde{x}_2, \ldots.$$ 

**Proof.**

For $i = 0$, we have $x_i = \tilde{x}_i$ by assumption.

Assume the claim is true at iteration $i$. Then the Newton update for $\tilde{F}$ satisfies

$$[\tilde{F}_x(\tilde{x}_i)]^{-1} \tilde{F}(\tilde{x}_i) = [AF_x(x_i)]^{-1} AF(x_i)$$

$$= [F_x(x_i)]^{-1} A^{-1} AF(x_i)$$

$$= [F_x(x_i)]^{-1} F(x_i).$$

Hence $x_{i+1} = \tilde{x}_{i+1}$, and the result follows by induction.
Let $\tilde{F}(x) := AF(x)$. Newton’s method applied to $\tilde{F}$ from $x_0 = \tilde{x}_0$ generates a sequence

$$\tilde{x}_0, \tilde{x}_1, \tilde{x}_2, \ldots$$

**Proof.**

For $i = 0$, we have $x_i = \tilde{x}_i$ by assumption.

Assume the claim is true at iteration $i$. Then the Newton update for $\tilde{F}$ satisfies

$$[\tilde{F}_x(\tilde{x}_i)]^{-1} \tilde{F}(\tilde{x}_i) = [AF_x(x_i)]^{-1} AF(x_i)$$

$$= [F_x(x_i)]^{-1} A^{-1} AF(x_i)$$

$$= [F_x(x_i)]^{-1} F(x_i).$$

Hence $x_{i+1} = \tilde{x}_{i+1}$, and the result follows by induction.

We get exactly the same iterates $x_0, x_1, \ldots$, whether we apply Newton to $F(x) = 0$ or $AF(x) = 0$. 
Why does this matter?
Why does this matter?

### Philosophical remark

Since Newton’s method is affine covariant, *the conditions for any theorem guaranteeing its convergence* should also be affine covariant.
Why does this matter?

Philosophical remark

Since Newton’s method is affine covariant, *the conditions for any theorem guaranteeing its convergence* should also be affine covariant.

This is not true of proofs found in many books!
Why does this matter?

Philosophical remark

Since Newton’s method is affine covariant, the conditions for any theorem guaranteeing its convergence should also be affine covariant.

This is not true of proofs found in many books!

Moreover, any sensible strategy for globalising the convergence of Newton’s method from poor initial guesses $x_0$ must also preserve this property. This insight leads to the current state of the art for globalising Newton’s method.

Peter Deuflhard, 1944–2019
We can visualise the erratic global convergence with a *Newton fractal*. 
We can visualise the erratic global convergence with a *Newton fractal*.

Consider the problem

\[
\text{find } z \in \mathbb{C} \text{ such that } z^3 - 1 = 0.
\]

We could also think of this as a problem in \( \mathbb{R}^2 \).
We can visualise the erratic global convergence with a *Newton fractal*.

Consider the problem

\[
\text{find } z \in \mathbb{C} \text{ such that } z^3 - 1 = 0.
\]

We could also think of this as a problem in \( \mathbb{R}^2 \).

We know this has three solutions,

\[
z = 1, \quad z = -1/2 + i\sqrt{3}/2, \text{ and } z = -1/2 - i\sqrt{3}/2.
\]

Let’s take a subset of the complex plane and colour each point as follows. For a given \( z_0 \in \mathbb{C} \), we

1. run Newton’s method with that initial guess,
2. and colour the point according to which root it converges to.
The Newton fractal for $z^3 - 1 = 0$. 
The Newton fractal for $z^3 - 2z + 2 = 0$. 
The generalisation of Newton’s method to Banach spaces is called the *Newton–Kantorovich* algorithm.
The generalisation of Newton’s method to Banach spaces is called the *Newton–Kantorovich* algorithm.

Kantorovich’s theorem (1948) is a triumph of both PDE analysis and numerical analysis. It *does not assume the existence of a solution*: given certain conditions on the residual and initial guess, it *proves* the existence and local uniqueness of a solution.
The generalisation of Newton’s method to Banach spaces is called the *Newton–Kantorovich* algorithm.

Kantorovich’s theorem (1948) is a triumph of both PDE analysis and numerical analysis. It does not assume the existence of a solution: given certain conditions on the residual and initial guess, it proves the existence and local uniqueness of a solution.

With a good initial guess, and great cleverness, it is possible to devise computer-assisted proofs of the existence of solutions to infinite-dimensional nonlinear problems.
Invented linear programming (via industrial consultancy!).
Instrumental in saving over a million lives during the siege of Leningrad.
Involved in the Soviet nuclear bomb project.
Nearly sent to the gulag for “shadow prices”.
Theorem (Kantorovich (1948))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Given $u_0 \in \Omega$, assume

1. $F_u(u_0)^{-1}$ exists and set $\alpha := \|F_u(u_0)^{-1}F(u_0)\|$;
Theorem (Kantorovich (1948))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Given $u_0 \in \Omega$, assume

1. $F_u(u_0)^{-1}$ exists and set $\alpha := \|F_u(u_0)^{-1}F(u_0)\|$;
2. $\|F_u(u_0)^{-1}(F_u(v) - F_u(w))\| \leq \omega_0\|v - w\|$ for all $v, w \in \Omega$;
Theorem (Kantorovich (1948))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Given $u_0 \in \Omega$, assume

1. $F_u(u_0)^{-1}$ exists and set $\alpha := \|F_u(u_0)^{-1}F(u_0)\|;$
2. $\|F_u(u_0)^{-1} (F_u(v) - F_u(w)) \| \leq \omega_0 \|v - w\|$ for all $v, w \in \Omega;$
3. $h_0 := \alpha \omega_0 \leq \frac{1}{2};$
Theorem (Kantorovich (1948))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Given $u_0 \in \Omega$, assume

1. $F_u(u_0)^{-1}$ exists and set $\alpha := \|F_u(u_0)^{-1}F(u_0)\|$;
2. $\|F_u(u_0)^{-1}(F_u(v) - F_u(w))\| \leq \omega_0\|v - w\|$ for all $v, w \in \Omega$;
3. $h_0 := \alpha\omega_0 \leq \frac{1}{2}$;
4. $B(u_0, \rho_0) \subset \Omega$ for $\rho_0 := (1 - \sqrt{1 - 2h_0})/\omega_0$. 
Theorem (Kantorovich (1948))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Given $u_0 \in \Omega$, assume

1. $F_u(u_0)^{-1}$ exists and set $\alpha := \|F_u(u_0)^{-1}F(u_0)\|$;
2. $\|F_u(u_0)^{-1}(F_u(v) - F_u(w))\| \leq \omega_0\|v - w\|$ for all $v, w \in \Omega$;
3. $h_0 := \alpha\omega_0 \leq \frac{1}{2}$;
4. $B(u_0, \rho_0) \subset \Omega$ for $\rho_0 := (1 - \sqrt{1 - 2h_0})/\omega_0$.

Then the Newton sequence defined by

$$u_{k+1} = u_k - F_u(u_k)^{-1}F(u_k)$$

is well defined and remains within $B(u_0, \rho_0)$. 

Theorem (Kantorovich (1948))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Given $u_0 \in \Omega$, assume

1. $F_{u}(u_0)^{-1}$ exists and set $\alpha := \|F_{u}(u_0)^{-1}F(u_0)\|;$
2. $\|F_{u}(u_0)^{-1}(F_{u}(v) - F_{u}(w))\| \leq \omega_0\|v - w\|$ for all $v, w \in \Omega$;
3. $h_0 := \alpha\omega_0 \leq \frac{1}{2}$;
4. $B(u_0, \rho_0) \subset \Omega$ for $\rho_0 := (1 - \sqrt{1 - 2h_0})/\omega_0$.

Then the Newton sequence defined by

$$u_{k+1} = u_k - F_{u}(u_k)^{-1}F(u_k)$$

is well defined and remains within $B(u_0, \rho_0)$.

There exists $u^* \in B(u_0, \rho_0)$ which solves $F(u^*) = 0$, and $(u_k) \rightarrow u^*$. 
Theorem (Kantorovich (1948))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Given $u_0 \in \Omega$, assume

1. $F_u(u_0)^{-1}$ exists and set $\alpha := \|F_u(u_0)^{-1}F(u_0)\|;$
2. $\|F_u(u_0)^{-1}(F_u(v) - F_u(w))\| \leq \omega_0\|v - w\|$ for all $v, w \in \Omega$;
3. $h_0 := \alpha\omega_0 \leq \frac{1}{2};$
4. $B(u_0, \rho_0) \subset \Omega$ for $\rho_0 := (1 - \sqrt{1 - 2h_0})/\omega_0$.

Then the Newton sequence defined by

$$u_{k+1} = u_k - F_u(u_k)^{-1}F(u_k)$$

is well defined and remains within $B(u_0, \rho_0)$.

There exists $u^* \in B(u_0, \rho_0)$ which solves $F(u^*) = 0$, and $(u_k) \rightarrow u^*$.

The solution $u^*$ is unique in $\Omega \cap B(u_0, \rho^+)$ for a $\rho^+ > \rho_0$. 
Subsection 2

Rall–Rheinboldt
The Newton–Kantorovich theorem is very powerful because you only need to check conditions on the initial guess (and a ball around it).
The Newton–Kantorovich theorem is very powerful because you only need to check conditions on the initial guess (and a ball around it).

If you assume the existence of roots, one gets a slightly different theory that is also useful. This allows us to place balls around the roots, such that if the Newton sequence starts within a ball, Newton’s method converges to the associated root.
Theorem (Rall–Rheinboldt (1974))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Let $u^* \in \Omega$ such that $F(u^*) = 0$. Assume that

1. $F_u(u^*)^{-1}$ exists;

Then for any $u_0 \in B(u^*, 2/(3\omega^*))$, the Newton sequence is well-defined and remains within the ball. The Newton sequence converges to $u^*$. The solution $u^*$ is unique within $\Omega \cap B(u^*, 1/\omega^*)$. 

Louis B. Rall, 1930–

Werner C. Rheinboldt, ?–?
Theorem (Rall–Rheinboldt (1974))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Let $u^* \in \Omega$ such that $F(u^*) = 0$. Assume that

1. $F_u(u^*)^{-1}$ exists;
2. $\|F_u(u^*)^{-1} (F_u(v) - F_u(w))\| \leq \omega^* \|v - w\|$ for all $v, w \in \Omega$. 

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Let $u^* \in \Omega$ such that $F(u^*) = 0$. Assume that
Theorem (Rall–Rheinboldt (1974))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Let $u^* \in \Omega$ such that $F(u^*) = 0$. Assume that

1. $F_u(u^*)^{-1}$ exists;
2. $\|F_u(u^*)^{-1} (F_u(v) - F_u(w))\| \leq \omega^* \|v - w\|$ for all $v, w \in \Omega$.

Then for any $u_0 \in B(u^*, 2/(3\omega^*))$, the Newton sequence is well-defined and remains within the ball.
Theorem (Rall–Rheinboldt (1974))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Let $u^* \in \Omega$ such that $F(u^*) = 0$. Assume that

1. $F_u(u^*)^{-1}$ exists;
2. $\|F_u(u^*)^{-1}(F_u(v) - F_u(w))\| \leq \omega^* \|v - w\|$ for all $v, w \in \Omega$.

Then for any $u_0 \in B(u^*, 2/(3\omega^*))$, the Newton sequence is well-defined and remains within the ball.

The Newton sequence converges to $u^*$. 
Theorem (Rall–Rheinboldt (1974))

Let $F \in C^1(\Omega, Y)$ for open convex $\Omega \subset X$. Let $u^* \in \Omega$ such that $F(u^*) = 0$. Assume that

1. $F_u(u^*)^{-1}$ exists;
2. $\|F_u(u^*)^{-1}(F_u(v) - F_u(w))\| \leq \omega^* \|v - w\|$ for all $v, w \in \Omega$.

Then for any $u_0 \in B(u^*, 2/(3\omega^*))$, the Newton sequence is well-defined and remains within the ball.

The Newton sequence converges to $u^*$.

The solution $u^*$ is unique within $\Omega \cap B(u^*, 1/\omega^*)$. 

Louis B. Rall, 1930–

Werner C. Rheinboldt, ?–?
Let’s examine the conditions of the theorems for a simple case:

\[ f : \mathbb{C} \rightarrow \mathbb{C}, \quad f(z) = (z - 1)(z + 1). \]
Let’s examine the conditions of the theorems for a simple case:

\[ f : \mathbb{C} \to \mathbb{C}, \quad f(z) = (z - 1)(z + 1). \]

We have \( f'(z) = 2z \).
Let’s examine the conditions of the theorems for a simple case:

\[ f : \mathbb{C} \to \mathbb{C}, \quad f(z) = (z - 1)(z + 1). \]

We have \( f'(z) = 2z. \)

**Newton–Kantorovich**

For \( z_0 \neq 0, \) we calculate

\[ \alpha := |f'(z_0)^{-1} f(z_0)| = |z_0^2 - 1|/2|z_0|, \]
Let’s examine the conditions of the theorems for a simple case:

\[ f : \mathbb{C} \to \mathbb{C}, \quad f(z) = (z - 1)(z + 1). \]

We have \( f'(z) = 2z \).

**Newton–Kantorovich**

For \( z_0 \neq 0 \), we calculate

\[ \alpha := |f'(z_0)^{-1}f(z_0)| = |z_0^2 - 1|/2|z_0|, \]

and by inspecting

\[ |(2z_0)^{-1}(2v - 2w)| \leq \omega_0|v - w| \]
Let’s examine the conditions of the theorems for a simple case:

\[ f : \mathbb{C} \rightarrow \mathbb{C}, \quad f(z) = (z - 1)(z + 1). \]

We have \( f'(z) = 2z \).

**Newton–Kantorovich**

For \( z_0 \neq 0 \), we calculate

\[ \alpha := |f'(z_0)^{-1}f(z_0)| = \frac{|z_0^2 - 1|}{2|z_0|}, \]

and by inspecting

\[ |(2z_0)^{-1}(2v - 2w)| \leq \omega_0|v - w| \]

we find \( \omega_0 = 1/|z_0| \).
Let’s examine the conditions of the theorems for a simple case:

\[ f : \mathbb{C} \rightarrow \mathbb{C}, \quad f(z) = (z - 1)(z + 1). \]

We have \( f'(z) = 2z \).

**Newton–Kantorovich**

For \( z_0 \neq 0 \), we calculate

\[ \alpha := |f'(z_0)^{-1}f(z_0)| = |z_0^2 - 1|/2|z_0|, \]

and by inspecting

\[ |(2z_0)^{-1}(2v - 2w)| \leq \omega_0|v - w| \]

we find \( \omega_0 = 1/|z_0| \).

We need \( \alpha \omega_0 \leq 1/2 \), so Newton–Kantorovich guarantees convergence for

\[ \frac{|z_0^2 - 1|}{2|z_0|^2} \leq \frac{1}{2} \quad \Rightarrow \quad |1 - z_0^{-2}| \leq 1. \]
Rall–Rheinboldt

The affine covariant Lipschitz constant for \( z^* = 1 \) is \( 1/|z^*| = 1 \).
The affine covariant Lipschitz constant for $z^* = 1$ is $1/|z^*| = 1$.

So Rall–Rheinboldt guarantees convergence for

$$|z_0 - 1| \leq 2/3.$$
The affine covariant Lipschitz constant for $z^* = 1$ is $1/|z^*| = 1$.

So Rall–Rheinboldt guarantees convergence for $|z_0 - 1| \leq 2/3$. 
The affine covariant Lipschitz constant for $z^* = 1$ is $1/|z^*| = 1$.

So Rall–Rheinboldt guarantees convergence for
\[ |z_0 - 1| \leq 2/3. \]
Subsection 3

The Implicit Function Theorem
Newton’s method allows us to lock in on one solution $u_0$ for a fixed parameter value $\lambda_0$, given some initial guess near $u_0$. 
Newton’s method allows us to lock in on one solution \( u_0 \) for a fixed parameter value \( \lambda_0 \), given some initial guess near \( u_0 \).

When does the existence of \( (u_0, \lambda_0) \) such that \( F(u_0, \lambda_0) = 0 \) imply that we can solve \( F \) for nearby values of \( \lambda \)?
Newton’s method allows us to lock in on one solution \( u_0 \) for a fixed parameter value \( \lambda_0 \), given some initial guess near \( u_0 \).

When does the existence of \((u_0, \lambda_0)\) such that \( F(u_0, \lambda_0) = 0 \) imply that we can solve \( F \) for nearby values of \( \lambda \)?

An answer . . .

. . . is given by the Implicit Function Theorem.
Newton’s method allows us to lock in on one solution $u_0$ for a fixed parameter value $\lambda_0$, given some initial guess near $u_0$.

When does the existence of $(u_0, \lambda_0)$ such that $F(u_0, \lambda_0) = 0$ imply that we can solve $F$ for nearby values of $\lambda$?

An answer . . .

. . . is given by the Implicit Function Theorem.

Basically, if $F_u(u_0, \lambda_0)$ is invertible, then you can continue $u = H(\lambda)$ for some interval $(\lambda_0 - \delta, \lambda_0 + \delta)$. 
Theorem (Implicit Function Theorem)

Assume that $\Omega \subset X \times \mathbb{R}$ is open. Let $F \in C^1(\Omega, Y)$.

Let $(u_0, \lambda_0) \in \Omega$ such that $F(u_0, \lambda_0) = 0$ with $F_u(u_0, \lambda_0)$ invertible.

Then

 GIVEN貴人

Ulisse Dini, 1845–1918
Theorem (Implicit Function Theorem)

Assume that $\Omega \subset X \times \mathbb{R}$ is open. Let $F \in C^1(\Omega, Y)$.

Let $(u_0, \lambda_0) \in \Omega$ such that $F(u_0, \lambda_0) = 0$ with $F_u(u_0, \lambda_0)$ invertible.

Then

1. there exist $\varepsilon, \delta > 0$ and $H \in C(B(\lambda_0, \delta), B(u_0, \varepsilon))$ such that $(H(\lambda), \lambda)$ is the unique solution of $F(u, \lambda) = 0$ in $B(\lambda_0, \delta) \times B(u_0, \varepsilon)$;
Theorem (Implicit Function Theorem)

Assume that $\Omega \subset X \times \mathbb{R}$ is open. Let $F \in C^1(\Omega, Y)$.

Let $(u_0, \lambda_0) \in \Omega$ such that $F(u_0, \lambda_0) = 0$ with $F_u(u_0, \lambda_0)$ invertible.

Then

1. there exist $\varepsilon, \delta > 0$ and $H \in C(B(\lambda_0, \delta), B(u_0, \varepsilon))$ such that $(H(\lambda), \lambda)$ is the unique solution of $F(u, \lambda) = 0$ in $B(\lambda_0, \delta) \times B(u_0, \varepsilon)$;

2. if $F \in C^k(\Omega, Y)$, then $H \in C^k(B(\lambda_0, \delta), X)$.
Theorem (Implicit Function Theorem)

Assume that $\Omega \subset X \times \mathbb{R}$ is open. Let $F \in C^1(\Omega, Y)$.

Let $(u_0, \lambda_0) \in \Omega$ such that $F(u_0, \lambda_0) = 0$ with $F_u(u_0, \lambda_0)$ invertible.

Then

1. there exist $\varepsilon, \delta > 0$ and $H \in C(B(\lambda_0, \delta), B(u_0, \varepsilon))$ such that $(H(\lambda), \lambda)$ is the unique solution of $F(u, \lambda) = 0$ in $B(\lambda_0, \delta) \times B(u_0, \varepsilon)$;

2. if $F \in C^k(\Omega, Y)$, then $H \in C^k(B(\lambda_0, \delta), X)$;

3. if $F$ is analytic, $H$ is analytic.
A Historical Outline of the Theorem of Implicit Functions

Un Bosquejo Histórico del Teorema de las Funciones Implícitas

Giovanni Mingari Scarpello (giovannimingari@libero.it)
Daniele Ritelli dritelli@economa.unibo.it
Dipartimento di Matematica per le Scienze Economiche e Sociali,
Bologna Italy

Ulisse Dini, 1845–1918
The history is reviewed in

A Historical Outline of the Theorem of Implicit Functions

*Un Bosquejo Histórico del Teorema de las Funciones Implícitas*

Giovanni Mingari Scarpello (giovannimingari@libero.it)
Daniele Ritelli dritelli@economia.unibo.it
Dipartimento di Matematica per le Scienze Economiche e Sociali,
Bologna, Italy

which complains

*Anglo–Saxon scientific and historic literature ignores the Italian mathematician U. Dini.*
Main message

If we want to find where local uniqueness breaks down, look for \((u, \lambda)\) such that \(F_u(u, \lambda)\) not invertible.
Main message

If we want to find where local uniqueness breaks down, look for \((u, \lambda)\) such that \(F_u(u, \lambda)\) not invertible.

Note

\(F_u(u, \lambda)\) invertible is sufficient for the existence of a local resolution \(u = u(\lambda)\), but not necessary.
Consider $F(u, \lambda) = u^3 - \lambda$. 
Consider $F(u, \lambda) = u^3 - \lambda$.

$F_u(0, 0) = 0$, but the resolution $u = H(\lambda) = \sqrt[3]{\lambda}$ is unique regardless.
Section 4

Examples
Let’s see more examples of what can happen when the IFT does not apply.
Fold bifurcation

\[ F(u, \lambda) = \lambda - u^2 = 0 \]
Fold bifurcation

\[ F(u, \lambda) = \lambda - u^2 = 0 \]

This has solutions

\[ u = \pm \sqrt{\lambda}, \quad \lambda \geq 0, \]

and no solutions otherwise.
Fold bifurcation

\[ F(u, \lambda) = \lambda - u^2 = 0 \]

\[ F_u(0, 0) = 0. \text{ A branch of solutions is born at a fold bifurcation.} \]
Transcritical bifurcation

\[ F(u, \lambda) = \lambda u + u^2 = 0 \]
**Transcritical bifurcation**

\[ F(u, \lambda) = \lambda u + u^2 = 0 \]

This has solutions

\[ u = 0, \quad u = -\lambda \]

for all values of \( \lambda \).
Transcritical bifurcation

\[ F(u, \lambda) = \lambda u + u^2 = 0 \]

Two branches cross at a *transcritical bifurcation*. 
Pitchfork bifurcation

\[ F(u, \lambda) = \lambda u - u^3 = 0 \]
Pitchfork bifurcation

\[ F(u, \lambda) = \lambda u - u^3 = 0 \]

This has solutions

\[ u = 0, \quad \lambda \in \mathbb{R}, \]
\[ u = \pm \sqrt[3]{\lambda}, \quad \lambda \geq 0. \]
Pitchfork bifurcation

\[ F(u, \lambda) = \lambda u - u^3 = 0 \]

Two branches emerge from the base branch at a *pitchfork bifurcation*.
Structural stability of folds

Fold bifurcations are structurally stable.
Structural stability of folds

Fold bifurcations are structurally stable.

Structural stability of transcritical and pitchfork bifurcations

Transcritical and pitchfork bifurcations are not.
Structural stability of folds

Fold bifurcations are structurally stable.

Structural stability of transcritical and pitchfork bifurcations

Transcritical and pitchfork bifurcations are not.

Numerical implications

This will have major consequences for our algorithms.
Perturbing a fold + transcritical bifurcation

\[ F(u, \lambda) = u^2 - \lambda^2(\lambda + 1) + \delta = 0 \]
Perturbing a fold + transcritical bifurcation

\[ F(u, \lambda) = u^2 - \lambda^2(\lambda + 1) + \delta = 0 \]

\[ \delta = 0 \]
Perturbing a fold + transcritical bifurcation

\[ F(u, \lambda) = u^2 - \lambda^2(\lambda + 1) + \delta = 0 \]

\( \delta = 0 \)

\( \delta < 0 \)
Perturbing a fold + transcritical bifurcation

\[ F(u, \lambda) = u^2 - \lambda^2(\lambda + 1) + \delta = 0 \]

\( \delta = 0 \)

\( \delta < 0 \)

\( \delta > 0 \)
Examples

Perturbing a pitchfork bifurcation

\[ F(u, \lambda) = \lambda u - u^3 + \delta = 0 \]
Perturbing a pitchfork bifurcation

\[ F(u, \lambda) = \lambda u - u^3 + \delta = 0 \]

\[ \delta = 0 \]
Perturbing a pitchfork bifurcation

\[ F(u, \lambda) = \lambda u - u^3 + \delta = 0 \]

\[ \delta = 0 \quad \delta < 0 \]
Perturbing a pitchfork bifurcation

\[ F(u, \lambda) = \lambda u - u^3 + \delta = 0 \]

\[ \delta = 0 \]

\[ \delta < 0 \]

\[ \delta > 0 \]
These examples motivate the following definition.

**Bifurcation point**

A bifurcation point $P = (u^*, \lambda^*)$ is one where, for all neighbourhoods $N$ containing $P$, there exists a $\lambda \in \mathbb{R}$ such that $F(u, \lambda) = 0$ has nonunique solutions within $N$. 
These examples motivate the following definition.

**Bifurcation point**

A bifurcation point \( P = (u^*, \lambda^*) \) is one where, for all neighbourhoods \( N \) containing \( P \), there exists a \( \lambda \in \mathbb{R} \) such that \( F(u, \lambda) = 0 \) has nonunique solutions within \( N \).

In the next lectures, we will study the key question:

How do we compute these bifurcation diagrams?
Lecture 2: Classical algorithms of bifurcation analysis

Patrick E. Farrell

University of Oxford

May 30
Challenge

How do we continue branches? How do we detect and pursue bifurcations?
Primary references.
Basic idea of numerical bifurcation analysis:

\[
\text{procedure } \text{ANALYSE}(u_0, \lambda_0) \\
\text{end procedure}
\]
Basic idea of numerical bifurcation analysis:

\begin{verbatim}
procedure ANALYSE\(u_0, \lambda_0\)
    continue branch of solutions;
end procedure
\end{verbatim}

Continuation
Extending our knowledge of the branch to other values of \(\lambda\).
Basic idea of numerical bifurcation analysis:

\[
\text{procedure } \text{ANALYSE}(u_0, \lambda_0) \\begin{align*}
&\text{continue branch of solutions;} \\
&\text{detect bifurcations on the branch;}
\end{align*}
\]

\text{end procedure}

Bifurcation detection

Discovering when a bifurcation has occurred on the branch.
Basic idea of numerical bifurcation analysis:

\begin{verbatim}
procedure ANALYSE(u_0, \lambda_0)
    continue branch of solutions;
    detect bifurcations on the branch;
    localise bifurcations;
end procedure
\end{verbatim}

Bifurcation localisation

Identifying precisely the bifurcation point.
Basic idea of numerical bifurcation analysis:

```
procedure ANALYSE(u₀, λ₀)
    continue branch of solutions;
    detect bifurcations on the branch;
    localise bifurcations;
    switch branches at bifurcations, and recurse.
end procedure
```

Herbert Keller, 1925–2008

Branch switching

Constructing the emanating branches, and analysing them recursively.
Start with $(u_0, \lambda_0)$. 
Perform a continuation step.
Detect we have passed a bifurcation.
Localise bifurcation point.
Switch branches.
Apply recursively.
Section 1

Continuation algorithms
Suppose we know \((u_0, \lambda_0)\), with \(F_u(u_0, \lambda_0)\) invertible. By the IFT we know we can continue the branch for other values of \(\lambda\).
Suppose we know \((u_0, \lambda_0)\), with \(F_u(u_0, \lambda_0)\) invertible. By the IFT we know we can continue the branch for other values of \(\lambda\).

How should we do so? We will meet five algorithms:

▶ natural (or naïve, or first-order) continuation;
Suppose we know \((u_0, \lambda_0)\), with \(F_u(u_0, \lambda_0)\) invertible. By the IFT we know we can continue the branch for other values of \(\lambda\).

How should we do so? We will meet five algorithms:

- natural (or naïve, or first-order) continuation;
- tangent (or second-order) continuation, and secant continuation;
Suppose we know \((u_0, \lambda_0)\), with \(F_u(u_0, \lambda_0)\) invertible. By the IFT we know we can continue the branch for other values of \(\lambda\).

How should we do so? We will meet five algorithms:

- natural (or naïve, or first-order) continuation;
- tangent (or second-order) continuation, and secant continuation;
- arclength continuation, and pseudo-arclength continuation.
Subsection 1

Natural continuation
Start with \((\lambda_0, u_0)\).
Set $u_0$ as our guess for $\lambda_0 + \delta \lambda$. 

$\lambda$

$u$

$(\lambda_0, u_0)$

$(\lambda_0 + \delta \lambda, u_0)$
Use Newton–Kantorovich to find the solution for $\lambda_1 = \lambda_0 + \delta \lambda$. 
Continuation algorithms

Natural continuation

Piecewise-constant guess.
Continuation algorithms

Natural continuation

\[(\lambda_0, u_0) \rightarrow (\lambda_0 + \delta\lambda, u_0) \rightarrow (\lambda_1, u_1)\]

Newton–Kantorovich.

P. E. Farrell (Oxford)
Continuation algorithms

Natural continuation

\[ (\lambda_0, u_0) (\lambda_0 + \delta \lambda, u_0) (\lambda_1, u_1) \]

Guess and solve.

\[ \lambda \]

\[ u \]
Continuation algorithms

Natural continuation

\[ (\lambda_0, u_0) \rightarrow (\lambda_0 + \delta \lambda, u_0) \rightarrow (\lambda_1, u_1) \]

\[ \lambda \]

\[ u \]

Guess ...
Continuation algorithms

Natural continuation

\[ (\lambda_0, u_0) \quad (\lambda_0 + \delta\lambda, u_0) \quad (\lambda_1, u_1) \]

...but there are no solutions to be found for this value of \( \lambda \).
Good news

This is cheap and easy.
Good news
This is cheap and easy.

Bad news
We can probably construct better guesses.
Good news
This is cheap and easy.

Bad news
We can probably construct better guesses.

Worse news
The algorithm has no hope of continuing around the fold.
Subsection 2

Tangent and secant continuation
Natural continuation estimates

\[ u(\lambda_{i+1}) \approx u(\lambda_i), \]

which is the first-order Taylor expansion.
Natural continuation estimates

\[ u(\lambda_{i+1}) \approx u(\lambda_i), \]

which is the first-order Taylor expansion.

A better estimate would be

\[ u(\lambda_{i+1}) \approx u(\lambda_i) + u_\lambda(\lambda_i)\delta\lambda, \]

the second-order Taylor expansion.
Natural continuation estimates

\[ u(\lambda_{i+1}) \approx u(\lambda_i), \]

which is the first-order Taylor expansion.

A better estimate would be

\[ u(\lambda_{i+1}) \approx u(\lambda_i) + u_\lambda(\lambda_i) \delta \lambda, \]

the second-order Taylor expansion.

How do we compute \( u_\lambda(\lambda_i) \)?
Since $F(u, \lambda) = 0$, taking the total derivative of both sides with respect to $\lambda$ in the direction $\delta \lambda$ yields

$$\frac{d}{d\lambda} F(u, \lambda) = F_u(u, \lambda)u_\lambda + F_\lambda(u, \lambda) = 0.$$
Since $F(u, \lambda) = 0$, taking the total derivative of both sides with respect to $\lambda$ in the direction $\delta \lambda$ yields

$$\frac{d}{d\lambda} F(u, \lambda) = F_u(u, \lambda)u_\lambda + F_\lambda(u, \lambda) = 0.$$ 

If $\lambda \in \mathbb{R}, u \in \mathbb{R}^N$, then $u_\lambda \in \mathbb{R}^N, F_\lambda \in \mathbb{R}^N$, and $F_u \in \mathbb{R}^{N \times N}$. 
Since $F(u, \lambda) = 0$, taking the total derivative of both sides with respect to $\lambda$ in the direction $\delta \lambda$ yields

$$\frac{d}{d\lambda} F(u, \lambda) = F_u(u, \lambda)u_{\lambda} + F_{\lambda}(u, \lambda) = 0.$$ 

If $\lambda \in \mathbb{R}, u \in \mathbb{R}^N$, then $u_\lambda \in \mathbb{R}^N$, $F_{\lambda} \in \mathbb{R}^N$, and $F_u \in \mathbb{R}^{N \times N}$.

Since the dependence of $F$ on $\lambda$ is explicit, we can calculate $F_{\lambda}$, and solve

$$F_u(u, \lambda)u_{\lambda} = -F_{\lambda}(u, \lambda)$$

at the cost of one Newton step. This is the tangent linearisation.
Start with \((u_0, \lambda_0)\).
Continuation algorithms

Tangent and secant continuation

Solve tangent linearisation to construct next guess.
Solve nonlinear problem with Newton–Kantorovich.
Continuation algorithms

Tangent and secant continuation

Solve tangent linearisation to construct next guess.
This constructs much better initial guesses, but is more expensive. We have to save at least two Newton iterations to make this worth it.
This constructs much better initial guesses, but is more expensive. We have to save at least two Newton iterations to make this worth it.

A natural alternative is to approximate the tangent with a secant: build the line joining \textit{two} previous points on the branch, and extrapolate to the next value of $\lambda$. 
This constructs much better initial guesses, but is more expensive. We have to save at least two Newton iterations to make this worth it.

A natural alternative is to approximate the tangent with a secant: build the line joining two previous points on the branch, and extrapolate to the next value of $\lambda$.

Secant continuation constructs almost as good initial guesses, for almost no increase in cost over natural continuation (only memory).
Subsection 3

Arclength continuation
Tangent/secant continuation are much more efficient, but still have no hope of continuing around a fold.

The fundamental problem is one of parameterisation: we are thinking of our solution curve as $u = u(\lambda)$ but if we only ever increase $\lambda$, we cannot turn back around a fold.

A better way to parameterise the solution curve is as $(u(s), \lambda(s))$ where $s$ is the arclength on the curve, measured from $(u_0, \lambda_0)$.

In other words, at each continuation step we will also solve for the next value of $\lambda$. This allows $\lambda$ to decrease as well as increase, to successfully traverse folds.
Tangent/secant continuation are much more efficient, but still have no hope of continuing around a fold.

The fundamental problem is one of parameterisation: we are thinking of our solution curve as

\[ u = u(\lambda) \]

but if we only ever increase \( \lambda \), we cannot turn back around a fold.
Tangent/secant continuation are much more efficient, but still have no hope of continuing around a fold.

The fundamental problem is one of parameterisation: we are thinking of our solution curve as

\[ u = u(\lambda) \]

but if we only ever increase \( \lambda \), we cannot turn back around a fold.

A better way

Parameterise the solution curve as

\( (u(s), \lambda(s)) \)

where \( s \) is the arclength on the curve, measured from \( (u_0, \lambda_0) \).
Tangent/secant continuation are much more efficient, but still have no hope of continuing around a fold.

The fundamental problem is one of parameterisation: we are thinking of our solution curve as

$$u = u(\lambda)$$

but if we only ever increase $\lambda$, we cannot turn back around a fold.

**A better way**

Parameterise the solution curve as

$$(u(s), \lambda(s))$$

where $s$ is the arclength on the curve, measured from $(u_0, \lambda_0)$.

In other words, **at each continuation step we will also solve for the next value of $\lambda$.** This allows $\lambda$ to decrease as well as increase, to successfully traverse folds.
Since we are now solving for both $u$ and $\lambda$, we need to augment our system of equations with one more real-valued equation:

$$A(u(s), \lambda(s)) := \begin{bmatrix} F(u(s), \lambda(s)) \\ p(u(s), \lambda(s), s) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
Since we are now solving for both $u$ and $\lambda$, we need to augment our system of equations with one more real-valued equation:

\[
A(u(s), \lambda(s)) := \begin{bmatrix}
F(u(s), \lambda(s)) \\
p(u(s), \lambda(s), s)
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]

We can think of natural and tangent continuation in this framework by setting

\[
p(u, \lambda, s) := \lambda - \lambda_{i+1}.
\]
Since we are now solving for both $u$ and $\lambda$, we need to augment our system of equations with one more real-valued equation:

$$A(u(s), \lambda(s)) := \begin{bmatrix} F(u(s), \lambda(s)) \\ p(u(s), \lambda(s), s) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. $$

We can think of natural and tangent continuation in this framework by setting

$$p(u, \lambda, s) := \lambda - \lambda_{i+1}. $$

The choice *arclength* continuation makes is to have $p$ encode a desired change in distance:

$$p(u, \lambda, s) := \|u - u_i\|^2 + |\lambda - \lambda_i|^2 - (s - s_i)^2. $$
Start with \((\lambda_i, u_i)\).
Seek points on the curve that intersect $p(u, \lambda) = 0$. 
Continuation algorithms

Arclength continuation

Solve nonlinear problem with Newton–Kantorovich.

Continuation algorithms

Classical algorithms

May 30 19 / 44
Continuation algorithms

Arclength continuation

\[(\lambda_{i+1}, u_{i+1})\]

\[\lambda \cdot u(\lambda_{i+1}, u_{i+1})\]

Repeat.

P. E. Farrell (Oxford)
Continuation algorithms

Arclength continuation

\[ (\lambda_i + 1, u_{i+1}) \]
\[ (\lambda_i + 2, u_{i+2}) \]

Repeat.

P. E. Farrell (Oxford)

Classical algorithms
Continuation algorithms

Arclength continuation

\[ \lambda \] and \[ u \]

Repeat.

\( (\lambda_{i+2}, u_{i+2}) \)

P. E. Farrell (Oxford)

Classical algorithms

May 30 19 / 44
Continuation algorithms

Arclength continuation

\[
\lambda_{i+2}, u_{i+2}
\]

Repeat.
Continuation algorithms

Arclength continuation

Good news

This allows us to robustly continue around folds.
Good news
This allows us to robustly continue around folds.

Bad news
We now have to solve augmented systems with extra nonlinearity.
Good news
This allows us to robustly continue around folds.

Bad news
We now have to solve augmented systems with extra nonlinearity.

Worse news
The augmented system generically has two solutions!
We attempt to guide Newton–Kantorovich to the solution we want by building a good initial guess.
We attempt to guide Newton–Kantorovich to the solution we want by building a good initial guess.

We compute \((u_s(s_i), \lambda_s(s_i))\) by solving

\[
\frac{d}{ds} A(u(s), \lambda(s)) = 0,
\]

the tangent linearisation of the augmented system.
We attempt to guide Newton–Kantorovich to the solution we want by building a good initial guess.

We compute \((u_s(s_i), \lambda_s(s_i))\) by solving

$$\frac{d}{ds} A(u(s), \lambda(s)) = 0,$$

the tangent linearisation of the augmented system.

We then set the initial guess to be \((u(s_i) + u_s(s_i)\delta s, \lambda(s_i) + \lambda_s(s_i)\delta s)\).
We attempt to guide Newton–Kantorovich to the solution we want by building a good initial guess.

We compute \((u_s(s_i), \lambda_s(s_i))\) by solving

\[
\frac{d}{ds} A(u(s), \lambda(s)) = 0,
\]

the tangent linearisation of the augmented system.

We then set the initial guess to be \((u(s_i) + u_s(s_i) \delta s, \lambda(s_i) + \lambda_s(s_i) \delta s)\).

However, this doesn’t always work: even with this good initial guess, Newton–Kantorovich can sometimes find the wrong (old) solution.
The basic problem with arclength is that the extra equation added is nonlinear, and hence supports multiple solutions.
The basic problem with arclength is that the extra equation added is nonlinear, and hence supports multiple solutions.

We are free to choose the extra equation. So let’s linearise it!
The basic problem with arclength is that the extra equation added is nonlinear, and hence supports multiple solutions.

We are free to choose the extra equation. So let’s linearise it!

**Pseudo-arclength continuation**

Assuming that $X \subset L^2(\Omega)$, we can choose

$$p(u, \lambda) := (u - u_i, u_s(s_i))_{L^2(\Omega)} + (\lambda - \lambda_i)\lambda_s(s_i) - (s - s_i)$$

This looks for points on the branch that are orthogonal (in the $L^2(\Omega) \times \mathbb{R}$ inner product) to the tangent, at a distance $s - s_i$ away.
Start with \((u_i, \lambda_i)\).
Construct the tangent to the curve.
Impose the orthogonality constraint.
Continuation algorithms

Arclength continuation

Solve.
Continuation algorithms

Arclength continuation

\[
\lambda^{i+1}, u^{i+1}
\]

\[
\lambda
\]

\[
u
\]

Repeat.

Repeat.
Continuation algorithms

Arclength continuation

\[ \lambda_{i+1}, u_{i+1} \]

Repeat.

Repeat.
Continuation algorithms

Arclength continuation

\[ (\lambda_{i+1}, u_{i+1}) \]

Repeat.

P. E. Farrell (Oxford)
We need some way to detect that we have passed through a bifurcation.
Consider the problem

\[ F(u, \lambda) = -u'' - \lambda u + u^3 = 0, \quad u(0) = 0 = u(\pi). \]
Consider the problem

\[ F(u, \lambda) = -u'' - \lambda u + u^3 = 0, \quad u(0) = 0 = u(\pi). \]

This has a trivial branch of solutions \( \{(0, \lambda) : \lambda \in \mathbb{R}\} \).
Consider the problem

\[ F(u, \lambda) = -u'' - \lambda u + u^3 = 0, \quad u(0) = 0 = u(\pi). \]

This has a trivial branch of solutions \( \{(0, \lambda) : \lambda \in \mathbb{R}\} \).

By the IFT, we know that bifurcations can only happen where its Fréchet derivative is singular. Its Fréchet derivative on the branch is

\[ F_u(0, \lambda; v) = -v'' - \lambda v = 0, \quad v(0) = 0 = v(\pi), \]
Consider the problem

\[ F(u, \lambda) = -u'' - \lambda u + u^3 = 0, \quad u(0) = 0 = u(\pi). \]

This has a trivial branch of solutions \( \{(0, \lambda) : \lambda \in \mathbb{R}\} \).

By the IFT, we know that bifurcations can only happen where its Fréchet derivative is singular. Its Fréchet derivative on the branch is

\[ F_u(0, \lambda; v) = -v'' - \lambda v = 0, \quad v(0) = 0 = v(\pi), \]

which has nonzero solutions for \( v \) whenever \( \lambda \) is an eigenvalue of the Dirichlet Laplacian:

\[ \lambda_n = n^2, \quad n \in \mathbb{N}. \]
The bifurcation diagram we aim to compute.
Start our continuation at \((u, \lambda) = (0, 0)\).
Examine the eigenvalues of $F_u$ at this point.
Take a continuation step.
By chance we land on the bifurcation—Fréchet derivative is singular.
Take another continuation step.
Take another continuation step, stepping over the next bifurcation.
So how do we detect when we’ve continued past a bifurcation?

Idea A

Monitor the sign of $\det(F_u(u, \lambda))$.

Recall that the determinant of a matrix is the product of its eigenvalues. So when one eigenvalue changes sign, the determinant changes sign.

Good news: The determinant is easy to compute from an LU factorisation:

$$A = LU \implies \det(A) = \det(L)\det(U)$$
So how do we detect when we’ve continued past a bifurcation?

**Idea A**

Monitor the *sign* of \( \det(F_u(u, \lambda)) \).
So how do we detect when we’ve continued past a bifurcation?

Idea A

Monitor the *sign* of \( \det (F_u(u, \lambda)) \).

Recall that the determinant of a matrix is the product of its eigenvalues. So when one eigenvalue changes sign, the determinant changes sign.
So how do we detect when we’ve continued past a bifurcation?

**Idea A**

Monitor the *sign* of $\det(F_u(u, \lambda))$.

Recall that the determinant of a matrix is the product of its eigenvalues. So when one eigenvalue changes sign, the determinant changes sign.

**Good news**

The determinant is easy to compute from an $LU$ factorisation:

$$A = LU \implies \det(A) = \det(L)\det(U).$$
Bad news

We usually can’t afford to compute an $LU$ factorisation . . .
Bad news

We usually can’t afford to compute an $LU$ factorisation . . .

Worse news

This misses bifurcations for eigenvalues of even multiplicity.
Bad news

We usually can’t afford to compute an $LU$ factorisation . . .

Worse news

This misses bifurcations for eigenvalues of even multiplicity.

So we need another idea.
Idea B

At each continuation step, compute a few (e.g. 10) eigenvalues.
Idea B

At each continuation step, compute a few (e.g. 10) eigenvalues.

Good news

You can make this work at large scale with Krylov methods.
Idea B
At each continuation step, compute a few (e.g. 10) eigenvalues.

Good news
You can make this work at large scale with Krylov methods.

Challenge
You want the ones with smallest real part, somewhat fiddly.
Idea B
At each continuation step, compute a few (e.g. 10) eigenvalues.

Good news
You can make this work at large scale with Krylov methods.

Challenge
You want the ones with smallest real part, somewhat fiddly.

Comment
This is the main choice in PDE-oriented codes (e.g. pde2path and BifurcationKit.jl).
Section 3

Bifurcation localisation
Our ultimate goal is to switch branches at bifurcation points. In order to do this, we’ll need to locate the bifurcation points precisely.
Our ultimate goal is to switch branches at bifurcation points. In order to do this, we’ll need to locate the bifurcation points precisely.

Idea A

Apply bisection to the detection algorithm.

In other words, you know two points on the branch that straddle the bifurcation. At each iteration, cut the interval between them in half and keep the subinterval that contains the bifurcation.
Our ultimate goal is to switch branches at bifurcation points. In order to do this, we’ll need to locate the bifurcation points precisely.

**Idea A**

Apply bisection to the detection algorithm.

In other words, you know two points on the branch that straddle the bifurcation. At each iteration, cut the interval between them in half and keep the subinterval that contains the bifurcation.

**Good news**

This is simple to implement (given a detector).
Our ultimate goal is to switch branches at bifurcation points. In order to do this, we’ll need to locate the bifurcation points precisely.

Idea A

Apply bisection to the detection algorithm.

In other words, you know two points on the branch that straddle the bifurcation. At each iteration, cut the interval between them in half and keep the subinterval that contains the bifurcation.

Good news

This is simple to implement (given a detector).

Bad news

This only converges linearly, so finding many digits will take forever.
Here is an idea that will let us quickly localise (some) bifurcations to high precision.
Here is an idea that will let us quickly localise (some) bifurcations to high precision.

By the IFT, we know that a \textit{necessary} condition for a bifurcation is that

$$F_u(u, \lambda) \text{ is singular.}$$
Here is an idea that will let us quickly localise (some) bifurcations to high precision.

By the IFT, we know that a necessary condition for a bifurcation is that

\[ F_u(u, \lambda) \text{ is singular.} \]

Idea B: Seydel–Moore–Spence

Find \((u, v, \lambda) \in X \times X \times \mathbb{R}\) such that

\[
\begin{align*}
F(u, \lambda) &= 0, \\
F_u(u, \lambda)v &= 0, \\
\|v\|^2 &= 1.
\end{align*}
\]
Comment

The Seydel–Moore–Spence system is highly nonlinear. However, it is easy to construct good initial guesses.

Good news

The Fréchet derivative of the Seydel–Moore–Spence system has nonsingular Fréchet derivative at a fold, so Newton–Kantorovich will converge quadratically.

Bad news

The Fréchet derivative of the Seydel–Moore–Spence system is singular at other bifurcation points, so Newton–Kantorovich converges linearly.

Good news

It's possible to construct other augmented systems for other kinds of bifurcations. You have to know what you're looking for, though . . .
Comment

The Seydel–Moore–Spence system is highly nonlinear. However, it is easy to construct good initial guesses.

Good news

The Seydel–Moore–Spence system has nonsingular Fréchet derivative at a fold, so Newton–Kantorovich will converge quadratically.
Comment

The Seydel–Moore–Spence system is highly nonlinear. However, it is easy to construct good initial guesses.

Good news

The Seydel–Moore–Spence system has nonsingular Fréchet derivative at a fold, so Newton–Kantorovich will converge quadratically.

Bad news

The Fréchet derivative of the Seydel–Moore–Spence system is singular at other bifurcation points, so Newton–Kantorovich converges linearly.
Comment

The Seydel–Moore–Spence system is highly nonlinear. However, it is easy to construct good initial guesses.

Good news

The Seydel–Moore–Spence system has nonsingular Fréchet derivative at a fold, so Newton–Kantorovich will converge quadratically.

Bad news

The Fréchet derivative of the Seydel–Moore–Spence system is singular at other bifurcation points, so Newton–Kantorovich converges linearly.

Good news

It’s possible to construct other augmented systems for other kinds of bifurcations. You have to know what you’re looking for, though . . .
One last comment: if you want to find out how a bifurcation point varies as you vary another parameter $\mu \in \mathbb{R}$,
One last comment: if you want to find out how a bifurcation point varies as you vary another parameter $\mu \in \mathbb{R}$,

do pseudo-arclength continuation on the Seydel–Moore–Spence system!
Section 4

Branch switching
To learn how to switch branches at a bifurcation point, we need another

Great Theorem of Nonlinear Functional Analysis.
To learn how to switch branches at a bifurcation point, we need another Great Theorem of Nonlinear Functional Analysis.

**Lyapunov–Schmidt reduction (1906, 1908)**

Let $F(u_0, \lambda_0) = 0$ with $F_u$ singular. Let

$$d = \dim \ker F_u(u_0, \lambda_0).$$
To learn how to switch branches at a bifurcation point, we need another Great Theorem of Nonlinear Functional Analysis.

**Lyapunov–Schmidt reduction (1906, 1908)**

Let $F(u_0, \lambda_0) = 0$ with $F_u$ singular. Let

$$d = \dim \ker F_u(u_0, \lambda_0).$$

Near the bifurcation point, we can relate

solutions of $F \iff$ solutions of $R$

where $R$ is a $d \times d$ algebraic system!
For this section, we will make the following assumptions:

**Essential assumptions**

- $F(u_0, \lambda_0) = 0$;
- $A := F_u(u_0, \lambda_0) \in L(X, Y)$ is *Fredholm*:
  $$\dim \ker(A) < \infty, \quad \operatorname{codim} \operatorname{range}(A) < \infty;$$
- $d = \dim \ker(A) > 0$.  

**Non-essential assumptions**

- $X$ and $Y$ are Hilbert spaces;
- $\operatorname{ind}(A) := \dim \ker(A) - \operatorname{codim} \operatorname{range}(A) = 0$.  

For this section, we will make the following assumptions:

**Essential assumptions**

- $F(u_0, \lambda_0) = 0$;
- $A := F_u(u_0, \lambda_0) \in L(X, Y)$ is *Fredholm*:
  \[
  \dim \ker(A) < \infty, \quad \text{codim range}(A) < \infty;
  \]
- $d = \dim \ker(A) > 0$.

**Non-essential assumptions**

- $X$ and $Y$ are Hilbert spaces;
- $\text{ind}(A) := \dim \ker(A) - \text{codim range}(A) = 0$. 
Let $A^* : Y \to X$ be the associated adjoint operator. Construct

$$\ker(A) = \text{span}\{\phi_1, \ldots, \phi_d\}, \quad \ker(A^*) = \text{span}\{\psi_1, \ldots, \psi_d\},$$

where $\{\phi_i\}_i$ and $\{\psi_i\}_i$ are orthonormal bases.
Let $A^* : Y \to X$ be the associated adjoint operator. Construct
\[
\ker(A) = \text{span}\{\phi_1, \ldots, \phi_d\}, \quad \ker(A^*) = \text{span}\{\psi_1, \ldots, \psi_d\},
\]
where $\{\phi_i\}_i$ and $\{\psi_i\}_i$ are orthonormal bases.

Then construct
\[
P x := \sum_{i=1}^{d} (\phi_i, x) X \phi_i,
\]
where $X = \text{range}(P)$ and $Y = \text{range}(Q)$.
Let $A^* : Y \to X$ be the associated adjoint operator. Construct

\[ \text{ker}(A) = \text{span}\{\phi_1, \ldots, \phi_d\}, \quad \text{ker}(A^*) = \text{span}\{\psi_1, \ldots, \psi_d\}, \]

where $\{\phi_i\}_i$ and $\{\psi_i\}_i$ are orthonormal bases.

Then construct

\[ Px := \sum_{i=1}^{d} (\phi_i, x)x\phi_i, \quad Qy := \sum_{i=1}^{d} (\psi_i, y)y\psi_i. \]
Let $A^* : Y \to X$ be the associated adjoint operator. Construct

$$\text{ker}(A) = \text{span}\{\phi_1, \ldots, \phi_d\}, \quad \text{ker}(A^*) = \text{span}\{\psi_1, \ldots, \psi_d\},$$

where $\{\phi_i\}_i$ and $\{\psi_i\}_i$ are orthonormal bases.

Then construct

$$Px := \sum_{i=1}^{d} (\phi_i, x) x \phi_i, \quad Qy := \sum_{i=1}^{d} (\psi_i, y) y \psi_i.$$ 

By construction,

$$\text{range}(P) = \text{ker}(A),$$
Let \( A^* : Y \to X \) be the associated adjoint operator. Construct

\[
\ker(A) = \text{span}\{\phi_1, \ldots, \phi_d\}, \quad \ker(A^*) = \text{span}\{\psi_1, \ldots, \psi_d\},
\]

where \( \{\phi_i\}_i \) and \( \{\psi_i\}_i \) are orthonormal bases.

Then construct

\[
Px := \sum_{i=1}^{d} (\phi_i, x)_X \phi_i, \quad Qy := \sum_{i=1}^{d} (\psi_i, y)_Y \psi_i.
\]

By construction,

\[
\text{range}(P) = \ker(A), \quad \text{range}(Q) = \ker(A^*)
\]
Let $A^* : Y \to X$ be the associated adjoint operator. Construct 

$$\ker(A) = \text{span}\{\phi_1, \ldots, \phi_d\}, \quad \ker(A^*) = \text{span}\{\psi_1, \ldots, \psi_d\},$$

where $\{\phi_i\}_i$ and $\{\psi_i\}_i$ are orthonormal bases.

Then construct

$$Px := \sum_{i=1}^{d} (\phi_i, x) X \phi_i, \quad Qy := \sum_{i=1}^{d} (\psi_i, y) Y \psi_i.$$

By construction,

$$\text{range}(P) = \ker(A), \quad \text{range}(Q) = \ker(A^*) = \text{range}(A)^\perp.$$
Let $A^* : Y \to X$ be the associated adjoint operator. Construct

$$\text{ker}(A) = \text{span}\{\phi_1, \ldots, \phi_d\}, \quad \text{ker}(A^*) = \text{span}\{\psi_1, \ldots, \psi_d\},$$

where $\{\phi_i\}_i$ and $\{\psi_i\}_i$ are orthonormal bases.

Then construct

$$Px := \sum_{i=1}^{d} (\phi_i, x) X \phi_i, \quad Qy := \sum_{i=1}^{d} (\psi_i, y) Y \psi_i.$$ 

By construction,

$$\text{range}(P) = \text{ker}(A), \quad \text{range}(Q) = \text{ker}(A^*) = \text{range}(A)^\perp.$$ 

Then we can decompose

$$X = \text{range}(P) \oplus \text{range}(I - P) =: X_1 \oplus X_2,$$

$$Y = \text{range}(Q) \oplus \text{range}(I - Q) =: Y_1 \oplus Y_2.$$
Write

\[ u = Pu + (I - P)u =: v + w, \quad v \in X_1, w \in X_2. \]
Write

\[ u = Pu + (I - P)u =: v + w, \quad v \in X_1, w \in X_2. \]

Then the system \( F(u, \lambda) = 0 \) is equivalent to

\[
\begin{align*}
\hat{F}(v, w, \lambda) &:= QF(v + w, \lambda) = 0 \in Y_1, \\
\bar{F}(v, w, \lambda) &:= (I - Q)F(v + w, \lambda) = 0 \in Y_2.
\end{align*}
\]
Write

\[ u = Pu + (I - P)u =: v + w, \quad v \in X_1, w \in X_2. \]

Then the system \( F(u, \lambda) = 0 \) is equivalent to

\[ \hat{F}(v, w, \lambda) := QF(v + w, \lambda) = 0 \in Y_1, \]
\[ \bar{F}(v, w, \lambda) := (I - Q)F(v + w, \lambda) = 0 \in Y_2. \]

The Fréchet derivative \( \bar{F}_w \) is the restriction of \( A \) to

\[ A : \ker(A)^\perp \to \text{range}(A) \]

and is thus invertible.
Write

\[ u = Pu + (I - P)u =: v + w, \quad v \in X_1, w \in X_2. \]

Then the system \( F(u, \lambda) = 0 \) is equivalent to

\[
\begin{align*}
\hat{F}(v, w, \lambda) &:= QF(v + w, \lambda) = 0 \in Y_1, \\
\bar{F}(v, w, \lambda) &:= (I - Q)F(v + w, \lambda) = 0 \in Y_2.
\end{align*}
\]

The Fréchet derivative \( \bar{F}_w \) is the restriction of \( A \) to

\[ A : \ker(A) \perp \to \text{range}(A) \]

and is thus invertible. So by the IFT we can locally write

\[ w = H(v, \lambda). \]
We can thus write our reduced system

Reduced system

\[ R(v, \lambda) := QF(v + H(v, \lambda), \lambda) = 0, \]
\[ R : \ker(A) \times \mathbb{R} \rightarrow \text{range}(A)^\perp. \]
We can thus write our reduced system

Reduced system

\[ R(v, \lambda) := QF(v + H(v, \lambda), \lambda) = 0, \]
\[ R : \ker(A) \times \mathbb{R} \to \text{range}(A)^\perp. \]

This reduced system has the same symmetries and same bifurcations as the original problem, near \((u_0, \lambda_0)\).
We can thus write our reduced system

**Reduced system**

\[ R(v, \lambda) := QF(v + H(v, \lambda), \lambda) = 0, \]
\[ R : \ker(A) \times \mathbb{R} \to \text{range}(A)^\perp. \]

This reduced system has the *same symmetries* and *same bifurcations* as the original problem, near \((u_0, \lambda_0)\).

This is an extremely useful theoretical result. It forms the basis of most analytical calculations of bifurcation structures.
Using our bases for $\ker(A)$ and $\text{range}(A)^\perp$, let’s explicitly write:

### Reduced system (algebraic)

$$ r_j(x, \lambda) := \left(\psi_j, R(x_1\phi_1 + \cdots + x_d\phi_d, \lambda)\right)_Y, $$

$$ r : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d. $$
Using our bases for $\ker(A)$ and $\text{range}(A)^\perp$, let’s explicitly write:

**Reduced system (algebraic)**

\[
 r_j(x, \lambda) := (\psi_j, R(x_1\phi_1 + \cdots + x_d\phi_d, \lambda))_Y, \\
 r : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d.
\]

In practice we can never get our hands on $r$, because we don’t know $H$.
Using our bases for $\ker(A)$ and $\text{range}(A)^\perp$, let’s explicitly write:

**Reduced system (algebraic)**

\[
 r_j(x, \lambda) := (\psi_j, R(x_1\phi_1 + \cdots + x_d\phi_d, \lambda))_Y,
\]

\[
 r : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d.
\]

In practice we can never get our hands on $r$, because we don’t know $H$.

Instead, we compute a Taylor expansion (usually to third derivatives) of $r$. 
Using our bases for $\ker(A)$ and $\text{range}(A)\perp$, let’s explicitly write:

**Reduced system (algebraic)**

$$r_j(x, \lambda) := \left(\psi_j, R(x_1\phi_1 + \cdots + x_d\phi_d, \lambda)\right)_Y,$$

$$r : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d.$$

In practice we can never get our hands on $r$, because we don’t know $H$.

Instead, we compute a Taylor expansion (usually to third derivatives) of $r$.

The derivatives of $r$ can be computed from derivatives of $F$, and require solving linear systems involving $A$ ($d^2 + 1$ solves for third derivatives).
Challenge

For large $d$, the Taylor expansion of the reduced equations are not easy to solve. There are techniques from numerical algebraic geometry that can provably yield all solutions, but they are too slow to use in practice.
For large $d$, the Taylor expansion of the reduced equations are not easy to solve. There are techniques from numerical algebraic geometry that can provably yield all solutions, but they are too slow to use in practice.

The pragmatic response taken is to brute-force the system with many, many initial guesses (e.g. as in pde2path and BifurcationKit.jl).
Example: Liouville–Bratu–Gelfand problem in 2D

\[ \nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]
Example: Liouville–Bratu–Gelfand problem in 2D

\[ \nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]

This is a famously intricate problem. I calculated the bifurcation diagram using BifurcationKit.jl. It was first computed successfully by Michiel Wouters.
Example: Liouville–Bratu–Gelfand problem in 2D

\[ \nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]
Example: Liouville–Bratu–Gelfand problem in 2D

\[ \nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]
Example: Liouville–Bratu–Gelfand problem in 2D

$$\nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega.$$
Example: Liouville–Bratu–Gelfand problem in 2D

\[ \nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]
Example: Liouville–Bratu–Gelfand problem in 2D

\[ \nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]
Example: Liouville–Bratu–Gelfand problem in 2D

\[ \nabla^2 u - 10(u - \lambda e^u) = 0 \text{ on } \Omega := (0, 1)^2, \quad \nabla u \cdot n = 0 \text{ on } \partial \Omega. \]
Lecture 3: Deflation algorithms for bifurcation analysis

Patrick E. Farrell

University of Oxford

June 1
Good news

The combination of continuation and branch switching is very powerful.
Good news

The combination of continuation and branch switching is very powerful.

Bad news

However, it has some disadvantages and weaknesses, too.
Downside A

You have to solve a lot of different problems.
Downside A
You have to solve a lot of different problems.

We work for years to develop a good solver for

\[ F(u, \lambda) = 0 \ldots \]
Downside A

You have to solve a lot of different problems.

We work for years to develop a good solver for

\[ F(u, \lambda) = 0 \ldots \]

but now we need to solve

\[
\begin{bmatrix}
F(u, \lambda) \\
p(u, \lambda, s)
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad F_u(u, \lambda)v = \lambda v
\]

\[
\begin{bmatrix}
F(u, \lambda) \\
F_u(u, \lambda)v \\
\|v\|^2 - 1
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]
Downside A

You have to solve a lot of different problems.

We work for years to develop a good solver for

\[ F(u, \lambda) = 0 \ldots \]

but now we need to solve

\[
\begin{bmatrix}
F(u, \lambda) \\
p(u, \lambda, s)
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad F_u(u, \lambda)v = \lambda v
\]

\[
\begin{bmatrix}
F(u, \lambda) \\
F_u(u, \lambda)v \\
\|v\|^2 - 1
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]

Large-scale

This is OK when you can afford direct solvers, but it's hard at large scale.
Downside B

We can only find branches connected to our initial data.
Downside B

We can only find branches connected to our initial data.

This works fine ...
Downside B

We can only find branches *connected* to our initial data.

This works fine . . .

... but this does not.

Solutions of $\lambda u - u^3 = 0$

Solutions of $\lambda u - u^3 + \delta = 0$, $\delta = 0.01$
The standard approach to deal with this is to

(a) modify the problem to restore connectedness;
The standard approach to deal with this is to

(a) modify the problem to restore connectedness;
(b) apply continuation + branch switching;
The standard approach to deal with this is to

(a) modify the problem to restore connectedness;
(b) apply continuation + branch switching;
(c) continue the branches you find back to the problem you care about.
The standard approach to deal with this is to

(a) modify the problem to restore connectedness;
(b) apply continuation + branch switching;
(c) continue the branches you find back to the problem you care about.

Problem A

You have to know to look for the missing branches.
The standard approach to deal with this is to

(a) modify the problem to restore connectedness;
(b) apply continuation + branch switching;
(c) continue the branches you find back to the problem you care about.

Problem A
You have to know to look for the missing branches.

Problem B
Executing this is manual and tedious.
The standard approach to deal with this is to

(a) modify the problem to restore connectedness;
(b) apply continuation + branch switching;
(c) continue the branches you find back to the problem you care about.

Problem A
You have to know to look for the missing branches.

Problem B
Executing this is manual and tedious.

Problem C
Restoring connectedness is not always possible!
The connectedness is broken by non-symmetry of the domain.
Deflation offers a complementary approach.

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.
Deflation offers a complementary approach.

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

Simplicity & scaling

The computational kernel is exactly the same as Newton’s method: solve

\[ F_u(u, \lambda)\delta u = -F(u, \lambda). \]
Section 2

Deflation
Deflation

Fix parameter $\lambda$. Given

- a Fréchet differentiable residual $F : X \rightarrow Y$
- a solution $u \in X$, $F(u) = 0$, $F_u(u)$ nonsingular
Deflation

Fix parameter $\lambda$. Given

- a Fréchet differentiable residual $F : X \to Y$
- a solution $u \in X$, $F(u) = 0$, $F_u(u)$ nonsingular

construct a new nonlinear problem $G : X \to Y$ such that:

- (Preservation of solutions) $F(\tilde{u}) = 0 \iff G(\tilde{u}) = 0 \forall \tilde{u} \neq u$
- (Deflation property) Newton–Kantorovich applied to $G$ will never converge to $u$ again, starting from any initial guess. Find more solutions, starting from the same initial guess.
Fix parameter \( \lambda \). Given

- a Fréchet differentiable residual \( F : X \to Y \)
- a solution \( u \in X, \ F(u) = 0, \ F_u(u) \) nonsingular

construct a **new nonlinear problem** \( G : X \to Y \) such that:

- (Preservation of solutions) \( F(\tilde{u}) = 0 \iff G(\tilde{u}) = 0 \forall \tilde{u} \neq u; \)
Deflation

Fix parameter $\lambda$. Given

- a Fréchet differentiable residual $F : X \to Y$
- a solution $u \in X$, $F(u) = 0$, $F_u(u)$ nonsingular

construct a **new nonlinear problem** $G : X \to Y$ such that:

- (Preservation of solutions) $F(\tilde{u}) = 0 \iff G(\tilde{u}) = 0 \forall \tilde{u} \neq u$;
- (Deflation property) Newton–Kantorovich applied to $G$ will never converge to $u$ again, starting from any initial guess.
Fix parameter $\lambda$. Given

- a Fréchet differentiable residual $F : X \rightarrow Y$
- a solution $u \in X$, $F(u) = 0$, $F_u(u)$ nonsingular

construct a **new nonlinear problem** $G : X \rightarrow Y$ such that:

- (Preservation of solutions) $F(\tilde{u}) = 0 \iff G(\tilde{u}) = 0 \forall \tilde{u} \neq u$;
- (Deflation property) Newton–Kantorovich applied to $G$ will never converge to $u$ again, starting from any initial guess.

Find more solutions, starting from the same initial guess.
Deflation

$X$

$u?$
Newton from initial guess.
Deflate solution found.
Newton from initial guess.
Deflation solution found.
Newton from initial guess.
Deflate solution found.
Terminate on nonconvergence.
Terminate on nonconvergence.
Big if true. How can you do it?
Deflation Techniques for the Calculation of Further Solutions of a Nonlinear System

KENNETH M. BROWN and WILLIAM B. GEARHART

Received March 10, 1970

Summary. This paper defines several classes of methods which can be used to find additional solutions of a nonlinear system of equations. A theory which embraces these classes is presented and the theory is extended to the multiple root problem. The techniques developed can also be used in avoiding previously found extreme points when performing function minimization. Results of computer experiments are presented.
Brown & Gearhart’s criterion

We say that $M(u; r)$ is a deflation operator if

$$\liminf_{u \to r} \|G(u)\| := \liminf_{u \to r} \|M(u; r)F(u)\| > 0.$$
Brown & Gearhart’s criterion

We say that $M(u; r)$ is a deflation operator if

$$\liminf_{u \to r} \|G(u)\| := \liminf_{u \to r} \|M(u; r)F(u)\| > 0.$$ 

Brown & Gearhart’s proposal

Choose

$$M(u; r) := \frac{1}{\|u - r\|}.$$ 

Note that $M(u, r) > 0$ always, so $G(u) = 0 \iff F(u) = 0.$
Brown & Gearhart’s criterion

We say that $M(u; r)$ is a deflation operator if

$$\liminf_{u \to r} \|G(u)\| := \liminf_{u \to r} \|M(u; r)F(u)\| > 0.$$  

Brown & Gearhart’s proposal

Choose

$$M(u; r) := \frac{1}{\|u - r\|}.$$  

Note that $M(u, r) > 0$ always, so $G(u) = 0 \iff F(u) = 0$.  

Since $\|F(u)\| = O(\|u - r\|)$ as $u \to r$, this works.
... albeit sometimes not robustly.
... albeit sometimes not robustly.

Numerical experience with deflation has shown it is often a matter of seeming chance whether one obtains an additional solution.

(Allgower & Georg, 1990)
Deflation

... albeit sometimes not robustly.

Numerical experience with deflation has shown it is often a matter of seeming chance whether one obtains an additional solution.

(Allgower & Georg, 1990)

[Deflation is] not ... very reliable for larger problems.

(Kanzow, 2000)
... albeit sometimes not robustly.

Numerical experience with deflation has shown it is often a matter of seeming chance whether one obtains an additional solution.

(Allgower & Georg, 1990)

Deflation is not ... very reliable for larger problems.

(Kanzow, 2000)

Why?
Deflation... albeit sometimes not robustly.

Numerical experience with deflation has shown it is often a matter of seeming chance whether one obtains an additional solution.  

(Allgower & Georg, 1990)

[Deflation is] not ... very reliable for larger problems.  

(Kanzow, 2000)

Why?

One problem: assuming $F$ does not blow up as $\|u - r\| \to \infty$, then Newton discovers that it can achieve

$$\|G(u)\|_Y < \text{tol}$$

for any $\text{tol}$, by taking $\|u - r\|$ large enough.
Our proposal

\[ M_p(u; r) := \left( \frac{1}{\|u - r\|^p} + 1 \right), \quad p \geq 1. \]
Our proposal

\[ M_p(u; r) := \left( \frac{1}{\|u - r\|^p} + 1 \right), \quad p \geq 1. \]

This has the right behaviour both as

\[ \|u - r\| \to 0, \]
\[ \|u - r\| \to \infty. \]
Our proposal

\[ M_p(u; r) := \left( \frac{1}{\|u - r\|^p} + 1 \right), \quad p \geq 1. \]

This has the right behaviour both as

\[ \|u - r\| \to 0, \]
\[ \|u - r\| \to \infty. \]

This makes the procedure much more reliable.
Start with \((u_0, \lambda_0)\).
Perform a continuation step.
Perform another continuation step.
Deflate the solution found.
Deflation

\[ \lambda \]

Solve again.

P. E. Farrell (Oxford)
Deflate the solution found.
Solve again.
Deflate the solution found.
Search again, unsuccessfully.
Repeat.
Good news
Deflation lets us discover disconnected branches!
Section 3

Solving the deflated problem
We assume we have a good solver for our discretised Newton step

\[ F_u(u, \lambda) \delta u_F = -F(u, \lambda), \quad F \in C^1(\mathbb{R}^N \times \mathbb{R}, \mathbb{R}^N). \]
We assume we have a good solver for our discretised Newton step

\[ F_u(u, \lambda)\delta u_F = -F(u, \lambda), \quad F \in C^1(\mathbb{R}^N \times \mathbb{R}, \mathbb{R}^N). \]

We now want to solve

\[ G_u(u, \lambda)\delta u_G = -G(u, \lambda) \]

where

\[ G(u, \lambda) = M(u; u_1)M(u; u_2) \cdots M(u; u_n)F(u, \lambda) =: M(u)F(u, \lambda). \]
Solving the deflated problem

We assume we have a good solver for our discretised Newton step

$$F_u(u, \lambda) \delta u_F = -F(u, \lambda), \quad F \in C^1(\mathbb{R}^N \times \mathbb{R}, \mathbb{R}^N).$$

We now want to solve

$$G_u(u, \lambda) \delta u_G = -G(u, \lambda)$$

where

$$G(u, \lambda) = M(u; u_1)M(u; u_2) \cdots M(u; u_n)F(u, \lambda) =: M(u)F(u, \lambda).$$

**Good news**

You can compute $\delta u_G$ easily from $\delta u_F$!
By the product rule,

\[ G_u(u, \lambda) = M(u)F_u(u, \lambda) + F(u, \lambda)M_u^\top. \]
By the product rule,

\[ G_u(u, \lambda) = M(u)F_u(u, \lambda) + F(u, \lambda)M_u^\top. \]
By the product rule,

\[ G_u(u, \lambda) = M(u)F_u(u, \lambda) + F(u, \lambda)M_u^\top. \]

At first this looks bad. The deflated Jacobian is dense, as it is a rank-one update of a sparse matrix.
By the product rule,

\[ G_u(u, \lambda) = M(u)F_u(u, \lambda) + F(u, \lambda)M_u^\top. \]

At first this looks bad. The deflated Jacobian is dense, as it is a rank-one update of a sparse matrix.

Sherman–Morrison–Woodbury formula

\[
\left( A + uv^\top \right)^{-1} = A^{-1} - \left( A^{-1}uv^\top A^{-1} \right) \frac{1}{1 + v^\top A^{-1}u}. 
\]
By the product rule,

\[ G_u(u, \lambda) = M(u)F_u(u, \lambda) + F(u, \lambda)M_u^\top. \]

At first this looks bad. The deflated Jacobian is dense, as it is a rank-one update of a sparse matrix.

\begin{equation}
(A + uv^\top)^{-1} = A^{-1} - \left( \frac{A^{-1}uv^\top A^{-1}}{1 + v^\top A^{-1}u} \right). \end{equation}

At first it looks like applying this to a vector \( w \) requires two solves with \( A \): \( A^{-1}u \) and \( A^{-1}w \). But something magical happens . . .
Applying the Sherman–Morrison–Woodbury formula, we have

$$\delta u_G = -[G_u]^{-1}G = - \left( MF_u + FM_u^\top \right)^{-1} (MF)$$
Applying the Sherman–Morrison–Woodbury formula, we have

\[
\delta u_G = - [G_u]^{-1} G = - \left( MF_u + FM_u^\top \right)^{-1} (MF)
\]

\[
= - \left[ M^{-1} F_u^{-1} - \frac{M^{-1} F_u^{-1} FM_u^\top M^{-1} F_u^{-1}}{1 + M_u^\top M^{-1} F_u^{-1} F} \right] (MF)
\]
Applying the Sherman–Morrison–Woodbury formula, we have

\[
\delta u_G = -[G_u]^{-1}G = - \left( MF_u + FM_u^\top \right)^{-1} (MF) \\
= - \left[ M^{-1}F^{-1}u - \frac{M^{-1}F^{-1}u FM_u^\top M^{-1}F^{-1}u}{1 + M_u^\top M^{-1}F^{-1}u F} \right] (MF) \\
= -F^{-1}_u F + \frac{F^{-1}_u FM_u^\top M^{-1}F^{-1}u F}{1 + M_u^\top M^{-1}F^{-1}u F}
\]
Applying the Sherman–Morrison–Woodbury formula, we have

\[
\delta u_G = - [G_u]^{-1} G = - \left( MF_u + FM_u^\top \right)^{-1} (MF)
\]

\[
= - \left[ M^{-1} F_u^{-1} - \frac{M^{-1} F_u^{-1} FM_u^\top M^{-1} F_u^{-1}}{1 + M_u^\top M^{-1} F_u^{-1} F} \right] (MF)
\]

\[
= - F_u^{-1} F + \frac{F_u^{-1} FM_u^\top M^{-1} F_u^{-1} F}{1 + M_u^\top M^{-1} F_u^{-1} F}
\]

\[
= \left( 1 - \frac{M^{-1} M_u^\top F_u^{-1} F}{1 + M_u^\top M^{-1} F_u^{-1} F} \right) (-F_u^{-1} F)
\]
Applying the Sherman–Morrison–Woodbury formula, we have

\[ \delta u_G = -[G_u]^{-1}G = - \left( MF_u + FM_u^\top \right)^{-1} (MF) \]

\[ = - \left[ M^{-1}F_u^{-1} - \frac{M^{-1}F_u^{-1}FM_u^\top M^{-1}F_u^{-1}}{1 + M_u^\top M^{-1}F_u^{-1}F} \right] (MF) \]

\[ = -F_u^{-1}F + \frac{F_u^{-1}FM_u^\top M^{-1}F_u^{-1}F}{1 + M_u^\top M^{-1}F_u^{-1}F} \]

\[ = \left( 1 - \frac{M^{-1}M_u^\top F_u^{-1}F}{1 + M_u^\top M^{-1}F_u^{-1}F} \right) (-F_u^{-1}F) \]

\[ = \left( 1 + \frac{M^{-1}M_u^\top \delta u_F}{1 - M^{-1}M_u^\top \delta u_F} \right) \delta u_F. \]
Applying the Sherman–Morrison–Woodbury formula, we have

\[
\delta u_G = -[G_u]^{-1}G = - \left( MF_u + FM_u^\top \right)^{-1} (MF)
\]

\[
= - \left[ M^{-1}F_u^{-1} - \frac{M^{-1}F_u^{-1}FM_u^\top M^{-1}F_u^{-1}}{1 + M_u^\top M^{-1}F_u^{-1}F} \right] (MF)
\]

\[
= -F_u^{-1}F + \frac{F_u^{-1}FM_u^\top M^{-1}F_u^{-1}F}{1 + M_u^\top M^{-1}F_u^{-1}F}
\]

\[
= \left( 1 - \frac{M^{-1}M_u^\top F_u^{-1}F}{1 + M_u^\top M^{-1}F_u^{-1}F} \right) (-F_u^{-1}F)
\]

\[
= \left( 1 + \frac{M^{-1}M_u^\top \delta u_F}{1 - M^{-1}M_u^\top \delta u_F} \right) \delta u_F.
\]

So we only need to solve one system with $F_u$!
Solving the deflated problem

To solve

\[ G_u \delta u_G = -G, \]

do the following:

1. Solve \( F_u \delta u_F = -F \).
2. Evaluate \( p = M^\top u \delta u_F \).
3. Evaluate \( \tau = 1 + M^{-1} p^{-1} M^{-1} p \).
4. Return \( \delta u_G = \tau \delta u_F \).
To solve

\[ G_u \delta u_G = -G, \]

do the following:

1. Solve

\[ F_u \delta u_F = -F. \]
Solving the deflated problem

To solve

\[ G_u \delta u_G = -G, \]

do the following:

1. Solve

\[ F_u \delta u_F = -F. \]

2. Evaluate

\[ p = M_u^\top \delta u_F. \]
Solving the deflated problem

To solve

\[ G_u \delta u_G = -G, \]

do the following:

1. Solve

\[ F_u \delta u_F = -F. \]

2. Evaluate

\[ p = M_u^\top \delta u_F. \]

3. Evaluate

\[ \tau = 1 + \frac{M^{-1}p}{1 - M^{-1}p}. \]
Solving the deflated problem

To solve

\[ G_u \delta u_G = -G, \]

do the following:

1. Solve

\[ F_u \delta u_F = -F. \]

2. Evaluate

\[ p = M_u^\top \delta u_F. \]

3. Evaluate

\[ \tau = 1 + \frac{M^{-1}p}{1 - M^{-1}p}. \]

4. Return

\[ \delta u_G = \tau \delta u_F. \]
Good news

You can apply deflation to massive discretisations.
It is possible to give sufficient conditions for deflation to find two roots.
It is possible to give sufficient conditions for deflation to find two roots.

Two solutions, with Rall–Rheinboldt balls.
It is possible to give sufficient conditions for deflation to find two roots.

Start with an initial guess within a ball.
It is possible to give sufficient conditions for deflation to find two roots.

Converge to that solution.
It is possible to give sufficient conditions for deflation to find two roots.

Deflate that solution; the other Rall–Rheinboldt ball expands.
Section 5

Examples
Allen–Cahn equation

\[ F(u, \lambda) = -\lambda^2 \nabla^2 u + u^3 - u = 0, \quad u = g \text{ on } \partial \Omega. \]
Allen–Cahn equation

\[ F(u, \lambda) = -\lambda^2 \nabla^2 u + u^3 - u = 0, \quad u = g \text{ on } \partial \Omega. \]

Solutions found starting from \( u = 0 \) for \( \lambda = 0.04 \).
Allen–Cahn equation

\[ F(u, \lambda) = -\lambda^2 \nabla^2 u + u^3 - u = 0, \quad u = g \text{ on } \partial \Omega. \]

Solutions found starting from \( u = 0 \) for \( \lambda = 0.04 \).
The Allen–Cahn equation is given by:

\[ F(u, \lambda) = -\lambda^2 \nabla^2 u + u^3 - u = 0, \quad u = g \text{ on } \partial\Omega. \]

Solutions found starting from \( u = 0 \) for \( \lambda = 0.04 \).
Carrier’s equation

\[ F(u, \lambda) = \lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0, \quad u(-1) = 0 = u(1). \]
Solutions of $\lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0$
Solutions of $\lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0$
Solutions of $\lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0$
Solutions of \( \lambda^2 u'' + 2(1 - x^2)u + u^2 - 1 = 0 \)

- Pitchfork bifurcation
- Fold bifurcation

\[ u'(1) \|u\|_2 \]

\[ \lambda \]

\[ 0.05 \quad 0.1 \quad 0.25 \quad 0.7 \]

\[ -200 \quad -150 \quad -100 \quad -50 \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \]
Oseen–Frank

\[ \min J = \int_{\Omega} K_1 (\nabla \cdot u)^2 + K_2 (u \cdot \nabla \times u + q_0)^2 + K_3 |u \times \nabla \times u|, \quad u \cdot u = 1. \]
Oseen–Frank

$$\min J = \int_\Omega K_1 (\nabla \cdot u)^2 + K_2 (u \cdot \nabla \times u + q_0)^2 + K_3 |u \times \nabla \times u|, \quad u \cdot u = 1.$$
Section 6

Symmetries
Symmetries

What if the equation has a continuous symmetry group?
Symmetries

What if the equation has a continuous symmetry group?

Philosophy

The fundamental structures are the distinct orbits of solutions.
What if the equation has a continuous symmetry group?

The fundamental structures are the distinct orbits of solutions.

Construct a deflation operator invariant under the action of the Lie group.
Four solutions, not related by the symmetry group.
Each solution induces a *group orbit* of solutions, related by symmetry.
Not enough to deflate the solution—must deflate the entire orbit.
Design a deflation operator that deflates the entire orbit.
Design a deflation operator that deflates the entire orbit.
Gross–Pitaevskii equation

\[- \frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]
Symmetries

Gross–Pitaevskii equation

\[-\frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]

First symmetry group \(SO(2)\): phase shifts

\[u(\vec{x}) \mapsto e^{i \theta} u(\vec{x}), \quad \theta \in \mathbb{R}.\]
Gross–Pitaevskii equation

\[-\frac{1}{2}\Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]

First symmetry group \(SO(2)\): phase shifts

\[u(\vec{x}) \mapsto e^{i\theta} u(\vec{x}), \quad \theta \in \mathbb{R}.\]

Invariant deflation operator

\[M(u; r) = \left\| |u|^2 - |r|^2 \right\|^{-2} + 1.\]
Gross–Pitaevskii equation

\[-\frac{1}{2}\Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0,\quad u|_{\partial\Omega} = 0.\]

Second symmetry group $SO(3)$: spatial rotations

\[u(\vec{x}) \leftrightarrow u(R\vec{x}), \quad R^{-1} = R^T, \quad \text{det}(R) = 1.\]
The Gross–Pitaevskii equation is given by

\[-\frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u |_{\partial \Omega} = 0.\]

The second symmetry group is $SO(3)$: spatial rotations

\[u(x) \mapsto u(Rx), \quad R^{-1} = R^T, \quad \det(R) = 1.\]

The invariant deflation operator is defined as

\[M(u; r) = \|\bar{u} - \bar{r}\|^{-2} + 1,\]

where \(\bar{u}(r, \theta, \psi)\) averages \(u\) over the sphere of radius \(r\).
Symmetries

**Gross–Pitaevskii equation**

\[-\frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial\Omega} = 0.\]

**Solutions for** $\mu = 6$.

A vortex line and a planar dark soliton.
Symmetries

Gross–Pitaevskii equation

\[-\frac{1}{2}\Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]

Solutions for \( \mu = 6 \).

A pair of vortex lines.
Gross–Pitaevskii equation

\[-\frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]

Solutions for $\mu = 6$.

A vortex star.
Symmetries

Gross–Pitaevskii equation

\[-\frac{1}{2}\Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial\Omega} = 0.\]

Solutions for $\mu = 6$.

Four vortex lines of alternating charge.
Gross–Pitaevskii equation

\[-\frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]

Solutions for $\mu = 6$.

A vortex ring with two “handles”.
Gross–Pitaevskii equation

\[-\frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]

Solutions for $\mu = 6$.

Two bent vortex rings?
The Gross–Pitaevskii equation is given by:
\[-\frac{1}{2}\Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial\Omega} = 0.

Solutions for $\mu = 6$. Two vortex rings and five lines?
Gross–Pitaevskii equation

\[-\frac{1}{2} \Delta u + \frac{x^2 + y^2 + z^2}{2} u - \mu u + |u|^2 u = 0, \quad u|_{\partial \Omega} = 0.\]

Solutions for $\mu = 6$.

A vortex ring cage?
Section 7

Semismooth problems
Many problems feature inequality constraints.
Many problems feature inequality constraints.

The natural language for formulating these is as a *variational inequality*.

\[ \text{VI}(Q, K) \]

Let $X$ be a real reflexive Banach space, $K \subset X$ a closed convex subset, and $Q : K \to X^*$. The task is to find $u^* \in K$ such that $\langle Q(u^*), v - u^* \rangle \geq 0$ for all $v \in K$. 
Many problems feature inequality constraints.

The natural language for formulating these is as a *variational inequality*.

**VI(\(Q, K\))**

Let \(X\) be a real reflexive Banach space, \(K \subset X\) a closed convex subset, and \(Q : K \to X^*\). The task is to

\[
\text{find } u^* \in K \text{ such that } \langle Q(u^*), v - u^* \rangle \geq 0 \text{ for all } v \in K.
\]
Many problems feature inequality constraints.

The natural language for formulating these is as a variational inequality.

\[ \text{VI}(Q, K) \]

Let \( X \) be a real reflexive Banach space, \( K \subset X \) a closed convex subset, and \( Q : K \to X^* \). The task is to

\[ \text{find } u^* \in K \text{ such that } \langle Q(u^*), v - u^* \rangle \geq 0 \text{ for all } v \in K. \]
Many problems feature inequality constraints.

The natural language for formulating these is as a *variational inequality*.

\[ \text{VI}(Q, K) \]

Let \( X \) be a real reflexive Banach space, \( K \subset X \) a closed convex subset, and \( Q : K \to X^* \). The task is to

\[
\text{find } u^* \in K \text{ such that } \langle Q(u^*), v - u^* \rangle \geq 0 \text{ for all } v \in K.
\]
Many problems feature inequality constraints.

The natural language for formulating these is as a *variational inequality*.

\[ \text{VI}(Q, K) \]

Let \( X \) be a real reflexive Banach space, \( K \subset X \) a closed convex subset, and \( Q : K \to X^* \). The task is to

find \( u^* \in K \) such that \( \langle Q(u^*), v - u^* \rangle \geq 0 \) for all \( v \in K \).
Many problems feature inequality constraints.

The natural language for formulating these is as a *variational inequality*.

**VI($Q, K$)**

Let $X$ be a real reflexive Banach space, $K \subset X$ a closed convex subset, and $Q : K \to X^*$. The task is to find $u^* \in K$ such that $\langle Q(u^*), v - u^* \rangle \geq 0$ for all $v \in K$. 
Many problems feature inequality constraints.

The natural language for formulating these is as a *variational inequality*.

\[ \text{VI}(Q, K) \]

Let \( X \) be a real reflexive Banach space, \( K \subset X \) a closed convex subset, and \( Q : K \to X^* \). The task is to

\[
\text{find } u^* \in K \text{ such that } \langle Q(u^*), v - u^* \rangle \geq 0 \text{ for all } v \in K.
\]
Many problems feature inequality constraints.

The natural language for formulating these is as a variational inequality.

VI($Q, K$)

Let $X$ be a real reflexive Banach space, $K \subset X$ a closed convex subset, and $Q : K \to X^*$. The task is to

find $u^* \in K$ such that $\langle Q(u^*), v - u^* \rangle \geq 0$ for all $v \in K$. 
For example, if you want to minimise \( f \in C^1(\mathbb{R}, \mathbb{R}) \) over a closed interval \( I \subset \mathbb{R} \), the necessary optimality condition is

\[ \text{VI}(f', I). \]
For example, if you want to minimise $f \in C^1(\mathbb{R}, \mathbb{R})$ over a closed interval $I \subset \mathbb{R}$, the necessary optimality condition is

$$\text{VI}(f', I).$$
For example, if you want to minimise $f \in C^1(\mathbb{R}, \mathbb{R})$ over a closed interval $I \subset \mathbb{R}$, the necessary optimality condition is

$$\text{VI}(f', I).$$
For example, if you want to minimise \( f \in C^1(\mathbb{R}, \mathbb{R}) \) over a closed interval \( I \subset \mathbb{R} \), the necessary optimality condition is

\[
\text{VI}(f', I).
\]
For example, if you want to minimise \( f \in C^1(\mathbb{R}, \mathbb{R}) \) over a closed interval \( I \subset \mathbb{R} \), the necessary optimality condition is

\[
\text{VI}(f', I).
\]
For example, if you want to minimise $f \in C^1(\mathbb{R}, \mathbb{R})$ over a closed interval $I \subset \mathbb{R}$, the necessary optimality condition is

$$\text{VI}(f', I).$$
For example, if you want to minimise \( f \in C^1(\mathbb{R}, \mathbb{R}) \) over a closed interval \( I \subset \mathbb{R} \), the necessary optimality condition is

\[
\text{VI}(f', I).
\]
For example, if you want to minimise $f \in C^1(\mathbb{R}, \mathbb{R})$ over a closed interval $I \subset \mathbb{R}$, the necessary optimality condition is

$$VI(f', I).$$
For example, if you want to minimise \( f \in C^1(\mathbb{R}, \mathbb{R}) \) over a closed interval \( I \subset \mathbb{R} \), the necessary optimality condition is

\[
\text{VI}(f', I).
\]
The main way of solving variational inequalities is to reformulate them as a system of equations.
The main way of solving variational inequalities is to reformulate them as a system of equations.

For example, $\text{VI}(Q, K)$ with

$$K = \{ x \in \mathbb{R} : x \geq 0 \}$$

is equivalent to

$$S(x) := \sqrt{x^2 + [Q(x)]^2} - x - Q(x) = 0.$$
The main way of solving variational inequalities is to reformulate them as a system of equations.

For example, $\text{VI}(Q, K)$ with

$$K = \{ x \in \mathbb{R} : x \geq 0 \}$$

is equivalent to

$$S(x) := \sqrt{x^2 + [Q(x)]^2} - x - Q(x) = 0.$$
Good news

\[ S \text{ is just smooth enough} \text{ to define a Newton-type method with superlinear convergence.} \]
Good news

$S$ is *just smooth enough* to define a Newton-type method with superlinear convergence.

Semismoothness

Let $X$ and $Y$ be Banach spaces. Let $S : \Omega \subset X \to Y$, where $\Omega$ is an open subset of $X$. $S$ is semismooth at $u \in \Omega$ if it is locally Lipschitz continuous at $u$ and there exists an open neighbourhood $N \subset \Omega$ containing $u$ with a *Newton derivative*, i.e. a mapping $H : \Omega \to L(X, Y)$ with the property that

$$S(u + h) - S(u) - H(u + h)h = o(h)$$

for all $u$ in $N$. 
Good news

*S* is *just smooth enough* to define a Newton-type method with superlinear convergence.

Semismooth Newton works just like normal:

\[ u_{i+1} = u_i - [H(u_i)]^{-1} S(u_i), \]

where *H* is the Newton derivative.

This algorithm usually converges superlinearly.
Good news

Deflation works for semismooth problems.
Good news

Deflation works for semismooth problems.

Theorem (F., Croci, Surowiec, 2020)

Under the same assumptions that are required for superlinear convergence of semismooth Newton, deflation works the same.
Gould gives an example where the central path is ill-behaved:

**Nonconvex quadratic programming problem**

\[
\begin{align*}
\text{minimise} & \quad -2(x_1 - 0.25)^2 + 2(x_2 - 0.5)^2 \\
\text{subject to} & \quad x_1 + x_2 \leq 1 \\
& \quad 3x_1 + x_2 \leq 1.5 \\
& \quad x_1 \geq 0 \\
& \quad x_2 \geq 0
\end{align*}
\]
Gould gives an example where the central path is ill-behaved:

Deflation finds both minima and the saddle point.
Gould gives an example where the central path is ill-behaved:

Deflation finds both minima and the saddle point.
Gould gives an example where the central path is ill-behaved:

Deflation finds both minima and the saddle point.
Gould gives an example where the central path is ill-behaved:

Deflation finds both minima and the saddle point.
Buckling of a hyperelastic beam with contact constraints

minimise \( u \in H^1(\Omega; \mathbb{R}^2) \)  
\[ \Pi(u) = \int_{\Omega} \psi(u) \, dx - \int_{\Omega} B \cdot u \, dx \]

subject to  
\[ u|_{\text{left}} = (0, 0), \quad u|_{\text{right}} = (-\varepsilon, 0), \]
\[ \text{tr}(u_y) \in [a, b] \text{ a.e. in } \Gamma_{\text{top}}, \Gamma_{\text{bottom}}. \]
Buckling of a hyperelastic beam with contact constraints

\[
\begin{align*}
\text{minimise} & \quad \Pi(u) = \int_{\Omega} \psi(u) \, dx - \int_{\Omega} B \cdot u \, dx \\
\text{subject to} & \quad u\big|_{\text{left}} = (0, 0), \ u\big|_{\text{right}} = (-\epsilon, 0), \\
& \quad \text{tr}(u_y) \in [a, b] \text{ a.e. in } \Gamma_{\text{top}}, \Gamma_{\text{bottom}}.
\end{align*}
\]
Buckling of a hyperelastic beam with contact constraints

\[
\begin{align*}
\text{minimise} \quad & \quad \Pi(u) = \int_{\Omega} \psi(u) \, dx - \int_{\Omega} B \cdot u \, dx \\
\text{subject to} \quad & \quad u|_{\text{left}} = (0, 0), \quad u|_{\text{right}} = (-\varepsilon, 0), \\
& \quad \text{tr}(u_y) \in [a, b] \text{ a.e. in } \Gamma_{\text{top}}, \Gamma_{\text{bottom}}.
\end{align*}
\]

Neo–Hookean strain energy density

\[
\psi(u) = \frac{\mu}{2} (\text{tr}(C) - 2) - \mu \log(\det(C)) + \frac{\lambda}{2} \log(\det(C))^2,
\]

where

\[
C = (I + \nabla u)^\top (I + \nabla u).
\]
Multiple solutions of the beam with contact constraints.
Semismooth problems

Multiple solutions of the beam with contact constraints.
Multiple solutions of the beam with contact constraints.
Multiple solutions of the beam with contact constraints.
Conclusions!
Conclusions!

Main message

When solving nonlinear problems, think about multiple solutions!
Conclusions!

Main message
When solving nonlinear problems, think about multiple solutions!

Algorithms
We now have very powerful algorithms for numerical bifurcation analysis.
Open questions!
Open questions!

How do we apply classical algorithms at very large scale?
Open questions!

How do we apply classical algorithms at very large scale?

How should we best combine deflation and classical algorithms?
Open questions!

How do we apply classical algorithms at very large scale?

How should we best combine deflation and classical algorithms?

What does bifurcation analysis for nonsmooth systems look like?
Open questions!

How do we apply classical algorithms at very large scale?

How should we best combine deflation and classical algorithms?

What does bifurcation analysis for nonsmooth systems look like?

How can we robustly deal with general symmetry groups?
Open questions!

How do we apply classical algorithms at very large scale?

How should we best combine deflation and classical algorithms?

What does bifurcation analysis for nonsmooth systems look like?

How can we robustly deal with general symmetry groups?

Thank you
to Josef, the organisers, and all the participants!