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Motivation

Can you conduct an experiment twice . . .

. . . and get two different answers?
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. . . and get two different answers?

Axial displacement test of an Embraer aircraft stiffener.
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Motivation

Can you conduct an experiment twice . . .

. . . and get two different answers?

Two different, stable configurations.
P. E. Farrell (Oxford) Bifurcations May 29 2 / 46



Motivation

When a problem has multiple solutions, it is usually crucial.

The AIAA/NASA high lift prediction test case (Kamenetskiy et al., 2013)
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Motivation

When a problem has multiple solutions, it is usually crucial.

⋆

⋆

A PDE with two unknown solutions
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Motivation

When a problem has multiple solutions, it is usually crucial.

⋆

⋆

Start from some initial guess
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Motivation

When a problem has multiple solutions, it is usually crucial.

⋆

⋆

⋆

We converge to one solution, our prediction
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Motivation

When a problem has multiple solutions, it is usually crucial.

⋆

⋆⋆

But nature has chosen another (unknown) solution!
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Motivation

When a problem has multiple solutions, it is usually crucial.

We have encountered unexpected multiple solutions in both sim-
ple and complex configurations in computational fluid dynamics
(CFD); this phenomenon is both extremely important and not well
understood. It has serious implications for the use of CFD as
a predictive tool.

xxxxxxxxxxxxxxxxxxxxx— Venkat Venkatakrishnan
xxxxxxxxxxxxxxxxxxxxxxx Computational Aerodynamic Optimization
xxxxxxxxxxxxxxxxxxxxxxx Boeing Research & Technology
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Scope

Section 2

Scope
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Scope

Mathematical formulation

Compute the multiple solutions u⋆ of a stationary nonlinear equation

F (u⋆, λ) = 0

F ∈ C1(X×R, Y )

as a function of a parameter λ ∈ R.
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Scope

Mathematical formulation

Compute the multiple solutions u⋆ of a stationary nonlinear equation

F (u⋆, λ) = 0

F ∈ C1(X×R, Y )

as a function of a parameter λ ∈ R.

Case #1: aircraft stiffener

u⋆ displacement, λ loading, F hyperelasticity

Case #2: aircraft wing

u⋆ velocity and pressure, λ angle of attack, F Navier–Stokes
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Scope

Mathematical formulation

Compute the multiple solutions u⋆ of a stationary nonlinear equation

F (u⋆, λ) = 0

F ∈ C1(X×R, Y )

as a function of a parameter λ ∈ R.

F ∈ C1 means that it is Fréchet-differentiable: there exists a function

Fu : X × R → L(X,Y )

with the approximation property

lim
v→0

∥F (u+ v, λ)− F (u, λ)− Fu(u, λ)v∥
∥v∥ = 0 for all v ∈ X.

Moreover Fu is continuous. The same holds for Fλ.
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Scope

Mathematical formulation

Compute the multiple solutions u⋆ of a stationary nonlinear equation

F (u⋆, λ) = 0

F ∈ C1(X×R, Y )

as a function of a parameter λ ∈ R.

Warning

We (usually) can’t guarantee to find all solutions. But finding many is
better than finding one.
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Scope

Lecture 1

Introduction to bifurcation theory; great theorems of nonlinear functional
analysis.

Lecture 2

Classical numerical algorithms for computing bifurcation diagrams. Branch
continuation, bifurcation detection and localisation, branch switching.

Lecture 3

Deflation techniques for computing disconnected bifurcation diagrams.
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Scope

What is not in scope:

▶ time-dependent problems (dynamical systems);

▶ bifurcations in maps (discrete systems);

▶ bifurcations of high codimension (multiple parameters);

▶ algorithms that only work for ODEs/coarse discretisations.

▶ the relationship between symmetries and bifurcations.

Goal for the course

Develop practical numerical methods for computing multiple solutions of
fine discretisations of nonlinear BVPs.
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Scope

Example: Liouville–Bratu–Gelfand problem

u′′ + λeu = 0, u(0) = 0 = u(1).

λ = λcrit
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Solutions of the Bratu problem

Fold bifurcation

# solutions =


1 λ ∈ {0, λcrit},
2 λ ∈ (0, λcrit),

0 otherwise.
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Scope

Example: Carrier’s problem

λ2u′′ + 2(1− x2)u+ u2 − 1 = 0, u(−1) = 0 = u(1).
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Scope
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Pitchfork bifurcation

P. E. Farrell (Oxford) Bifurcations May 29 9 / 46



Scope

0.05 0.1 0.25 0.7
−200

−150

−100

−50

0

50

100

150

200

λ

u′
(−

1)
∥u
∥2 2

Solutions of λ 2u′′+2(1− x2)u+u2 −1 = 0

Pitchfork bifurcation
Fold bifurcation

P. E. Farrell (Oxford) Bifurcations May 29 9 / 46



Scope

0.05 0.1 0.25 0.7
−200

−150

−100

−50

0

50

100

150

200

λ

u′
(−

1)
∥u
∥2 2

Solutions of λ 2u′′+2(1− x2)u+u2 −1 = 0

Pitchfork bifurcation
Fold bifurcation

P. E. Farrell (Oxford) Bifurcations May 29 9 / 46



Scope

0.05 0.1 0.25 0.7
−200

−150

−100

−50

0

50

100

150

200

λ

u′
(−

1)
‖u
‖2 2

Solutions of λ 2u′′+2(1− x2)u+u2 −1 = 0

Pitchfork bifurcation
Fold bifurcation

P. E. Farrell (Oxford) Bifurcations May 29 9 / 46



Great theorems of nonlinear functional analysis

Section 3

Great Theorems of Nonlinear Functional Analysis
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Great theorems of nonlinear functional analysis

We now review some theory about the solution of nonlinear PDE:

▶ the Newton–Kantorovich theorem;

▶ the Rall–Rheinboldt theorem;

▶ the implicit function theorem.

Primary references.
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Great theorems of nonlinear functional analysis Newton–Kantorovich

Subsection 1

Newton–Kantorovich
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Great theorems of nonlinear functional analysis Newton–Kantorovich

The Newton–Kantorovich algorithm is an algorithm for solving nonlinear
equations on the infinite-dimensional level (for a fixed parameter value).

This will target the solution of the nonlinear problem by solving a sequence
of linear problems. Each of these linear problems can then be discretised
(e.g. with a finite element method).

First, let’s recall Newton’s method in R and RN .
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Great theorems of nonlinear functional analysis Newton–Kantorovich

Core idea: solve succession of linearised rootfinding problems.
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f(x)
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Great theorems of nonlinear functional analysis Newton–Kantorovich

Core idea: solve succession of linearised rootfinding problems.

−3 −2 −1 1 2 3
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x0

t1

x1

t2

x2 x

f(x)

solve f ′(xk)δxk = −f(xk); update xk+1 = xk + δxk.
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Great theorems of nonlinear functional analysis Newton–Kantorovich

Termination

The algorithm terminates if f(xk) = 0, as desired.

Invertibility

We require f ′(xk) to be nonzero at every iteration.

Poor global convergence

The initial guess matters. With poor initial guesses, Newton’s method may
diverge to infinity, or get stuck in a cycle.

Good local convergence

If f is smooth, the solution is isolated, and the guess close, Newton
converges quadratically.
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Great theorems of nonlinear functional analysis Newton–Kantorovich

Far from a solution, Newton’s method can get stuck in a loop.
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Great theorems of nonlinear functional analysis Newton–Kantorovich

This geometric reasoning is hard to generalise to higher dimensions. Let’s
look at a derivation that does extend.

Consider the Taylor expansion of f around xk:

f(xk + δxk) = f(xk) + f ′(xk)δxk +O(δx2k).

Linearise the model by ignoring higher-order terms:

f(xk + δx) ≈ f(xk) + f ′(xk)δxk

and find δx such that f(xk + δx) ≈ 0:

0 = f(xk) + f ′(xk)δxk.

This yields
δxk = [f ′(xk)]

−1f(xk).
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Great theorems of nonlinear functional analysis Newton–Kantorovich

This naturally extends to F ∈ C1(RN ;RN ). Newton’s method is to

solve Fx(xk)δxk = −F (xk); update xk+1 = xk + δxk,

where Fx is the Jacobian of F .

For the iteration to be well-defined, we need Fx(xk) to be invertible.
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Great theorems of nonlinear functional analysis Newton–Kantorovich

Newton’s method has an important property that becomes apparent in
higher dimensions.

Given F : RN → RN , and x0 ∈ RN , we construct the sequence x0, x1, . . . .

Now imagine that we change units or coordinate systems for our outputs
F . Instead of solving F (x) = 0, we want to solve F̃ (x) = AF (x) = 0,
where A ∈ RN×N is constant and nonsingular. Of course, this doesn’t
change the roots x⋆.

Theorem (Affine covariance)

Premultiplying F by a constant nonsingular A ∈ RN×N does not change
the Newton sequence.
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Great theorems of nonlinear functional analysis Newton–Kantorovich

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0
generates a sequence

x̃0, x̃1, x̃2, . . . .

Proof.

For i = 0, we have xi = x̃i by assumption.

Assume the claim is true at iteration i. Then the Newton update for F̃
satisfies

[F̃x(x̃i)]
−1F̃ (x̃i) = [AFx(xi)]

−1AF (xi)

= [Fx(xi)]
−1A−1AF (xi)

= [Fx(xi)]
−1F (xi).

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0, x1, . . . , whether we apply Newton to
F (x) = 0 or AF (x) = 0.
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Why does this matter?

Philosophical remark

Since Newton’s method is affine covariant, the conditions for any theorem
guaranteeing its convergence should also be affine covariant.

This is not true of proofs found in many books!

Moreover, any sensible strategy for globalising the
convergence of Newton’s method from poor initial
guesses x0 must also preserve this property. This insight
leads to the current state of the art for globalising
Newton’s method.

Peter Deuflhard, 1944–2019
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Great theorems of nonlinear functional analysis Newton–Kantorovich

We can visualise the erratic global convergence with a Newton fractal.

Consider the problem

find z ∈ C such that z3 − 1 = 0.

We could also think of this as a problem in R2.

We know this has three solutions,

z = 1, z = −1/2 + i
√
3/2, and z = −1/2− i

√
3/2.

Let’s take a subset of the complex plane and colour each point as follows.
For a given z0 ∈ C, we
1. run Newton’s method with that initial guess,

2. and colour the point according to which root it converges to.
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The Newton fractal for z3 − 1 = 0.
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The Newton fractal for z3 − 2z + 2 = 0.
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Great theorems of nonlinear functional analysis Newton–Kantorovich

The generalisation of Newton’s method to Banach spaces is called the
Newton–Kantorovich algorithm.

Kantorovich’s theorem (1948) is a triumph of both PDE analysis and
numerical analysis. It does not assume the existence of a solution: given
certain conditions on the residual and initial guess, it proves the existence
and local uniqueness of a solution.

With a good initial guess, and great cleverness, it is possible to devise
computer-assisted proofs of the existence of solutions to
infinite-dimensional nonlinear problems.
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▶ Invented linear programming (via industrial
consultancy!).

▶ Instrumental in saving over a million lives during
the siege of Leningrad.

▶ Involved in the Soviet nuclear bomb project.

▶ Nearly sent to the gulag for “shadow prices”.

▶ Pseudo-Nobel prize in Economics (1975). Leonid Kantorovich, 1912–1986
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Theorem (Kantorovich (1948))

Let F ∈ C1(Ω, Y ) for open convex Ω ⊂ X. Given u0 ∈ Ω, assume

1. Fu(u0)
−1 exists and set α := ∥Fu(u0)

−1F (u0)∥;

2. ∥Fu(u0)
−1 (Fu(v)− Fu(w)) ∥ ≤ ω0∥v − w∥ for all v, w ∈ Ω;

3. h0 := αω0 ≤ 1
2 ;

4. B(u0, ρ0) ⊂ Ω for ρ0 := (1−
√
1− 2h0)/ω0.

Then the Newton sequence defined by
uk+1 = uk − Fu(uk)

−1F (uk)

is well defined and remains within B(u0, ρ0).

There exists u⋆ ∈ B(u0, ρ0) which solves F (u⋆) = 0, and (uk) → u⋆.

The solution u⋆ is unique in Ω ∩B(u0, ρ
+) for a ρ+ > ρ0.
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Subsection 2

Rall–Rheinboldt
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The Newton–Kantorovich theorem is very powerful because you only need
to check conditions on the initial guess (and a ball around it).

If you assume the existence of roots, one gets a slightly different theory
that is also useful. This allows us to place balls around the roots, such
that if the Newton sequence starts within a ball, Newton’s method
converges to the associated root.
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Theorem (Rall–Rheinboldt (1974))

Let F ∈ C1(Ω, Y ) for open convex Ω ⊂ X. Let u⋆ ∈ Ω
such that F (u⋆) = 0. Assume that

1. Fu(u
⋆)−1 exists;

2. ∥Fu(u
⋆)−1 (Fu(v)− Fu(w)) ∥ ≤ ω⋆∥v − w∥ for all

v, w ∈ Ω.

Then for any u0 ∈ B(u⋆, 2/(3ω⋆)), the Newton
sequence is well-defined and remains within the ball.

The Newton sequence converges to u⋆.

The solution u⋆ is unique within Ω ∩B(u⋆, 1/ω⋆).

Louis B. Rall, 1930–

Werner C. Rheinboldt, ?–?
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Great theorems of nonlinear functional analysis Rall–Rheinboldt

Let’s examine the conditions of the theorems for a simple case:

f : C → C, f(z) = (z − 1)(z + 1).

We have f ′(z) = 2z.

Newton–Kantorovich

For z0 ̸= 0, we calculate
α := |f ′(z0)

−1f(z0)| = |z20 − 1|/2|z0|,

and by inspecting
|(2z0)−1(2v − 2w)| ≤ ω0|v − w|

we find ω0 = 1/|z0|.

We need αω0 ≤ 1/2, so Newton–Kantorovich guarantees convergence for

|z20 − 1|
2|z0|2

≤ 1

2
=⇒ |1− z−2

0 | ≤ 1.
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Let’s examine the conditions of the theorems for a simple case:

f : C → C, f(z) = (z − 1)(z + 1).

We have f ′(z) = 2z.

Newton–Kantorovich

For z0 ̸= 0, we calculate
α := |f ′(z0)

−1f(z0)| = |z20 − 1|/2|z0|,
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Great theorems of nonlinear functional analysis Rall–Rheinboldt

Rall–Rheinboldt

The affine covariant Lipschitz constant for z⋆ = 1 is 1/|z⋆| = 1.

So Rall–Rheinboldt guarantees convergence for

|z0 − 1| ≤ 2/3.
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Great theorems of nonlinear functional analysis The Implicit Function Theorem

Subsection 3

The Implicit Function Theorem
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Great theorems of nonlinear functional analysis The Implicit Function Theorem

Newton’s method allows us to lock in on one solution u0 for a fixed
parameter value λ0, given some initial guess near u0.

When does the existence of (u0, λ0) such that F (u0, λ0) = 0 imply that
we can solve F for nearby values of λ?

An answer . . .

. . . is given by the Implicit Function Theorem.

Basically, if Fu(u0, λ0) is invertible, then you can continue u = H(λ) for
some interval (λ0 − δ, λ0 + δ).
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Great theorems of nonlinear functional analysis The Implicit Function Theorem

Theorem (Implicit Function Theorem)

Assume that Ω ⊂ X × R is open. Let F ∈ C1(Ω, Y ).

Let (u0, λ0) ∈ Ω such that F (u0, λ0) = 0 with
Fu(u0, λ0) invertible.

Then

1. there exist ε, δ > 0 and H ∈ C(B(λ0, δ), B(u0, ε))
such that (H(λ), λ) is the unique solution of
F (u, λ) = 0 in B(λ0, δ)×B(u0, ε);

2. if F ∈ Ck(Ω, Y ), then H ∈ Ck(B(λ0, δ), X);

3. if F is analytic, H is analytic.

Ulisse Dini, 1845–1918
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Great theorems of nonlinear functional analysis The Implicit Function Theorem

The history is reviewed in

which complains

Anglo–Saxon scientific and historic literature
ignores the Italian mathematician U. Dini.

Ulisse Dini, 1845–1918
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Great theorems of nonlinear functional analysis The Implicit Function Theorem

Main message

If we want to find where local uniqueness breaks down, look for (u, λ)
such that Fu(u, λ) not invertible.

Note

Fu(u, λ) invertible is sufficient for the existence of a local resolution
u = u(λ), but not necessary.
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Great theorems of nonlinear functional analysis The Implicit Function Theorem

Consider F (u, λ) = u3 − λ.
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Fu(0, 0) = 0, but the resolution u = H(λ) = 3
√
λ is unique regardless.

P. E. Farrell (Oxford) Bifurcations May 29 37 / 46



Great theorems of nonlinear functional analysis The Implicit Function Theorem

Consider F (u, λ) = u3 − λ.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ

u

Fu(0, 0) = 0, but the resolution u = H(λ) = 3
√
λ is unique regardless.

P. E. Farrell (Oxford) Bifurcations May 29 37 / 46



Examples

Section 4

Examples
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Examples

Let’s see more examples of what can happen when the IFT does not apply.
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Examples

Fold bifurcation

F (u, λ) = λ− u2 = 0
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Examples

Fold bifurcation

F (u, λ) = λ− u2 = 0

This has solutions
u = ±

√
λ, λ ≥ 0,

and no solutions otherwise.
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Examples

Fold bifurcation

F (u, λ) = λ− u2 = 0
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Fu(0, 0) = 0. A branch of solutions is born at a fold bifurcation.
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Examples

Transcritical bifurcation

F (u, λ) = λu+ u2 = 0

P. E. Farrell (Oxford) Bifurcations May 29 41 / 46



Examples

Transcritical bifurcation

F (u, λ) = λu+ u2 = 0

This has solutions
u = 0, u = −λ

for all values of λ.
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Examples

Transcritical bifurcation

F (u, λ) = λu+ u2 = 0
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Two branches cross at a transcritical bifurcation.
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Examples

Pitchfork bifurcation

F (u, λ) = λu− u3 = 0
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Examples

Pitchfork bifurcation

F (u, λ) = λu− u3 = 0

This has solutions

u = 0, λ ∈ R,

u = ±
√
λ, λ ≥ 0.
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Examples

Pitchfork bifurcation

F (u, λ) = λu− u3 = 0
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Two branches emerge from the base branch at a pitchfork bifurcation.
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Examples

Structural stability of folds

Fold bifurcations are structurally stable.

Structural stability of transcritical and pitchfork bifurcations

Transcritical and pitchfork bifurcations are not.

Numerical implications

This will have major consequences for our algorithms.
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Examples

Perturbing a fold + transcritical bifurcation

F (u, λ) = u2 − λ2(λ+ 1) + δ = 0
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Solutions of u2 −λ 2(λ +1)+δ = 0, δ = 0
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Solutions of u2 −λ 2(λ +1)+δ = 0, δ =−0.01
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Solutions of u2 −λ 2(λ +1)+δ = 0, δ =+0.01

δ = 0 δ < 0 δ > 0
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Examples

Perturbing a pitchfork bifurcation

F (u, λ) = λu− u3 + δ = 0
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Solutions of λu−u3 +δ = 0, δ = 0.01

δ = 0 δ < 0 δ > 0
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Examples

These examples motivate the following definition.

Bifurcation point

A bifurcation point P = (u⋆, λ⋆) is one where, for all neighbourhoods N
containing P , there exists a λ ∈ R such that F (u, λ) = 0 has nonunique
solutions within N .

In the next lectures, we will study the key question:

How do we compute these bifurcation diagrams?
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Challenge

How do we continue branches? How do we detect and pursue bifurcations?
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Basic idea of numerical bifurcation analysis:

procedure analyse(u0, λ0)

continue branch of solutions;
detect bifurcations on the branch;
localise bifurcations;
switch branches at bifurcations, and recurse.

end procedure

Herbert Keller, 1925–2008

P. E. Farrell (Oxford) Classical algorithms May 30 4 / 44



Basic idea of numerical bifurcation analysis:

procedure analyse(u0, λ0)
continue branch of solutions;

detect bifurcations on the branch;
localise bifurcations;
switch branches at bifurcations, and recurse.

end procedure

Herbert Keller, 1925–2008

Continuation

Extending our knowledge of the branch to other values of λ.
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Basic idea of numerical bifurcation analysis:

procedure analyse(u0, λ0)
continue branch of solutions;
detect bifurcations on the branch;

localise bifurcations;
switch branches at bifurcations, and recurse.

end procedure

Herbert Keller, 1925–2008

Bifurcation detection

Discovering when a bifurcation has occurred on the branch.
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Basic idea of numerical bifurcation analysis:

procedure analyse(u0, λ0)
continue branch of solutions;
detect bifurcations on the branch;
localise bifurcations;

switch branches at bifurcations, and recurse.

end procedure

Herbert Keller, 1925–2008

Bifurcation localisation

Identifying precisely the bifurcation point.

P. E. Farrell (Oxford) Classical algorithms May 30 4 / 44



Basic idea of numerical bifurcation analysis:

procedure analyse(u0, λ0)
continue branch of solutions;
detect bifurcations on the branch;
localise bifurcations;
switch branches at bifurcations, and recurse.

end procedure

Herbert Keller, 1925–2008

Branch switching

Constructing the emanating branches, and analysing them recursively.
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u

Start with (u0, λ0).
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u

Perform a continuation step.
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Detect we have passed a bifurcation.
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Localise bifurcation point.
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Switch branches.
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u

Apply recursively.
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Continuation algorithms

Section 1

Continuation algorithms
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Continuation algorithms

Suppose we know (u0, λ0), with Fu(u0, λ0) invertible. By the IFT we
know we can continue the branch for other values of λ.

How should we do so? We will meet five algorithms:

▶ natural (or näıve, or first-order) continuation;

▶ tangent (or second-order) continuation, and secant continuation;

▶ arclength continuation, and pseudo-arclength continuation.
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▶ natural (or näıve, or first-order) continuation;

▶ tangent (or second-order) continuation, and secant continuation;

▶ arclength continuation, and pseudo-arclength continuation.

P. E. Farrell (Oxford) Classical algorithms May 30 7 / 44



Continuation algorithms

Suppose we know (u0, λ0), with Fu(u0, λ0) invertible. By the IFT we
know we can continue the branch for other values of λ.

How should we do so? We will meet five algorithms:
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Continuation algorithms Natural continuation

Subsection 1

Natural continuation
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Continuation algorithms Natural continuation

(λ0,u0)

λ

u

Start with (u0, λ0).
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Continuation algorithms Natural continuation

(λ0,u0) (λ0 +δλ ,u0)

λ

u

Set u0 as our guess for λ0 + δλ.
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Continuation algorithms Natural continuation

(λ0,u0) (λ0 +δλ ,u0)

(λ1,u1)

λ

u

Use Newton–Kantorovich to find the solution for λ1 = λ0 + δλ.

P. E. Farrell (Oxford) Classical algorithms May 30 9 / 44



Continuation algorithms Natural continuation

(λ0,u0) (λ0 +δλ ,u0)

(λ1,u1)

λ

u

Piecewise-constant guess.
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Continuation algorithms Natural continuation

(λ0,u0) (λ0 +δλ ,u0)

(λ1,u1)

λ

u

Newton–Kantorovich.
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Continuation algorithms Natural continuation

(λ0,u0) (λ0 +δλ ,u0)

(λ1,u1)

λ

u

Guess and solve.
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Continuation algorithms Natural continuation

(λ0,u0) (λ0 +δλ ,u0)

(λ1,u1)

λ

u

Guess . . .
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Continuation algorithms Natural continuation

(λ0,u0) (λ0 +δλ ,u0)

(λ1,u1)

λ

u

. . . but there are no solutions to be found for this value of λ.
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Continuation algorithms Natural continuation

Good news

This is cheap and easy.

Bad news

We can probably construct better guesses.

Worse news

The algorithm has no hope of continuing around the fold.
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Continuation algorithms Tangent and secant continuation

Subsection 2

Tangent and secant continuation

P. E. Farrell (Oxford) Classical algorithms May 30 11 / 44



Continuation algorithms Tangent and secant continuation

Natural continuation estimates

u(λi+1) ≈ u(λi),

which is the first-order Taylor expansion.

A better estimate would be

u(λi+1) ≈ u(λi) + uλ(λi)δλ,

the second-order Taylor expansion.

How do we compute uλ(λi)?
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Continuation algorithms Tangent and secant continuation

Since F (u, λ) = 0, taking the total derivative of both sides with respect to
λ in the direction δλ yields

d

dλ
F (u, λ) = Fu(u, λ)uλ + Fλ(u, λ) = 0.

If λ ∈ R, u ∈ RN , then uλ ∈ RN , Fλ ∈ RN , and Fu ∈ RN×N .

Since the dependence of F on λ is explicit, we can calculate Fλ, and solve

Fu(u, λ)uλ = −Fλ(u, λ)

at the cost of one Newton step. This is the tangent linearisation.
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Continuation algorithms Tangent and secant continuation

(λ0,u0)

λ

u

Start with (u0, λ0).
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Continuation algorithms Tangent and secant continuation

(λ0,u0)

(λ0 +δλ ,u0 +u′(λ0)δλ )

λ

u

Solve tangent linearisation to construct next guess.
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Continuation algorithms Tangent and secant continuation

(λ0,u0)

(λ0 +δλ ,u0 +u′(λ0)δλ )

λ

u

Solve nonlinear problem with Newton–Kantorovich.
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Continuation algorithms Tangent and secant continuation
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(λ0 +δλ ,u0 +u′(λ0)δλ )
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Solve tangent linearisation to construct next guess.
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Continuation algorithms Tangent and secant continuation

This constructs much better initial guesses, but is more expensive. We
have to save at least two Newton iterations to make this worth it.

A natural alternative is to approximate the tangent with a secant: build
the line joining two previous points on the branch, and extrapolate to the
next value of λ.

Secant continuation constructs almost as good initial guesses, for almost
no increase in cost over natural continuation (only memory).
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Continuation algorithms Arclength continuation

Subsection 3

Arclength continuation
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Continuation algorithms Arclength continuation

Tangent/secant continuation are much more efficient, but still have no
hope of continuing around a fold.

The fundamental problem is one of parameterisation: we are thinking of
our solution curve as

u = u(λ)

but if we only ever increase λ, we cannot turn back around a fold.

A better way

Parameterise the solution curve as

(u(s), λ(s))

where s is the arclength on the curve, measured from (u0, λ0).

In other words, at each continuation step we will also solve for the next
value of λ. This allows λ to decrease as well as increase, to successfully
traverse folds.
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Continuation algorithms Arclength continuation

Since we are now solving for both u and λ, we need to augment our
system of equations with one more real-valued equation:

A(u(s), λ(s)) :=

[
F (u(s), λ(s))
p(u(s), λ(s), s)

]
=

[
0
0

]
.

We can think of natural and tangent continuation in this framework by
setting

p(u, λ, s) := λ− λi+1.

The choice arclength continuation makes is to have p encode a desired
change in distance:

p(u, λ, s) := ∥u− ui∥2 + |λ− λi|2 − (s− si)
2.
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Continuation algorithms Arclength continuation

(λi,ui)

λ

u

Start with (ui, λi).
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Continuation algorithms Arclength continuation

(λi,ui)

λ

u

Seek points on the curve that intersect p(u, λ) = 0.
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Continuation algorithms Arclength continuation

(λi,ui)

(λi+1,ui+1)

λ

u

Solve nonlinear problem with Newton–Kantorovich.
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Continuation algorithms Arclength continuation

(λi+1,ui+1)

λ

u

Repeat.
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Continuation algorithms Arclength continuation

(λi+1,ui+1)

(λi+2,ui+2)

λ

u

Repeat.
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Continuation algorithms Arclength continuation

(λi+2,ui+2)

λ

u

Repeat.
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Continuation algorithms Arclength continuation

(λi+2,ui+2)

λ

u

Repeat.
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Continuation algorithms Arclength continuation

Good news

This allows us to robustly continue around folds.

Bad news

We now have to solve augmented systems with extra nonlinearity.

Worse news

The augmented system generically has two solutions!
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Continuation algorithms Arclength continuation

We attempt to guide Newton–Kantorovich to the solution we want by
building a good initial guess.

We compute (us(si), λs(si)) by solving

d

ds
A(u(s), λ(s)) = 0,

the tangent linearisation of the augmented system.

We then set the initial guess to be (u(si) + us(si)δs, λ(si) + λs(si)δs).

However, this doesn’t always work: even with this good initial guess,
Newton–Kantorovich can sometimes find the wrong (old) solution.
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Continuation algorithms Arclength continuation

The basic problem with arclength is that the extra equation added is
nonlinear, and hence supports multiple solutions.

We are free to choose the extra equation. So let’s linearise it!

Pseudo-arclength continuation

Assuming that X ⊂ L2(Ω), we can choose

p(u, λ) := (u− ui, us(si))L2(Ω)+(λ−λi)λs(si)−(s−si)

This looks for points on the branch that are orthogonal
(in the L2(Ω)× R inner product) to the tangent, at a
distance s− si away.

Eduard Riks, ?–?
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Continuation algorithms Arclength continuation

(λi,ui)

λ

u

Start with (ui, λi).
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Continuation algorithms Arclength continuation

(λi,ui)

λ

u

Construct the tangent to the curve.
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Continuation algorithms Arclength continuation

(λi,ui)

λ

u

Impose the orthogonality constraint.
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Continuation algorithms Arclength continuation

(λi,ui)

(λi+1,ui+1)

λ

u

Solve.
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Continuation algorithms Arclength continuation
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Repeat.
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Bifurcation detection

Section 2

Bifurcation detection
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Bifurcation detection

Challenge

We need some way to detect that we have passed through a bifurcation.
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Bifurcation detection

Consider the problem

F (u, λ) = −u′′ − λu+ u3 = 0, u(0) = 0 = u(π).

This has a trivial branch of solutions {(0, λ) : λ ∈ R}.

By the IFT, we know that bifurcations can only happen where its Fréchet
derivative is singular. Its Fréchet derivative on the branch is

Fu(0, λ; v) = −v′′ − λv = 0, v(0) = 0 = v(π),

which has nonzero solutions for v whenever λ is an eigenvalue of the
Dirichlet Laplacian:

λn = n2, n ∈ N.
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derivative is singular. Its Fréchet derivative on the branch is

Fu(0, λ; v) = −v′′ − λv = 0, v(0) = 0 = v(π),

which has nonzero solutions for v whenever λ is an eigenvalue of the
Dirichlet Laplacian:

λn = n2, n ∈ N.

P. E. Farrell (Oxford) Classical algorithms May 30 26 / 44



Bifurcation detection
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Start our continuation at (u, λ) = (0, 0).
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By chance we land on the bifurcation—Fréchet derivative is singular.
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Bifurcation detection

So how do we detect when we’ve continued past a bifurcation?

Idea A

Monitor the sign of det (Fu(u, λ)).

Recall that the determinant of a matrix is the product of its eigenvalues.
So when one eigenvalue changes sign, the determinant changes sign.

Good news

The determinant is easy to compute from an LU factorisation:

A = LU =⇒ det(A) = det(L)det(U).
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Bifurcation detection

Bad news

We usually can’t afford to compute an LU factorisation . . .

Worse news

This misses bifurcations for eigenvalues of even multiplicity.

So we need another idea.
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Bifurcation detection

Idea B

At each continuation step, compute a few (e.g. 10) eigenvalues.

Good news

You can make this work at large scale with Krylov methods.

Challenge

You want the ones with smallest real part, somewhat fiddly.

Comment

This is the main choice in PDE-oriented codes
(e.g. pde2path and BifurcationKit.jl).
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Bifurcation localisation

Section 3

Bifurcation localisation
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Bifurcation localisation

Our ultimate goal is to switch branches at bifurcation points. In order to
do this, we’ll need to locate the bifurcation points precisely.

Idea A

Apply bisection to the detection algorithm.

In other words, you know two points on the branch that straddle the
bifurcation. At each iteration, cut the interval between them in half and
keep the subinterval that contains the bifurcation.

Good news

This is simple to implement (given a detector).

Bad news

This only converges linearly, so finding many digits will take forever.
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Bifurcation localisation

Here is an idea that will let us quickly localise (some)
bifurcations to high precision.

By the IFT, we know that a necessary condition for a
bifurcation is that

Fu(u, λ) is singular.

Idea B: Seydel–Moore–Spence

Find (u, v, λ) ∈ X ×X × R such that

F (u, λ) = 0,

Fu(u, λ)v = 0,

∥v∥2 = 1.

Rüdiger Seydel, 1947–

Gerald Moore, 1951–

Alistair Spence, 1948–
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Bifurcation localisation

Comment

The Seydel–Moore–Spence system is highly nonlinear. However, it is easy
to construct good initial guesses.

Good news

The Seydel–Moore–Spence system has nonsingular Fréchet derivative at a
fold, so Newton–Kantorovich will converge quadratically.

Bad news

The Fréchet derivative of the Seydel–Moore–Spence system is singular at
other bifurcation points, so Newton–Kantorovich converges linearly.

Good news

It’s possible to construct other augmented systems for other kinds of
bifurcations. You have to know what you’re looking for, though . . .
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fold, so Newton–Kantorovich will converge quadratically.

Bad news
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Bifurcation localisation

One last comment: if you want to find out how a bifurcation point varies
as you vary another parameter µ ∈ R,

do pseudo-arclength continuation on the Seydel–Moore–Spence system!
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Branch switching

Section 4

Branch switching
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Branch switching

To learn how to switch branches at a bifurcation point, we need another

Great Theorem of Nonlinear Functional Analysis.

Lyapunov–Schmidt reduction (1906, 1908)

Let F (u0, λ0) = 0 with Fu singular. Let

d = dimkerFu(u0, λ0).

Near the bifurcation point, we can relate

solutions of F ⇐⇒ solutions of R

where R is a d× d algebraic system!

Aleksandr Lyapunov, 1857–1918

Erhard Schmidt, 1876–1959
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Branch switching

For this section, we will make the following assumptions:

Essential assumptions

▶ F (u0, λ0) = 0;

▶ A := Fu(u0, λ0) ∈ L(X,Y ) is Fredholm:

dimker(A) <∞, codim range(A) <∞;

▶ d = dimker(A) > 0.

Non-essential assumptions

▶ X and Y are Hilbert spaces;

▶ ind(A) := dimker(A)− codim range(A) = 0.
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Branch switching

Let A∗ : Y → X be the associated adjoint operator. Construct

ker(A) = span{ϕ1, . . . , ϕd}, ker(A∗) = span{ψ1, . . . , ψd},

where {ϕi}i and {ψi}i are orthonormal bases.

Then construct

Px :=

d∑
i=1

(ϕi, x)Xϕi, Qy :=

d∑
i=1

(ψi, y)Y ψi.

By construction,

range(P ) = ker(A), range(Q) = ker(A∗) = range(A)⊥.

Then we can decompose

X = range(P )⊕ range(I − P ) =: X1 ⊕X2,

Y = range(Q)⊕ range(I −Q) =: Y1 ⊕ Y2.
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Branch switching

Write
u = Pu+ (I − P )u =: v + w, v ∈ X1, w ∈ X2.

Then the system F (u, λ) = 0 is equivalent to

F̂ (v, w, λ) := QF (v + w, λ) = 0 ∈ Y1,

F̄ (v, w, λ) := (I −Q)F (v + w, λ) = 0 ∈ Y2.

The Fréchet derivative F̄w is the restriction of A to

A : ker(A)⊥ → range(A)

and is thus invertible. So by the IFT we can locally write

w = H(v, λ).
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Branch switching

We can thus write our reduced system

Reduced system

R(v, λ) := QF (v +H(v, λ), λ) = 0,

R : ker(A)× R → range(A)⊥.

This reduced system has the same symmetries and same bifurcations as
the original problem, near (u0, λ0).

This is an extremely useful theoretical result. It forms the basis of most
analytical calculations of bifurcation structures.
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Branch switching

Using our bases for ker(A) and range(A)⊥, let’s explicitly write:

Reduced system (algebraic)

rj(x, λ) :=
(
ψj , R(x1ϕ1+ · · ·+ xdϕd, λ)

)
Y
,

r : Rd × R → Rd.

In practice we can never get our hands on r, because we don’t know H.

Instead, we compute a Taylor expansion (usually to third derivatives) of r.

The derivatives of r can be computed from derivatives of F , and require
solving linear systems involving A (d2 + 1 solves for third derivatives).
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Branch switching

Challenge

For large d, the Taylor expansion of the reduced equations are not easy to
solve. There are techniques from numerical algebraic geometry that can
provably yield all solutions, but they are too slow to use in practice.

The pragmatic response taken is to brute-force the system with many,
many initial guesses (e.g. as in pde2path and BifurcationKit.jl).
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Branch switching

Example: Liouville–Bratu–Gelfand problem in 2D

∇2u− 10(u− λeu) = 0 on Ω := (0, 1)2, ∇u · n = 0 on ∂Ω.
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Example: Liouville–Bratu–Gelfand problem in 2D

∇2u− 10(u− λeu) = 0 on Ω := (0, 1)2, ∇u · n = 0 on ∂Ω.

This is a famously intricate problem. I calculated the
bifurcation diagram using BifurcationKit.jl. It was
first computed successfully by Michiel Wouters.

Romain Veltz, 1982–

Michiel Wouters, ?–

P. E. Farrell (Oxford) Classical algorithms May 30 44 / 44



Branch switching
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Introduction

Good news

The combination of continuation and branch switching is very powerful.

Bad news

However, it has some disadvantages and weaknesses, too.
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Introduction

Downside A

You have to solve a lot of different problems.

We work for years to develop a good solver for

F (u, λ) = 0 . . .

but now we need to solve[
F (u, λ)
p(u, λ, s)

]
=

[
0
0

]
Fu(u, λ)v = λv

 F (u, λ)
Fu(u, λ)v
∥v∥2 − 1

 =

00
0


Large-scale

This is OK when you can afford direct solvers, but it’s hard at large scale.
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Introduction

Downside B

We can only find branches connected to our initial data.

This works fine . . .
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Introduction

The standard approach to deal with this is to

(a) modify the problem to restore connectedness;

(b) apply continuation + branch switching;

(c) continue the branches you find back to the problem you care about.

Problem A

You have to know to look for the missing branches.

Problem B

Executing this is manual and tedious.

Problem C

Restoring connectedness is not always possible!
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Introduction

The connectedness is broken by non-symmetry of the domain.
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Introduction

Deflation offers a complementary approach.

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.
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Introduction

Deflation offers a complementary approach.

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

Simplicity & scaling

The computational kernel is exactly the same as Newton’s method: solve

Fu(u, λ)δu = −F (u, λ).
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Deflation

Section 2

Deflation
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Deflation

Deflation

Fix parameter λ. Given

▶ a Fréchet differentiable residual F : X → Y

▶ a solution u ∈ X, F (u) = 0, Fu(u) nonsingular

construct a new nonlinear problem G : X → Y such that:

▶ (Preservation of solutions) F (ũ) = 0 ⇐⇒ G(ũ) = 0 ∀ ũ ̸= u;

▶ (Deflation property) Newton–Kantorovich applied to G will never
converge to u again, starting from any initial guess.

Find more solutions, starting from the same initial guess.
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Deflation

X

⋆

⋆

⋆

u?

Starting setup
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Deflation

X
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Newton from initial guess.
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Newton from initial guess.
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Deflation

X

⋆

⋆
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u?
⋆

⋆

⋆

Terminate on nonconvergence.
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Deflation

Big if true. How can you do it?

Kenneth Brown, ?–?

Bill Gearhart, ?–
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Deflation

Brown & Gearhart’s criterion

We say that M(u; r) is a deflation operator if

lim inf
u→r

∥G(u)∥ := lim inf
u→r

∥M(u; r)F (u)∥ > 0.

Brown & Gearhart’s proposal

Choose

M(u; r) :=
1

∥u− r∥ .

Note that M(u, r) > 0 always, so G(u) = 0 ⇐⇒ F (u) = 0.

Since ∥F (u)∥ = O(∥u− r∥) as u→ r, this works.
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Deflation

. . . albeit sometimes not robustly.

Numerical experience with deflation has shown it is often a matter
of seeming chance whether one obtains an additional solution.

(Allgower & Georg, 1990)

[Deflation is] not . . . very reliable for larger problems.

(Kanzow, 2000)

Why?

One problem: assuming F does not blow up as ∥u− r∥ → ∞, then
Newton discovers that it can achieve

∥G(u)∥Y < tol

for any tol, by taking ∥u− r∥ large enough.
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Deflation

Our proposal

Mp(u; r) :=

(
1

∥u− r∥p + 1

)
, p ≥ 1.

This has the right behaviour both as

∥u− r∥ → 0,

∥u− r∥ → ∞.

This makes the procedure much more reliable.

Ásgeir Birkisson, 1985–

Simon Funke, 1983–
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Deflation

λ

u

Start with (u0, λ0).
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Deflation

λ

u

Perform a continuation step.
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Deflation

λ

u

Perform another continuation step.
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Deflation

λ

u

Deflate the solution found.
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Deflation

λ

u

Solve again.
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Deflation
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Deflate the solution found.
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Deflation

λ

u

Search again, unsuccessfully.
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Deflation

λ

u

Repeat.

P. E. Farrell (Oxford) Deflation June 1 15 / 44



Deflation

Good news

Deflation lets us discover disconnected branches!
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Solving the deflated problem

Section 3

Solving the deflated problem
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Solving the deflated problem

We assume we have a good solver for our discretised Newton step

Fu(u, λ)δuF = −F (u, λ), F ∈ C1(RN × R,RN ).

We now want to solve

Gu(u, λ)δuG = −G(u, λ)

where

G(u, λ) =M(u;u1)M(u;u2) · · ·M(u;un)F (u, λ) =:M(u)F (u, λ).

Good news

You can compute δuG easily from δuF !
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Solving the deflated problem

By the product rule,

Gu(u, λ) =M(u)Fu(u, λ) + F (u, λ)M⊤
u .

At first this looks bad. The deflated Jacobian is dense, as it is a rank-one
update of a sparse matrix.

Sherman–Morrison–Woodbury formula

(
A+ uv⊤

)−1
= A−1 −

(
A−1uv⊤A−1

1 + v⊤A−1u

)
.

At first it looks like applying this to a vector w requires
two solves with A: A−1u and A−1w. But something
magical happens . . .

Maurice Bartlett, 1910–2002
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Solving the deflated problem

Applying the Sherman–Morrison–Woodbury formula, we have

δuG = −[Gu]
−1G = −

(
MFu + FM⊤

u

)−1
(MF )

= −
[
M−1F−1

u − M−1F−1
u FM⊤

u M
−1F−1

u

1 +M⊤
u M

−1F−1
u F

]
(MF )

= −F−1
u F +

F−1
u FM⊤

u M
−1F−1

u F

1 +M⊤
u M

−1F−1
u F

=

(
1− M−1M⊤

u F
−1
u F

1 +M⊤
u M

−1F−1
u F

)(
−F−1

u F
)

=

(
1 +

M−1M⊤
u δuF

1−M−1M⊤
u δuF

)
δuF .

So we only need to solve one system with Fu!
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Solving the deflated problem

Solving the deflated problem

To solve
GuδuG = −G,

do the following:

1. Solve
FuδuF = −F.

2. Evaluate
p =M⊤

u δuF .

3. Evaluate

τ = 1 +
M−1p

1−M−1p
.

4. Return
δuG = τδuF .
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Solving the deflated problem

Good news

You can apply deflation to massive discretisations.
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Convergence of deflation

Section 4

Convergence of deflation
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Convergence of deflation

It is possible to give sufficient conditions for deflation to find two roots.

P. E. Farrell (Oxford) Deflation June 1 24 / 44



Convergence of deflation

It is possible to give sufficient conditions for deflation to find two roots.

X

F
u1

F
u2

Two solutions, with Rall–Rheinboldt balls.
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Convergence of deflation

It is possible to give sufficient conditions for deflation to find two roots.

X

F
u1

F
u2

u?

Start with an initial guess within a ball.
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Convergence of deflation

It is possible to give sufficient conditions for deflation to find two roots.

X

F
u1

F
u2

u?

Converge to that solution.
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Convergence of deflation

It is possible to give sufficient conditions for deflation to find two roots.

X

F
u1

F
u2

u?

Deflate that solution; the other Rall–Rheinboldt ball expands.
P. E. Farrell (Oxford) Deflation June 1 24 / 44



Examples

Section 5

Examples
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Examples

Allen–Cahn equation

F (u, λ) = −λ2∇2u+ u3 − u = 0, u = g on ∂Ω.
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Allen–Cahn equation

F (u, λ) = −λ2∇2u+ u3 − u = 0, u = g on ∂Ω.

Solutions found starting from u = 0 for λ = 0.04.
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Examples

Carrier’s equation

F (u, λ) = λ2u′′ + 2(1− x2)u+ u2 − 1 = 0, u(−1) = 0 = u(1).

P. E. Farrell (Oxford) Deflation June 1 27 / 44



Examples
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Solutions of λ 2u′′+2(1− x2)u+u2 −1 = 0

Pitchfork bifurcation
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Examples

Oseen–Frank

min J =

∫
Ω

K1(∇ · u)2 +K2(u · ∇ × u+ q0)
2 +K3 |u×∇× u| , u · u = 1.
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Symmetries

Section 6

Symmetries
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Symmetries

Symmetries

What if the equation has a continuous symmetry group?

Philosophy

The fundamental structures are the distinct orbits of solutions.

Key idea

Construct a deflation operator invariant under the action of the Lie group.
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Symmetries

X

F
u1

F
u2

F
u3

F
u4

Four solutions, not related by the symmetry group.
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Symmetries

X

F
u1

F
u2

F
u3

F
u4

Each solution induces a group orbit of solutions, related by symmetry.
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Symmetries

X

F
u1

F
u2

F
u3

F
u4

Not enough to deflate the solution—must deflate the entire orbit.
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Symmetries

X

F
u1

F
u2

F
u3

F
u4

Design a deflation operator that deflates the entire orbit.
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Symmetries

X

F
u1

F
u2

F
u3

F
u4

Design a deflation operator that deflates the entire orbit.
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Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

P. E. Farrell (Oxford) Deflation June 1 32 / 44



Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

First symmetry group SO(2): phase shifts

u(x⃗) 7→ eiθu(x⃗), θ ∈ R.
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Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

First symmetry group SO(2): phase shifts

u(x⃗) 7→ eiθu(x⃗), θ ∈ R.

Invariant deflation operator

M(u; r) =
∥∥∥|u|2 − |r|2

∥∥∥−2
+ 1.
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Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Second symmetry group SO(3): spatial rotations

u(x⃗) 7→ u(Rx⃗), R−1 = RT , det(R) = 1.
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Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Second symmetry group SO(3): spatial rotations

u(x⃗) 7→ u(Rx⃗), R−1 = RT , det(R) = 1.

Invariant deflation operator

M(u; r) = ∥ū− r̄∥−2 + 1,

where

ū(r, θ, ψ) averages u over the sphere of radius r.
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Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Solutions for µ = 6.

A vortex line and a planar dark soliton.
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−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Solutions for µ = 6.

A pair of vortex lines.
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Symmetries

Gross–Pitaevskii equation

−1
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2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Solutions for µ = 6.

A vortex star.
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Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Solutions for µ = 6.

Four vortex lines of alternating charge.
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Gross–Pitaevskii equation

−1
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x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Solutions for µ = 6.

Two vortex rings and five lines?
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Symmetries

Gross–Pitaevskii equation

−1

2
∆u+

x2 + y2 + z2

2
u− µu+ |u|2u = 0, u|∂Ω = 0.

Solutions for µ = 6.

A vortex ring cage?
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Semismooth problems

Section 7

Semismooth problems
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Semismooth problems

Many problems feature inequality constraints.

The natural language for formulating these is as a variational inequality.

VI(Q,K)

Let X be a real reflexive Banach space, K ⊂ X a closed convex subset,
and Q : K → X∗. The task is to

find u⋆ ∈ K such that ⟨Q(u⋆), v − u⋆⟩ ≥ 0 for all v ∈ K.
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Semismooth problems

For example, if you want to minimise f ∈ C1(R,R) over a closed interval
I ⊂ R, the necessary optimality condition is

VI(f ′, I).
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Semismooth problems

The main way of solving variational inequalities is to reformulate them as
a system of equations.

For example, VI(Q,K) with

K = {x ∈ R : x ≥ 0}

is equivalent to

S(x) :=
√
x2 + [Q(x)]2 − x−Q(x) = 0.

The price we pay . . .

. . . is that S is not smooth.
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Semismooth problems

Good news

S is just smooth enough to define a Newton-type
method with superlinear convergence.

Michael Hintermüller, 1970–

Michael Ulbrich, 1967–
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Semismooth problems

Good news

S is just smooth enough to define a Newton-type
method with superlinear convergence.

Semismoothness

Let X and Y be Banach spaces. Let S : Ω ⊂ X → Y ,
where Ω is an open subset of X. S is semismooth at
u ∈ Ω if it is locally Lipschitz continuous at u and there
exists an open neighbourhood N ⊂ Ω containing u with
a Newton derivative, i.e. a mapping H : Ω → L(X,Y )
with the property that

S(u+ h)− S(u)−H(u+ h)h = o(h)

for all u in N .

Michael Hintermüller, 1970–

Michael Ulbrich, 1967–
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Semismooth problems

Good news

S is just smooth enough to define a Newton-type
method with superlinear convergence.

Semismooth Newton works just like normal:

ui+1 = ui − [H(ui)]
−1S(ui),

where H is the Newton derivative.

This algorithm usually converges superlinearly.

Michael Hintermüller, 1970–

Michael Ulbrich, 1967–
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Semismooth problems

Good news

Deflation works for semismooth problems.

Theorem (F., Croci, Surowiec, 2020)

Under the same assumptions that are required for
superlinear convergence of semismooth Newton,
deflation works the same.

Matteo Croci, 1992–

Thomas Surowiec, 1982–
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Semismooth problems

Gould gives an example where the central path is ill-behaved:

Nonconvex quadratic programming problem

minimise
x∈R2

− 2(x1 − 0.25)2 + 2(x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

x1 ≥ 0

x2 ≥ 0
Nick Gould, 1957–
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Semismooth problems

Buckling of a hyperelastic beam with contact constraints

minimise
u∈H1(Ω;R2)

Π(u) =

∫
Ω
ψ(u) dx−

∫
Ω
B · u dx

subject to u|left = (0, 0), u|right = (−ε, 0),
tr(uy) ∈ [a, b] a.e. in Γtop,Γbottom.

ε
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Semismooth problems

Buckling of a hyperelastic beam with contact constraints

minimise
u∈H1(Ω;R2)

Π(u) =

∫
Ω
ψ(u) dx−

∫
Ω
B · u dx

subject to u|left = (0, 0), u|right = (−ε, 0),
tr(uy) ∈ [a, b] a.e. in Γtop,Γbottom.

Neo–Hookean strain energy density

ψ(u) =
µ

2
(tr(C)− 2)− µlog(det(C)) +

λ

2
log(det(C))2,

where
C = (I +∇u)⊤(I +∇u).
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Semismooth problems

Multiple solutions of the beam with contact constraints.
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Semismooth problems

Conclusions!

Main message

When solving nonlinear problems, think about multiple solutions!

Algorithms

We now have very powerful algorithms for numerical bifurcation analysis.
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Semismooth problems

Open questions!

How do we apply classical algorithms at very large scale?

How should we best combine deflation and classical algorithms?

What does bifurcation analysis for nonsmooth systems look like?

How can we robustly deal with general symmetry groups?

Thank you

to Josef, the organisers, and all the participants!
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