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Abstract

Magnetohydrodynamics (MHD) models describe the behaviour of electrically con-

ducting fluids such as astrophysical and laboratory plasmas or liquid metals in the

presence of magnetic fields. They are generally known to be difficult to solve nu-

merically, due to their highly nonlinear structure and the strong coupling between

the electromagnetic and hydrodynamic variables, especially for high Reynolds and

coupling numbers.

In the first part of this work, we present a scalable augmented Lagrangian pre-

conditioner for a finite element discretisation of the B-E formulation of the incom-

pressible viscoresistive MHD equations. For stationary problems, our solver achieves

robust performance with respect to the Reynolds and coupling numbers in two di-

mensions and good results in three dimensions. We extend our method to fully

implicit methods for time-dependent problems which we solve robustly in both two

and three dimensions. Our approach relies on specialised parameter-robust multi-

grid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures

exactly divergence-free approximations of both the velocity and the magnetic field

up to solver tolerances. We confirm the robustness of our solver by numerical ex-

periments in which we consider fluid and magnetic Reynolds numbers and coupling

numbers up to 10,000 for stationary problems and up to 100,000 for transient prob-

lems in two and three dimensions.

In the second part, we focus on incompressible, resistive Hall MHD models and

derive structure-preserving finite element methods for these equations. These equa-

tions incorporate the Hall current term in Ohm’s law and provide a more appropri-

ate description of fully ionized plasmas than the standard MHD equations on length

scales close to or smaller than the ion skin depth. In particular, we present a vari-

ational formulation of Hall MHD that enforces the magnetic Gauss’s law precisely

(up to solver tolerances) and prove the well-posedness of a Picard linearisation. For



the transient problem, we present time discretisations that preserve the energy and

magnetic and hybrid helicity precisely in the ideal limit for two types of boundary

conditions. Additionally, we investigate an augmented Lagrangian precondition-

ing technique for both the stationary and transient cases. Finally, we confirm our

findings by several numerical experiments.

In the third part, we investigate anisothermal MHD models. We start by per-

forming a bifurcation analysis for a magnetic Rayleigh–Bénard problem at a high

coupling number S = 1,000 by choosing the Rayleigh number in the range between 0

and 100,000 as the bifurcation parameter. We study the effect of the coupling num-

ber on the bifurcation diagram and outline how we create initial guesses to obtain

complex solution patterns and disconnected branches for high coupling numbers.

Moreover, we extend the parameter-robust augmented Lagrangian preconditioner

for the standard MHD equations to the anisothermal case. Again, we obtain ex-

cellent robustness with respect to the Rayleigh number, Prandtl number, magnetic

Prandtl number and coupling number in two dimensions and good robustness in

three dimensions. We verify our finding by reporting iteration numbers for a mag-

netic double glazing problem and a magnetic cooling channel problem.
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Chapter 1

Introduction

1.1 The magnetohydrodynamics equations

Magnetohydrodynamics (MHD) models describe the flow of electrically conducting

fluids in the presence of electromagnetic fields. They have numerous important ap-

plications in astrophysics, geophysics, the liquid metal industry and thermonuclear

fusion. Mathematically, they are described by the Navier–Stokes and Maxwell’s

equations which are coupled through the Lorentz force and Ohm’s law. The de-

velopment of numerical methods is an area of active research and known to be

very challenging due to the highly nonlinear character of the system and the strong

coupling between the hydrodynamic and electromagnetic variables.

The flow of conducting fluids can be mainly characterised by three dimensionless

parameters, which are called the fluid Reynolds number Re , the magnetic Reynolds

number Rem and the coupling number S. The size of these numbers has important

consequences for the physical behaviour of the fluid and electromagnetic field, but

also for the development of numerical methods. Low fluid Reynolds numbers de-

scribe laminar flow, which is characterised by a smooth and constant fluid motion

due to the domination of viscous forces. On the other hand, high fluid Reynolds

numbers model turbulent flow driven by inertial forces that exhibit eddies, vortices
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1.2. MHD MODELS

and other irregular behaviour. Small magnetic Reynolds number imply that the

magnetic field is in a purely diffusive state and inhomogeneities in the field will be

smoothed out. For high magnetic Reynolds numbers the magnetic field lines are

mainly advected by the fluid flow. The size of the coupling number S quantifies the

strength of the coupling between the electromagnetic and hydrodynamic unknowns.

Most applications are in the regime of high Reynolds and coupling numbers and

hence it is of great interest to build robust solvers that work in these parameter

regimes. For liquid metals, the fluid Reynolds number Re tends to be much larger

than Rem. For example, the flow of liquid mercury is characterized by a ratio of 106

between these two constants; typical values in aluminium electrolysis are Rem = 10−1

and Re = 105 [47]. High magnetic Reynolds numbers occur on large length scales,

as in geo- and astrophysics. The magnetic Reynolds number of the outer Earth’s

core is in the range of 103 and of the sun is in the range of 106 [34]. Magnetic

Reynolds numbers between 101−103 have been used in several dynamo experiments

that investigate planetary magnetic fields [77]. The coupling number S is around

100 for aluminium electrolysis [47] and Armero & Simo [6] define strong coupling

for S in the range of 102 − 109.

From a mathematical point of view, high Reynolds numbers imply a strong

nonlinear coupling between the fluid and magnetic field, while singular terms start to

dominate the equations. This setting demands the use of appropriate discretisations,

linearisation schemes and globalisation techniques and the construction of highly

specialised linear solvers that can capture the kernel of the singular terms.

1.2 MHD models

MHD models can be derived under specific assumptions from the Vlasov-Maxwell

equations which provide a general kinetic description of collisionless plasmas. These

assumptions include that the considered fluid is quasi-neutral, the considered length

16



1.2. MHD MODELS

scales are larger than the kinetic length scales such as the gyro radius or the ion

skin depth and the considered time scales are shorter than the cyclotron frequencies

of the ions and electrons. Moreover, displacement currents, electric forces, electron

inertia and relativistic effects are neglected [47].

These assumptions are common to all MHD models. Depending on the physical

setting or application additional assumptions or simplifications are often considered.

Ideal MHD models [44, Section 2.4.3] further neglect the resistivity of the fluid and

hence assume that the fluid is perfectly conducting (which formally corresponds

to an infinite magnetic Reynolds number). This results in the so-called frozen-in

condition, where the magnetic field lines are tied to the fluid flow. Electron MHD

models [44, Section 2.4.2] describe the limit of small time and space scales where

the velocity of the electron is much higher than that of the ions. In this case, the

ions build a neutralising background and the electric current is only carried by the

electrons. The Hall MHD equations [44, Section 2.4] which include an additional

current term in Ohm’s law are described in more detail in the next section. A further

extension is given by multi-fluid models that track the separate movement of ions,

electrons and neutral species.

Depending on the application, the standard MHD equations can describe com-

pressible or incompressible fluids and isothermal or anisothermal systems with homo-

geneous or spatially-varying physical parameters. In this work, we focus on incom-

pressible MHD models that include visco-resistive effects for homogeneous physical

parameters. The most common applications for these models are liquid metals, but,

e.g., also the modelling of solar winds is well approximated in the incompressible

regime since the occurring density fluctuations are usually small [44, Section 2.4.1].

On the other hand, compressible MHD models provide a more suitable description

of plasmas. The first two main chapters deal with isothermal MHD models, while

the last main chapter is devoted to the Boussinesq approximation for anisothermal

magnetic convection problems.
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1.3. HALL MHD EQUATIONS

1.3 Hall MHD equations

The Hall MHD equations extend standard MHD models by including the so-called

Hall effect. This provides a more appropriate description of fully ionized plasmas on

length scales close to or smaller than the ion skin depth [44]. On these length scales

the Hall MHD equations take into account the different motions of ions and electrons

in a two-fluid approach. While the electron motion is frozen to the magnetic field in

this regime, it remains to solve for the velocity of the centre of mass u [65]. The Hall

MHD equations can be used to describe many important plasma phenomena, such

as magnetic reconnection processes [43, 78], the expansion of sub-Alfvénic plasma

[96] and the dynamics of Hall drift waves and Whistler waves [65].

The essence of the Hall effect is described by adding the Hall-term j × B, the

cross product of the current density and magnetic field, in the generalised Ohm’s

law [44, Section 2.2.2]. Hence, the Hall-MHD equations only differ by the Hall

term RH j × B with the Hall parameter RH from the standard MHD equations.

Nevertheless, the extension of existing theory and algorithms for the standard MHD

equations is highly non-trivial, since the Hall term represents the highest order term

in the final system of equations given by RH∇× ((∇×B)×B)). Furthermore, the

current density j cannot be eliminated with the help of Ohm’s law and has to be

kept in the formulation.

Several analytical results for the continuous Hall MHD problem [28, 33] and com-

putational results of physical simulations [50, 27, 107] are available in the literature.

1.4 Anisothermal MHD models

There are several ways to incorporate temperature dependence in MHD models.

Here, we mainly focus on the Boussinesq approximation which assumes that the

flow is bouyancy driven and that density differences only appear in the buoyancy
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1.5. STRUCTURE AND CONTRIBUTION OF THESIS

term, while the remaining unknowns are assumed to neither depend on the density

nor temperature. This results in an additional term in the velocity equation of the

form Pr Raσ g where Pr denotes the Prandtl number, Ra the Rayleigh number,

σ the temperature unknown and g a unit vector in the direction of the gravity.

Anisothermal formulations usually include Ra, Pr and the magnetic Prandtl number

Pm as parameters instead of the fluid and magnetic Reynolds numbers Re and Rem.

The Prandtl number describes the ratio of kinematic viscosity and thermal dif-

fusivity. It is solely determined by the fluid and its state and does not depend on

the problem configuration or length scale. Typical values for liquid metals are 0.065

for lithium at 975 Kelvin, 0.015 for mercury at room temperature and 0.003 for

potassium at 975 Kelvin [103].

The magnetic Prandtl number corresponds to the quotient Rem/Re . For liquid-

metals this number tends to be quite small, for example, a typical value for liquid

mercury is 10−7, for aluminium electrolysis is 10−6, for liquid sodium is 10−4, while

Pm ≈ 1 occurs in tokamaks [34, 44].

The Rayleigh number encodes the importance of the bouyancy-driven natural

convection in comparison to viscous dissipation and heat conduction. Depending on

the application, the Rayleigh number usually varies between 103− 109, but can also

reach values up to 1020, e.g., when the Earth’s core is considered.

1.5 Structure and contribution of thesis

This thesis is split into three main chapters. Chapter 2 deals with robust solvers

for the B-E formulation of the stationary and transient standard incompressible

resistive MHD equations. The main contribution of this chapter is to provide block

preconditioners with good convergence even at high Reynolds and coupling numbers.

The performance relies on the following three (novel) approaches:

1.) We consider a fluid-Reynolds-robust augmented Lagrangian preconditioner for

19



1.5. STRUCTURE AND CONTRIBUTION OF THESIS

an H(div)× L2-discretisation of the Navier–Stokes equations that relies on a

specialised multigrid method.

2.) We introduce a new monolithic multigrid method for the electromagnetic

block.

3.) We discover that using the outer Schur complement which eliminates the (u, p)

block instead of the (B,E) block has crucial advantages for ensuring robustness

for high parameters.

Furthermore, we show that our preconditioners extend in a straightforward manner

to time-dependent versions. This has the substantial advantage that the choice of

the time-stepping scheme is no longer restricted by the ability to solve the linear

systems. In particular, it allows the use of fully implicit methods for high Reynolds

numbers and coupling parameters.

In Section 2.1, we introduce the MHD model that we mainly focus on in

this work. In Section 2.2, we derive an augmented Lagrangian formulation and

describe the finite element discretisation and linearisation schemes. In Section 2.3,

we introduce block preconditioners for these schemes, present a calculation of

the corresponding (approximate) Schur complements and describe robust linear

multigrid solvers for the different blocks. Numerical examples and a detailed

description of the algorithm are presented in Section 2.4.

In Chapter 3, we introduce structure-preserving finite element discretisations for

the Hall MHD equations and derive conservative algorithms that preserve energy and

helicity precisely on the discrete level in the ideal limit. Here the main contribution

includes the following results:

1.) We provide a variational formulation and structure-preserving discretisation

for the stationary and time-dependent Hall-MHD equations and prove a well-

posedness results for a Picard type linearisation.
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2.) We construct numerical schemes that preserve the energy, magnetic helicity

and hybrid helicity precisely in the ideal limit of Re = Rem =∞.

3.) We investigate parameter-robust preconditioners and report corresponding it-

eration numbers.

In Section 3.2, we derive a variational formulation of the stationary Hall MHD

system and prove the well-posedness of a Picard type iteration. In Section 3.3, we

derive algorithms that preserve the energy, magnetic and hybrid helicity precisely

in the ideal limit. We investigate an augmented Lagrangian preconditioner for

the Hall MHD system in Section 3.4. Finally, we present numerical results in

Section 3.5, which include iterations numbers for a lid-driven cavity problem,

the simulation of magnetic reconnection for an island coalescence problem and a

numerical verification of the conservation properties for our algorithms in the ideal

limit.

In Chapter 4, we investigate anisothermal MHD models by performing a bifur-

cation analysis for a magnetic Rayleigh-Bénard problem and deriving a parameter-

robust preconditioner for these models. The main results of this chapter include:

1.) We show how to create bifurcation diagrams over the bifurcation parameter

Ra at a high coupling number of S = 1,000. We investigate the dependence of

the coupling number on the bifurcation analysis, observe how increasing the

coupling number can stabilise unstable branches and describe how we discover

disconnected branches.

2.) We extend the parameter-robust preconditioner that was developed for the

standard MHD equations to the anisothermal case and report iteration num-

bers for two test problems.
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In Section 4.1, we introduce the strong and weak formulation of our anisother-

mal model based on the Boussinesq approximation and outline our finite element

approximation. In Section 4.2, we perform the bifurcation analysis for the magnetic

Rayleigh-Bénard problem over 0 ≤ Ra ≤ 100,000 at S = 1,000 and describe in detail

the evolution and stability of our discovered branches and how we obtained suit-

able initial guesses that allowed us to compute these solutions. Finally, we describe

in Section 4.3 how we construct the augmented Lagrangian preconditioner for the

anisothermal model and underline our findings with numerical tests.

1.6 Notation

Throughout this work, we assume that Ω ⊂ Rd, d ∈ {2, 3} is a bounded Lipschitz

polygon or polyhedron that is simply connected in order to ensure that the de

Rham complexes, considered later in this work, are exact. We use the convention

that vector-valued functions and function spaces are denoted by bold letters. We

use (·, ·) and ‖ · ‖ (sometimes ‖ · ‖0) to denote the L2(Ω) inner product and norm.

The dual pairing between an H−1 (with norm ‖ · ‖−1) and H1 (with norm ‖ · ‖1)

function is denoted as 〈·, ·〉. We define the function spaces

H1
0 (Ω) = {v ∈ H1(Ω) | v = 0 on ∂Ω}, (1.6.1)

H0(div,Ω) = {C ∈ L2(Ω) | ∇ ·C ∈ L2(Ω), C · n = 0 on ∂Ω}, (1.6.2)

H0(curl,Ω) = {F ∈ L2(Ω) | curl F ∈ L2(Ω), F× n = 0 on ∂Ω}, (1.6.3)

L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω

q dx = 0}, (1.6.4)

where n denotes the unit outward normal vector on the boundary of Ω. In some

cases, we also denote H1
0 (Ω) as H0(grad,Ω). Further, we drop the domain Ω in the

notation of the function spaces if it is obvious which domain we consider.

In our formulations, u : Ω → R3 denotes the velocity, p : Ω → R the fluid

22



1.6. NOTATION

pressure, j : Ω→ R3 the current density, B : Ω→ R3 the magnetic field, E : Ω→ R3

the electric field and θ : Ω→ R the temperature. Furthermore, Re denotes the fluid

Reynolds number, Rem the magnetic Reynolds number, S the coupling number,

RH the Hall parameter, Ra the Rayleigh number, Pr the Prandtl number, Pm the

magnetic Prandtl number, f : Ω→ R3 a source term and ε(u) = 1
2
(grad u+grad u>)

the symmetric gradient. We regularly use the notation ω = ∇× u for the vorticity.

We often use properties of the following continuous de Rham complexes in two

and three dimensions

R id−→ H0(curl,Ω)
curl−−→ H0(div,Ω)

div−→ L2
0(Ω)

null−−→ 0, (1.6.5)

R id−→ H0(grad,Ω)
grad−−→ H0(curl,Ω)

curl−−→ H0(div,Ω)
div−→ L2

0(Ω)
null−−→ 0. (1.6.6)

De Rham complexes are called exact if the kernel of an operator in the sequence

is given by the range of the preceding operator, e.g., range grad = ker curl or

range curl = ker div. Both sequences are exact for the simply connected domains

we consider [8].

For numerical approximations, we use the finite element de Rham sequences

R id−→ Hh
0 (curl,Ω)

curl−−→ Hh
0(div,Ω)

div−→ L2
h(Ω)

null−−→ 0, (1.6.7)

R id−→ Hh
0 (grad,Ω)

grad−−→ Hh
0(curl,Ω)

curl−−→ Hh
0(div,Ω)

div−→ L2
h(Ω)

null−−→ 0, (1.6.8)

to discretise the variables from (1.6.5) and (1.6.6), where Hh
0 (D,Ω) ⊂

H0(D,Ω), D = grad, curl, div are conforming finite element spaces, see e.g. Arnold,

Falk, Winther [8, 9], Hiptmair [56], Bossavit [17] for more detailed discussions on

discrete differential forms. A concrete example for such finite element de Rham

sequences are given by

CGk
curl−−→ RTk

div−→ DGk−1
null−−→ 0, (1.6.9)
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CGk
grad−−→ NED1k

curl−−→ RTk
div−→ DGk−1

null−−→ 0. (1.6.10)

Here, RTk denotes the Raviart–Thomas elements [95] of degree k, NED1k the

Nédélec elements of first kind [82], CGk continuous Lagrange elements and DGk

discontinuous Lagrange elements.

In the schemes presented in this work, we require that Eh, jh ∈ Hh
0(curl,Ω) and

Bh ∈ Hh
0(div,Ω), i.e. that they are drawn from the same sequence. We denote

the finite element spaces used for the velocity uh and pressure ph by Vh and Qh

respectively, and assume that the choice is inf-sup stable [49].

In two dimensions, there exist two different curl operators given by

curl B := ∂xB2 − ∂yB1, curlE :=

 ∂yE

−∂xE

 , (1.6.11)

that correspond to the cross-products

u×B := u1B2 − u2B1, B× E :=

 B2E

−B1E

 . (1.6.12)

We also regularly use the notation ∇× to denote the curl operator in three dimen-

sions.

We define the weak curl-operator ∇̃h× : [L2(Ω)]3 → Hh
0(curl,Ω) by

(∇̃h ×Bh,kh) = (Bh,∇× kh) ∀kh ∈ Hh
0(curl,Ω). (1.6.13)

We regularly use the generalised Gaffney inequality

‖Bh‖L3+δ ≤ ‖∇̃ ×Bh‖+ ‖∇ ·Bh‖ ∀ Bh ∈ Hh
0(div,Ω) (1.6.14)

for 0 ≤ δ ≤ 3, where δ depends on the regularity of Ω. For a proof, we refer to [53,
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Theorem 1] and references therein.

The interpolant of a function u into a finite element space Vh with a set of degrees

of freedom {`h,i(·)} and basis functions {ϕi} is represented by

IhVh(u) =
∑
i

`h,i(u)ϕi. (1.6.15)
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Chapter 2

Robust solvers for standard

magnetohydrodynamics models

The content of this chapter was developed in collaboration with Patrick Farrell and

Lawrence Mitchell. A manuscript [71] has been published in the SIAM Journal of

Scientific Computing.

2.1 MHD model

In this chapter, we consider the incompressible viscoresistive magnetohydrodynamics

equations on a bounded polytopal Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}. In the

stationary three-dimensional setting, we investigate the formulation

− 2

Re
∇ · ε(u) + u · ∇u +∇p+ SB× (E + u×B) = f , (2.1.1a)

∇ · u = 0, (2.1.1b)

E + u×B− 1

Rem

curl B = 0, (2.1.1c)

curl E = 0, (2.1.1d)

∇ ·B = 0. (2.1.1e)
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We mainly consider the perfectly conducting boundary conditions

u = 0, E× n = 0, B · n = 0 on ∂Ω, (2.1.2)

although the treatment of the alternative boundary conditions

u = 0, E · n = 0, B× n = 0 on ∂Ω, (2.1.3)

is also possible, see [63]. The term f on the right-hand side of (2.1.1a) can, e.g.,

represent a force like gravity. The above formulation based on the electric and

magnetic fields was first rigorously analysed by Hu et al. [63].

It is straightforward to derive the two-dimensional formulation from this work,

which is given by

− 2

Re
∇ · ε(u) + u · ∇u +∇p+ SB× (E + u×B) = f , (2.1.4a)

∇ · u = 0, (2.1.4b)

E + u×B− 1

Rem

curl B = 0, (2.1.4c)

curlE = 0, (2.1.4d)

∇ ·B = 0, (2.1.4e)

subject to the boundary conditions

u = 0, E = 0, B · n = 0 on ∂Ω. (2.1.5)

Note that the electric field E is a scalar field in 2D and we have used two

different curl operators and cross products corresponding to (1.6.11) and (1.6.12).

Moreover, the boundary conditions for the electric field change to E = 0 on ∂Ω in

two dimensions.
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Other formulations include the current density j = E + u × B [64] as an un-

known or eliminate the electric field using equation (2.1.1c). In addition to the

stationary case, we also consider the time-dependent version of (2.1.1) where the

time-derivatives ∂u
∂t

and ∂B
∂t

are added to (2.1.1a) and (2.1.1d) respectively with

suitable initial conditions

u(x, 0) = u0(x) and B(x, 0) = B0(x)∀x ∈ Ω. (2.1.6)

Note that MHD models neglect displacement currents ∂E
∂t

[47, Sec. 1.5].

The above equations are derived from the Navier–Stokes and Maxwell’s equations

for a single, incompressible, homogeneous fluid in steady state, which are given by

−∇ · (2νε(u)) + u · ∇u +∇p+
1

ρ0µ0

B× curl B = f , (2.1.7a)

∇ · u = 0, (2.1.7b)

curl E = 0, (2.1.7c)

µ0j− curl B = 0, (2.1.7d)

∇ ·B = 0, (2.1.7e)

η curl B− E− u×B = 0, (2.1.7f)

with the kinematic viscosity ν > 0, the magnetic permeability of free space µ0 > 0,

a reference density ρ0 and the magnetic resistivity η > 0. We treat each of these

parameters as constant throughout the domain. Equation (2.1.7a) and (2.1.7b)

describe the incompressible Navier–Stokes equations where the Lorentz force B× j

acts on the fluid. The stationary forms of the Maxwell-Faraday law and Ampère’s

circuital law are given by (2.1.7c) and (2.1.7d). The system is completed by the

magnetic Gauss’s law (2.1.7e) and Ohm’s law (2.1.7f)

To obtain the MHD system (2.1.1), we non-dimensionalise the resulting system

28



2.1. MHD MODEL

by introducing the new unknowns

u?(ξ) =
u(Lξ)

U
, (2.1.8)

p?(ξ) =
p(Lξ)

ρ0U
2 , (2.1.9)

B?(ξ) =
B(Lξ)

B
, (2.1.10)

E?(ξ) =
E(Lξ)

UB
, (2.1.11)

f?(ξ) =
f(Lξ)L

U
2 , (2.1.12)

with a characteristic value for the velocity U , magnetic field B and the length scale L.

Finally, we obtain (2.1.1) by defining the fluid Reynolds number, magnetic Reynolds

number and coupling number

Re =
UL

ν
, Rem =

UL

η
, S =

B
2

ρ0µ0U
2 . (2.1.13)

Note that some formulations ignore the coupling number S in front of the Lorentz

force B× j. With the alternative scaling of

B?(ξ) =
B(Lξ)

B
, B = U

√
µ0, (2.1.14)

E?(ξ) =
E(Lξ)

E
, E = UB, (2.1.15)

one can achieve that S = 1. However, in this case the characteristic value B cannot

be chosen freely, but has to be expressed in terms of U . In order to include the

case where one wants to choose B freely depending on the problem we include the

parameter S and in particular consider high values of S in the numerical examples.

An important point for discretisations is the enforcement of the magnetic Gauss’

law ∇ · B = 0 in the weak formulation, achieved in most cases by a non-physical

Lagrange multiplier r [99]. However, in general, a Lagrange multiplier only enforces

29



2.1. MHD MODEL

the divergence constraint in a weak sense, which can cause severe problems for the

discretisation and numerical simulations [20, 32]. Therefore, in recent years increased

attention has been paid to derive discretisations that enforce ∇ · B = 0 pointwise.

These approaches include the use of a magnetic vector-potential [2, 3, 31, 57, 101],

exact penalty methods on convex domains [90], compatible discretisations [61, 64],

the use of divergence-free basis functions [25] and divergence-cleaning methods [20,

35]. For the B-E formulation (2.1.1) Hu et al. [63] show that both a Lagrange

multiplier and an augmented Lagrangian term lead to a pointwise preservation of

Gauss’ law with appropriate choices of spaces. In this work, we consider the latter

approach by replacing (2.1.1d) with

1

Rem

∇∇ ·B + curl E = 0, (2.1.16)

which we show below enforces ∇ ·B = 0 exactly.

The literature proposes numerous numerical schemes and preconditioning strate-

gies for the numerical solution of the different formulations. The most common ap-

proach is based on block preconditioners in both the stationary [72, 89, 90, 109, 108]

and time-dependent [26, 31, 91] cases. Here, the main challenges are to find suitable

approximations of one or more Schur complements and robust linear solvers for the

inner auxiliary problems. Phillips et al. [91] simplify the Schur complement by the

use of vector identities and approximate the remaining parts based on a spectral

analysis. They report iteration counts for a stationary three-dimensional lid-driven

cavity problem up to Re = Rem = 100. A similar approach is used by Wathen and

Greif in [108] where they construct an approximate inverse block preconditioner by

sparsifying a derived formula for the exact inverse and drop low order terms. Here,

results for Hartmann numbers Ha =
√
SRemRe up to 1,000 are reported for station-

ary problems. Other approaches include fully-coupled geometric [1, 2] and algebraic

[101, 102] monolithic multigrid methods. In [1], Adler et al. present results for a
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two-dimensional Hartmann problem for parameters up to Re = Rem = 64.

However, the performance of most of these preconditioners deteriorates signifi-

cantly for high Reynolds and coupling numbers. To the best of our knowledge, a

practical robust preconditioner for the stationary MHD equations has not yet been

proposed. The common problem for high magnetic Reynolds numbers and coupling

numbers for the stationary case is that all available Schur complement approxima-

tions become less accurate for Newton-type linearisations, causing the linear solver

to fail to converge. Conversely, Picard-type linearisations can allow an exact com-

putation of the Schur complement but fail to converge in the nonlinear iteration at

high magnetic Reynolds number. This stands, e.g., in contrast to the Navier–Stokes

equations where under certain assumptions the Picard iteration converges globally

even for high fluid Reynolds numbers [37, page 346].

Ma et al. [73] have developed Reynolds-robust preconditioners for the time-

dependent MHD equations that are based on norm-equivalent and field-of-values

equivalent approaches. To the best of our knowledge, their strategy does not extend

to the stationary case; in general, the time-dependent case offers crucial advantages

for the development of robust solvers. For example, Ma et al. treat complicated

terms like the hydrodynamic convection term u · ∇u explicitly in the time-stepping

scheme, which can cause problems for convection-dominated problems and does not

apply in the stationary case. The discretisation of the time derivative causes mass

matrices with a scaling of 1/∆t, where ∆t denotes the time step size, to appear in

the block matrix on the diagonal blocks. As we will see also in our numerical results

for the time-dependent problems, these extra terms dominate the scheme for small

∆t and hence simplify the development of robust solvers.

In this work, we consider two different linearisations. The first is the Picard

iteration proposed by Hu et al. [63]. We compute an approximation to the outer

Schur complement of the arising block system and introduce a robust linear solver for

the different blocks. This scheme works well for small magnetic Reynolds numbers
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but the nonlinear iteration fails to converge for higher Rem, as anticipated in the

analysis of [63]. The second is a full Newton linearisation, which converges well

for high Reynolds numbers and coupling numbers for suitable initial guesses that

we obtain with parameter continuation. However, our approximation of the Schur

complement deteriorates slightly for high parameters.

2.2 Formulation, linearisation, and discretisation

2.2.1 An augmented Lagrangian formulation

We modify (2.1.1) by introducing two augmented Lagrangian terms: −γ∇∇ · u

for γ > 0 is added to (2.1.1a), and (as previously discussed) −1/Rem ∇∇ · B

is added to (2.1.1d). Note that both terms leave the continuous solution of the

problem unchanged. We use the first term to control the Schur complement of the

fluid subsystem [14, 41] and the second term to enforce the divergence constraint

∇ ·B = 0.

Following these modifications, we consider the system

− 2

Re
∇ · ε(u) + u · ∇u− γ∇∇ · u +∇p+ SB× (E + u×B) = f , (2.2.1a)

∇ · u = 0, (2.2.1b)

E + u×B− 1

Rem

curl B = 0, (2.2.1c)

− 1

Rem

∇∇ ·B + curl E = 0, (2.2.1d)

subject to the boundary conditions (2.1.2). For convenience, we consider homo-

geneous boundary conditions in this section but all the results extend in a mathe-

matically straightforward manner to inhomogeneous boundary conditions. However,

there are subtle technicalities for the implementation of the degrees of freedom in

the finite element method in the inhomogeneous case, which are explained in detail
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in Section 2.4.2.

The weak formulation of (2.2.1) seeks U := (u, p,E,B) ∈ Z := V×Q×R×W

with

V := H1
0(Ω), Q := L2

0(Ω), R := H0(curl,Ω), W := H0(div,Ω). (2.2.2)

In two dimensions, the space for the electric field is scalar-valued and can be iden-

tified with R := H1
0 (Ω). The weak formulation is to find U ∈ Z such that for all

V := (v, q,F,C) ∈ Z and F = (f , 0,0,0) there holds

R(U ,V) := N (U ,V)− (F ,V) = 0 (2.2.3)

with

N (U ,V) =
2

Re
(ε(u), ε(v)) + (u · ∇u,v) + γ(∇ · u,∇ · v)

− (p,∇ · v) + S(B× E,v) + S(B× (u×B),v)

− (∇ · u, q)

+ (E,F) + (u×B,F)− 1

Rem

(B, curl F)

+
1

Rem

(∇ ·B,∇ ·C) + (curl E,C).

(2.2.4)

All boundary integrals that result from integration by parts vanish because of the

choice of the boundary conditions (2.1.2).

Note that W and R are chosen from the same exact de Rham complex (1.6.6)

or (1.6.5). This ensures that formulation (2.2.1) enforces the divergence constraint

∇ · B = 0 and curl E = 0 [63, Theorem 9]. To see this, we test (2.2.3) with

V = (0, 0,0, curl E) and conclude that curl E = 0. Here, V is a valid test function

because the above exact sequence implies that curl(R) = W. Similarly, testing

with V = (0, 0,0,B) results in ∇ ·B = 0.
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2.2.2 Linearisation: Newton and Picard

The Newton linearisation of (2.2.3) for the initial guess Un = (un, pn,En,Bn) is to

find an update δU such that

NN(δU ,Un,V) = R(Un,V) ∀ V ∈ Z, (2.2.5)

Un+1 = Un + δU , (2.2.6)

with the weak form of the nonlinear residual R(Un,V) := (F ,V)−N (Un,V) evalu-

ated at Un and

NN(δU ,Un,V) =
2

Re
(ε(δu), ε(v)) + (un · ∇δu,v) + (δu · ∇un,v)

+ γ(∇ · δu,∇ · v)− (δp,∇ · v)

+ S(Bn × δE,v) + S(δB× En,v)

+ S(Bn × (δu×Bn),v) + S(δB× (un ×Bn),v)

+ S(Bn × (un × δB),v)

− (∇ · δu, q)

+ (δE,F) + (un × δB,F) + (δu×Bn,F)

− 1

Rem

(δB, curl F)

+
1

Rem

(∇ · δB,∇ ·C) + (curl δE,C).

(2.2.7)

The bilinear form for the Picard iteration that we consider is given by

NP(δU ,Un,V) =NN(δU ,Un,V)− S(δB× En,v)− S(Bn × (un × δB),v)

− S(δB× (un ×Bn),v)− (un × δB,F).

(2.2.8)

Note that in contrast to [63], we do not scale the term (curl δE,C) with S/Rem and

consider the full Newton linearisation of the advection term (u · ∇)u. The advan-
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tage of the Picard linearisation (2.2.8) in comparison to the Newton linearisation

(2.2.7) is that it allows an exact Schur complement computation in two dimensions

and converges well for high Re . However, its major disadvantage is the failure of

nonlinear convergence for high Rem.

2.2.3 Discretisation

For a finite element discretisation, we seek Uh := (uh, ph, Eh,Bh) ∈ Zh := Vh ×

Qh ×Rh ×Wh such that

N (Uh,Vh) = (F ,Vh) ∀Vh ∈ Zh. (2.2.9)

We choose Raviart–Thomas elements of degree k RTk for Wh, Nédélec elements

of first kind NED1k for Rh in 3D and continuous Lagrange elements CGk for Rh

in 2D. Note that these elements belong to the discrete subcomplexes (1.6.10) and

(1.6.9). This implies that we enforce ∇·Bh = 0 and curl Eh = 0 pointwise with the

same proof as for the continuous case. These identities also hold for inhomogeneous

boundary conditions, since the interpolation operator IhWh
into the Raviart–Thomas

space satisfies for all divergence-free B ∈ H0(div,Ω) [16, Prop. 2.5.2]

∇ · (IhWh
B) = 0. (2.2.10)

To be more precise, we consider the non-homogeneous boundary condition B·n =

g1 for g1 ∈ H
1
2 (∂Ω) and assume for the solvability of the problem that there exists

a Bg1 ∈ H(0, div) such that Bg1 · n = g1. For a finite element approximation, one

then computes IhWh
Bg1 =

∑N
i=1Bi,g1Φi in terms of the N basis function Φi of Wh

and sets, cf. [92],

Bh,g1 =

ND∑
i=1

Bi,g1Φi. (2.2.11)

Here, we have chosen the ordering that the basis functions that have non-vanishing
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normal components on the boundary are the first ND ones. Then, we look for a

solution of the form

Bh = Bh,g1 + Bh,0 with Bh,0 =
N∑

i=ND+1

BiΦi. (2.2.12)

Hence, the approximation of the weak form of (2.2.1d) is given by

1

Rem

(∇·Bh,0,∇·Φi) + (curl Eh,Φi) = − 1

Rem

(∇·Bh,g1 ,∇·Φi), i = ND + 1, ..., N.

(2.2.13)

As before, we can conclude that curl Eh = 0 since curl Eh ∈ span{Φi | i = ND +

1, ..., N} by the sequence (1.6.10). Equation (2.2.13) implies for the homogeneous

test functions Φ = Bh,0 and Φ = Bh,g1 − IhWh
Bg1

(∇ ·Bh,∇ ·Bh,0) = 0 and (∇ ·Bh,∇ · (Bh,g1 − IhWh
Bg1)) = 0. (2.2.14)

But there holds ∇ · (IhWh
Bg1) = 0 by the interpolation property (2.2.10) and thus

adding the two expressions in (2.2.14) shows that ∇ ·Bh = 0.

The same approach applied for non-homogeneous boundary conditions E = g2

on ∂Ω would add a term (curl Eh,g2 ,Φi) to the right-hand side of (2.2.13). But

since curl E = 0 implies that g2 is constant, this extra term vanishes and thus

curl Eh = 0 holds by the same proof as before.

Moreover, following [36], we add the following interior penalty stabilisation term

to address the problem that the Galerkin discretisation of advection-dominated prob-

lems can be oscillatory [37]

∑
K∈Mh

1

2

∫
∂K

µh2
∂KJ∇uhK : J∇vhK ds. (2.2.15)

Here, J∇uhK denotes the jump of the gradient, h∂K is a function giving the facet

size, and µ is a free parameter that is chosen according to [23].
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Note that a fully robust discretisation should also include a stabilisation term for

the magnetic field B in the case of dominating magnetic advection. The literature

does not propose many stabilisation types for this problem. The most promising

work by Wu and Xu [110] uses the so-called SAFE-scheme for stabilisation which is

based on an exponential fitting approach. While the original SAFE-scheme is only

a first order method, it can be extended to higher order as shown in [111]. We aim

to include this stabilisation in future work.

For the hydrodynamic part, we consider the H(div)×L2-conforming element pair

BDMk × DGk−1 with the Brezzi-Douglas-Marini element BDMk of order k [22, 83].

This discretisation ensures that ∇ · uh = 0 holds pointwise since ∇ · Vh ⊂ Qh.

Additionally, it exhibits pressure robustness, i.e., the error estimates do not degrade

for high Reynolds numbers [67].

Since the discretisation is nonconforming, we must consider a discontinuous

Galerkin formulation of the hydrodynamic advection and diffusion terms [45, Section

7]. We denote by Fh = F ih ∪F∂h all facets of the triangulation, which consists of the

interior facets F ih and the Dirichlet boundary facets F∂h . We assign to each F ∈ Fh
its diameter hF and unit normal vector nF . The jump and average operators across

a facet are denoted by J·K and {{·}}, respectively, and are defined as JΦK = Φ+ −Φ−

and {{Φ}} = 1
2
(Φ+ +Φ−). The penalisation parameter is chosen as σ = 10k2, k being

the degree of the velocity space. Inhomogeneous boundary data are described by

37



2.2. FORMULATION, LINEARISATION, AND DISCRETISATION

gD. We then add the following bilinear forms to (2.2.9):

aDGh (uh,vh) =− 2

Re

∑
F∈Fh

∫
F

{{ε(uh)}}nF · JvhK ds

− 2

Re

∑
F∈Fh

∫
F

JuhK · {{ε(vh)}}nF ds

+
1

Re

∑
F∈Fh

σ

hF

∫
F

JuhK · JvhK ds

− 1

Re

∑
F∈F∂h

σ

hF

∫
F

gD · vh ds +
2

Re

∑
F∈F∂h

∫
F

gD · ε(vh)nF ds,

(2.2.16)

cDGh (uh,vh) =
1

2

∑
F∈Fih

∫
F

J(uh · nF + |uh · nF |)uhK · JvhK ds

+
1

2

∑
F∈F∂h

∫
F

(uh · nF + |uh · nF |)uh · vh ds

+
1

2

∑
F∈F∂h

∫
F

(uh · nF − |uh · nF |)gD · vh ds.

(2.2.17)

Alternatively, a discretisation with Scott–Vogelius elements [100], i.e. (CGk)
d ×

DGk−1 elements, also enforces ∇ · uh = 0. While this conforming discretisation

does not require stabilisation terms to weakly enforce continuity, it is only stable

on certain types of meshes. For this reason, the mesh hierarchy we consider here

is barycentrically refined and ensures stability for polynomial order k = d [114].

That means in three dimensions one has to use at least polynomial order three for a

stable discretisation, which can be relatively expensive. For this reason and the fact

that the H(div)×L2-discretisation does not have restrictions on the mesh types, we

mainly focus on the H(div)×L2-conforming discretisation in the following. However,

we also explain in the next section how a parameter robust multigrid method can

be constructed for this discretisation and include a comparison for the iteration

numbers in the numerical results in Section 2.4.

Hu et al. prove in [63, Theorem 4] that (2.2.9) is well-posed and has at least one
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solution. The solution is unique for suitable source and boundary data. While the

well-posedness and convergence of the Newton iteration remains an open problem,

Hu et al. prove that the Picard iteration converges to the unique solution of (2.2.9)

if both Re and Rem are small enough [63, Theorem 6].

For the Newton linearisation (2.2.7), we must solve the following linear system

at each step:



F +D B> J J̃ + D̃1 + D̃2

B 0 0 0

G 0 ME G̃ − 1
Rem
A

0 0 A> C





xu

xp

xE

xB


=



Ru

Rp

RE

RB


, (2.2.18)

where xu, xp, xE and xB are the coefficients of the discretised Newton corrections

andRu, Rp, RE andRB the corresponding nonlinear residuals. The correspondence

between the discrete and continuous operators is illustrated in Table 2.1. We have

chosen the notation that operators that include a tilde are omitted in the Picard

linearisation (2.2.8). Moreover, we introduce η ∈ {0, 1} to distinguish between the

stationary (η = 0) and transient (η = 1) cases.

For the time-dependent equations, we concentrate here on the implicit Euler

method, but the following computations are straightforward to adapt to other im-

plicit multi-step methods. We use the same finite element discretisation as in the

stationary case. Note that in the transient case, the equation

∂tB + curl E = 0 (2.2.19)

immediately implies ∇ ·B = 0 if the initial condition satisfies ∇ ·B0 = 0, and this

remains true on the discrete level up to solver tolerances; see [61, Theorem 1] for

a proof for implicit Euler which can be extended to other multi-step methods in

a straightforward manner, provided all starting values are divergence-free. Hence,
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the augmented Lagrangian term − 1
Rem
∇∇ ·B is no longer necessary to enforce the

divergence constraint and could therefore be omitted. Nevertheless, we retain it in

our scheme since we employ the identity

1

Rem

curl curl u− 1

Rem

∇∇ · u = − 1

Rem

∆u (2.2.20)

in our derivation of Schur complement approximations below.

Discrete Continuous Weak form

Fu η
∆t

u− 2
Re
∇ · ε(u) + un · ∇u η

∆t
(u,v) + 2

Re
(ε(u), ε(v)) + (un · ∇u,v)

+u · ∇un − γ∇∇ · u +(u · ∇un,v) + γ(∇ · u,∇ · v)
Du SBn × (u×Bn) S(Bn × (u×Bn),v)
JE SBn × E S(Bn × E,v)

J̃B SB× En S(B× En,v)

D̃1B SB× (un ×Bn) S(B× (un ×Bn),v)

D̃2B SBn × (un ×B) S(Bn × (un ×B),v)
MEE E (E,F)
Gu u×Bn (u×Bn,F)

G̃B un ×B (un ×B,F)
AB curl B (B, curl F)
CB η

∆t
B− 1

Rem
∇∇ ·B η

∆t
(B,C) + 1

Rem
(∇ ·B,∇ ·C)

A>E curl E (curl E,C)
B>p ∇p −(p,∇ · v)
Bu −∇ · u −(∇ · u, q)

Table 2.1: Overview of operators. Terms that include a tilde are dropped in the
Picard iteration. The stationary and transient cases are distinguished by η ∈ {0, 1}.

40



2.3. DERIVATION OF BLOCK PRECONDITIONERS

2.3 Derivation of block preconditioners

We now consider block preconditioners for (2.2.18). The inverse of a 2 × 2 block

matrix can factorised as [13, 37]

M K

L N


−1

=

I −M−1K

0 I


M−1 0

0 S−1


 I 0

−LM−1 I

 (2.3.1)

provided the top-left block M and the Schur complement S = N − LM−1K are

invertible. Since the Schur complement is usually a dense matrix, the main task is

to find a suitable approximation S̃ for the Schur complement S as well as efficient

solvers for M and S̃.

In Sections 2.3.1 and 2.3.2 we derive approximations of the Schur complements

for two different block elimination strategies. We briefly introduce the theory of

parameter-robust multigrid relaxation in Section 2.3.3, and then describe the multi-

grid methods that we use to solve systems with the top-left block M and with the

Schur complement approximations S̃ in Sections 2.3.4 and 2.3.5.

Both block preconditioners we consider gather the variables as (E,B) and (u, p).

They differ in the order of block elimination: the first takes the Schur complement

that eliminates (inverts) the (E,B) block, while the second takes the Schur comple-

ment that eliminates the (u, p) block. References for the first choice are given by

[72, 91] and for the second choice by [31, 30]. As we will see, for small Rem and S

both preconditioners perform similarly, while for more difficult parameter regimes

the second choice notably outperforms the first. We therefore recommend the second

strategy and mainly report numerical results for this choice. Nevertheless, we also

investigate the first option, both for comparison and because it allows a much more

detailed description of the Schur complement. In two dimensions it even allows an

exact computation of the Schur complement. The two strategies are compared in
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Section 2.4.4.1 below.

Another overview for Schur complement approximations and physics-based pre-

conditioners is given in [27] in the context of the Hall MHD equations. This theory

is also applicable to our standard MHD system when the case of vanishing ion skin

depth di = 0 is considered in [27].

2.3.1 Outer Schur complement eliminating the (E,B) block

Reordering (2.2.18) for convenience, we consider



ME G̃ − 1
Rem
A G 0

A> C 0 0

J J̃ + D̃1 + D̃2 F +D B>

0 0 B 0





xE

xB

xu

xp


=



RE

RB

Ru

Rp


. (2.3.2)

In the following, we refer to the Schur complement of the 4× 4 matrix as the outer

Schur complement, while we call the Schur complements of the resulting 2×2 blocks

inner Schur complements. The outer Schur complement eliminating the (E,B) block

is given by

S(E,B) =

F +D B>

B 0

−
J J̃ + D̃1 + D̃2

0 0


ME G̃ − 1

Rem
A

A> C


−1 G 0

0 0

 .
(2.3.3)

We simplify S(E,B) by applying the identity (2.3.1) to the top-left electromagnetic

block

M =

ME G̃ − 1
Rem
A

A> C

 . (2.3.4)
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This results in

S(E,B) =

F +D − JM−1
1,1G − (J̃ + D̃1 + D̃2)M−1

2,1G B>

B 0

 (2.3.5)

with

M−1
1,1 =M−1

E +M−1
E

(
G̃ − 1

Rem

A
)(
C − A>M−1

E

(
G̃ − 1

Rem

A
))−1

A>M−1
E

(2.3.6)

and

M−1
2,1 = −

(
C − A>M−1

E

(
G̃ − 1

Rem

A
))−1

A>M−1
E . (2.3.7)

We precondition S(E,B) for both linearisations in the stationary case by

S̃(E,B) =

F +D B>

B 0

 , (2.3.8)

and in the transient case by

S̃(E,B)
α :=

F + αD B>

B 0

 , α =
∆t

∆t+ Remh2 + δRemh‖un‖L2∆t
. (2.3.9)

In the following, we motivate this choice of preconditioners and emphasise the

cases in which these Schur complement approximations are exact. Therefore, we

mainly follow [91], but adapt the computations for our formulation which includes

the electric field E instead of a Lagrange multiplier r.

For the simplification of the outer Schur complement S(E,B) we must find ap-

proximations for

K1 := D − JM−1
1,1G and K2 := −(J̃ + D̃1 + D̃2)M−1

2,1G. (2.3.10)
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Note that the first summand of JM−1
1,1G is JM−1

E G which equals D. Hence, K1

simplifies to the second summand of JM−1
E G, i.e.,

K1 = −JM−1
E

(
G̃ − 1

Rem

A
)(
C − A>M−1

E

(
G̃ − 1

Rem

A
))−1

A>M−1
E G (2.3.11)

which corresponds on a continuous level to

−SBn ×
((

δ un × · − 1

Rem

curl

)(
η

∆t
I − 1

Rem

∆− δ curl(un × ·)
)−1

curl(u×Bn)

)
,

(2.3.12)

where · denotes a placeholder for the input of the corresponding operators. Moreover,

we have used δ ∈ {0, 1} to distinguish between the Picard (δ = 0) and Newton

(δ = 1) linearisations. In the discrete counterpart (2.3.11), the matrix arising in

the Picard iteration is made by dropping all terms with a tilde. The continuous

expression for K2 is given by

δ S (· × En + · × (un ×Bn) + Bn × (un × ·))(
η

∆t
I − 1

Rem

∆− δ curl(un × ·)
)−1

curl(u×Bn).
(2.3.13)

2.3.1.1 The two-dimensional case

For the Picard linearisation, expression (2.3.11) simplifies to D in the stationary

case. This follows immediately from the two-dimensional analogue of (2.2.20) and

the identity [90]

curl(−∆)−1 curlϕ = ϕ (2.3.14)

which implies for our structure-preserving discretisation that

A(C +A>M−1
E A)−1A> =ME. (2.3.15)

44



2.3. DERIVATION OF BLOCK PRECONDITIONERS

That means in the two-dimensional stationary case the outer Schur complement for

the Picard iteration is exactly given by (2.3.8), i.e., the Navier–Stokes block with

the linearised Lorentz force.

In the transient case, the Schur complement for the Picard linearisation can no

longer be calculated exactly. The behaviour of the Schur complement now depends

on which of the terms 1
∆t
I and 1

Rem
∆ dominates in (2.3.12). If 1

∆t
is small in compar-

ison to 1
Remh2 , a good approximation of (2.3.12) is given, as in the stationary case,

by S̃(E,B). If 1
∆t

dominates over 1
Remh2 , (2.3.12) is approximately given by

SBn ×
(

1

Rem

curl

(
1

∆t
I

)−1

curl(u×Bn)

)
. (2.3.16)

Hence, its magnitude can be approximated by S‖Bn‖2∆t
Rem h2 � 1 for moderate coupling

numbers and therefore we neglect this term by using the approximation

F BT

B 0


for the Schur complement in this case.

To also include the intermediate regime, we use the approximation of Phillips

et al. [91] who suggest to use (2.3.9). The expression for α interpolates between

the above mentioned dominating cases, since α ≈ 0 if 1
∆t
� 1

Remh2 and α ≈ 1 if

1
∆t
� 1

Remh2 .

A simplification for the full Newton linearisation of S(E,B) is not straightforward,

but our numerical tests suggest that S̃(E,B) and S̃(E,B)
α are acceptable preconditioners

for S(E,B) in the stationary and transient cases, deteriorating only for high S and

Rem. This can be explained by the fact that for small Rem or ∆t the terms 1
Rem

curl

and η
∆t
I − 1

Rem
∆ dominate over δun × · and δ curl(un × ·) in (2.3.12). Remember

that the terms that include a δ do not appear in the Picard iteration and were

hence neglected in the previous derivation for the Picard iteration. Moreover, the

term K2 is not included in our preconditioner for the Newton scheme which should

deteriorate the performance for large S.

45



2.3. DERIVATION OF BLOCK PRECONDITIONERS

2.3.1.2 The three-dimensional case

The main difficulty in three dimensions is that the identity (2.3.14) no longer holds.

Therefore, S̃(E,B) is not the exact outer Schur complement for the Picard linearisa-

tion in the stationary case. In [91] the same approximation from the two-dimensional

case is used in three dimensions. Based on the argument for the two-dimensional

case in the previous subsection, we expect this approximation to work well when

the term ∆t dominates and to deteriorate in the other cases, especially in the sta-

tionary case. The three-dimensional performance of this preconditioner could be

substantially improved with a better approximation of curl ∆−1 curl than a scaled

identity.

We briefly comment on the main part of the outer Schur complement in the

stationary case, given by

SBn ×
[
curl ∆−1 curl(u×Bn)

]
. (2.3.17)

As shown in [89, Chapter 4] one can rewrite curl ∆−1 curl as I−∇∆−1
r ∇·, where ∆r

denotes a scalar Laplacian. These two representations show that the operator is the

identity on divergence-free functions and maps curl-free functions to zero. Hence,

this operator corresponds to the orthogonal L2-projection of a vector field onto its

divergence-free part, which we denote by P. Thus, the weak form of (2.3.17) is given

by

S(P(u×Bn),P(v ×Bn)). (2.3.18)

The key challenge is then to find a sparse approximation of (2.3.18). We do not

further address this challenge here and focus instead on the outer Schur complement

that eliminates the (u, p) block.
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2.3.2 Outer Schur complement eliminating the (u, p) block

The outer Schur complement eliminating the (u, p) block is given by

S(u,p) =

ME G̃ − 1
Rem
A

A> C

−
G 0

0 0


F +D B>

B 0


−1 J J̃ + D̃1 + D̃2

0 0

 .
(2.3.19)

The outer Schur complement for the Newton iteration is given by

S(u,p) =

ME − GN−1
1,1J G̃ − 1

Rem
A− GN−1

1,1 (J̃ + D̃1 + D̃2)

A> C

 , (2.3.20)

where

N−1
1,1 = (F +D)−1 − (F +D)−1B>(−B(F +D)−1B>)−1B(F +D)−1. (2.3.21)

For this strategy, further simplifications of the Picard or Newton linearisations are

not straightforward. Our numerical results in the next section show that

S̃(u,p) =

ME G̃ − 1
Rem
A

A> C

 (2.3.22)

works very well as a preconditioner for both schemes. Indeed, in contrast to the

previous order of elimination, this approximation works qualitatively the same in two

and three dimensions. We expect the approximation to deteriorate in the stationary

case for very high Rem, since the missing term −GN−1
1,1 (J̃ + D̃1 + D̃2) in the Schur

complement approximation gains more influence in comparison to − 1
Rem
A. We also

observe this numerically in the next section.

However, we make the crucial observation that a good approximation of the

outer Schur complement is maintained for high coupling numbers S, which will
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clearly be seen in our numerical results in Section 2.4.4.1 below. This behaviour

is perhaps explained by the fact that N−1
1,1 also includes a factor S in the inverse

of (F + D), which balances the factor of S in the matrices J , J̃ , D̃1 and D̃2. We

believe that this inclusion of S in the Schur complement approximation is crucial

for the outperformance of the previous order of elimination for which it was obvious

that the Schur complement approximation deteriorates with higher S.

To use these block preconditioners in practice, we must develop robust precon-

ditioners for the electromagnetic and hydrodynamic subsystems.

2.3.3 Parameter-robust relaxation

The equations in the hydrodynamic and electromagnetic blocks become difficult to

solve in the parameter regimes of interest at high Reynolds and coupling numbers

both due to the non-symmetric linearised advection and Lorentz force terms, and

the addition of the symmetric positive semi-definite (SPSD) augmented Lagrangian

terms. Standard multigrid methods are known to perform poorly for these kinds of

problems.

The key components for a robust multigrid method for the SPSD augmented

Lagrangian terms are a parameter-robust relaxation method, that efficiently damps

error modes in the kernel of the singular operators, and a kernel-preserving prolonga-

tion operator, as revealed in the seminal work of Schöberl [98]. The non-symmetric

terms are more troublesome, but numerical results have shown [41, 42] that subspace

correction methods can still perform well for the Navier–Stokes equations at high

Reynolds numbers.

A recent summary of the theory of robust relaxation methods can be found in

[40]. Briefly, we consider the multigrid relaxation methods in the framework of

subspace correction methods [112]. These decompose a (finite-dimensional) trial
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space V as

V =
∑
i

Vi, (2.3.23)

where the sum is not necessarily direct. The parallel subspace correction method

applied to a linear variational problem a(u, v) = (f, v)∀v ∈ V computes for an initial

guess uk a correction δui to the error e = u− uk in each subspace Vi by solving

a(δui, vi) = (f, vi)− a(uk, vi) for all vi ∈ Vi, (2.3.24)

and sets uk+1 = uk +
∑

iwiδui for damping parameters wi. A rigorous statement

regarding the properties the decomposition (2.3.23) and the considered bilinear form

a must fulfil to yield a robust relaxation method can be in found in [98, Theorem

4.1]. A key property is that the kernel N of the SPSD terms is decomposed over

the subspaces, i.e.,

N =
∑
i

(Vi ∩N ). (2.3.25)

This property means that it must be possible to write any kernel function as the

sum of kernel functions in the subspaces Vi. This implies that the subspaces Vi

must be at least rich enough to support nonzero kernel functions. The choice of the

space decomposition (2.3.23) is often made by consideration of the discrete Hilbert

complexes underpinning the discretisation. We outline specific examples for such

decompositions and discrete complexes in the next two subsections.

2.3.4 Solver for the hydrodynamic block

In order to implement the block factorisation (2.3.1) as the outer preconditioner, we

need a solver for the Navier–Stokes subsystem. To do this, we will apply ideas of

parameter-robust multigrid relaxation described in Section 2.3.3, albeit without a

theoretical guarantee of success. The variational statement of the PDE we wish to
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solve is

2

Re
(ε(u), ε(v)) + (un · ∇u,v) + (u · ∇un,v) + γ(∇ · u,∇ · v)

+S(Bn × (u×Bn),v)− (p,∇ · v) = (f ,v) ∀v ∈ H1
0(Ω), (2.3.26)

−(∇ · u, q) = 0 ∀ q ∈ L2(Ω).

This corresponds to the standard Newton linearisation of the Navier–Stokes equa-

tions with an augmented Lagrangian term, plus the linearisation of the Lorentz force

D. We follow the approach of [58, 42, 41] to solve this system. The first idea is to

use the augmented Lagrangian term −γ∇∇·u to approximate the inner Schur com-

plement of the hydrodynamic block by choosing a large γ, e.g., γ ≈ 104. One can

show [11, Theorem 3.2] that the inner Schur complement of the augmented system

S̃NS satisfies

S̃−1
NS = S−1

NS − γM−1
p , (2.3.27)

where S−1
NS denotes the Schur complement of the system without the augmented

Lagrangian term and Mp denotes the pressure mass matrix. Therefore, for large

γ the pressure mass matrix scaled by −1/(1/Re + γ) is a good approximation for

S̃NS. As the discretisation considered in this work uses discontinuous pressures,

the pressure mass matrix is block-diagonal and hence directly invertible. In the

transient case S−1
NS can be further approximated by the inverse of the stationary Schur

complement plus an extra term −∆tL−1
p [54], where Lp corresponds to the Poisson

problem for p with Neumann boundary conditions. In our numerical examples this

extra term makes little difference as we only consider time steps 1
∆t
� γ, and we

therefore neglect it.

Since the augmented Lagrangian term has a large kernel that consists of all

solenoidal vector fields, a robust multigrid scheme as described in Section 2.3.3 must

be used to solve the augmented momentum block. For the H(div)×L2-conforming
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discretisation the star iteration [42, Section 4] can be used as a robust relaxation

method. The subspace decomposition is defined as

Vi = {v ∈ Vh : supp(v) ⊂ Ki}, (2.3.28)

where Ki is the patch of elements sharing the vertex i in the mesh. Example patches

are shown in Figure 2.1. Since we use a structure-preserving discretisation, the

properties of the de Rham complexes (1.6.10) and (1.6.9) imply that (2.3.28) fulfils

the kernel decomposition property (2.3.25). This property was also used in [7] to

construct a robust smoother for the H(div) and H(curl) Riesz maps and in [58]

for the Stokes equations. In this case we may employ the standard prolongation

operator induced by the finite element discretisation, because the uniformly refined

mesh hierarchy we consider is nested.

Figure 2.1: Star patch for BDM2-elements.

A fluid-Reynolds-robust multigrid method for the conforming Scott–Vogelius dis-

cretisation was recently developed in [41]. Remember that this discretisation is only

stable on certain types of meshes and we consider a mesh hierarchy here which is

barycentrically refined. This required the design of another specialised multigrid

method and we refer to [41] for the details of this method. The two main parts

include a so-called macrostar iteration which is used for the relaxation and spe-

cial prolongation operator which is necessary since the barycentrically refined mesh
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hierarchy is not nested.

The velocity block further includes terms given by the convection-diffusion term

(u ·∇)u, the linearisation of the Lorentz force SBn× (u×Bn) and the stabilisation

term (2.2.15). Numerical experiments in [41] and in the next Section 2.4 show that

these terms only degrade the performance of the preconditioner at high Reynolds

and coupling numbers. As we have mentioned before, these somewhat surprising

numerical observations are not backed up by theory since these terms do not fit

in the framework of Section 2.3.3, and applying geometric multigrid methods to

problems with strong advection typically requires special care, since these methods

are primarily developed for elliptic PDEs. The kernel of the stabilisation (2.2.15)

consists of all C1 vector fields. Therefore, the stabilisation term slightly degrades

the performance of the solver, but the impact is not very significant as the factor

µh2
∂K is small.

2.3.5 Solver for the electromagnetic block

The weak formulation of the electromagnetic block is given by

(E,F)− 1

Rem

(B, curl F) + δ (un ×B,F) = 0 ∀F ∈ H0(curl,Ω),

η

∆t
(B,C) + (curl E,C) +

1

Rem

(∇ ·B,∇ ·C) = (f ,C) ∀C ∈ H0(div,Ω).

(2.3.29)

Recall that η, δ ∈ {0, 1} distinguish between the stationary (η = 0) and transient

(η = 1) cases and the Picard (δ = 0) and Newton (δ = 1) linearisations. Eliminating

E, this corresponds to a mixed formulation of

η

∆t
B +

1

Rem

(curl curl B−∇∇ ·B) + δ curl(un ×B) = f in Ω,

B · n = 0 on ∂Ω,

1

Rem

curl B− δ un ×B = 0 on ∂Ω.

(2.3.30)
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For the Picard linearisation, this problem simplifies to the mixed formulation for the

standard vector Laplace problem [8] with boundary conditions B·n = curl B = 0 on

∂Ω. Chen et al. [29] propose a Schur complement solver and Arnold et al. [8] propose

a norm-equivalent block diagonal preconditioner for the mixed formulation. We also

found that the star multigrid solver applied monolithically to the electromagnetic

block (2.3.30) results in an efficient solver and employ this solver in our numerical

examples. All of the solvers described show Rem-robust performance.

In contrast, the presence of the additional term curl(un × B) in the Newton

linearisation, which has a non-trivial kernel, makes the problem almost singular for

high Rem in the stationary case and hence requires a special multigrid method.

Unfortunately the troublesome term curl(un ×B) is not symmetric and thus does

not fit the available analytical framework of Schöberl. Our considerations on this

point are therefore necessarily heuristic. Some insight may be gained by employing

the vector identity

curl(A×B) = (B · ∇)A− (A · ∇)B + A(∇ ·B)−B(∇ ·A) (2.3.31)

to rewrite (2.3.30) to

η

∆t
B− 1

Rem

∆B− (B · ∇)un + (un · ∇)B− un(∇ ·B)−B(∇ · un). (2.3.32)

The last term −B(∇ ·un) vanishes since we exactly enforce ∇ ·un = 0 in each step.

The terms −(B · ∇)un + (un · ∇)B are reminiscent of the Newton linearisation of

the advection term (u · ∇)u of the Navier–Stokes equation, for which it has been

demonstrated that a star multigrid method is effective [42]. On the other hand, this

similarity also suggests that we cannot hope for a simpler solver than a specialised

kernel-capturing multigrid method to solve for this block. Numerical experiments

with our approach applied monolithically do indeed yield a robust solver for the
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stationary and transient cases in two dimensions, and in the transient case in three

dimensions for sufficiently small ∆t. We observe in our numerical tests that in three

dimensions the solver breaks down for Rem ≈ 700 for a stationary lid-driven cavity

problem.

2.4 Numerical results

In this section, we present numerical results for the Picard and Newton linearisation

described in the previous sections. We investigate three test problems: the station-

ary Hartmann problem, the stationary and transient version of a lid-driven cavity

problem and a transient island-coalescence problem. The numerical results were

produced on ARCHER2, the UK national supercomputer, which consists of 5,860

compute nodes each built of two AMD Zen2 7742 processors with 64 2.25 GHz cores

and 256 GB of memory.

2.4.1 Algorithm details

The algorithm is implemented in Firedrake [94] and uses the solver package PETSc

[12]. It is well-known that the convergence of the nonlinear scheme depends heavily

on the initial guess and might fail to converge for high Reynolds numbers with poor

initial guesses. To circumvent this problem we perform continuation in the Reynolds

numbers and coupling number, for the stationary problems. In the presented tables

we always apply continuation to the variable in the column first and use each so-

lution as the starting point for the continuation over the rows. We use the steps

1, 100, 1,000, 5,000, 10,000 for S and 1, 500, 1,000, 3,000, 5,000, 7,000, 10,000 for Re

and Rem. The reported nonlinear and linear iteration numbers correspond to the

final solve in the continuation; however, the extra cost for the continuation should be

kept in mind for stationary problems. For time-dependent problems, continuation

is not necessary.
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We use flexible GMRES [97] as the outermost Krylov solver since we apply

GMRES in the multigrid relaxation. Moreover, we apply a block upper triangular

preconditioner [13]

P =

I −M̃−1K

0 I


M̃−1 0

0 S̃−1

 (2.4.1)

to (2.2.18), where we denoted (2.2.18) here as

M K

L N

. We also investigated a

full block-LDU preconditioner without notable improvements in terms of iteration

counts, which fits with the recent theoretical results in [104] and is also suggested

by the eigenvalue analysis in [79].

Both the block matrixM and the outer Schur complement approximation S(u,p)

are inverted approximately with two iterations of preconditioned FGMRES (denoted

M̃−1 and S̃−1, respectively). The former uses the block preconditioner for the

hydrodynamic block described in Section 2.3.4, the latter the monolithic multigrid

method described in Section 2.3.5. In the numerical results we focus on taking

the outer Schur complement that eliminates the hydrodynamic block, except for

one case in Section 2.4.4.1. In both multigrid methods we use six preconditioned

GMRES iterations as the smoother on each level and the direct solver MUMPS [5]

to solve the problem on the coarsest grid. Since this relaxation is quite expensive,

convergence in a very small number of outer iterations is required for efficiency. See

Figure 2.2 for a graphical representation of the solver.

We have chosen relative and absolute tolerances of 10−10 and 10−6 for the resid-

uals of the nonlinear solver and 10−7 and 10−7 for the residuals of the outermost

linear solver, measured in the Euclidean norm. We use the H(div)×L2-conforming

elements BDM2 × DG1 for (uh, ph). Moreover, we apply CG2 × RT2 elements for

(Eh,Bh) in 2D and NED12 × RT2 elements for (Eh,Bh) in 3D. All problems are

posed over the domain Ω = (−1/2, 1/2)d, unless stated otherwise. For the multigrid
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Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Figure 2.2: Graphical outline of the solver.

hierarchy we use a regular coarse mesh of 16 × 16 cells and five levels of uniform

refinement in 2D resulting in a 512× 512 grid with 18.5 million degrees of freedom

(DoFs). In three dimensions a coarse grid of 6 × 6 × 6 cells with 3 levels of refine-

ment is used which results in a 48 × 48 × 48 grid with 25 million DoFs. When we

consider a manufactured solution we always subtract
∫

Ω
p dx from the pressure to

fix the average of p to be zero. We present iteration numbers in tables where two of

the three parameters Re , Rem and S are varied and the third one is fixed to be 1

unless stated otherwise.

For time-dependent problems, we apply the second-order, L-stable BDF2 method

with a fixed time-step. We compute the first time-step with Crank-Nicolson to

56



2.4. NUMERICAL RESULTS

provide the second starting value for BDF2. For the transient lid-driven cavity

problem, we use a time-step of ∆t = 0.01 and a final time of T = 0.1. We did not

choose a higher final time T because of budget limitations. However, we confirmed

that the reported numbers are representative for higher T by computing the solution

for a few parameters until T = 1 without noticeable changes in the iteration counts.

Moreover, we confirm the efficiency for more time-steps in the island coalescence

problem where we iterate in the finest run until T = 15 in 2400 time steps.

2.4.2 Interpolating boundary data

The theory from the previous sections has been formulated for homogeneous bound-

ary conditions, but the generalisation is straightforward for non-homogeneous

boundary conditions as shown in Section 2.2. However, there is a subtle technicality

in the implementation if one wants to enforce the divergence constraint ∇ ·Bh = 0

pointwise. Strong boundary conditions are enforced in a finite element code by in-

terpolating the given boundary data onto the corresponding finite element space.

If the interpolation of the boundary values g were exact, identity (2.2.10) would

imply that ∇ ·Bh = 0 holds. However, the degrees of freedom for the interpolation

are moments and are usually implemented by a quadrature rule whose quadrature

degree is based on the polynomial degree of the finite element space. If g is a

non-polynomial expression, this quadrature rule might not interpolate the bound-

ary condition exactly and therefore one loses the property that ∇ · gh = 0 on ∂Ω

holds exactly.

To circumvent this problem we use high-order quadrature rules for the evaluation

of the degrees of freedom to ensure that the interpolation is exact up to machine

precision. In Figure 2.3 we have illustrated the effect of the quadrature degree on

the enforcement of the divergence constraint. We have used the method of manufac-

tured solutions for a smooth problem to compute ‖∇ ·Bh‖0 for different quadrature
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degrees. Moreover, we have plotted the L2-norm over ∂Ω of the interpolation of

the divergence-free function B into the RT2 space. One can clearly observe that a

quadrature degree of 2 for RT2 elements is not sufficient to enforce ∇ · Bh = 0 up

to machine precision. A higher quadrature degree preserves the divergence of the

boundary data more accurately and leads to the pointwise enforcement of∇·Bh = 0.

2 3 4 5 6 7 8
Quadrature degree

10−12

10−10

10−8

10−6

10−4

10−2
||divBh||L2(Ω)
||div Ih(B)||L2(∂Ω)

Figure 2.3: L2-norm of the divergence of the solution Bh and the interpolant of the
boundary condition for different quadrature degrees in the evaluation of the degrees
of freedom for the Raviart–Thomas space.

2.4.3 Two-dimensional results

2.4.3.1 Hartmann flow

First, we consider the Hartmann flow problem posed over Ω = (−1/2, 1/2)2 that

describes the flow of a conducting fluid through a section of a channel to which a

transverse magnetic field B0 = (0, 1)> is applied. This problem was considered in

[1, 109]. The analytical solution is given by u = (u1(y), 0)> and B = (B1(y), 1)>
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with

u1(y) =
GRe

2Ha tanh(Ha/2)

(
1− cosh(yHa)

cosh(Ha/2)

)
,

B1(y) =
G

2

(
sinh(y/Ha)

sinh(Ha/2)
− 2y

)
,

p(x, y) = −Gx− B2
1(y)

2
.

Here, we used the Hartmann number Ha =
√
SRe Rem and G = 2Ha sinh(Ha/2)

Re (cosh(Ha/2)−1)
.

The analytical solution for E is computed via (2.1.4c). Note that for high Ha the

computation of, e.g., sinh(Ha/2) exceeds the range that double precision floating

point numbers can represent. Therefore, we have chosen the following approximation

for Hartmann numbers Ha ≥ 100 with G = 2 Ha
Re

u1(y) =
GRe

2Ha

(
1 + exp(Ha(−y − 1

2
))− exp(Ha(y − 1

2
))

)
,

B1(y) =
G

2

(
exp(Ha(−y − 1

2
))− exp(Ha(y − 1

2
))− 2y

)
.

The iteration counts for the three different linearisation methods are presented

in Table 2.2. For both schemes, we observe fairly constant Krylov iteration counts

for Re and S in the range of 1 to 10,000. In terms of the nonlinear convergence, the

Picard linearisation takes more iterations for higher values of S than the Newton

linearisation.

Picard Newton

S\Re 1 1,000 10,000 1 1,000 10,000

1 ( 3) 6.3 ( 2) 6.0 ( 2) 6.0 ( 2) 7.0 ( 2) 5.5 ( 2) 6.0
1,000 ( 6) 6.0 ( 4) 5.8 ( 4) 4.2 ( 2) 7.5 ( 2) 5.5 ( 2) 4.5

10,000 ( 6) 6.3 ( 5) 5.0 ( 4) 4.5 ( 2) 7.0 ( 2) 6.0 ( 2) 6.0

Table 2.2: (Nonlinear iterations) Average outer Krylov iterations per nonlinear step
for the Hartmann problem.
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2.4.3.2 Stationary lid-driven cavity in two dimensions

Next, we consider a lid-driven cavity problem posed over Ω = (−1/2, 1/2)2 for a

background magnetic field B0 = (0, 1)> which determines the boundary conditions

B · n = B0 · n on ∂Ω and set f = 0 [73]. We impose the boundary condition u =

(1, 0)> at the boundary y = 0.5 and homogeneous boundary conditions elsewhere.

The problem models the flow of a conducting fluid driven by the movement of the

lid at the top of the cavity. The magnetic field imposed orthogonal to the lid creates

a Lorentz force that perturbs the flow of the fluid.

For both linearisations we observe fairly constant Krylov iteration counts for Re

and S in the range of 1 to 10,000 in Table 2.3. In terms of the nonlinear convergence,

the Picard linearisation sometimes takes slightly more iterations than the Newton

linearisations, with slightly better linear iteration numbers.

Picard Newton

S\Re 1 1,000 10,000 1 1,000 10,000

1 ( 3) 5.3 ( 4) 3.5 ( 3) 4.3 ( 2) 6.5 ( 4) 3.5 ( 3) 4.3
1,000 ( 4) 3.5 ( 3) 4.7 ( 2) 8.5 ( 2) 5.5 ( 3) 4.7 ( 2) 6.5

10,000 ( 3) 5.0 ( 3) 4.3 ( 2) 7.0 ( 2) 6.5 ( 2) 6.0 ( 2) 7.0

Table 2.3: (Nonlinear iterations) Average outer Krylov iterations per nonlinear step
for the stationary lid-driven cavity problem in 2D.

As mentioned earlier, our scheme does not include a stabilisation for high mag-

netic Reynolds numbers. However, we have verified that our solutions do not exhibit

oscillations in this regime. A plot of the streamlines for different Re and Rem can

be found in Figure 2.4. One can clearly observe the phenomenon that for high mag-

netic Reynolds numbers the magnetic field lines are advected with the fluid flow.

Iteration counts are displayed in Table 2.4.

For the Picard linearisation we observe that the nonlinear scheme already fails to

converge for a magnetic Reynolds number of 100. The poor nonlinear convergence
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of the Picard iteration for high Rem even with continuation was previously observed

for other formulations [89, 90].

For the Newton linearisation the linear iterations increase slightly since the ap-

proximation of the Schur complement S̃(u,p) becomes less accurate for high Reynolds

numbers. On the other hand, the number of nonlinear iterations remains fairly con-

stant which seems to indicates that the linear solver for the (E,B) block described

in Section 2.3.5 works very well for high Rem in two dimensions.

Picard Newton

Rem\Re 1 1,000 10,000 1 1,000 10,000

1 ( 3) 5.3 (4) 3.5 (3) 4.3 ( 2) 6.0 ( 3) 4.3 ( 3) 4.3
1,000 NF NF NF ( 2) 4.5 ( 3) 3.0 ( 3) 3.0

10,000 NF NF NF ( 2) 4.5 ( 4) 5.5 ( 3) 5.7

Table 2.4: Iteration counts for the stationary lid-driven cavity problem in 2D with
H(div) × L2-discretisation for different Rem and Re . NF indicates that this entry
was not computable due to the failure of nonlinear convergence.

Thus far we have considered the H(div)×L2 discretisation for the hydrodynamic

variables. For comparison, in this subsection we include results for Scott–Vogelius

elements which we previously referred to in Section 2.2.3 and Section 2.3.4. The

results are shown in Table 2.5. We observe that the Krylov iteration counts are in

general similar for the Scott–Vogelius element, making this an attractive alternative

for those wishing to employ conforming schemes. However, one must keep in mind

that the work per Krylov iteration is substantially higher for this element, due to

the use of larger patches in the macrostar relaxation method.

2.4.3.3 Time-dependent lid-driven cavity problem in two dimensions

We next consider the time-dependent lid-driven cavity problem. We choose the same

boundary conditions and right-hand side as in the stationary case. The numerical
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Picard Newton

Rem\Re 1 1,000 10,000 1 1,000 10,000

1 ( 2) 4.0 ( 2) 2.5 ( 2) 8.5 ( 2) 4.0 ( 2) 2.5 ( 3) 9.7
1,000 NF NF NF ( 5) 1.8 ( 3) 3.0 ( 2) 4.0

10,000 NF NF NF ( 8) 5.2 ( 4) 6.2 ( 2) 5.5

Table 2.5: Iteration counts for the stationary lid-driven cavity problem in 2D with
Scott–Vogelius elements for different Rem and Re .

Re = Rem = 1 Re = Rem = 500 Re = Rem = 5,000

Figure 2.4: Streamlines for the two-dimensional stationary lid-driven cavity problem
for u (upper row) and B (lower row).
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results for varying S and Re are shown in Table 2.6. As in the stationary case,

the Krylov iteration counts remain almost constant for the two linearisations. We

notice that the Picard iteration fails to converge for high S and Rem for the chosen

∆t = 0.01. However, we tested that one can get the Picard iteration to converge in

most cases by choosing a smaller ∆t in the first time steps. We do not report these

results here to keep the tables consistent.

Table 2.6 also shows iteration counts for varying Re and Rem. The linear solver

is robust for most parameter values, with iteration counts only increasing for Re = 1

and Rem = 100, 000.

For completeness, we also study the case of high Rem and S at the same time in

Table 2.6, which we expect to be the most challenging case. Again the slight increase

of the Krylov iterations in the Newton iteration is due to inaccurate outer Schur

complement approximation. However, the solvers perform very well, considering the

difficulty of the problem.

2.4.3.4 Time-dependent island coalescence problem in two dimensions

Next, we consider a two-dimensional island coalescence problem to demonstrate the

effectiveness of our method for a physically relevant model that shows behaviour

which is unique to MHD problems. Furthermore, we report results for a weak

parallel scalability test ranging from 4 processors and 160K DoFs to 256 processors

and 41M DoFs to examine the performance of our algorithm.

The island coalescence problem is used to model magnetic reconnection processes in

large aspect ratio tokamaks. For a strong magnetic field in the toroidal direction,

the flow can be described in a two-dimensional setting by considering a cross-section

of the tokamak. We consider the same problem as in [1, Section 4.2]. The domain

Ω = (−1, 1)2 results from the unfolding of an annulus in the cross-sectional direction

where the left and right edges are mapped periodically. The equilibrium solution
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Picard Newton

S\Re 1 10,000 100,000 1 10,000 100,000

1 (2.0) 3.0 (2.2) 3.6 (3.1) 3.3 (1.6) 3.6 (2.2) 3.6 (3.1) 3.3
1,000 (3.0) 4.0 (3.0) 3.3 (2.7) 3.0 (2.1) 4.7 (2.2) 3.9 (2.3) 3.3

10,000 NF NF NF (2.2) 6.5 (2.5) 5.0 (2.3) 5.6

Picard Newton

Rem\Re 1 10,000 100,000 1 10,000 100,000

1 (2.0) 3.0 (2.2) 3.6 (3.1) 3.3 (1.6) 3.6 (2.2) 3.6 (3.1) 3.3
10,000 NF NF NF (2.0) 3.1 (2.3) 3.6 (3.1) 3.3

100,000 NF NF NF (2.2)10.9 (3.0) 3.2 (3.3) 3.2

Picard Newton

Rem\S 1 1,000 10,000 1 1,000 10,000

1 (2.0) 3.0 (3.0) 4.0 NF (1.6) 3.6 (2.1) 4.7 (2.2) 6.5
1,000 (3.0) 2.5 NF NF (2.0) 3.1 (2.2) 5.6 (2.8)11.0

10,000 NF NF NF (2.0) 3.1 (2.2) 6.3 (3.1)11.8

Table 2.6: Iteration counts for the transient lid-driven cavity problem in 2D.

for k = 0.2 is given by

ueq = 0, peq(x, y) =
1− k2

2

(
1 +

1

(cosh(2πy) + k cos(2πx))2

)
,

Beq(x, y) =
1

cosh(2πy) + k cos(2πx)

sinh(2πy)

k sin(2πx)

 , Eeq =
1

Rem

curl Beq − ueq ×Beq,

which results in right-hand sides f = 0 and g for (2.1.1c) given by

g =
−8π2(k2 − 1)

Rem(cosh(2πy) + k cos(2πx))3

sinh(2πy)

k sin(2πx)

 . (2.4.2)
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The initial condition for Beq is given by perturbing it for ε = 0.01 with

∆B =
ε

π

− cos(πx) sin(πy/2)

2 cos(πy/2) sin(πx)

 . (2.4.3)

The authors believe that the reported ∆B in [1] includes a typographical error, as it

is not divergence-free, and amended the second component appropriately. Therefore,

the problem setup is not exactly identical and hence we might see slightly different

solutions. The reconnection rate can be computed as the difference between curl B

evaluated at the origin (0, 0) at the current time and the initial time, divided by
√

Rem. Note that in our formulation B ∈ H(div, 0) and therefore we apply the curl

weakly by solving a problem for j0 ∈ H0(curl,Ω) such that

(j0, k) = (B, curl k) ∀ k ∈ H0(curl,Ω). (2.4.4)

In order to make the point evaluation of j0 at (0,0) well-posed we project j0 to the

space CG1 as in [1].

Figure 2.5 shows the reconnection rates for Re = Rem = 1,000, Re = Rem =

5,000 and Re = Rem = 10,000 for three different spatial and temporal resolutions.

We have fixed a coarse grid of 16 × 16 cells and compute results for three (1.1M

DoFs), four (4.6M DoFs) and five (18.4M DoFs) levels of refinement. For the three

levels of refinement, we chose a fixed step size of ∆t = 0.025 and halved it with each

refinement. We iterated until T = 15 which results in 2400 time steps for the finest

resolution. In [1], a coarse mesh of 20× 20 cells has been considered with four, five,

six and seven levels of refinement and ∆t = 0.025 on the coarsest level, i.e., they

considered a finer mesh for the same time-step size.

One can observe a decreasing height of the peak for increasing Reynolds numbers

and the so-called “sloshing” [69] effect that results in further peaks after the main

peak with higher Reynolds numbers. Convergence for our considered meshes can be
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observed for Re = Rem = 1,000 and Re = Rem = 5,000 while a further refinement

is needed for Re = Rem = 10,000. Nevertheless, our finest grid results match the

results of [1, Fig. 4] where finer meshes of up to 2,560× 2,560 cells and ∆t = 0.0016

have been considered. For example, our finest result for Re = Rem = 10,000 clearly

reproduces the second peak in the reconnection rate. The time evolution of the

current density j at Re = Rem = 5,000 can be found in Figure 2.6.

Figure 2.5: Reconnection rates for the island coalescence problem.

Furthermore, we performed a weak parallel scaling test for nine different com-

binations of the Reynolds numbers. We chose a coarse grid of 16 × 16 cells with

three (1.1M DoFs), four (4.6M DoFs) and five (18.4M DoFs) levels of refinement.

All tests were performed with 16 cores per node on 1, 4 and 16 nodes resulting in

16, 64 and 256 cores for the different refinements. We observed (not reported here)

that scaling over the nodes with a fixed number of cores per node provides better

results than increasing the number of cores per node. This seems to indicate that

our code is mainly limited by the memory bandwidth. Furthermore, we ensured that

the numbers of cores used in our simulations evenly divide the number of cells in the

16×16 coarse grid to minimize load imbalances. For an optimal scaling of the patch

smoother in the multigrid relaxation the number of patches (and hence vertices) per

processor should also be evenly balanced, but this was not implemented.

In Table 2.7, we report the average runtimes per linear iteration rather than the

total runtime to take into account that the numbers of linear and nonlinear iterations

change slightly between the different refinements. The runtimes only show a slight
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increase the more cores being used and hence underline good weak scaling of our

method.

As for the lid-driven cavity problem, we observe excellent robustness of the linear

and nonlinear iteration counts with respect to the Reynolds numbers. Both linear

and nonlinear solvers converge in either 1 or 2 iterations in the investigated ranges

of Re and Rem. We therefore do not report a table here that shows each iteration

count.

128× 128 on 16 cores 256× 256 on 64 cores 512× 512 on 256 cores

Rem\Re 1 1,000 10,000 1 1,000 10,000 1 1,000 10,000

1 0.13 0.12 0.13 0.14 0.14 0.14 0.17 0.17 0.17
1,000 0.13 0.12 0.12 0.14 0.13 0.13 0.15 0.14 0.15

10,000 0.12 0.11 0.12 0.14 0.13 0.13 0.15 0.15 0.15

Table 2.7: Average time per linear iteration in minutes for the two-dimensional
island coalescence problem.

2.4.4 Three-dimensional results

In three dimensions, we observe in general that the stationary problems are harder

to solve for high parameters than in two dimensions. We believe that the following

three points are mainly responsible for this behaviour. First of all, the discretisation

of the electric field changes from a scalar-valued CG-function to a vector-valued

NED1-function with tangential boundary conditions. Moreover, the kernel of the

term curl(un ×B) is larger in three dimensions which degrades the performance of

the monolithic solver for the (E,B) block for high Rem. Furthermore, the grids we

consider are much coarser than in two dimensions because of computational costs.
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Figure 2.6: Plots of the current density j for the island coalescence problem at
Re = Rem = 5,000 for t = 1, 2, ..., 12 counted from top left to bottom right.
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2.4.4.1 Stationary lid-driven cavity problem in three dimensions

We adapt the two-dimensional lid-driven cavity problem to three dimensions by

considering the domain Ω = (1/2, 1/2)3 and the boundary conditions u = (1, 0, 0)>

on the boundary y = 0.5 and u = (0, 0, 0)> on the other faces. The background

magnetic field B0 = (0, 1, 0)> determines the boundary conditions for B. For the

three-dimensional problem, we only investigate the Newton linearisation as we have

seen in two dimensions that the Newton iteration outperforms the Picard iteration

in nearly all cases. The results on the left in Table 2.8 show a good control over the

linear iteration numbers for the lid-driven cavity problem, where the case of S = 1

and Re = 10,000 seems to be the most challenging case. A streamline plot of the

solution at Re = Rem = 100 can be found in Figure 2.7.

Figure 2.7: Streamlines for the three-dimensional stationary lid-driven cavity prob-
lem for u (left) and B (right) at Re = Rem = 100.

On the right of Table 2.8 we report a comparison to taking the outer Schur

complement that eliminates the (E,B) block. As mentioned in Section 2.3, we can

clearly see that this choice performs worse for high values of Re and S where no

convergence in 50 linear iterations was reached. We observed similar behaviour for
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unreported experiments on transient and two-dimensional problems.

We do not include a full table for high Rem, as in this case the monolithic

multigrid solver cannot deal with the term curl(un×Bn) that occurs in the Newton

linearisation. As in two dimensions, this term is crucial for the convergence of

the nonlinear iteration. For Newton, the iteration counts increase very slightly

from Re = Rem = 1 by 8.0 Krylov iterations per nonlinear step to 10.0 iterations

for Rem = 500 and Re = 1 and fails to converge for higher Rem. We want to

emphasise that in this case the failure of convergence is indeed caused by the inner

multigrid method and not by an inaccurate outer Schur complement approximation.

To the best of our knowledge, preconditioning methods that robustly treat the vector

Laplace operator with an additional curl(un×B) term in three dimensions are not

known, and we intend to investigate this problem further in future work.

Using S̃(u,p) for order (u, p,E,B)

S\Re 1 1,000 10,000

1 ( 3) 6.0 ( 3) 7.0 ( 4)20.0
1,000 ( 3) 7.3 ( 2) 9.5 ( 2) 6.5

10,000 ( 3) 9.0 ( 2)13.0 ( 2)12.5

Using S̃(E,B) for order (E,B,u, p)

S\Re 1 1,000 10,000

1 ( 3) 6.0 (4)14.7 (-)>50
1,000 ( 3)12.7 (-)>50 (-)>50

10,000 ( 3)20.0 (-)>50 (-)>50

Table 2.8: (left) Iteration counts for the stationary lid-driven cavity problem in 3D
for the Newton linearisation. (right) Iteration counts for the stationary lid-driven
cavity problem in 3D for taking the outer Schur complement that eliminates the
(E,B) block.

2.4.4.2 Time-dependent lid-driven cavity problem in three dimensions

Finally, we consider the time-dependent version of the three-dimensional lid-driven

cavity problem, which was also investigated in detail in [73]. The numerical results

in Table 2.9 show good control of the iteration counts and the linear iteration

numbers only notably increases for very high values of S. Moreover, we observe

robust convergence of the monolithic multigrid solver for the (E,B) block for high
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Rem. As mentioned before in Section 2.3.5, this can be explained by the fact that

the problem does not become nearly singular for high Rem due to the extra mass

matrix. Therefore, the fact that the kernel of curl(un×B) is not fully captured by

the multigrid method has less influence.

S\Re 1 10,000 100,000

1 (2.1) 7.3 (3.2) 2.1 (3.3) 2.0
1,000 (3.0) 8.6 (3.3) 2.8 (3.5) 2.6

10,000 (4.0)11.3 (4.0) 7.0 (4.0) 6.2

Rem\Re 1 10,000 100,000

1 (2.1) 7.3 (3.2) 2.1 (3.3) 2.0
10,000 (2.5) 7.1 (3.2) 2.0 (3.3) 2.0

100,000 (3.0)15.1 (3.2) 2.6 (3.3) 2.0

Rem\S 1 100 1,000

1 (2.1) 7.3 (2.1) 7.3 (3.0) 8.6
1,000 (3.0) 7.6 (3.0) 6.8 (3.1) 9.5

10,000 (2.5) 7.1 (3.1) 7.1 (3.2) 9.7

Table 2.9: Iteration counts for the transient lid-driven cavity problem in 3D for the
Newton linearisation.
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Chapter 3

Structure-preserving finite

element methods and solvers for

the Hall MHD equations

The content of this chapter was developed in collaboration with Patrick Farrell and

Kaibo Hu. A manuscript [70] has been submitted to the Journal of Computational

Physics.

3.1 Hall MHD model

In this chapter, we consider finite element methods for the solution of the incom-

pressible, resistive Hall magnetohydrodynamics (MHD) equations. The stationary
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formulation on a bounded polyhedral Lipschitz domain Ω ⊂ R3 is given by

−Re −1∆u + (u · ∇)u− S j×B +∇p = f , (3.1.1a)

j−∇×B = 0, (3.1.1b)

∇× E = 0, (3.1.1c)

∇ ·B = 0, (3.1.1d)

∇ · u = 0, (3.1.1e)

Re−1
m j− (E + u×B− RH j×B) = 0. (3.1.1f)

When the Hall current term RH j × B vanishes, one obtains the standard resistive

MHD system that we considered in the previous chapter.

For time-dependent problems, the time derivatives ∂u
∂t

and ∂B
∂t

are added to the

left-hand sides of (3.1.1a) and (3.1.1c) respectively. We mainly consider the bound-

ary conditions

u = 0, B · n = 0, E× n = 0, j× n = 0, on ∂Ω. (3.1.2)

However, a treatment of the alternative boundary conditions (c.f., [51])

u = 0, B× n = 0, E · n = 0, j× n = 0, on ∂Ω (3.1.3)

is also possible.

The essence of the Hall effect is described by adding the Hall-term j×B in the

generalised Ohm’s law [44, Section 2.2.2]

µ0ηj = E + u×B− 1

ne
j×B, (3.1.4)

where η denotes the magnetic resistivity, µ0 the permeability of free space, n the
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charge density and e the electron charge. The non-dimensionalised form of the

generalised Ohm’s law corresponds to (3.1.1f) where the Hall parameter RH is defined

as

RH =
1

µ0ne

B

LU
(3.1.5)

for a characteristic length L, magnetic field strength B and speed U of the fluid.

We refer to the case RH = 0 as the standard MHD equations.

Although (3.1.1) only differs by one term from the standard MHD equations,

the extension of existing theory and algorithms to the Hall case is non-trivial. Most

formulations of the standard MHD equations use Ohm’s law (3.1.1f) directly to

eliminate j as an unknown such as the one in Chapter 2; with RH 6= 0 this is no longer

possible. Therefore our proposed variational formulation for the stationary problem

includes as unknowns both the current density j and the electric field E. In the time-

dependent case, the various conservation properties of the MHD system in the ideal

limit are based upon the symmetries of the system; the introduction of the Hall term

changes these symmetries, thus making it substantially more difficult to construct

numerical methods that preserve several quantities simultaneously. Finally, the

development of preconditioning techniques becomes more difficult as an additional

non-symmetric term with a non-trivial kernel enters the system.

Most variational formulations of the standard MHD system either look for the

magnetic field B in an H(curl; Ω)- or H(div; Ω)-conforming space as in Chapter 2.

H(curl; Ω)-conforming formulations have the advantage that they usually include

the fewest unknown variables, typically u, p, B and a Lagrange multiplier for the

enforcement of the magnetic Gauss’s law. However, such formulations only enforce

the magnetic Gauss’s law weakly, which can cause problems for numerical approx-

imations [20]. Therefore, in recent years much interest has been paid to structure-

preserving H(div; Ω)-conforming approximations that enforce ∇ · B = 0 precisely

on the discrete level [61, 64]. These formulations either eliminate E or j with help
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of (3.1.1f) or (3.1.1b). Here, the augmented Lagrangian formulation (2.2.1) from

Chapter 2 seems a natural approach, as it only includes u, p,B and E as unknowns

and enforces ∇ · B = 0 without the need for a Lagrange multiplier. Our proposed

formulation with both j and E as unknowns tries to use the fewest number of un-

known variables for the Hall system while still enforcing the magnetic Gauss’s law

precisely.

Another way of enforcing ∇ · B = 0 for the incompressible MHD system is to

use formulations based on the vector potential A where B = ∇ × A (see, e.g.,

[3, 57, 85]). The Hall term is j×B = (∇×B)×B = (∇×∇×A)× (∇×A), which

is a high order term in A. It seems difficult to deal with this term with the magnetic

potential and we will not pursue potential-based formulations in this work.

The ideal limit in Hall MHD describes the case of vanishing magnetic resistivity

η. We also include the case of vanishing fluid viscosity ν in this notion and hence

the ideal limit formally corresponds to Re = Rem =∞. It is well-known that in this

case the energy, magnetic helicity and cross helicity are conserved properties of the

standard MHD system [44]. For the ideal Hall MHD system, the cross helicity is not

conserved any more; instead the so-called hybrid helicity [74] is conserved, which is

a suitable combination of magnetic, cross and fluid helicity. In [46] and [60], the

authors propose numerical algorithms that preserve the conservative properties of

the standard MHD equations precisely on the discrete level. We extend their work

for the additional Hall term and propose algorithms that also preserve the hybrid

helicity precisely.

Helicity characterises the linkage of field lines (the vortex lines for the fluid

helicity, the magnetic lines for the magnetic helicity etc.), and is thus fundamentally

important for the flow kinematics [76]. The importance of the magnetic and cross

helicity can be found in, e.g., [106, 87, 88] and the references therein. Even in the

non-ideal case, i.e., for non-vanishing resistivity, the total helicity is approximately

preserved if the magnetic field undergoes small-scale turbulence [10, Remark 7.19].
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Hence, algorithms that preserve the helicity and other quantities precisely (or nearly

in the non-ideal case) at the discrete level are important and can lead to more

physical solutions for the same resolution, because the pollution of the solutions

through numerical errors is minimised.

3.2 Stationary variational formulation,

linearisation and discretisation

3.2.1 Nonlinear scheme

We propose the following variational form for the stationary problem (3.1.1) with

boundary conditions (3.1.2). DefineXh := Vh×Qh×Hh
0(curl)×Hh

0(div)×Hh
0(curl).

Problem 1. Find (uh, ph,Eh,Bh, jh) ∈Xh, such that for any (vh, qh,Fh,Ch,kh) ∈

Xh,

Re −1(∇uh,∇vh) + ((uh · ∇)uh,vh)

−S(jh ×Bh,vh)− (ph,∇ · vh) = 〈f ,vh〉, (3.2.1a)

(jh,Fh)− (Bh,∇× Fh) = 0, (3.2.1b)

(∇× Eh,Ch) + (∇ ·Bh,∇ ·Ch) = 0, (3.2.1c)

Re−1
m (jh,kh)− (Eh + uh ×Bh − RH jh ×Bh,kh) = 0, (3.2.1d)

−(∇ · uh, qh) = 0. (3.2.1e)

The above formulation includes the weak form of the augmented Lagrangian term

−∇∇ ·Bh in (3.2.1c), which is used to enforce the magnetic Gauss’s law ∇ ·Bh = 0

precisely with the same proof as in Section 2.2. We summarise some properties of

the variational formulation in the next theorem.

Theorem 1. Any solution for Problem 1 satisfies the
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1. magnetic Gauss’s law:

∇ ·Bh = 0,

2. stationary Faraday’s law:

∇× Eh = 0,

3. energy estimates:

Re −1‖∇uh‖2 + Re−1
m S‖jh‖2 = 〈f ,uh〉, (3.2.2)

1

2
Re −1‖∇uh‖2 + Re−1

m S‖jh‖2 ≤ Re

2
‖f‖2

−1. (3.2.3)

Proof. As for the standard MHD formulation, the stationary Faraday’s law

∇× Eh = 0 follows from testing (3.2.1c) with Ch = ∇ × Eh, and the magnetic

Gauss’ law ∇ ·Bh = 0 then follows from testing (3.2.1c) with Ch = Bh. The proof

of the energy law follows from testing (3.2.1d) with kh = jh. Since the additional

Hall term RH (jh ×Bh,kh) vanishes for kh = jh, the proof coincides with the one in

[63] for the standard MHD system.

3.2.2 Picard iteration

In the following, we propose a Picard-type iteration for Problem 1. Even though the

Picard iteration was clearly outperformed by the Newton iteration in the previous

chapter in terms of nonlinear convergence for high Rem, Picard-type iterations are

still interesting to investigate since they allow for rigorous well-posedness proofs. In

this section, we extend these proofs for the additional Hall term. The well-posedness

of the full Newton linearisation is much more difficult to achieve or even unknown

for certain MHD formulations, such as the one in Chapter 2.

Algorithm 1 (Picard step). Given (un−1
h ,Bn−1

h ), find (unh, p
n
h,E

n
h,B

n
h, j

n
h) ∈ Xh,
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such that for any (vh, qh,Fh,Ch,kh) ∈Xh,

Re −1(∇unh,∇vh) + ((un−1
h · ∇)unh,vh)

−S(jnh ×Bn−1
h ,vh)− (pnh,∇ · vh) = 〈f ,vh〉, (3.2.4a)

(jnh,Fh)− (Bn
h,∇× Fh) = 0, (3.2.4b)

(∇× En
h,Ch) + (∇ ·Bn

h,∇ ·Ch) = 0, (3.2.4c)

Re−1
m (jnh,kh)− (En

h + unh ×Bn−1
h − RH jnh ×Bn−1

h ,kh) = 0, (3.2.4d)

−(∇ · unh, qh) = 0. (3.2.4e)

Algorithm 2 (Newton iteration). The Newton iteration includes the additional

terms ((unh · ∇)un−1
h ,vh) − S(jn−1

h × Bn
h,vh) on the left-hand side of (3.2.4a), and

−(un−1
h ×Bn

h,kh) + RH (jn−1
h ×Bn

h,kh) on the left hand side of (3.2.4d).

Remark 1. By construction, any solution (unh, p
n
h,E

n
h,B

n
h, j

n
h) of Algorithm 1 also

fulfils (1), (2), and (3) from Theorem 1 precisely.

We will use the Brezzi theory [21] to prove the well-posedness of the Picard

iteration. We recast Algorithm 1 as follows. We first formally eliminate the variables

jnh and En
h from the system by

jnh = ∇̃h×Bn
h, En

h = Re−1
m ∇̃h×Bn

h −Qc(u
n
h ×Bn−1

h ) + RH Qc((∇̃h×Bn
h)×Bn−1

h ),

(3.2.5)

where Qc is the L2-projection to Hh
0(curl,Ω) and ∇̃h× is the weak curl-operator as
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defined in (1.6.13). Then (3.2.4a)-(3.2.4e) becomes

Re −1(∇unh,∇vh) + ((un−1
h · ∇)unh,vh)

−S((∇̃h ×Bn
h)×Bn−1

h ,vh)− (pnh,∇ · vh) = 〈f ,vh〉, (3.2.6a)

Re−1
m (∇̃h ×Bn

h, ∇̃h ×Ch)− (unh ×Bn−1
h , ∇̃h ×Ch)

+RH (∇̃h ×Bn
h)×Bn−1

h , ∇̃h ×Ch) + (∇ ·Bn
h,∇ ·Ch) = 0, (3.2.6b)

−(∇ · unh, qh) = 0. (3.2.6c)

Define Wh := Vh × Hh
0(div,Ω). Given (u−,B−) ∈ Wh, for x = (u,B), y =

(v,C) ∈Wh and p, q ∈ Qh, we define the bilinear forms

a(x,y) := Re −1(∇u,∇v) + ((u− · ∇)u,v)− S((∇̃h ×B)×B−,v)

+ (∇ ·B,∇ ·C) + Re−1
m (∇̃h ×B, ∇̃h ×C)− (u×B−, ∇̃h ×C)

+ RH ((∇̃h ×B)×B−, ∇̃h ×C),

b(x, q) := (∇ · u, q).

The mixed form of the Picard step in Algorithm 1 can be written as: for h ∈W ∗
h

and g ∈ Q∗h, find (x, p) ∈Wh ×Qh, such that for all (y, q) ∈Wh ×Qh,

a(x,y) + b(y, p) = 〈h,y〉, (3.2.7a)

b(x, q) = 〈g, q〉. (3.2.7b)

Define the norms

‖(u,B)‖2
X := ‖∇u‖2 + ‖∇ ·B‖2 + ‖∇̃h ×B‖2, (3.2.8a)

‖p‖Q := ‖p‖. (3.2.8b)

We verify that ‖ · ‖X is a norm. Indeed, ‖(u,B)‖2
X is quadratic for x := (u,B).
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Moreover, when ‖(u,B)‖X = 0, we find u = 0 (Poincaré inequality) and B = 0

(generalised Poincaré inequality or the discrete Gaffney inequality).

Theorem 2. Assume that B− ∈ L∞(Ω). Then, problem (3.2.7b) is well-posed with

the norms defined by (3.2.8a) and (3.2.8b).

Proof. To prove the well-posedness of (3.2.7b) based on the Brezzi theory, we need to

verify the boundedness of each term, the inf-sup condition of b(·, ·) and the coercivity

of a(·, ·) on the discrete kernel defined by

W 0
h := {x ∈Wh : (∇ · u, q) = 0 ∀q ∈ Qh}.

The boundedness of both bilinear forms is obvious from the definition of the norms.

In particular, the Hall term fulfils

|((∇̃h ×B)×B−, ∇̃h ×C)| ≤ ‖∇̃h ×B‖‖B−‖L∞‖∇̃h ×C‖.

The inf-sup condition of b(·, ·) follows by assumption. To prove coercivity on the

kernel, we take v = u and C = SB, yielding

a((u,B), (v,C)) = Re −1‖∇u‖2 + S‖∇ ·B‖2 + SRe−1
m ‖∇̃h ×B‖2,

and thus the coercivity of a(·, ·). Combining the boundedness of the variational

forms, the inf-sup condition of b(·, ·) and the coercivity of a(·, ·) on W 0
h , we complete

the proof.

Remark 2. The assumption B− ∈ L∞(Ω) is due to the Hall term, since we do not

have higher regularity for ∇̃h × B and ∇̃h × C than L2(Ω). The other nonlinear
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terms can be controlled by ‖ · ‖X as, e.g.,

|(u×B−, ∇̃h ×C)| ≤ ‖u‖L6‖B−‖L3‖∇̃h ×C‖

≤ C‖∇u‖(‖∇̃h ×B−‖2 + ‖∇ ·B−‖2)
1
2‖∇̃h ×C‖,

where we used the Poincaré inequality, the Sobolev embedding, and the discrete

Gaffney inequality for the last step. On the discrete level, we always have that the

finite element function B− ∈ L∞(Ω) and hence we have proved the well-posedness

of the discrete problem on a fixed mesh.

Remark 3. In the above proof, we have used that ((u− · ∇)u,u) = 0 which holds

if ∇ · u = 0 is enforced exactly on the discrete level. If one wishes to use a Stokes

pair that is not exactly divergence-free, one can replace this term by ((u− ·∇)u,v)−

((u− · ∇)v,u). This approximation is equal to ((u− · ∇)u,u) = 0 if ∇ · u and a

consistent approximation otherwise, cf. [63].

Remark 4 (Boundary conditions). For the standard MHD equations with u = 0

and B·n = 0 on ∂Ω, the boundary conditions E×n = 0 and j×n = 0 are equivalent

due to Ohm’s law j = E + u×B. However, for the Hall MHD equations E× n = 0

and j× n = 0 are independent. The generalised Ohm’s law then implies

Re−1
m j× n = E× n + (u×B)× n− RH (j×B)× n

⇔ RH (j×B)× n = 0

⇔ RH [(j · n)B− j B · n] = 0

⇒ j · n = 0.

Hence, there exists an additional compatibility condition that j · n = 0.

In the following, we consider the convergence of the Picard iteration.
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Theorem 3. For a fixed mesh drawn from a quasi-uniform sequence (so that the

inverse estimates hold) and f ∈ [H−1]3, unh, pnh, En
h, jnh and Bn

h from Algorithm 1

converge if Rem and Re are small enough.

The proof is similar to [64, Theorem 7], and we only give a sketch of the proof

focusing on the additional Hall term. The essence of the proof is to show that one

gets a contraction in the errors enu := unh − un−1
h and enj := ∇̃h ×Bn

h − ∇̃h ×Bn−1
h ,

i.e.,

1

2
(Re −1‖∇enu‖2 + SRe−1

m ‖enj ‖2) ≤ 1

4
(Re −1‖∇en−1

u ‖2 + SRe−1
m ‖en−1

j ‖2), (3.2.9)

if Re and Rem are small enough. One gets an expression for these errors by sub-

tracting the (n−1)-th step of (3.2.6a)-(3.2.6c) from the n-th step and using the test

functions vh = enu and Ch = Bh. This gives

Re −1‖∇enu‖2 + SRe−1
m ‖enj ‖2 =(unh ×Bn−1

h − un−1
h ×Bn−2

h , enj ) + · · ·

− RH(jnh ×Bn−1
h − jn−1

h ×Bn−2
h , enj ).

(3.2.10)

Here we have omitted other terms of the standard MHD system which are treated

in detail in [64, Theorem 7]. The last term is the Hall term. The first term can be

estimated by

|(unh ×Bn−1
h − un−1

h ×Bn−2
h , enj )| = |(enu ×Bn−1

h , enj ) + (un−1
h × en−1

B , enj )|

≤ C(‖enu‖L6‖Bn−1
h ‖L3‖enj ‖+ ‖un−1

h ‖L6‖en−1
B ‖L3‖enj ‖)

≤ C(‖∇enu‖2 + ‖enj ‖2 + ‖en−1
j ‖2),

where in the last step we have used the Sobolev embedding ‖enu‖L6 ≤ C‖∇enu‖, the

generalised Gaffney inequality ‖en−1
B ‖L3 ≤ C‖∇̃×en−1

B ‖ = C‖en−1
j ‖, and the energy

bounds ‖Bn−1
h ‖L3 ≤ C‖f‖−1, ‖un−1

h ‖ ≤ C‖f‖−1 (‖f‖−1 is assumed to be a given

finite number). For Re −1 and Re−1
m large enough, we can move ‖∇enu‖2 and ‖∇enj ‖2
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to the left hand side of (3.2.10).

The boundedness of the Hall term is more complicated. In fact, for some 0 ≤

δ ≤ 3 depending on the domain,

|(jnh ×Bn−1
h − jn−1

h ×Bn−2
h , enj )| = |(enj ×Bn−1

h , enj ) + (jn−1
h × en−1

B , enj )|

= |(jn−1
h × en−1

B , enj )| ≤ C‖jn−1
h ‖

L
6+2δ
1+δ
‖en−1

B ‖L3+δ‖enj ‖

≤ Ch−
3

3+δ ‖jn−1
h ‖‖en−1

j ‖‖enj ‖

≤ Ch−
3

3+δ (‖en−1
j ‖2 + ‖enj ‖2),

where we used the inverse estimate, the generalised Gaffney inequality and the en-

ergy bound ‖jn−1
h ‖ ≤ C‖f‖−1. Again, we move ‖enj ‖2 to the left hand side of (3.2.10)

if Re −1 and Re−1
m are large enough. The contraction (3.2.9) proves the convergence

of unh and jnh. Note that the convergence of jnh also implies the convergence of Bn
h

since ‖enB‖ ≤ C‖∇̃ × enB‖ = C‖enj ‖.

To show the convergence of pnh, we note that from (3.2.6a),

(pnh − pn−1
h ,∇ · vh) = Re −1(∇enu,∇vh) + ((en−1

u · ∇)unh,vh) + ((un−2
h · ∇)enu,vh)

− S(enj ×Bn−1
h ,vh)− S(jn−1

h × en−1
B ,vh).

From the inf-sup condition of the velocity-pressure pair, there exists vh such that

(pnh − pn−1
h ,∇ · vh) ≥ C‖pnh − pn−1

h ‖2, and ‖vh‖1 ≤ ‖pnh − pn−1
h ‖.

Taking this vh as the test function, we get

C‖pnh − pn−1
h ‖2 ≤Re −1‖enu‖1‖vh‖1 + ‖en−1

u ‖1‖unh‖1‖vh‖1 + ‖un−2
h ‖1‖enu‖1‖vh‖1

+ S‖enj ‖‖Bn−1
h ‖L3‖vh‖1 + S‖jn−1

h ‖‖en−1
B ‖L3‖vh‖1.
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Since unh converges in H1(Ω) and Bn
h converges in L3(Ω) (alternatively, jnh = ∇̃h×Bn

h

converges in L2(Ω)), we obtain the L2-convergence of pnh by the Cauchy-Schwarz

inequality.

For the standard MHD equations, the convergence of the electric field

En
h = Re−1

m ∇̃h ×Bn
h −Qc(u

n
h ×Bn−1

h ) + RH Qc((∇̃h ×Bn
h)×Bn−1

h )

follows from the strong convergence of Bn
h in Hh

0(div)∩Hh
0(curl) ↪→ L3+δ and unh in

H1 ↪→ L6. For the convergence of the Hall-term, we can apply the inverse estimate

as before.

Remark 5. For the standard MHD system, the condition on the size of Re −1 and

Re−1
m only depends on ‖f‖−1. Due to the Hall term, this condition also involves a

factor h−
3

3+δ which might suggest that the convergence of the Picard iteration dete-

riorates on finer meshes. Theorem 3 proves the convergence of the Picard iteration

on a fixed mesh.

3.2.3 2.5D Hall MHD formulation

In this section, we introduce the 2.5-dimensional formulation of (3.1.1), which refers

to the assumption that vector fields still have three components but derivatives in

the z-direction vanish. That means we assume that a three-dimensional vector-field

can be decomposed into a two-dimensional vector field and scalar field with the

notation

B(x, y, z) =

 B̃(x, y)

B3(x, y)

 . (3.2.11)

Recall that there exist two different curl operators in two dimensions, given by

curl B̃ = ∂xB2 − ∂yB1, curlB3 =

 ∂yB3

−∂xB3

 , (3.2.12)
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that correspond to the cross-products

ũ× B̃ = u1B2 − u2B1, B̃× E3 =

 B2E3

−B1E3

 . (3.2.13)

Hence, we can rewrite the three-dimensional cross-product and curl operator as

j×B =

j̃×B3 − B̃× j3

j̃× B̃

 and ∇×B =

curlB3

curl B̃

 . (3.2.14)

With this notation we are able to rewrite (3.1.1) on a bounded polygonal Lips-

chitz domain Ω ⊂ R2 as

−Re −1∆ũ + (ũ · ∇̃)ũ− S (̃j×B3 − B̃× j3) + ∇̃p = f̃ , (3.2.15a)

−Re −1∆u3 + (ũ · ∇̃)u3 − S j̃× B̃ = f3, (3.2.15b)

j̃− curlB3 = 0, (3.2.15c)

j3 − curl B̃ = 0, (3.2.15d)

curlE3 = 0, (3.2.15e)

curl Ẽ = 0, (3.2.15f)

∇̃ · B̃ = 0, (3.2.15g)

∇̃ · ũ = 0, (3.2.15h)

Re−1
m j̃− (Ẽ + ũ×B3 − B̃× u3 − RH (̃j×B3 − B̃× j3)) = 0, (3.2.15i)

Re−1
m j3 − (E3 + ũ× B̃− RH j̃× B̃) = 0, (3.2.15j)

subject to the boundary conditions

ũ = 0, u3 = 0, B̃ · ñ = 0, B3 = 0, j̃× ñ = 0, j3 = 0, Ẽ× ñ = 0, E3 = 0. (3.2.16)

For a finite element discretisation, as before we can look for B̃h in an Hh
0(div)-
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conforming space and for j̃h and Ẽh in an Hh
0(curl)-confirming space. The other

components u3, B3, j3 and E3 are approximated in an Hh
0 (grad)-conforming space.

3.3 Conservative discretisations for

time-dependent problems

For time-dependent problems, we include the time derivatives in the formulation for

the stationary problem, i.e., we add ∂uh
∂t

to (3.2.1a) and ∂Bh
∂t

to (3.2.1c).

3.3.1 Conserved quantities

In the ideal limit of Re = Rem = ∞ it is well-known that the energy, magnetic

helicity and cross helicity are conserved properties of the standard incompressible

MHD system [44]. The energy is defined as

E :=

∫
Ω

|u|2 + S|B|2 dx, (3.3.1)

the magnetic helicity is defined as

HM :=

∫
Ω

A ·B dx, (3.3.2)

for a vector potential A such that ∇×A = B, and the cross helicity is defined as

HC :=

∫
Ω

u ·B dx. (3.3.3)

For the ideal Hall MHD equations, the energy and magnetic helicity are still con-

served, while the cross helicity is not. Here, hybrid helicity replaces the cross helicity
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as a conserved property and is defined as

HH :=

∫
Ω

(A + αu) · (B + β∇× u) dx, (3.3.4)

for α and β satisfying the relation

2Sαβ − RH(α + β) = 0. (3.3.5)

We prove the conservation of hybrid helicity in the next theorem. Note, that the

hybrid helicity is a combination of the magnetic, cross and fluid helicity, which is

defined as

HF :=

∫
Ω

u · ∇ × u dx. (3.3.6)

If RH = 0, i.e., when the Hall term vanishes, the above equality (3.3.5) holds if

α = 0 or β = 0. For α = β = 0, the hybrid helicity is just the magnetic helicity. If

α = 0 and β 6= 0 (alternatively, α 6= 0 and β = 0), the hybrid helicity becomes a

combination of magnetic and cross helicity. Thus the conservation of hybrid helicity

implies the conservation of both magnetic and cross helicity in standard MHD. In

Hall MHD, α = β = 0 still corresponds to the magnetic helicity. But in this case

(3.3.5) does not allow the case α = 0, β 6= 0, or α 6= 0, β = 0. This means that the

cross helicity is not conserved. There exist many non-trivial choices of α and β, for

example, α = β = S−1RH.

Theorem 4. The generalised hybrid helicity HH is conserved in the time-dependent

Hall MHD system with f = 0 and formally Re −1 = Re−1
m = 0 for any α, β such that

(3.3.5) holds.
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Proof. We have

d

dt
HH =

d

dt
(A,B) +

d

dt
[α(u,B) + β(A,ω)] +

d

dt
αβ(u,ω)

=
d

dt
(A,B) +

d

dt
(α + β)(u,B) +

d

dt
αβ(u,ω).

First, the magnetic helicity is conserved, i.e.,

d

dt
(A,B) = 2(Bt,A) = 2(∇× [u×B],A)− 2RH(j×B,A)

= 2(u×B,B)− 2RH(j×B,B) = 0.

It remains to check the other two terms. In fact, from (3.1.1a),

(ut,B) = (B,u× ω + Sj×B−∇p) = (B,u× ω).

From (3.1.1c),

(Bt,u) = −(∇× E,u) = −(E,∇× u) = (u×B− RHj×B,∇× u)

= (u×B,ω)− RH(j×B,ω).

Consequently,

d

dt
(α + β)(u,B) = (α + β)[(ut,B) + (u,Bt)] = −RH(α + β)(j×B,ω).

Moreover,

d

dt
αβ(u,ω) = 2αβ(ut,ω) = 2αβ(u× ω + Sj×B−∇p,ω) = 2Sαβ(j×B,ω).

This implies that

d

dt
HH = [2Sαβ − RH(α + β)](j×B,ω)
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and proves the desired result.

Similar to the discussions in [10], we show that the hybrid helicity provides a

lower bound for the energy when α = β = S−1RH. This bound, which was referred

to as the Arnold inequality in the case of the magnetic helicity [75, Section 8], shows

that non-zero hybrid helicity, as a measure of the knottedness, provides a topological

barrier which prevents a hybrid energy defined by ‖B + S−1RHω‖2 from decaying

below a certain value. The conclusion also holds for dissipative flows where the

helicity is not conserved.

Theorem 5.

‖B + S−1RHω‖2 ≥ C−1|HH |,

where C is the positive constant in the Poincaré inequality.

Proof.

|HH | =
∣∣∣∣∫ (A + S−1RHu) · (B + S−1RHω) dx

∣∣∣∣ ≤ ‖A + S−1RHu‖‖B + S−1RHω‖

≤ C‖B + S−1RHω‖2.

Next, we present time discretisations that preserve the above quantities precisely

on the discrete level. The MHD system has delicate differential structures reflected

in its various conserved quantities, e.g., the energy, the magnetic Gauss law, and the

magnetic and cross/hybrid helicity. In fact, in the proof of the energy conservation,

the Lorentz force and the magnetic convection cancel each other, and the fluid

convection cancels itself. For the cross helicity, the fluid and magnetic convection

cancel each other, and the Lorentz force cancels itself. To construct conservative

numerical methods, it is important to respect these symmetries on the discrete

level. This in turn requires certain algebraic structures among the discrete spaces;

for example, to preserve the magnetic Gauss law, we discretise unknowns on discrete
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de Rham sequences, as in (1.6.8). The magnetic helicity involves the magnetic field

and its potential. Therefore it is largely independent of the fluid discretisation.

However, the energy law and the conservation of cross/hybrid helicity essentially

derive from the symmetric coupling between fluids and electromagnetic fields. Thus

it is not surprising that to preserve them on the discrete level, the finite element

spaces for the velocity and pressure (Stokes pairs) have to interplay with the spaces

for the electromagnetic fields (de Rham sequences).

Therefore, the imposition of the boundary condition u = 0 on ∂Ω can cause

difficulties in designing conservative methods, because the description of all compo-

nents of u on the boundary does not fit to the electromagnetic boundary conditions.

Hence, the literature distinguishes for the standard MHD system between the bound-

ary conditions u×n [60] and u ·n [46], where the velocity field u is discretised with

Hh
0(curl,Ω)- and Hh

0(div,Ω)-conforming finite element spaces respectively. Both

schemes conserve the energy, magnetic and cross helicity precisely on the discrete

level. In the following, we also focus on these two cases and extend the proposed

algorithms for the additional Hall-term and the hybrid helicity.

3.3.2 Helicity and energy preserving scheme for u× n = 0

In this section, we present a time discretisation that preserves the energy and mag-

netic and hybrid helicity precisely for the boundary condition u × n = 0 on ∂Ω.

Since these quantities are only preserved for f = 0 and formally Re −1 = Re−1
m =∞,

we focus only on this case from now on for this section.

The following approach is mainly taken from [60], but adapted for the addi-

tional Hall-term. Let Qc denote the projection to Hh
0(curl,Ω), Qd the projection to

Hh
0(div,Ω) and Ph := ph + 1/2|uh|2 the total pressure.

We first consider a semi-discrete formulation, discretised in space. We formally

eliminate the electric field Eh by the generalised Ohm’s law (3.1.1f). The problem
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is: find (uh(t), Ph(t),Bh(t), jh(t)) ∈ Hh
0(curl,Ω)×H1

0 (Ω)×Hh
0(div,Ω)×Hh

0(curl,Ω)

such that (we drop the argument t in the following)

((uh)t,vh) + (Qc[∇× uh]× uh,vh)

−S(jh ×QcBh,vh) + (∇Ph,vh) = 0 ∀vh ∈ Hh
0(curl,Ω), (3.3.7a)

(uh,∇Qh) = 0 ∀Qh ∈ H1
0 (Ω), (3.3.7b)

((Bh)t,Ch)− (∇×Qc[uh ×QcBh],Ch)

+RH(∇×Qc[jh ×QcBh],Ch) = 0 ∀Ch ∈ Hh
0(div,Ω), (3.3.7c)

(jh,kh)− (Bh,∇× kh) = 0 ∀kh ∈ Hh
0(curl,Ω). (3.3.7d)

This formulation is useful for analysis but not yet amenable to computation, due to

the presence of the projection operators.

Theorem 6. Any solution (uh, ph,Bh, jh) of (3.3.7) fulfils the magnetic Gauss’s law

∇ ·Bh = 0 precisely if ∇ ·B0
h = 0.

Proof. Choosing

Ch = (Bh)t −∇×Qc[uh ×QcBh + RHjh ×QcBh]

in (3.3.7c) gives (Bh)t = ∇×Qc[uh ×QcBh + RHjh ×QcBh] and hence ∇ ·Bh = 0

if ∇ ·B0
h = 0.

Theorem 7. Any solution (uh, ph,Bh, jh) of (3.3.7) satisfies the energy identity

1

2

d

dt
(‖uh‖2 + S‖Bh‖2) = 0.

Proof. Testing (3.3.7a) with uh,

1

2

d

dt
‖uh‖2 = S(jh ×QcBh,uh).
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Testing (3.3.7c) with Bh,

1

2

d

dt
‖Bh‖2 = (∇×Qc[uh ×QcBh],Bh)− RH(∇×Qc[jh ×QcBh],Bh)

= (Qc[uh ×QcBh], jh)− RH(Qc[jh ×QcBh], jh)

= −(jh ×QcBh,uh).

Here we have used the definition of jh in (3.3.7d) and that jh ∈ Hh
0(curl,Ω). Conse-

quently, the desired result holds by adding the above equalities.

On the discrete level we define the hybrid helicity as

HH :=

∫
Ω

(Ah + αuh) · (Bh + βωh) dx, (3.3.8)

where ωh := Qc∇× uh and (α, β) satisfies (3.3.5).

Theorem 8. The hybrid helicity of (3.3.7) is conserved if f = 0 and formally

Re −1 = Re−1
m = 0 for any α, β such that (3.3.5) holds.

Proof. Similar to the continuous level, we have

d

dt
HH =

d

dt
(Ah,Bh) +

d

dt
(α + β)(uh,Bh) +

d

dt
αβ(uh,ωh).

Testing (3.3.7c) with QdAh, using that ∇×Hh
0(curl,Ω) ⊆ Hh

0(div,Ω) and inte-

grating by parts, we have

d

dt
(Ah,Bh) = 2((Bh)t,Ah) = 2(∇×Qc[uh ×QcBh],Ah)− 2RH(∇×Qc[jh ×QcBh],Ah)

= 2(Qc[uh ×QcBh],Bh)− 2RH(Qc[jh ×QcBh],Bh)

= 2(uh ×QcBh,QcBh)− 2RH(jh ×QcBh,QcBh)

= 0.
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Testing (3.3.7a) with QcBh, we have

((uh)t,Bh) = −(Qc[∇× uh]× uh,QcBh) + S(jh ×QcBh,QcBh)

= −(Qc[∇× uh]× uh,QcBh).

Testing (3.3.7c) with Qduh, using that ((Bh)t,Qduh) = ((Bh)t,uh), we have

((Bh)t,uh) = (∇×Qc[uh ×QcBh],uh)− RH(∇×Qc[jh ×QcBh],uh)

= (uh ×QcBh,Qc∇× uh)− RH(jh ×QcBh,Qc[∇× uh])

= (Qc[∇× uh]× uh,QcBh)− RH(jh ×QcBh,Qc[∇× uh]).

Consequently,

d

dt
(α + β)(uh,Bh) = (α + β)[((uh)t,Bh) + (uh, (Bh)t)]

= −RH(α + β)(jh ×QcBh,Qc[∇× uh]).

Moreover, testing (3.3.7a) with Qc[∇× uh], we get

d

dt
αβ(uh,∇× uh) = 2αβ((uh)t,∇× uh)

= −2αβ(Qc[∇× uh]× uh,Qc[∇× uh])

+ 2αβS(jh ×QcBh,Qc[∇× uh])

= 2αβS(jh ×QcBh,Qc[∇× uh]).

This implies that

d

dt
HH = [2Sαβ − RH(α + β)](jh ×QcBh,Qc[∇× uh]).

Similar to Theorem 5 on the continuous level, we have the following. The proof
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is analogous, only using the discrete Poincaré inequality [8, Theorem 5.11].

Theorem 9 (discrete Arnold inequality).

‖Bh + S−1RHωh‖2 ≥ C−1|HH |,

where C is a positive constant.

To render the semi-discrete problem (3.3.7) amenable to computation, we intro-

duce auxiliary variables for the projection operators. The resulting problem is: find

(uh(t), Ph(t),Bh(t),Eh(t), jh(t),Hh(t),ωh(t)) ∈ Hh
0(curl,Ω)×H1

0 (Ω)×Hh
0(div,Ω)×

[Hh
0(curl,Ω)]4), such that for any (vh, qh,Ch,Fh,kh,Gh,µh) in the same space,

((uh)t,vh)− (uh × ωh,vh)− S(jh ×Hh,vh)

+Re −1(∇× uh,∇× vh) + (vh,∇Ph) = 0, (3.3.9a)

(uh,∇Qh) = 0, (3.3.9b)

((Bh)t,Ch) + (∇× Eh,Ch) = 0, (3.3.9c)

(jh,Fh)− (Bh,∇× Fh) = 0, (3.3.9d)

(Hh,Gh)− (Bh,Gh) = 0, (3.3.9e)

(ωh,µh)− (∇× uh,µh) = 0, (3.3.9f)

−Re−1
m (jh,kh) + (Eh,kh)− ((RH jh − uh)×Hh,kh) = 0. (3.3.9g)

Now (3.3.9d) gives jh = ∇̃h × Bh, (3.3.9e) gives Hh = QcBh; and (3.3.9f) gives

ωh = Qc∇× uh.

For the time-discretisation, we replace the time-derivatives of (uh)t and (Bh)t by

the difference quotients

Dtuh =
uk+1
h − ukh

∆t
and DtBh =

Bk+1
h −Bk

h

∆t
. (3.3.10)
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We replace uh and Bh with the average of two neighbouring time steps defined as

uk+ 1
2 := 1

2
(uk+1 + uk) and Bk+ 1

2 := 1
2
(Bk+1 + Bk). All the other auxiliary variables

are only defined on the midpoints of two time steps k + 1
2

(not an average) and

denoted as P
k+ 1

2
h ,E

k+ 1
2

h , j
k+ 1

2
h ,H

k+ 1
2

h and ω
k+ 1

2
h . This way we only have to provide

initial data u0
h and B0

h and then solve the time-discretised version of (3.3.9) for each

k ≥ 1; compare with [60, Algorithm 1].

Theorem 10. The time-discretised version of (3.3.9) preserves the energy, magnetic

and hybrid helicity precisely and enforces ∇ ·Bh = 0 for all time steps; i.e., for all

k ≥ 0 there holds

∫
Ω

uk+1
h · uk+1

h + SBk+1
h ·Bk+1

h dx =

∫
Ω

ukh · ukh + SBk
h ·Bk

hdx, (3.3.11)∫
Ω

Ak+1
h ·Bk+1

h dx =

∫
Ω

Ak
h ·Bk

hdx, (3.3.12)∫
Ω

(
Ak+1
h + αuk+1

h

)
·
(
Bk+1
h + βω

k+1/2
h

)
dx =

∫
Ω

(
Ak
h + αukh

)
·
(
Bk
h + βω

k−1/2
h

)
dx,

(3.3.13)

div Bk
h = 0. (3.3.14)

Proof. These results follow immediately from the proofs of the continuous results

by replacing the continuous time-derivative ∂t by Dt. As an example, we prove the

conservation of the magnetic helicity. It holds that

1

∆t

∫
Ω

Ak+1
h ·Bk+1

h −Ak
h ·Bk

h dx = (DtBh,A
k+1/2
h ) + (DtAh,B

k+1/2
h ).
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From the definition of the scheme, it follows that

(DtBh,A
k+1/2
h ) = −

(
∇× E

k+1/2
h ,

Ak+1
h + Ak

h

2

)
= −

(
E
k+1/2
h ,

Bk+1
h + Bk

h

2

)
= −

(
E
k+1/2
h ,H

k+1/2
h

)
= −

(
[RHj

k+1/2
h − u

k+1/2
h ]×H

k+1/2
h ,H

k+1/2
h

)
= 0.

The term (DtAh,B
k+1/2
h ) vanishes with an analogous proof.

3.3.3 Helicity and energy preserving scheme for u · n = 0

We now consider the boundary conditions u · n = 0 on ∂Ω. The presented scheme

preserves the energy and magnetic helicity precisely, and in contrast to the previous

algorithm also enforces ∇ · uh = 0 precisely, but it does not preserve the hybrid

helicity. Again, we only focus on f = 0 and formally Re −1 = Re−1
m =∞.

The following algorithm is mainly taken from [46], but adapted for the ad-

ditional Hall-term. The semi-discrete form of our algorithm is given by: find

(uh(t), ph(t),Bh(t), jh(t)) ∈ Hh
0(div,Ω) × L2

0(Ω) × Hh
0(div,Ω) × Hh

0(curl,Ω) such

that

((uh)t,vh) + (Qc[(∇̃h × uh)×Qcuh],vh)

−S(Qc[jh ×QcBh],vh)− (ph,∇ · vh) = 0 ∀vh ∈ Hh
0(div,Ω), (3.3.15a)

(∇ · uh, qh) = 0 ∀ qh ∈ L2
0(Ω), (3.3.15b)

((Bh)t,Ch)− (∇×Qc[Qcuh ×QcBh],Ch)+

RH(∇×Qc[jh ×QcBh],Ch) = 0 ∀Ch ∈ Hh
0(div,Ω), (3.3.15c)

(jh,kh)− (Bh,∇× kh) = 0 ∀kh ∈ Hh
0(curl,Ω). (3.3.15d)

For the following theorems, we only show the part of the proof that involves the

additional Hall-term. The remainders of the proofs then coincide with the ones in
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[46].

Remark 6. Similar to before, every solution satisfies ∇ · Bh = 0 if ∇ · B0
h = 0.

Furthermore, the H(div; Ω)-L2(Ω) discretisation allows the exact enforcement of

∇ · uh = 0, e.g., for Vh = BDMk or Vh = RTk and Qh = DGk−1 since then

∇ ·Vh ⊂ Qh.

Theorem 11. Any solution (uh, ph,Bh, jh) of (3.3.15) satisfies the energy identity

1

2

d

dt
(‖uh‖2 + S‖Bh‖2) = 0.

Proof. For the energy identity, it is crucial that the additional Hall term vanishes

when (3.3.15c) is tested with Bh. Indeed, we have that

RH (∇×Qc[jh ×QcBh],Bh) = RH (Qc[jh ×QcBh], jh) = 0,

since Qcjh = jh for jh ∈ Hh
0(curl,Ω).

Theorem 12. The magnetic helicity of (3.3.15) is conserved if f = 0 and formally

Re −1 = Re−1
m = 0.

Proof. We have to show that the Hall-term vanishes when (3.3.15c) is tested with a

vector-potential Ah. Calculating,

RH(∇×Qc[jh ×QcBh],Ah) = RH(Qc[jh ×QcBh],Bh)

= RH(jh ×QcBh,QcBh) = 0.

Remark 7. We discuss why a scheme that conserves hybrid helicity is difficult to

construct for the boundary conditions u · n = 0. First, these boundary conditions

naturally fit with uh ∈ Hh
0(div,Ω). Therefore, the definition of the discrete hybrid

helicity is not straight-forward due to the term ∇×u. Two possible choices could be

HH :=

∫
Ω

(Ah + αuh) · (Bh + βωh) dx, (3.3.16)
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with either ωh = ∇ × Qcuh or ωh = ∇̃h × uh. The evolution of the fluid helicity

would coincide for both definitions since

d

dt
(uh,∇×Qcuh) = ((uh)t,∇×Qcuh) + (uh,∇×Qc(uh)t)

= ((uh)t, ∇̃h × uh +∇×Qcuh)

and

d

dt
(uh, ∇̃h × uh) = ((uh)t, ∇̃h × uh) + (uh, ∇̃h × (uh)t)

= ((uh)t,∇×Qcuh + ∇̃h × uh).

The right-hand side can be modified to ∇ × Qcuh + Q0
d∇̃h × uh, where Q0

d denotes

the projection to the divergence-free functions in Hh
0(div,Ω). This ensures that this

term is a suitable test function in the velocity equation and that the term (ph,∇·vh)

vanishes.

An essential step in a proof for the hybrid helicity conservation on the continu-

ous level is that the advection term from the Navier–Stokes equations vanishes when

tested against ω, i.e., (u × ω,ω) = 0. This already requires a complicated dis-

cretisation of the advection term. A possible choice could be to approximate u × ω

by

1

2
Qd[u× [∇×Qcuh + Q0

d∇̃h × uh]]. (3.3.17)

However, the essence of the conservation proofs is the cancellation of corresponding

terms that result from the symmetry in the discretisation. That means also the

Lorentz force, the Hall-term and magnetic advection terms have to be discretised in

a similar complicated way. We were not able to find an elegant discretisation that

does not require the introduction of many additional terms and auxiliary variables.

Again, to render (3.3.15) computable we introduce auxiliary variables for the pro-
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jections, yielding: find (uh(t), ph(t),Bh(t),Eh(t), jh(t),Hh(t),ωh(t),Uh(t),αh(t)) ∈

Hh
0(div,Ω) × L2

0(Ω) × Hh
0(div,Ω) × [Hh

0(curl,Ω)]6), such that for any

(vh, qh,Ch,Fh,kh,Gh,µh,Vh,βh) in the same space,

((uh)t,vh) + (αh,vh),vh) + (∇ · vh, ph) = 0, (3.3.18a)

(∇ · uh, qh) = 0, (3.3.18b)

((Bh)t,Ch) + (∇× Eh,Ch) = 0, (3.3.18c)

(jh,Fh)− (Bh,∇× Fh) = 0, (3.3.18d)

(Hh,Gh)− (Bh,Gh) = 0, (3.3.18e)

(ωh,µh)− (uh,∇× µh) = 0, (3.3.18f)

(Uh,Vh)− (uh,Vh) = 0, (3.3.18g)

(αh,βh) + (ωh ×Uh,βh)− S(jh ×Hh,βh) = 0, (3.3.18h)

(Eh,kh)− ((RH jh −Uh)×Hh,kh) = 0. (3.3.18i)

Now (3.3.18d) gives jh = ∇̃h × Bh, (3.3.18e) gives Hh = QcBh; (3.3.18f) gives

ωh = ∇̃h×uh, (3.3.18g) gives Uh = Qcuh and (3.3.18h) gives αh = Qc[(∇̃h×uh)×

Qcuh]− SQc[jh ×QcBh].

We use the same time discretisation as in Section 3.3.2; compare also to [46,

Section 6] for a detailed proof of the next theorem. The proofs for the Hall-term

follow immediately from the continuous proofs of Theorem 11 and Theorem 12.

Theorem 13. The time-discretised version of (3.3.18) preserves the energy and

magnetic helicity precisely and enforces div Bh = div uh = 0 for all time steps; i.e.
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3.4. AN AUGMENTED LAGRANGIAN PRECONDITIONER FOR THE HALL
MHD EQUATIONS

for all k ≥ 0 there holds

∫
Ω

uk+1
h · uk+1

h + SBk+1
h ·Bk+1

h dx =

∫
Ω

ukh · ukh + SBk
h ·Bk

hdx, (3.3.19)∫
Ω

Ak+1
h ·Bk+1

h dx =

∫
Ω

Ak
h ·Bk

hdx, (3.3.20)

div ukh = 0, (3.3.21)

div Bk
h = 0. (3.3.22)

3.4 An augmented Lagrangian preconditioner

for the Hall MHD equations

In this section, we try to extend the block preconditioner approach from Section 2.3

to the stationary and time-dependent versions of the Picard and Newton linearisa-

tions from Algorithm 1 and Algorithm 2. In each nonlinear step, we have to solve a

linear system of the form



F B> 0 K̃ K

B 0 0 0 0

0 0 0 −A M

0 0 D C 0

−G 0 −P −G̃ + Ñ L+N





xuh

xph

xEh

xBh

xjh


=



Ruh

Rph

REh

RBh

Rjh


, (3.4.1)

where xuh , xph , xEh , xBh and xjh are the coefficients of the discretised corrections

and Ruh , Rph , REh , RBh and Rjh the corresponding nonlinear residuals. The cor-

respondence between the discrete and continuous operators is illustrated in Table

3.1. As before, we have chosen the notation that operators that include a tilde are

omitted in the Picard linearisation from Algorithm 1.

The following preconditioning approach is similar to one developed in Section

2.3 for the standard incompressible resistive MHD equations. The main idea is
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Discrete Continuous Weak form

Funh − 1
Re

∆unh + un−1
h · ∇unh + unh · ∇un−1

h
1

Re
(∇unh,∇vh) + (un−1

h · ∇unh,vh)
−γ∇∇ · unh +(unh · ∇un−1

h ,vh) + γ(∇ · unh,∇ · vh)
Kjnh −S jnh ×Bn−1

h −S (jnh ×Bn−1
h ,vh)

K̃Bn
h −S jn−1

h ×Bn
h −S (jn−1

h ×Bn
h,vh)

B>pnh ∇pnh −(pnh, div vh)
Bunh − div unh −(div unh, q)
Ljnh

1
Rem

jnh
1

Rem
(jnh,kh)

PEn
h En

h (En
h,kh)

Gunh unh ×Bn−1
h (unh ×Bn−1

h ,kh)

G̃Bn
h un−1

h ×Bn
h (un−1

h ×Bn
h,kh)

N jnh RH jnh ×Bn−1
h RH (jnh ×Bn−1

h ,kh)

ÑBn
h RH jn−1

h ×Bn
h RH (jn−1

h ×Bn
h,kh)

DEn
h ∇× En

h (∇× En
h,Ch)

CBn
h −∇∇ ·Bn

h (∇ ·Bn
h,∇ ·Ch)

Mjnh jnh (jnh,Fh)
ABn

h ∇×Bn
h (Bn

h,∇× Fh)

Table 3.1: Overview of operators. As before, the stationary formulation corresponds
to η = 0 and the transient formulation for implicit Euler to η = 1.

to do a Schur complement approximation which separates the hydrodynamic and

electromagnetic unknowns and then to apply parameter-robust multigrid methods

to the different subproblems.

We start by simplifying the outer Schur complement that eliminates the (uh, ph)

block given by

S(uh,ph) =


0 −A M

D C 0

−P −G̃ + Ñ L+N

−


0 0

0 0

−G 0


F B>

B 0


−1 0 K̃ K

0 0 0

 . (3.4.2)

This order of elimination worked the best for the standard MHD model as we de-
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scribed in Chapter 2 and hence we choose the same order here. Applying the identity

A B

C D


−1

=

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1


(3.4.3)

for non-singular matrices A and D − CA−1B to the (uh, ph) block results in

S(uh,ph) =


0 −A M

D C 0

−P −G̃ + Ñ + GS−1
1,1K̃ L+N + GS−1

1,1K

 (3.4.4)

with

S−1
1,1 = F−1 −F−1B>(BF−1BT )−1BF−1. (3.4.5)

Note that the magnitude of the matrices GS−1
1,1K̃ and GS−1

1,1K is approximately a

factor of O(h2) smaller than of the other matrices at the corresponding entries.

Therefore, a good approximation for a reasonably refined mesh and moderate cou-

pling numbers S is given by

S̃(uh,ph) =


0 −A M

D C 0

−P −G̃ + Ñ L+N

 . (3.4.6)

We treat the hydrodynamic block

MNS =

F B>

B 0

 (3.4.7)

as before in Section 2.3.4. Therefore, we also add the augmented Lagrangian term

γ(∇·unh,∇·vnh) to the velocity equation with a large γ to gain control over the Schur

complement of (3.4.7). Moreover, we use the H(div; Ω)-conforming discretisation
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for uh from (2.2.16) to allow the use of parameter-robust multigrid methods that

can deal with the non-trivial kernels of the occurring semi-definite terms.

We found that applying the same parameter-robust multigrid methods mono-

lithically to the Schur complement approximation S̃(uh,ph) shows good results for

the three dimensional lid-driven cavity problem as long as Rem, S and RH are not

chosen too high at the same time. However, as we explain below, this solver does

not work well for the 2.5D formulation tested on island coalescence problem if RH

is chosen higher than 0.01. Therefore, this solver needs to be investigated further

and we applied a direct solver to this block for the 2.5D formulation.

Alternatively, one could do a further Schur complement approximation of S̃(uh,ph)

with one of the blockings (E,B)− j, (E, j)−B or (B, j)−E. However, the further

Schur complement approximation is not straight-forward and would include the use

of non-conforming discretisations by suitable discontinuous Galerkin methods. We

report iteration numbers for the monolithic approach in the next section.

For completeness, we also outline the block structure of the 2.5D formulation

introduced in Section 3.2.3. We use η ∈ {0, 1} to distinguish between the stationary

(η = 0) and transient (η = 1) cases. The hydrodynamic block

F B>

B 0

 arises now

as the discretisation of the forms
A1 0 (ph,∇ · ṽh)

0 A2 0

(∇ · ũh, qh) 0 0

 (3.4.8)
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with

A1 =
η

∆t
(ũnh, ṽh)−

1

Re
(∇ũnh,∇ṽh) + ((ũnh · ∇̃)ũn−1

h , ṽh) + ((ũn−1
h · ∇̃)ũnh, ṽh)

+ γ(∇ · ũnh,∇ · ṽnh),

A2 =
η

∆t
(un3h, v3h)−

1

Re
(∇un3h,∇v3h) + ((ũnh · ∇̃)un−1

3h , v3h) + ((ũn−1
h · ∇̃)un3h, v3h).

Furthermore,

0 K̃ K

0 0 0

 ,


0 0

0 0

−G 0

 and


0 −A M

D C 0

−P −G̃ + Ñ L+N

 (3.4.9)

correspond to


0 0 S(B̃n

h × jn−1
3h , ṽh) −S (̃jn−1

h ×Bn
3h, ṽh) −S (̃jnh ×Bn−1

3h , ṽh) S(B̃n−1
h × jn3h, ṽh)

0 0 −S (̃jn−1
h × B̃n

h, v3h) 0 −S (̃jnh × B̃n−1
h , v3h) 0

0 0 0 0 0 0

,
(3.4.10)



0 0 0

0 0 0

0 0 0

−(ũnh ×Bn−1
3h ,kh) (B̃n

h × un−1
3h ,kh) 0

−(ũnh × B̃n−1
h , k3h) 0 0


(3.4.11)

and
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

0 0 0 −(Bn
3h, curl F̃h) (̃jnh, F̃h) 0

0 0 −(B̃n
h, curlF3h) 0 0 (jn3h, F3h)

0 (curlEn
3h, C̃h)

η
∆t

(B̃nh ,C̃h)

+ 1
Rem

(∇·B̃nh ,∇·C̃h)
0 0 0

(curl Ẽn
h, C3h) 0 0 η

∆t
(Bn

3h, C3h) 0 0

−(Ẽn
h,kh) 0

(B̃nh×u
n−1
3h ,kh)

−RH(B̃nh×j
n−1
3h ,kh)

(ũn−1
h ×Bn3h,kh)

+RH (̃jn−1
h ×Bn3h,kh)

1
Rem

(̃jnh ,kh)

+RH (̃jnh×B
n−1
3h ,kh)

−RH(B̃n−1
h × jn3h,kh)

0 −(En
3h, k3h)

−(ũn−1
h ×B̃nh ,k3h)

+RH (̃jnh×B̃
n−1
h ,k3h)

0 RH(̃jnh × B̃n−1
h , k3h)

1
Rem

(jn3h, k3h)


.

(3.4.12)

Our numerical experiments suggest that the same outer Schur complement approxi-

mation (now applied to the blocking (ũh, u3h, ph) and (B̃h, B3h, Ẽh, E3h, j̃h, j3h)) still

works well for the 2.5D case. However, we observe poor performance of the mono-

lithic multigrid method applied to this block for an island coalescence and RH > 0.01.

Robust solvers for this inner problem require further investigation and, as mentioned

before, we apply a direct solver to this block in the 2.5D numerical results in the

next section.

3.5 Numerical results

As before, the numerical results were implemented in Firedrake. Moreover, we

replaced the Laplace term −∆u in our implementation by −2∇·ε(u), where ε(u) :=

1/2(∇u + ∇u>) denotes the symmetric gradient. This allows us to also consider

alternative boundary conditions

u = 0 on ΓD,
2

Re
ε(u) · n = pn on ΓN (3.5.1)

with ΓD ∪ ΓN = ∂Ω. Note that both formulations are equivalent for the boundary

conditions u = 0 on ∂Ω which we consider in this work [93, Chap. 15].
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3.5.1 Verification and convergence order

In the first example, we consider the method of manufactured solutions for a smooth

given solution to verify the implementation of our solver and report convergence

rates. We employ the Picard iteration for the stationary problem from Algorithm 1.

The right-hand sides and boundary conditions are calculated corresponding to the

analytical solution

u(x, y, z) =


cos(y)

sin(z)

exp(x)

 , p(x, y, z) = y sin(x) exp(z), B(x, y, z) =


sin(z)

sin(x)

cos(y)

 ,

E(x, y, z) =


x sin(x)

exp(y)

z3

 , j(x, y, z) =


cos(yz)

exp(xz)

sinh(x)

 .

(3.5.2)

We used second order BDM-elements for uh, second order NED1-elements for Eh

and jh, second order RT-elements for Bh and first order DG-elements for ph on

Ω = (0, 1)3. Based on the standard error estimates for these spaces, one would

expect third order convergence in the L2-norm for uh and second order convergence

for ph, Bh, Eh and jh. This is numerically verified by Table 3.2.

h ‖u− uh‖0 rate ‖p− ph‖0 rate ‖B−Bh‖0 rate ‖E− Eh‖0 rate ‖j− jh‖0 rate

1/4 3.08E-04 - 3.52E-02 - 2.44E-03 - 9.57E-03 - 6.77E-03 -
1/8 4.50E-05 2.78 6.58E-03 2.42 6.04E-04 2.02 2.50E-03 1.93 1.79E-03 1.92
1/16 5.99E-06 2.91 1.36E-03 2.27 1.50E-04 2.01 6.32E-04 1.99 4.53E-04 1.98
1/32 7.72E-07 2.96 2.99E-04 2.19 3.74E-05 2.00 1.58E-04 2.00 1.14E-04 1.99

Table 3.2: L2-error and convergence order.
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3.5.2 Lid-driven cavity problem

As in Section 2.4, we consider a lid-driven cavity problem for a background magnetic

field B0 = (0, 1, 0)> which determines the boundary conditions B · n = B0 · n on

∂Ω and set f = 0 for Ω = (−0.5, 0.5)3. The boundary condition u = (1, 0, 0)> is

imposed at the boundary y = 0.5 and homogeneous boundary conditions elsewhere.

Since we consider non-homogeneous boundary conditions in this problem the

boundary conditions for E and j have to be chosen in a compatible way, which we

derive in the following. From (3.1.1b) we can deduce the necessary condition that

Re−1
m j× n = E× n + (u×B)× n− RH(j×B)× n (3.5.3)

has to hold on ∂Ω.

On a face that does not correspond to y = 0.5, we have u = (0, 0, 0)>. Then it

is clear that (3.5.3) is fulfilled if we choose E× n = j× n = 0 on these faces.

On the face y = 0.5, we have that n = (0, 1, 0)> and hence (3.5.3) simplifies to


Re−1

m j3 = −E3 − 1 + RHj1,

Re−1
m j2 = E2,

Re−1
m j1 = E1 + RHj3.

(3.5.4)

If we choose E× n = 0 it follows that

j× n =
1

Re−1
m + RemRH

2


RemRH

0

1

× n. (3.5.5)

In Table 3.3, we present iteration numbers for the Picard and Newton lineari-

sations for the stationary version of the lid-driven cavity problem. Note that we
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applied our scalable solver with a monolithic multigrid method for the Schur com-

plement approximation here. The direct solver that we mentioned earlier is only

used for 2.5D results. We have used the same elements for uh, Bh, Eh and jh and

ph as in the previous example. Moreover, we have used a coarse mesh of 6 × 6 × 6

cells and 3 levels of refinement for the multigrid method resulting in an 48× 48× 48

mesh with 29.2 million DoFs. One can observe good robustness in the reported

ranges of RH for both linearisations. The Newton linearisation shows slightly better

non-linear convergence, while the linear iterations are slightly smaller in most cases

for the Picard iteration.

Table 3.4 shows the corresponding results for the time-dependent version of the

lid-driven cavity problem. Here, we have chosen a time step of ∆t = 0.01 and iter-

ated until the final time of T = 0.1. We iterated some of the cases until the final

time of T = 1.0 to confirm that the reported iteration numbers remain represen-

tative for longer final times. We have chosen the L-stable BDF2 method for the

time-discretisation where the first time step was computed by Crank-Nicolson. We

observe good robustness in both the nonlinear and linear iteration numbers for this

problem.

Figure 2.4 shows plots of the magnetic field for different values of Rem and RH.

For RH = 0 one can nicely observe the physical phenomenon that for the standard

MHD equations the magnetic fields lines tend to be advected by the fluid flow the

higher Rem is chosen. For increasing RH one can see that this effect is damped until

for RH = 1, where the influence of the fluid flow is negligible and the magnetic field

is close to the background magnetic field in the direction of (0, 1, 0)>.

3.5.3 Test of conservative scheme for u× n = 0

In this section, we want to numerically verify our results from Section 3.3.2 for the

boundary conditions u×n = 0. Here, we used Ω = [0, 1]3 and a mesh of 12×12×12
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Rem = 10

Rem = 50

Rem = 100

RH = 0.0 RH = 0.01 RH = 0.1 RH = 1.0

Figure 3.1: Streamlines of the magnetic field for the stationary lid-driven cavity
problem for different values of Rem and RH.
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Picard Newton

RH\Re 1 100 1,000 1 100 1,000

0.0 ( 4) 4.8 ( 4) 5.5 ( 4)10.0 ( 3) 6.0 ( 4) 4.3 ( 4) 8.8
0.1 ( 4) 5.0 ( 4) 4.8 ( 4)10.0 ( 3) 6.0 ( 4) 4.3 ( 4) 9.3
1.0 ( 4) 5.3 ( 4) 4.5 ( 5)10.2 ( 3) 5.0 ( 4) 4.3 ( 4) 12.0

Table 3.3: Iteration counts for the stationary lid-driven cavity problem. The entries
of the table correspond to: (Number of nonlinear iterations) Average number of
linear iterations per nonlinear step.

Picard Newton

RH\Re 1 1,000 10,000 1 1,000 10,000

0.0 (3.0) 5.6 (3.1) 2.2 (3.2) 2.0 (2.1) 7.5 (3.1) 2.2 (3.2) 2.0
0.1 (3.0) 5.6 (3.1) 2.2 (3.2) 2.0 (2.1) 7.5 (3.1) 2.2 (3.2) 2.0
1.0 (3.0) 5.8 (3.1) 2.2 (3.2) 2.0 (2.2) 7.3 (3.1) 2.2 (3.2) 2.0

Table 3.4: Iteration counts for the time-dependent lid-driven cavity problem.

cells. We chose the interpolant of the following functions as the initial conditions

u0(x, y, z) =


− sin(π(x− 0.5)) cos(π(y − 0.5))z(z − 1)

cos(π(x− 0.5)) sin(π(y − 0.5))z(z − 1)

0

 , (3.5.6)

B0(x, y, z) =


− sin(πx) cos(πy)

cos(πx) sin(πy)

0

 , (3.5.7)

which satisfy the boundary conditions u0 × n = 0, B0 × n = 0 and the constraints

∇ · u0 = ∇ · B0 = 0. Remember that the interpolant of divergence-free functions

is still divergence-free for RT and BDM elements, see (2.2.10). We enforce this

property in our implementation by using a sufficiently high quadrature degree in

the evaluation of the degrees of freedom for the RT and BDM elements; see earlier

in this thesis in Section 2.4.2. Here, we discretise u with NED1-elements and p with

CG1-elements.

110



3.5. NUMERICAL RESULTS

For the computation of the magnetic helicity we determine a discrete vector-

potential such that ∇×Ah = Bh by the system

(∇×Ah,∇× kh) = (Bh,∇× kh) ∀ kh ∈ Hh
0(curl,Ω). (3.5.8)

We solve this singular system with GMRES preconditioned by ILU, which is known

to be convergent if the problem is consistent [66].

Although, the scheme (3.3.9) contains multiple auxiliary variables,

it can be solved efficiently with a fixed point iteration [60, Section

4]. For the time step from tk to tk+1 we compute iterative solutions(
u

(k+1,j)
h , P

(k+ 1
2
,j)

h ,B
(k+1,j)
h ,E

(k+ 1
2
,j)

h , j
(k+ 1

2
,j)

h ,H
(k+ 1

2
,j)

h ,ω
(k+ 1

2
,j)

h

)
until the stopping

criterion

‖u(k+1,j+1)
h − u

(k+1,j)
h ‖

‖u(k+1,j)
h ‖

+
‖B(k+1,j+1)

h −B
(k+1,j)
h ‖

‖B(k+1,j)
h ‖

< TOL (3.5.9)

is satisfied for a given tolerance TOL. We initialise the iteration

with the values from time step k and first determine the updates(
E

(k+ 1
2
,j+1)

h , j
(k+ 1

2
,j+1)

h ,H
(k+ 1

2
,j+1)

h ,ω
(k+ 1

2
,j+1)

h

)
by solving (3.3.9d) - (3.3.9g) with

right-hand sides of the level j. Then, we update the velocity and pressure by

1

∆t
(u

(k+1,j+1)
h ,vh) + (∇P (k+ 1

2
,j+1)

h ,vh) = (Fh,vh) ∀ vh ∈ Hh
0(div,Ω), (3.5.10a)

(∇Qh,u
(k+1,j+1)
h ) = 0 ∀ Qh ∈ H1

0 (Ω), (3.5.10b)

with

Fh =
1

∆t
ukh + Sj

(k+ 1
2
,j+1)

h ×H
(k+ 1

2
,j+1)

h +
1

2

(
u

(k+1,j)
h + ukh

)
× ω(k+ 1

2
,j+1)

h . (3.5.11)
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The magnetic field is updated by solving

1

∆t
(B

(k+1,j+1)
h ,Ch) =

1

∆t
(Bk

h,Ch)− (∇× E
(k+ 1

2
,j+1)

h ,Ch) ∀ Ch ∈ Hh
0(div,Ω).

(3.5.12)

Figure 3.2 shows plots of the different conserved quantities for Re = Rem = ∞

and RH = 0.5. One can clearly see that the energy and hybrid helicity remain

constant over time, while the cross and fluid helicity are not conserved. These are

the observations we expected from the theory in Section 3.3.2. Moreover, div(Bh)

and the magnetic helicity also show good preservation with small oscillations on the

machine precision level.

In Figure 3.3, we show plots of the energy and hybrid helicity for RH = 0.1 and

multiple finite values of Re and Rem. This test confirms that both quantities are

indeed only conserved in the ideal limit of Re = Rem =∞.

Finally, Figure 3.4 compares the cross and hybrid helicity for different values of

RH in the ideal limit of Re = Rem = ∞. One can observe that the cross helicity

is indeed only conserved for RH = 0, which corresponds to the standard MHD

equations. On the other hand, the hybrid helicity is conserved for all tested values

of RH. Note that the hybrid helicity corresponds for RH = 0 to the magnetic helicity.

3.5.4 Test of conservative scheme for u · n = 0

In this test, we verify our results from Section 3.3.3 for the boundary conditions

u · n = 0. Here, we use the same initial conditions for B0 as before and

u0 = ∇× vpot with vpot(x, y, z) =
1

π


sin(πy) sin(πz)

sin(πx) sin(πz)

sin(πx) sin(πy)

 , (3.5.13)
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Figure 3.2: Plot of conserved quantities for u× n = 0 in the ideal limit.

Figure 3.3: Plots of the energy (left) and hybrid helicity (right) for different values
of Re and Rem for u× n = 0.
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Figure 3.4: Plots of the cross helicity (left) and hybrid helicity (right) for different
values of RH for u× n = 0 in the ideal limit of Re = Rem =∞.

which satisfy the boundary condition u0 · n = 0 and ∇ · u0 = 0. We discretise u

with RT1-elements and p with DG0-elements. We solve the system with a similar

fixed point iteration to the one we described in the last subsection. The iteration

coincides with that used in [46, Section 6].

In contrast to the case u × n = 0, we now enforce ∇ · uh = 0 precisely over

time. All conserved properties are plotted in Figure 3.5. Remember that the hybrid

helicity is not conserved for this scheme and therefore not displayed here. Moreover,

corresponding plots to Figure 3.3 and 3.4 show similar results and are therefore

omitted here.

3.5.5 Island coalescence problem

Finally, we consider a 2.5-dimensional island coalescence problem to model a mag-

netic reconnection process. We use the same setup as in Section 2.4.3.4. For the

additional variables, we set the equilibrium solution

u3,eq = B3,eq = 0, j̃eq = 0, j3,eq = curl B̃eq. (3.5.14)
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Figure 3.5: Plot of conservative quantities for u · n = 0 in the ideal limit.

The components Ẽeq and E3,eq of the electric field are computed by the equations

(3.2.15i) and (3.2.15j). Since we use a direct solver for the solution of the Schur

complement, we only considered a base mesh 20× 20 cells and three levels of refine-

ment here resulting in an 160× 160 mesh. We iterated until the final time T = 12.0

with a fixed step size of ∆t = 0.025. We considered a length scale of L = 1, a

reference value for the magnetic field of B = 1, a reference density of ρ0 = 1 and a

Alfvén velocity of vA = 1, i.e., the Lundquist number is given here as SL = 1/η and

coincides with Rem.

Figure 3.6 shows the reconnection rate for different choices of RH at Rem = Re =

100, 500, 1,000, 1,500. All graphs have in common that the reconnection process

happens faster for higher Hall parameters. This is consistent with the results of

other numerical experiments [78, Section 4.3][65]. We also observe that additional

peaks occur for high Hall parameters and Reynolds numbers.

For Rem = Re = 100 and Rem = Re = 500 one can observe that the height
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of the peaks increases with growing Hall parameters. At Rem = Re = 1,000 this

trend is broken and for Rem = Re = 1,500 the heights of the peaks starts to

decrease for higher Hall parameters. This observation matches the results shown in

Figure 2 in [68] qualitatively well, even though a slightly different problem setup is

considered. In this figure the resistivity is plotted against the peak reconnection rate.

Since the authors consider the case η = ν with other reference values and length

scales fixed, varying the resistivity corresponds in our case to varying the values of

Re = Rem. Figure 2 in [68] shows that for decreasing η (i.e. increasing Rem) the

peak reconnection rate increases until a certain value of η is reached and then starts

to decrease, which matches our findings. Furthermore, Figure 2 demonstrates that

the decrease in the peak reconnection rate is smaller the higher the Hall parameter

is chosen. While this trend is more obvious in Figure 2 due to the much larger

considered range of approximately 10−5 ≤ η ≤ 10−3 (i.e. 103 ≤ Rem ≤ 105) the

same trend is indicated in our results.
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Figure 3.6: Reconnection rates for an island coalescence problem for different choices
of RH.
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Chapter 4

Bifurcation analysis and robust

solvers for anisothermal MHD

models

In the final chapter of this thesis, we wish to consider discretisations and precondi-

tioners for anisothermal MHD models. In particular, we investigate the Boussinesq

approximation [19, 84] used in the modelling of MHD convection. This approxi-

mation assumes that the flow is buoyancy-driven and that density differences only

appear in the buoyancy term, while other parameters depend neither on the den-

sity or temperature. Moreover, we perform a bifurcation analysis for a magnetic

Rayleigh–Bénard problem and investigate the influence of the coupling number S

on the bifurcation diagrams.
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4.1 Formulation and discretisation

The dimensional formulation of the anisothermal MHD equations with Boussinesq

approximation is given by

∂tu− 2ν∇ · ε(u) + u · ∇u +∇p

+
1

ρ0µ0η
B× (E + u×B) = −β(θ − θ0)ge3, (4.1.1a)

∇ · u = 0, (4.1.1b)

E + u×B− η curl B = 0, (4.1.1c)

∂tB + curl E = 0, (4.1.1d)

∂tθ − α∆θ + u · ∇θ = 0, (4.1.1e)

∇ ·B = 0, (4.1.1f)

subject to the boundary conditions

u = 0, E× n = 0, B · n = 0 on ∂Ω, (4.1.2)

and

θ = θb on ∂ΩD, ∇θ · n = 0 on ∂Ω\∂ΩD, (4.1.3)

for a given temperature distribution θb and a non-empty subset ΩD of ∂Ω. In the

above model, θ denotes the temperature, θ0 a reference temperature, ρ0 a reference

density, β the thermal expansion, g the magnitude of acceleration due to gravity, e3

a unit vector in z-direction, the buoyancy direction, and α the thermal diffusivity.

In this chapter, we are not going to focus on regularity and well-posedness results

for the continuous version of these equations. Results in this direction can be found

in [15, 48, 86].
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For the derivation of non-dimensional version, we introduce the new unknowns

x? =
x

L
, (4.1.4)

t? =
U

L
t, (4.1.5)

u?(x?, t?) =
u(x, t)

U
, U =

α

L
, (4.1.6)

p?(x?, t?) =
p(x, t)L2

ρ0α2
, (4.1.7)

B?(x?, t?) =
B(x, t)

B
, (4.1.8)

E?(x?, t?) =
E(x, t)

UB
, (4.1.9)

θ?(x?, t?) =
θ(x, t)− θ0

θ
, θ = θ1 − θ0, (4.1.10)

with characteristic values for the magnetic field B, the length scale L and a second

reference temperature θ1 > θ0 (e.g., θ1 and θ0 can denote the temperature of the

hot and cold plate in a Bénard type problem). Note that we do not include viscous

dissipation in the temperature equation (4.1.1e).

After dropping the stars, this leads to the non-dimensional system

∂tu− 2Pr∇ · ε(u) + u · ∇u +∇p+ S B× (E + u×B) = Ra Pr θe3, (4.1.11a)

∇ · u = 0, (4.1.11b)

E + u×B− Pr

Pm
curl B = 0, (4.1.11c)

∂tB + curl E = 0, (4.1.11d)

∂tθ −∆θ + u · ∇θ = 0, (4.1.11e)

∇ ·B = 0, (4.1.11f)

with the Prandtl number Pr, magnetic Prandtl number Pm, Rayleigh number Ra
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and coupling number S given by

Pr =
ν

α
, Pm =

ν

η
, Ra =

βgθL3

να
and S =

B
2
L2

ρ0µ0α2
. (4.1.12)

For a further description of these unknowns and typical parameter values in appli-

cations we refer to Section 1.4.

For the stationary formulation of (4.1.11), we combine as in the previous chapters

the equations (4.1.11d) and (4.1.11e) to the augmented Lagrangian formulation

− Pr

Pm
∇∇ ·B + curl E = 0. (4.1.13)

For a weak formulation, we look for the new unknown θ in

H1
0,∂ΩD

:= {τ ∈ H1(Ω) | τ = 0 on ∂ΩD}. Hence, the weak formula-

tion for the homogeneous, stationary problem is given by: find

(u, p, θ,E,B) ∈ X := H1
0 × L2

0 ×H1
0,∂ΩD

×H0(curl)×H0(div) such that for all

(v, q, τ,F,C) ∈ X there holds

2Pr(∇ · ε(u),∇ · ε(v)) + ((u · ∇)u,v)− (p,∇ · v) + S(B× E,v)

+S(B× (u×B),v)− Ra Pr (θe3,v) = 0, (4.1.14a)

−(∇ · u, q) = 0, (4.1.14b)

(E,F) + (u×B,F)− Pr

Pm
(B, curl F) = 0, (4.1.14c)

Pr

Pm
(∇ ·B,∇ ·C) + (curl E,C) = 0, (4.1.14d)

(∇θ,∇τ) + (u · ∇θ, τ) = 0. (4.1.14e)

For a finite element approximation, we approximate the temperature θ with CGk

elements. The finite element spaces for B and E are chosen as in Chapter 2 and

Chapter 3, namely RTk for B and NED1k for E in 3D and CGk for E in 2D. We

mention in each of the following sections which discretisation we choose for u and
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p.

In the previous chapters, the main purpose of the Picard type iteration was to

prove well-posedness results and derive more accurate Schur complement approxi-

mations for the development of our preconditioners. The well-posedness proof for

the Picard iteration of the standard MHD system from [62] is straightforward to

extend to the temperature-dependent case. We only investigate the full Newton

linearisation here, since it outperformed in nearly all cases in the previous chapters

the Picard iteration in terms of iteration numbers.

4.2 Bifurcation analysis for a 2D magnetic

Rayleigh-Bénard problem

The author wants to thank Nicolas Boullé for many helpful discussions which helped

to improve the content of this section.

In this section, we want to perform a bifurcation analysis for a two-dimensional

magnetic Rayleigh-Bénard problem. Our goal is to compute a bifurcation diagram

for the bifurcation parameter Ra in the range between 0 and 100,000 at a high cou-

pling number of S = 1,000. Since these diagrams are quite challenging to compute

directly for high coupling numbers, we start by investigating the bifurcation diagram

over Ra at a low coupling number of S = 1 in Section 4.2.1. We then proceed in

Section 4.2.2 to choose S as bifurcation parameter ranging from 1 to 1,000 with fixed

Ra = 100,000. Finally, we use the obtained results at Ra = 100,000 and S = 1,000

as initial guesses to compute the desired bifurcation diagram over 0 ≤ Ra ≤ 100,000

at S = 1,000 in Section 4.2.3.

Another goal is to study the effect of the magnetic field on the arising bifurcations

in comparison to the standard Rayleigh-Bénard problem for the three unknowns

(u, p, θ), i.e., B = E = 0. Therefore, we compare our results to the ones presented
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in [18]. The outline of this section is heavily influenced by this manuscript and we

use a similar problem setup adapted for the magnetic and electric fields and similar

numerical techniques to compute our numerical results.

For more information about the magnetic Rayleigh-Bénard problem and its bi-

furcation analysis we refer to [113, 52, 80, 4, 24, 81]. Compared to the standard

Rayleigh-Bénard problem, there does not seem to be a rich literature on the bifur-

cation analysis for the magnetic Rayleigh-Bénard problem. Furthermore, we want

to emphasise that we are not aware of any sources that investigate the influence of

the coupling number S on the bifurcation analysis as we do in this section.

In the following, we consider the unit square domain Ω = (0, 1)2 with coordi-

nates (x1, x3), no-slip boundary conditions for u and a background magnetic field

that points in the direction (0, 1)>. Further, we choose the horizontal walls to be

thermally conducting and the vertical walls to be insulating. In summary, this leads

to the boundary conditions

u = 0 on ∂Ω, θ =


1, on {x3 = 0},

0, on {x3 = 1},
, ∇θ · n = 0 on {x1 = 0, 1},

B · n = (0, 1)>n on ∂Ω and E = 0 on ∂Ω.

(4.2.1)

Recall from Section 2.1 that the electric field is a scalar field in two dimensions.

The trivial steady state solution for these boundary conditions, also called the

conduction state, is given by

u0 = 0, p0 = Ra Pr

(
x3 −

1

2
x2

3 −
1

3

)
, θ0 = 1− x3,

B0 = (0, 1)> and E0 = 0.

(4.2.2)

The problem has two symmetries that determine the behaviour of the arising
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bifurcations:

[u1, u2, θ, B1, B2](x1, x3)→ [−u1, u2, θ, B1,−B2](1− x1, x3) (4.2.3)

and

[u1, u2, θ, B1, B2](x1, x3)→ [u1,−u2, 1− θ,−B1, B2](x1, 1− x3) (4.2.4)

which can be easily verified by a direct computation. In our bifurcation diagrams

we always just display one of these four corresponding solutions. The evolution of

the solutions will be represented in terms of ‖u‖2, ‖θ‖2 and ‖B‖2.

Since we want to compare our numerical results to [18], we also use Taylor-

Hood elements of degree 2, i.e., [CG2]2 × CG1 to discretise (u, p) in this section.

Furthermore, we use a triangular mesh with 50× 50 square cells where each square

cell is split into four triangles by the two diagonals of each square. We use this

symmetric mesh to preserve the symmetries of the problem. Note that [18] uses a

quadrilateral mesh.

Since the deflation algorithm, which we introduce in the next paragraph, might

require the solution of hundreds of thousands of nonlinear iterations in total to com-

pute a full bifurcation diagram, we choose this rather coarse mesh here to decrease

the computation time. Moreover, we apply a direct solver to solve the arising linear

systems. In the next section, we introduce a scalable preconditioner that allows to

solve these equations efficiently and robustly on much finer grids. If one is interested

in more accurate solutions for certain parameters, on can then use the solution of

the 50× 50 grid as an initial guess and recompute the solution on finer meshes in a

nested iteration.

We compute our bifurcation diagrams with a technique called deflated contin-

uation. Deflation [39] is a method to compute multiple solutions of a nonlinear
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equations. To introduce this method, we rewrite our system (4.1.11) as F (Φ, λ) = 0

where Φ = (u, p, θ,B, E) and λ ∈ {Ra, S} denotes the bifurcation parameter.

Assuming that Newton’s method has found a solution Φ1 with F (Φ1, λ) = 0, the

deflation algorithm continues by trying to find a root of the deflated residual

F1(Φ, λ) :=M(Φ,Φ1)F (Φ, λ). (4.2.5)

The operatorM should be constructed in a way that eliminates solutions which are

close to the already found solution Φ1 and is close to 1 away from Φ1. In this work,

we choose M as

M(Φ,Φ1) :=

(
1

‖u− u1‖2 + ‖∇(u− u1)‖2 + ‖θ − θ1‖2 + ‖B−B1‖2
+ 1

)
.

(4.2.6)

Newton’s method can then be applied to F1 from the same initial guess. The process

can be repeated to discover multiple solutions. After the deflation method has

found multiple solutions for a fixed λ, deflated continuation proceeds by using the

computed solutions for λ as initial guesses for a parameter continuation from λ to

λ±∆λ (the sign expresses whether we do forward or backward continuation), i.e., we

apply a simple 0-th order continuation here with fixed step-size ∆λ. The algorithm

then iteratively continues by applying a deflated continuation step to each found

solution at λ±∆λ until the final value of λ is reached.

The performance of the deflation algorithm and which solutions are found heav-

ily depends on the available initial guesses for the initial deflation step. We use the

same approach described in [18] to provide initial guesses by computing unstable

eigenmodes linearised around the trivial solution (4.2.2). The initial guesses are

then given by the sum of the trivial solution and the normalised eigenmodes. Note

that this approach is used in [18] to provide initial guesses for backward contin-

uation starting from Ra = 100,000. In general, backward continuation allows to
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compute more complex bifurcation diagrams and especially allows the computation

of disconnected branches which might not be found with forward continuation.

To compute the unstable eigenmodes, we consider the perturbation ansatz


u

θ

B

 =


u0

θ0

B0

+


ũ

θ̃

B̃

 eλt (4.2.7)

for small perturbations ũ, θ̃, B̃ � 1. Linearising system (4.1.11) around the triv-

ial solution (u0, p0, θ0,B0, E0) and inserting the perturbation ansatz leads to the

generalised eigenvalue problem



F −∇ Ra Pr e3 G −SB0×

∇· 0 0 0 0

−∇θ0· 0 ∆− u0 · ∇ 0 0

0 0 0 Pr
Pm
∇∇· − curl

−×B0 0 0 − Pr
Pm

curl −u0· −I





ũ

p

θ̃

B̃

E


= λ



I 0 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 0





ũ

p

θ̃

B̃

E


(4.2.8)

with

F ũ = 2Pr∇ · ε(ũ)− u0 · ∇ũ− ũ · ∇u0 − SB0 × (ũ×B0), (4.2.9)

G B̃ = −S B̃× E0 − S B̃× (u0 ×B0)− SB0 × (u0 × B̃). (4.2.10)

Note that we changed our block matrix notation here slightly by including the

operators directly in the matrix rather than assigning a name to each operator as

previously done, e.g., in Table 2.1.

We solve this eigenvalue problem with a Krylov–Schur solver [105] that is imple-

mented in the library SLEPc [55]. The real and imaginary parts of the computed

eigenvalues determine the stability of the corresponding eigenmode. If the real part
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of all eigenvalues is negative, the solution is stable. If at least one eigenvalue has a

positive real part the solution is unstable, with the type of instability depending on

whether the associated imaginary part is zero or non-zero.

As mentioned before, this technique has been used in [18] to provide initial

guesses at Ra = 100,000 to compute a bifurcation diagram with complex solution

patterns and disconnected branches. The same approach still works for the mag-

netic Rayleigh-Bénard problem at a small coupling number of S = 1, but fails

to provide initial guesses for higher coupling numbers at S = 1,000 from which

Newton’s method is able to converge. Therefore, we proceed with the approach

outlined at the beginning of this section in which we use deflated continuation for

0 ≤ Ra ≤ 100,000 at S = 1 and for 1 ≤ S ≤ 1,000 at Ra = 100,000 to obtain initial

guesses at Ra = 100,000 and S = 1,000. As we will see in Section 4.2.3 this allows

us to compute all primary bifurcations as well a disconnected branch that we were

not able to find with forward continuation.

4.2.1 Bifurcation analysis for 0 ≤ Ra ≤ 100,000 with S = 1

We start by analysing the stability of the conducting state (4.2.2) in the range of

0 ≤ Ra ≤ 100,000 at S = 1 by solving the aforementioned eigenvalue problem

(4.2.8). We observe 11 supercritical bifurcations emanating from the conducting

state in this range. The growth rates of the first 10 unstable eigenfunctions are

displayed in Figure 4.1a. This plot looks nearly identical to [18, Fig. 1] for the

standard Rayleigh–Bénard problem which indicates that the effect of the magnetic

field at S = 1 is almost negligible for the bifurcation patterns. The 11th supercritical

bifurcation starts at Ra(11)
c = 99,528. For the standard Rayleigh–Bénard problem

the 11th supercritical bifurcation starts slightly above 100,000 and is hence not

included in [18].

Similarly, the plots of the eigenfunctions in Figure 4.2 look similar to [18, Fig.
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2]. Figure 4.2 also includes the critical Rayleigh numbers Rac which differ from the

ones of the non-magnetic problem by around one percent. The critical Rayleigh

numbers indicate when a steady states become unstable, i.e., when the real part

of the eigenvalues crosses the zero-line. We compute the critical Rayleigh numbers

accordingly to [18, Sec. B] by solving a generalised eigenvalue problem, where we

interpret Rac as the eigenvalue in



F −∇ 0 G −SB0×

∇· 0 0 0 0

−∇θ0· 0 ∆− u0 · ∇ 0 0

0 0 0 Pr
Pm
∇∇· − curl

−×B0 0 0 − Pr
Pm

curl −u0· −I





ũ

p

θ̃

B̃

E


= Rac



0 0 −Pr e3 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





ũ

p

θ̃

B̃

E


.

(4.2.11)

(a) Over Ra at S = 1. (b) Over S at Ra = 100,000. (c) Over Ra at S = 1,000.

Figure 4.1: Growth rates of eigenmodes emanating from the conducting state.
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Ra(1)
c = 2,609 Ra(2)

c = 6,756 Ra(3)
c = 19,647 Ra(4)

c = 23,408 Ra(5)
c = 25,903

Ra(6)
c = 41,799 Ra(7)

c = 47,364 Ra(8)
c = 74,761 Ra(9)

c = 86,462 Ra(10)
c = 94,524

Figure 4.2: First 10 eigenfunctions of the primary bifurcations that emanate from
the conducting state (4.2.2) for 0 ≤ Ra ≤ 100,000 with S = 1. The top row shows
the magnitude of the velocity, the middle row the temperature and the bottom row
the magnitude of the magnetic field for the different critical Raleigh numbers.
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Since the effect of the magnetic field at S = 1 is negligible, we do not report

a full bifurcation diagram for this case. Instead, we track the evolution of four

branches in Figure 4.3 which we use to generate initial guesses at Ra = 100,000 and

S = 1,000. Branches 1, 2 and 3 correspond to the primary bifurcations that arise

from the third, fourth and seventh eigenmodes at Ra(3)
c = 19,647, Ra(4)

c = 23,408

and Ra(7)
c = 47,364. The tracking of branch 6 allows us to compute a disconnected

branch in the final diagram for 0 ≤ Ra ≤ 100,000 with S = 1,000. We plot branch

6 with a dashed line to highlight the fact that it will become a disconnected branch

in the final diagram. We have chosen a step size of ∆Ra = 500 for this diagram.

0 20000 40000 60000 80000 100000
Ra

1.00

1.25

1.50

1.75

2.00

2.25

‖B‖2

1

2

3

6

Figure 4.3: Bifurcation diagram over 0 ≤ Ra ≤ 100,000 with S = 1.

We also include more detailed graphs of the evolution of these four branches in

Figure 4.4. This figure includes plots of the magnitude of the velocity, temperature

and magnetic field and the real part of the eigenvalues with largest real part. The

number of displayed eigenvalues is manually chosen for each branch, but we typically
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display the first 4 or 6 eigenvalues. We highlight eigenvalues with R(λ) = 0 in green

if the corresponding imaginary part is zero and in red if it is non-zero to indicate

steady bifurcations and Hopf bifurcations. Note that our chosen step size ∆Ra is

not always sufficient to find eigenvalues that fulfil R(λ) = 0 precisely. In any case,

we highlight the eigenvalue that has the smallest absolute magnitude in the real

part. This provides a sufficient indication if the corresponding imaginary parts is

zero or non-zero.

Since the presented branches in Figure 4.4 do not show noticeable differences

to the non-magnetic case from [18], we do not further analyse each figure in detail

here, but we will do so in the next two sections.
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(a) Evolution of branch 1 over Ra for S = 1. Eigenvalues with R(λ) = 0 are highlighted
in green if I(λ) = 0 and in red if I(λ) 6= 0.

(b) Evolution of branch 2 over Ra for S = 1.
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(c) Evolution of branch 3 over Ra for S = 1.

(d) Evolution of branch 6 over Ra for S = 1.

Figure 4.4: Evolution of branch 1, 2, 3 and 6 over Ra for S = 1.
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4.2.2 Bifurcation analysis for 1 ≤ S ≤ 1,000 with Ra = 100,000

We continue by choosing the coupling number S as the bifurcation parameter for

fixed Ra = 100,000 and use the four computed solutions at Ra = 100,000 from the

previous Section 4.2.1 as initial guesses in our deflated continuation algorithm over

1 ≤ S ≤ 1,000. Note that we perform forward deflated continuation this time and

we choose a step size of ∆S = 10/3.

First, we report the growth rate of the most unstable eigenmodes in Figure 4.1b.

Note that Figure 4.1b is a continuation of Figure 4.1a at Ra = 100,000 in the

direction of S and hence starts with 11 unstable eigenmodes at S = 1. Also note

that the smallest growth rate at S = 1 is barely visible due to the small magnitude

of the real part of its eigenvalue. Contrary to the Rayleigh number, the growth

rates decrease with increasing coupling number, leaving only 5 unstable eigenmodes

at S = 1,000.

Analogously to (4.2.11), we can compute the critical coupling numbers Sc by

solving the generalised eigenvalue problem



F −∇ Ra Pr e3 G −SB0×

∇· 0 0 0 0

−∇θ0· 0 ∆− u0 · ∇ 0 0

0 0 0 Pr
Pm
∇∇· − curl

−×B0 0 0 − Pr
Pm

curl −u0· −I





ũ

p

θ̃

B̃

E


= Sc



B0 × (· ×B0) 0 0 0 B0×

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





ũ

p

θ̃

B̃

E


.

(4.2.12)

Note that the other terms in the linearisation of the Lorentz force which would

appear on the right-hand side vanish, since both u0 = 0 and E0 = 0. This results in

the critical coupling numbers S
(1)
c = 12, S

(2)
c = 28, S

(3)
c = 47, S

(4)
c = 329, S

(5)
c = 463

and S
(6)
c = 940. Plots of the eigenfunctions can be found in Figure 4.5.

In Figure 4.6 we present the continuation of the 4 branches that we started with

in the last section. As we can see this will result in 5 initial guesses at Ra = 100,000
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S
(1)
c = 12 S

(2)
c = 28 S

(3)
c = 47 S

(4)
c = 329 S

(5)
c = 463 S

(6)
c = 940

Figure 4.5: Eigenfunctions of the primary bifurcations that emanate from the con-
ducting state (4.2.2) for 1 ≤ S ≤ 1,000 with Ra = 100,000. The top row shows the
velocity, the middle row the temperature and the bottom row the magnetic field for
the different critical coupling numbers.

and S = 1,000 since branch 3 gives rise to two bifurcations. Remember that the

main goal of Section 4.2.1 and Section 4.2.2 was to deliver these initial guesses to

compute the bifurcation diagram over Ra for S = 1,000. This time we analyse each

evolution in more detail.

Figure 4.7a shows the evolution of branch 1. The shape of u, θ and B does not

change notably with increasing S. However, it is very interesting to notice that the

unstable solution at S = 1 starts to become more stable with increasing S until

it turns stable at S ≈ 700. The corresponding imaginary part is positive, which

indicates that a Hopf bifurcation is emerging at this point.

Branch 2 transitions at S = 940 into the conducting state, as can be seen in

Figure 4.7b. Since the sixth critical coupling number S
(6)
c is also located at S = 940

this indicates that branch 2 is a primary bifurcation in the diagram over S. Hence,

the fourth primary bifurcation in the diagram over Ra investigated in the previous

section and the sixth primary bifurcation in the diagram over S correspond to the
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Figure 4.6: Bifurcation diagram over 1 ≤ S ≤ 1,000 with Ra = 100,000.

same bifurcation.

Moreover, branch 2 has two eigenvalues with R(λ) = 0 and I(λ) = 0 at S ≈ 270

and S ≈ 540 highlighted with a green dots in Figure 4.7b. The two bifurcations that

emerge at these points result in branch 4 and branch 5 which are further illustrated

in Figure 4.7d and 4.7e.

Branch 3 is shown in Figure 4.7c and has two turning points in the interval at

around S ≈ 420 and S ≈ 315 which are also indicated by eigenvalues with vanishing

real part in the eigenvalue plots. Note that the S-shaped form creates multi-valued

regions in the graph. Therefore, we include three eigenvalue plots for each region.

The eigenvalue plots of branch 4 and branch 5 in Figure 4.7d and Figure 4.7e have

one turning point. In both graphs the zero eigenvalue at the start of the bifurcation

and at the turning point can be seen. Finally, branch 6 in Figure 4.7f has again a

more complex S-shaped form.
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(a) Evolution of branch 1 over S for Ra = 100,000.

(b) Evolution of branch 2 over S for Ra = 100,000.
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(c) Evolution of branch 3 over S for Ra = 100,000.

(d) Evolution of branch 4 over S for Ra = 100,000.
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(e) Evolution of branch 5 over S for Ra = 100,000.

(f) Evolution of branch 6 over S for Ra = 100,000.

Figure 4.7: Evolution of branches 1, 2, 3, 4, 5 and 6 over S for Ra = 100,000.
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4.2.3 Bifurcation analysis for 0 ≤ Ra ≤ 100,000 with S = 1,000

Finally, we investigate the bifurcation diagram for 0 ≤ Ra ≤ 100,000 with S = 1,000.

The growth rates of the five eigenmodes which emanate from the conducting state are

shown in Figure 4.1c. These five eigenmodes are the extension of the five eigenmodes

at S = 1,000 from Figure 4.1b. In the following, we focus on the first four eigenmodes

(since the fifth one only exists in the short interval [99,041; 100,000]) and display

them in Figure 4.8.

It is worth mentioning that the velocity and temperate eigenmodes both show

a pattern that is oriented in the direction (0, 1)> of the trivial magnetic field B0.

This indicates that for larger coupling number at S = 1,000 the instabilities which

are aligned with the magnetic field occur for smaller Rayleigh numbers. In general,

the order of eigenmodes changes with growing S. For example the 7th eigenmode

in Figure 4.3 at S = 1 corresponds now to the fourth eigenmode at S = 1,000.

For a comparison, we have also included critical Rayleigh numbers and eigen-

modes plots for a trivial magnetic field in the perpendicular direction of (1, 0)>

in Figure 4.9. Here, we just have three primary bifurcations left in the interval

0 ≤ Ra ≤ 100,000, but the third velocity eigenmode is now oriented in the direc-

tion of the magnetic field while the eigenmodes oriented in (0, 1)> occur here for

Ra > 100,000. This seems to underline our observation that for high coupling num-

bers instabilities whose velocity field is aligned with the magnetic field occur for

smaller Rayleigh numbers.

The bifurcation diagrams for the previously tracked branches 1–6 can be found

in Figure 4.10. Further, we include two secondary bifurcations named branch 7 and

branch 8. Note that we used backward continuation here starting at Ra = 100,000

from the initial guesses obtained in the previous section and used a step size of

∆Ra = 1000/3. We proceed by analysing each branch in detail.

Branch 1, illustrated in Figure 4.11a, evolves as expected until Ra ≈ 36,800 where
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Ra(1)
c = 20,029 Ra(2)

c = 23,404 Ra(3)
c = 32,095 Ra(4)

c = 58,571

Figure 4.8: First 4 eigenfunctions of the primary bifurcations that emanate from
the conducting state (4.2.2) for 0 ≤ Ra ≤ 100,000 with S = 1,000. Note that all the
velocity and temperature eigenmodes show a pattern in pointing in the direction of
B0 = (0, 1)>.

Ra(1)
c = 24,483 Ra(2)

c = 60,583 Ra(3)
c = 81,818

Figure 4.9: First 4 eigenfunctions of the primary bifurcations that emanate from
the conducting state 4.2.2 for 0 ≤ Ra ≤ 100,000 with S = 1,000 for the alternative
magnetic field B0 = (1, 0)>. Note that here the third eigenmode is oriented in the
direction of B0 = (1, 0)>.
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Figure 4.10: Bifurcation diagram over 0 ≤ Ra ≤ 100,000 with S = 1,000.

the shape of u, θ and B changes rapidly. For Ra < 36,800 the standard continuation

algorithm fails to converge and we were only able to continue the branch by deflation.

A more detailed diagram of branch 1 in this range of Ra can be found in Figure

4.11b. Here, we can see the S-shaped form of branch 1 which shows that the second

primary bifurcation that originates at Ra(2)
c = 23404 transitions into branch 1. The

author would have expected that branch 1 for Ra > 36,800 is connected to the third

eigenmode, which would corresponds to the expected evolution of the blue line in the

u-, θ- and B-diagram. However, the deflated continuation algorithm was not able

to continue branch 1 in this direction. Neither a much smaller step-size ∆Ra nor a

simulation on more refined grid of 100× 100 cells was able to produce the expected

result. We therefore conjecture that the bifurcation diagram is more complicated

than our expectations.

The deflated continuation algorithm also found a rather surprising evolution of

branch 3 shown in Figure 4.11c. Again we tried smaller step sizes and a more refined
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grid, but this line was the only one discovered. One could have expected that the

fourth primary bifurcation emerging at Ra(4)
c = 58,571 and branch 3 belong to the

same branch, since both branches show similar patterns in the solutions, e.g., the

five vertical stripes in the velocity field. To further investigate the evolution, we

have provided a more detailed diagram for branch 3 in Figure 4.11d in the range

between 84,000 and 94,000. This diagram indeed seems to underline that we follow

branch 3 here rather than starting to follow secondary bifurcations. There exist

two turning points at Ra ≈ 88,743 and Ra ≈ 88,904 showing an S–shaped form for

of this branch. Moreover, there emerges a secondary bifurcation at Ra ≈ 84,677.

Another secondary bifurcation connects the turning point at Ra ≈ 88,904 with the

bifurcation emerging at Ra ≈ 92,165. We have coloured these secondary branches

in grey to indicate that we have found these branches but will not provide a detailed

diagram for them in a separate figure. Finally, we have found a Hopf bifurcation

emerging at Ra ≈ 88,693. Based on the eigenvalue plots we believe that we have

found all bifurcations emerging in that interval and that the bifurcation diagram in

this interval is complete.

Branch 1 and branch 3 have a zero eigenvalue at Ra ≈ 44,000 and Ra ≈ 62,000

as the stability plots in Figure 4.11a and Figure 4.11c show. The corresponding

secondary bifurcation is included in Figure 4.11h and directly connects branch 1

and branch 3. It is interesting to note that branch 7 starts from branch 1 with a

symmetric solution, then breaks its symmetry and retains it again when merging

into branch 3.

The primary bifurcation emerging at Ra(3)
c = 32,095 and Ra(4)

c = 58,571 are illus-

trated in Figure 4.11e and Figure 4.11f. They have zero eigenvalues at Ra ≈ 47,000

and Ra ≈ 72,000. We found another secondary bifurcation that connects these two

branches and included it in Figure 4.11i. The corresponding zero eigenvalues of

branch 4 and branch 5 are highlighted at Ra ≈ 72,000 and Ra ≈ 47,000 in Figure

4.11e and Figure 4.11f.
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PROBLEM

The final branch is the disconnected branch 6 in Figure 4.11g. We want to

emphasise again that we were only able to find this solution by tracking the branch

from S = 1 with deflated continuation over both Ra and S in Section 4.2.1 and

4.2.2.

In conclusion, we have observed rather surprising evolutions of some branches

and have seen how increasing the coupling number can stabilise unstable branches.

Moreover, we have observed that the order of unstable eigenmodes changes with

increasing S and instabilities whose velocity is aligned with the magnetic field arise

for smaller Rayleigh numbers at high S. Finally, we have outlined how disconnected

branches can be found at high coupling numbers.
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(a) Evolution of branch 1 over Ra for S = 1,000. A more detailed plot of the area
highlighted by the dashed rectangle can be found in the next Figure 4.11b.

(b) More detailed evolution of branch 1 over Ra for S = 1,000.
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(c) Evolution of branch 3 over Ra for S = 1,000. A more detailed plot of the area
highlighted by the dashed rectangle can be found in the next Figure 4.11d.

(d) More detailed evolution of branch 3 over Ra for S = 1,000.
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(e) Evolution of branch 4 over Ra for S = 1,000.

(f) Evolution of branch 5 over Ra for S = 1,000.
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(g) Evolution of branch 6 over Ra for S = 1,000.

(h) Evolution of branch 7 over Ra for S = 1,000.
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(i) Evolution of branch 8 over Ra for S = 1,000.

Figure 4.11: Evolution of branch 1, 3, 4, 5, 6, 7, 8 over Ra for S = 1,000.

4.3 An augmented Lagrangian block

preconditioner for anisothermal MHD models

In this section, we extend the block preconditioner that we developed in Chapter 2

to the temperature–dependent case. The goal is to built a preconditioner that is

robust in the linear iteration counts with respect to the parameters Ra, Pr, Pm

and S. This preconditioner can, e.g., be used to compute more refined solutions

for the bifurcation problem studied in the previous section. Recall that due to the

many nonlinear iterations required for the deflated continuation algorithm we chose

a rather coarse mesh of 50×50 cells with a direct linear solver in the previous section.

If one is interested in particular solutions with a finer resolution, the solutions of

the coarse mesh can then be used as initial guesses and this preconditioner can be

applied. Furthermore, our solver could be used to precondition the Krylov-Schur

solver that we used in the previous section to solve the arising eigenvalue problems.
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While the literature on preconditioners for anisothermal MHD models does not

seem to be too rich, the preconditioning of standard Rayleigh-Bénard problems

or thermal convection-driven flows is more well-known, cf. [38, 59] or [37] for an

overview.

In each nonlinear step, we have to solve a system of the form



F ∇ −Ra Pr e3 G SB0×

−∇· 0 0 0 0

∇θn· 0 −∆ + un · ∇ 0 0

0 0 0 − Pr
Pm
∇∇· curl

×B0 0 0 Pr
Pm

curl +un· I





xu

xp

xθ

xB

xE


=



Ru

Rp

Rθ

RB

RE


(4.3.1)

with

Fu = −2Pr∇ · ε(u) + un · ∇u + u · ∇un + SBn × (u×Bn), (4.3.2)

GB = SB× En + SB× (un ×Bn) + SBn × (un ×B). (4.3.3)

Since the equations for B and E do not include the temperature, we group as before

(u, p, θ) and (B,E) together and use

S̃(u,p,θ) =

 − Pr
Pm
∇∇· curl

Pr
Pm

curl +un· I

 (4.3.4)

as an approximation for the outer Schur complement. Equally, we use the same

multigrid method that was described in Section 2.3.5 as a preconditioner for the

Schur complement.

For the top left block, we use a similar idea that was introduced in [38]. The

first step is to perform a further Schur complement approximation grouping together
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(u, θ) and p. For convenience, we reorder the top left block correspondingly to


F −Ra Pr e3 ∇

∇θn· −∆ + un · ∇ 0

−∇· 0 0

 , (4.3.5)

cf. [37, page 452]. As explained in Section 2.3.4, we again control the Schur com-

plement of this system by adding the augmented Lagrangian term −γ∇∇ ·u to the

top-left block F for a large value of γ. Identity (2.3.27) resp. [11, Theorem 3.2] can

still be applied to our system by interpreting (4.3.5) as a 2× 2-block system

A B>

B 0

 with A =

 F −Ra Pr e3

∇θn· −∆ + un · ∇

 and B =

[
−∇· 0

]
. (4.3.6)

Hence, a pressure mass matrix scaled by −1/γ remains a good approximation for

the inner Schur complement provided γ is chosen large enough, e.g., γ = 104.

The second step is to apply the parameter-robust multigrid method, which we

also introduced in Section 2.3.4, monolithically to the (u, θ)-block A. We found that

this approach results in the most robust iteration counts with respect to Ra and Pr

and report numerical results for this approach in the next section. Alternatively,

one could try to eliminate u or θ with a further Schur complement approximation.

However, both Schur complements are not straight-forward to compute.

4.4 Numerical results

In this section, we present numerical results for the block preconditioner that we

introduced in Section 4.3. The results were again produced on ARCHER2, the UK

national supercomputer.
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4.4.1 Stationary magnetic double glazing problem

We start by investigating a magnetic double glazing problem on the domain

Ω = (−1/2, 1/2)d for dimension d = 2, 3. The problem setup for the hydrodynamic

part is taken from [38, Section 5.3]. The boundary conditions are chosen to be

u = 0 on ∂Ω, ∇θ · n = 0 on ∂Ω\(ΓH ∪ ΓC), θ =


1, on ΓH ,

0, on ΓC ,

(4.4.1)

where the hot and cold boundaries are defined as ΓH = {x1 = −1/2} and

ΓC = {x1 = 1/2}. The system is completed with the magnetic boundary conditions

given by

B · n = (0, 1)>n, E = 0 on ∂Ω, (4.4.2)

in two dimensions and

B · n = (0, 0, 1)>n, E× n = 0 on ∂Ω, (4.4.3)

in three dimensions. The magnetic field can, e.g., be used to control the heat

transfer similarly to what we have seen for the magnetic Rayleigh-Bénard problem

where instabilities in the velocity were mainly aligned with the magnetic field.

Note that this setup is different to the magnetic Rayleigh-Bénard problem stud-

ied in the previous Section 4.2, since the direction of gravity is now perpendicular

to the primary heat flow from the hot to the cold plate. In particular, this problem

does not have the symmetries (4.2.3) and (4.2.4) and

u0 = 0, θ0 = 1− x1 and B0 = (0, 1)>, resp., B0 = (0, 0, 1)> (4.4.4)

is no longer a trivial solution of this system. This is due to the fact that there does
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not exist a solution for p to the equation

∇p =

 0

1− x1

 (4.4.5)

since the necessary condition curl (0, 1− x1)> = 0 is not fulfilled.

We investigate the performance of our preconditioner from Section 4.3 for differ-

ent values of Ra, Pr, Pm and S. Note that the coefficient of the magnetic subsystem

is given by Pr/Pm. Hence reducing Pr increases the coupling in the hydrodynamic

and magnetic block at the same time. This corresponds to increasing the Reynolds

numbers Re and Rem at the same time in the numerical results of the previous

chapters. Therefore, we start by choosing Pr = Pm in the first experiment to mimic

the previous experiments where just the fluid Reynolds number Re is varied.

Since we investigate a stationary problem, we perform parameter continuation

as previously explained in Section 2.4.1. Here, we choose the steps 1, 10, 100, 1,000,

10,000, 30,000, 100,000 for Ra, 1.0, 0.1, 0.03, 0.01, 0.003, 0.001 for Pr and 1, 100,

1,000, 10,000 for S. For this problem, we chose a base mesh of 16× 16 cells with 6

levels of refinement resulting in 81.8 million degrees of freedom in two dimensions.

In three dimensions, the base mesh had 6 × 6 × 6 cells with 3 levels of refinement

and 25.8 million DoFs. We used the same H(div)×L2-conforming discretisation for

(u, p) that we introduced in Section 2.2.3.

The numerical results for the two-dimensional case for Pr = Pm are shown

in Table 4.1. We observe very well controlled linear iteration counts for Rayleigh

numbers ranging from 1 to 100,000 and Prandtl numbers ranging from 1.0 to 0.001.

The nonlinear iterations mainly grow with increasing Rayleigh number while they

remain nearly constant with respect to Pr. The missing entry for the hardest case

of Pr = 0.001 and Ra = 100,000 is due to the failure of nonlinear convergence. This

entry might be computable with a smaller step size in the continuation algorithm.
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Pr\Ra 1 100 10,000 100,000

1.0 ( 2) 3.0 ( 4) 3.2 ( 5) 4.8 ( 5) 5.0
0.1 ( 2) 2.5 ( 5) 2.6 ( 5) 4.6 ( 6) 4.7

0.01 ( 2) 2.5 ( 3) 3.7 ( 6) 4.2 ( 6) 5.3
0.001 ( 2) 2.5 ( 3) 2.7 ( 7) 4.0 NF

Table 4.1: (Nonlinear iterations) Average outer Krylov iterations per nonlinear step
for the two-dimensional magnetic double glazing problem with Pr = Pm. NF indi-
cates that this entry was not computable due to the failure of nonlinear convergence.

Table 4.2 shows the iteration numbers for the case of stronger magnetic coupling

where Pm = 1 and is not decreased with Pr. The linear iteration counts remain

again fairly constant in the reported range for Ra between 1 and 100,000 and Pr

between 1.0 and 0.01. The nonlinear convergence was more difficult to achieve for

smaller Pr, which is the reason why this table only report iteration numbers down

to Pr = 0.01. In summary, in both cases the linear solver performs very well in the

reported parameter ranges. The performance of the solver is mainly limited by the

convergence of the nonlinear scheme, which could be improved by choosing smaller

step sizes in the continuation algorithm.

Pr\Ra 1 100 10,000 100,000

1.0 ( 2) 3.0 ( 4) 3.2 ( 5) 4.8 ( 5) 5.0
0.1 ( 2) 2.5 ( 6) 2.5 ( 6) 4.0 ( 6) 4.7

0.03 ( 3) 2.0 ( 6) 2.3 ( 6) 4.0 ( 6) 5.0
0.01 ( 3) 2.0 ( 8) 2.5 ( 6) 5.7 NF

Table 4.2: Iteration counts for the two-dimensional magnetic double glazing problem
for Pm=1.

Streamline plots for different values of Ra with Pm = Pr = 0.01 can be found in

Figure 4.12. For Ra = 1, the plot of θ and B is mainly determined by the bound-

ary conditions we applied, i.e., we observe a linearly decreasing temperature from

the hot to the cold plate and straight magnetic field lines pointing in the direc-
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tion (0, 1)>. The velocity streamlines show a circular pattern and with increasing

Rayleigh number, high fluid velocities start to concentrate in a ring and complex

eddies emerge in the corners of the domain. Moreover, the temperature profile and

magnetic field lines start to rotate around the centre of the domain with increasing

Rayleigh number.

Ra = 1 Ra = 10,000 Ra = 100,000

Figure 4.12: Streamlines for the two-dimensional stationary double glazing problem
for different values of Ra with Pm = Pr = 0.01. The top row shows the magnitude of
the velocity u, the middle row the temperature θ and the bottom row the magnitude
of the magnetic field B.

Moreover, we report the iteration numbers for varying coupling numbers S. We

want to mention that the results presented in Table 4.3 were computed after our
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license for the supercomputer ARCHER2 expired. Therefore, the iteration numbers

were obtained on our local workstation and we had to decrease the number of refine-

ments from 6 to 4 levels for a 16× 16 base mesh. Hence, e.g., the iteration numbers

in the first row of Table 4.1 and Table 4.3 do not coincide. For the coarser mesh,

one can see that the number of linear iterations at S = 1 is higher, while fewer

nonlinear iterations are used in comparison to Table 4.1. In any case, the iteration

numbers remain fairly well controlled when Ra is increased and completely robust

if S is increased.

S/Ra 1 100 10,000 100,000

1 ( 2) 3.0 ( 2) 5.5 ( 4) 6.2 ( 3) 9.3
100 ( 2) 3.5 ( 2) 5.5 ( 4) 6.5 ( 3) 9.7

1,000 ( 2) 3.0 ( 2) 6.0 ( 4) 5.8 ( 4) 6.8
10,000 ( 2) 3.0 ( 2) 6.0 ( 3) 6.0 ( 3) 7.3

Table 4.3: Iteration counts for the two-dimensional magnetic double glazing problem
for varying S. Note that this table was computed for 4 levels of refinement of the
16×16 base mesh instead of the 6 levels that were used in all other two-dimensional
experiments in this section.

Now, we report iteration numbers for the three dimensional version for the cases

Pm = Pr in Table 4.4 and Pm = 1 in Table 4.5. Similar to the three dimensional

results for the standard MHD equation from Chapter 2, we observe that it is harder

to achieve parameter robustness in three dimensions. This might be for the same

reasons outlined at the beginning of Section 2.4.4. For Pm = Pr, we see a moderate

increase in the iteration counts if Ra is increased from 1 to 100,000. As before, the

two missing entries in Table 4.4 are due to failure of the nonlinear iteration.

In the case of stronger magnetic coupling where Pm remains 1 we see more

growth in the iteration numbers for high values of Ra and low values of Pr. In this

case, the missing entries are in fact due to the failure of the linear solver. This

observation is analogous to results reported in Section 2.4.4.1 where we observed
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that the monolithic multigrid solver struggles to deal with high magnetic Reynolds

numbers in three dimensions.

Pr\Ra 1 100 1,000 10,000 100,000

1.0 ( 2) 4.0 ( 3) 5.0 ( 3) 6.7 ( 4) 6.8 ( 4) 7.2
0.1 ( 2) 3.5 ( 3) 6.0 ( 4) 6.2 ( 5) 7.6 ( 5)13.2

0.01 ( 2) 5.5 ( 3)12.7 ( 4)15.2 NF NF

Table 4.4: Iteration counts for the three-dimensional magnetic double glazing prob-
lem with Pr = Pm.

Pr\Ra 1 100 1,000 10,000 100,000

1.0 ( 2) 4.0 ( 3) 5.0 ( 3) 6.7 ( 4) 6.8 ( 4) 7.2
0.1 ( 3) 3.0 ( 3) 6.0 ( 5)10.6 ( 5)17.8 ( 5)22.8

0.03 ( 3) 8.0 ( 4)12.5 LF LF LF

Table 4.5: Iteration counts for the three-dimensional magnetic double glazing prob-
lem for Pm=1. LF indicates that this entry was not computable due to the failure
of linear convergence.

In Figure 4.13 we present streamline and contour plots of the three double glazing

problem at Pm = Pr = 1 where we compare the case of Ra = 1 and Ra = 100,000.

For Ra = 1, the velocity has a similar circular pattern as in two dimensions with high

velocities concentrating at the centre of the domain. For higher Ra, high velocities

start to concentrate near the left and right boundaries. The magnetic field lines

point in the direction of (0, 0, 1)> for Ra = 1 and start to twist around the centre

for higher Ra. Finally, the contour plots for the temperature show a linear decrease

from the left to the right boundary with constant values along the y-axis for Ra = 1.

For Ra = 100,000 they remain mostly constant along the y-axis with a more complex

structure emerging in the other directions.
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(a) Streamlines for velocity with view from front (left) and top (right) at Ra = 1.

(b) Streamlines for velocity with view from front (left) and top (right) at Ra = 105.

(c) Streamlines for magnetic field with view from front (left) and top (right) at Ra = 1.

(d) Streamlines for magnetic field with view from front (left) and top (right) at Ra = 105.
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(e) Temperature contours at Ra = 1. (f) Temperature contours at Ra = 105.

Figure 4.13: Streamlines for the three-dimensional stationary magnetic double glaz-
ing problem for different values of Ra with Pm = Pr = 1.

4.4.2 Magnetic channel cooling problem

Finally, we consider a cooling problem where the magnetic field is applied perpendic-

ular to the temperature gradient. We choose the channel to be Ω = (0, 10)× (−1, 1)

with the boundary conditions

u =


1, on {x1 = 0},

0, else on ∂Ω,

, ∇u · n = 0 on {x1 = 10}, B · n = (0, 1)>n, E = 0,

(4.4.6)

∇θ · n = 0 on {x1 = 10}, θ =


1, on {x1 < 1} ∩ ∂Ω,

−x1 + 2, on {1 < x1 < 2} ∩ ∂Ω,

0, on {x1 > 2} ∩ {x2 = −1, 1} ∩ ∂Ω.

(4.4.7)

For this problem, we use Scott–Vogelius elements of order 2 on barycentrically re-

fined grids. We use a base mesh of 90× 16 cells and 4 levels of refinement with 62.9

million degrees of freedom. We start by reporting results for the stationary problem

in Table 4.6. The linear iteration counts are again very well controlled for Ra up

to 100,000. As before, the the nonlinear solver failed to converge for the cases of
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Pr = 0.1 and Pr = 0.01 at Ra = 100,000.

Pr\Ra 1 100 10,000 100,000

1.0 ( 3) 3.3 ( 3) 3.7 ( 6) 6.3 ( 7) 8.1
0.1 ( 3) 3.0 ( 3) 3.0 ( 6) 4.7 NF

0.01 ( 4) 2.8 ( 2) 2.5 ( 8) 5.9 NF

Table 4.6: Iteration counts for the two-dimensional stationary magnetic cooling
channel problem for Pm = Pr.

The plots in Figure 4.14 demonstrate the effect of different values of Ra on the

flow of the fluid. For Ra = 1, we mainly see a straight flow of the fluid in y-direction.

Similarly, the magnetic field lines mainly point in the direction of (0, 1)> and the

temperature profile is mainly determined by the applied boundary conditions with a

linear decrease between x1 = 1 and x1 = 2. For increasing Rayleigh number one can

see a rotational pattern occurring in the left part of the channel at Ra = 1,000 for

the velocity. Further increasing Ra to 10,000 stretches this pattern in the x-direction

and high velocities mainly occur near the inlet. The temperature starts to decrease

in the interior more quickly and high temperatures are smeared out in the initial

upper half. The magnetic field lines adopt an S-shaped form in the right part of the

channel while at the inlet the lines have a similar pattern to the velocity field.

Note that we consider Pr ≤ 1 in this problem for which the thermal boundary

layers are thicker than the velocity boundary layers. According to Figure 4.14 we

seem to fully resolve the velocity boundary layers with our mesh size.

We also investigated the time-dependent version of this problem. We chose the

L-stable BDF2 time-stepping method, where the first time step was computed with

Crank-Nicolson. We iterated until a final time of T = 1 with a step size of ∆t = 0.01.

Overall, we see well-controlled iteration numbers. The iteration numbers seem to

decrease the smaller Pr is. Since the transient problem does not rely on parameter

continuation, we were able to to compute results for a larger range of parameters
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(a) Streamlines for velocity at Ra = 1, Ra = 1,000 and Ra = 10,000.

(b) Temperature at Ra = 1, Ra = 1,000 and Ra = 10,000.
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(c) Streamlines for magnetic field at Ra = 1, Ra = 1,000 and Ra = 10,000.

Figure 4.14: Streamline plots for the stationary magnetic cooling channel problem.

without observing nonlinear convergence issues. Only in a few cases the first time

step struggled to converge in the nonlinear iteration. In this case, we ran the first

ten time steps with a decreased step size of ∆t = 0.001 to overcome this problem.

Pr\Ra 1 10,000 100,000

1.0 (1.0) 1.6 (2.1) 3.1 (2.8) 5.5
0.1 (1.0) 1.1 (1.9) 1.9 (3.1) 4.3

0.01 (1.0) 1.1 (1.9) 1.5 (2.8) 4.3
0.001 (1.0) 1.0 (1.1) 1.3 (2.1) 2.5

Table 4.7: Iteration counts for the two-dimensional transient magnetic cooling chan-
nel problem for Pm = Pr.
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Chapter 5

Conclusion and Outlook

In this thesis we investigated parameter-robust preconditioners and structure-

preserving discretisations for several MHD models.

In Chapter 2, we have presented scalable block preconditioners for an augmented

Lagrangian formulation of the incompressible resistive MHD equations that exhibit

parameter-robust iteration counts in most cases. We described how to control the

outer Schur complement of a Picard-type and full Newton linearisation and intro-

duced a special monolithic multigrid method to solve the electromagnetic block.

This method shows very good robustness with respect to Re and S in both the

stationary and transient settings. The linear solver is also fully Rem-robust in two

dimensions; in three dimensions, it is able to efficiently compute results for higher

parameters than was previously possible. Furthermore, our solvers allow the use of

fully implicit methods for time-dependent problems.

We aim to include stabilisation techniques for high magnetic Reynolds numbers

in future work and further investigate how to develop a robust multigrid method

for the problem including the term curl(un×B). This would enable a more robust

solver for the most difficult case of stationary problems in three dimensions at high

magnetic Reynolds numbers.

In Chapter 3, we have introduced a structure-preserving finite element discreti-
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sation for the incompressible Hall MHD equations that enforces ∇ ·B = 0 precisely

and proved the well-posedness and convergence of a Picard-type linearisation. Fur-

thermore, we presented formulations that preserve the energy, magnetic and hybrid

helicity precisely on the discrete level in the ideal limit for two types of boundary

conditions. Finally, we investigated a block preconditioning strategy that works well

as long as RH and S or Rem are not chosen too high at the same time.

In future work, we want to improve the robustness of our solver with respect to

the Hall parameter, especially in the 2.5-dimensional case where we currently use

a direct solver to solve the electromagnetic block. This would also enable us to

consider the island coalescence problem on much finer grids. Furthermore, we are

curious to investigate further if there exists a scheme that also preserves the hybrid

helicity at the same time as the other quantities for the case u · n = 0.

In Chapter 4, we investigated anisothermal MHD models. In the first part, we

performed a bifurcation analysis for a two-dimensional magnetic Rayleigh-Bénard

problem. We used deflated continuation to compute a bifurcation diagram over the

parameter 0 ≤ Ra ≤ 100,000 at a high coupling number of S = 1,000. In order to

provide useful initial guesses in this regime to find complex solution patterns and

disconnected branches, we started with a bifurcation analysis over 0 ≤ Ra ≤ 100,000

for S = 1. We then proceeded to use the coupling number S as a bifurcation param-

eter at Ra = 100,000 to construct initial guesses at Ra = 100,000 and S = 1,000. We

demonstrated how an increasing coupling number can stabilise an unstable branch

in one case. Moreover, we were able to find a disconnected branch with our approach

that was not discovered by starting directly at S = 1,000.

In future work, we want to further investigate the two branches in the diagram

for 0 ≤ Ra ≤ 100,000 at S = 1,000 that showed a somewhat surprising evolution

to us. Furthermore, it would also be interesting to study the dependence on the

magnetic Prandtl number Pm on the bifurcation analysis.

In the second part of Chapter 4, we extended the augmented Lagrangian block
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preconditioner from Chapter 2 to the anisothermal version and verified numeri-

cally the good robustness of our scheme with respect to the unknowns Ra,Pr,Pm

and S in the two-dimensional stationary and transient settings. Similar to the

three-dimensional results for the standard MHD equations, a further investigation

is needed to make this solver fully robust with respect to high Pm and small Pr in

the stationary three-dimensional setting.
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preconditioning for anisothermal flow of implicitly-constituted non-Newtonian
fluids. Mathematics of Computation, 91(334):659–697, 2021.

[39] P. E. Farrell, A. Birkisson, and S. W. Funke. Deflation techniques for finding
distinct solutions of nonlinear partial differential equations. SIAM Journal on
Scientific Computing, 37(4):A2026–A2045, 2015.

[40] P. E. Farrell, M. G. Knepley, L. Mitchell, and F. Wechsung. PCPATCH: soft-
ware for the topological construction of multigrid relaxation methods. ACM
Transactions on Mathematical Software, 2021. To appear.

[41] P. E. Farrell, L. Mitchell, L. R. Scott, and F. Wechsung. A Reynolds-robust
preconditioner for the Scott–Vogelius discretization of the stationary incom-
pressible Navier–Stokes equations. The SMAI Journal of Computational Math-
ematics, 7:75–96, 2021.

[42] P. E. Farrell, L. Mitchell, and F. Wechsung. An augmented Lagrangian pre-
conditioner for the 3D stationary incompressible Navier–Stokes equations at
high Reynolds number. SIAM Journal on Scientific Computing, 41(5):A3073–
A3096, 2019.

[43] T. G. Forbes. Magnetic reconnection in solar flares. Geophysical & Astrophys-
ical Fluid Dynamics, 62(1-4):15–36, 1991.

[44] S. Galtier. Introduction to Modern Magnetohydrodynamics. Cambridge Uni-
versity Press, 2015.

[45] N. R. Gauger, A. Linke, and P. W. Schroeder. On high-order pressure-robust
space discretisations, their advantages for incompressible high Reynolds num-
ber generalised Beltrami flows and beyond. The SMAI Journal of Computa-
tional Mathematics, 5:89–129, 2019.

[46] E. S. Gawlik and F. Gay-Balmaz. A finite element method for MHD that pre-
serves energy, cross-helicity, magnetic helicity, incompressibility, and div B = 0.
Journal of Computational Physics, 450:110847, 2022.

[47] J.-F. Gerbeau, C. L. Bris, and T. Lelièvre. Mathematical Methods for the
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netic reconnection. Journal of Geophysical Research: Space Physics, 110(A4),
2005.

171



BIBLIOGRAPHY

[79] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for
indefinite linear systems. SIAM Journal on Scientific Computing, 21(6):1969–
1972, 2000.

[80] A. Naffouti, B. Ben-Beya, and T. Lili. Three-dimensional Rayleigh–Bénard
magnetoconvection: Effect of the direction of the magnetic field on heat trans-
fer and flow patterns. Comptes Rendus Mécanique, 342(12):714–725, 2014.
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