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All models in continuum mechanics start from

Balance laws

Universal relations that hold for any continuous medium.

These include laws for conservation of mass, momentum, and energy.

But the balance laws feature variables that are not specified by the laws! (Stress tensor,
internal energy, heat flux, . . . )

So we must close our model with

Constitutive relations

Relations specific to a given material within a certain range of conditions describing its
response to stimuli.

Boundary conditions

Relations describing the mechanical and thermodynamic interaction between our system of
interest and the rest of the universe.
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The paper of Málek and Pr̊uša has two objectives:

Objective 1

Derive the balance laws of continuum mechanics.

The less familiar objective is

Objective 2

Explain how all constitutive relations can be derived from knowledge of two scalar functions:

the internal energy and the entropy production.

This is tantamount to the proposition that material behaviour is fully characterised by the way
it stores energy and produces entropy.
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Balance laws

Section 1

Balance laws

5 / 23



Balance laws

Our primary goal is the determination of

density ρ
velocity v⃗

temperature θ

for all particles in a fluid and for all times.
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Balance laws Balance of mass

Balance of mass states
dρ

dt
+ ρ∇ · v = 0,

where
dϕ

dt
:=

∂ϕ

∂t
+ (v⃗ · ∇)ϕ

is the material derivative.

No constitutive relations are required for this equation.
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Balance laws Balance of momentum

Balance of (linear) momentum states

ρ
dv⃗

dt
= ∇ · T+ ρ⃗b,

where T is the Cauchy stress tensor and b the (specified) body force density.

The stress T is a key concept in continuum mechanics: it characterises forces on a volume
V (t) of the body due to the resistance of the material surrounding V (t).

We need our first constitutive relation, expressing

T = T(ρ, v⃗, θ) or G(T, ρ, v⃗, θ) = 0.
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Balance laws Balance of angular momentum

Balance of angular momentum can be as complicated as for linear momentum. However, for
non-polar fluids, it reduces to

T = T⊤.

This is a deep fact. The stress tensor takes in normals and returns forces. Why does the
non-polar nature of the fluid mean that there is a dual relationship between forces and
normals?
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Balance laws Balance of total energy

Classical thermodynamics

only deals with materials wherein the physical fields are homogeneous and only undergo
infinitesimally slow changes.

Continuum mechanics + thermodynamics

aims to describe the entire time evolution and spatial distribution of the physical quantities of
interest.

Continuum mechanics and thermodynamics is therefore much more ambitious than classical
thermodynamics.

We can therefore expect analogues of key ideas like internal energy and entropy to arise.
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Balance laws Balance of total energy

By manipulating the balance of total energy, we derive a balance equation for internal energy:

ρ
de

dt
= T : D(v⃗)−∇ · j⃗q

where

e specific internal energy

j⃗q heat flux
D(v⃗) symmetric gradient

T : D(v⃗) stress power

The heat flux quantifies nonmechanical energy exchange (transferred heat) between a volume
V (t) and its surroundings.

We need constitutive relations for e and j⃗q. For a simple ideal gas,

e = cV θ

where cV > 0 is the (constant) latent heat at constant volume.
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Constitutive relations

Section 2

Constitutive relations
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Constitutive relations

Experience with viscous fluids shows that the constitutive relations have the general forms

T = T(ρ, v⃗, θ) or G(T, ρ, v⃗, θ)= 0,

e = e(ρ, v⃗, θ) or E(e, ρ, v⃗, θ) = 0,

j⃗q = j⃗q(ρ, v⃗, θ) or J(⃗jq, ρ, v⃗, θ)= 0.

Bad news

There is not a single fluid for which we know the explicit forms of the constitutive relations in
the whole range of variables.

For this reason thermodynamicists are making every effort to get to know these func-
tions better. They attempt to restrict the generality of these functions . . . The main
tools of constitutive theory for restricting the constitutive functions are universal physi-
cal principles which have been abstracted from long experience with bodies of arbitrary
material. The most important ones among such principles are the principle of ma-
terial frame indifference, the entropy principle and thermodynamic stability.
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Constitutive relations Entropy

Subsection 1

Entropy
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Constitutive relations Entropy

Entropy is a concept introduced to constrain constitutive relations.

We want to rule out certain kinds of constitutive relations. For example,

▶ heat should not spontaneously diffuse from lower to higher temperatures;

▶ an aircraft in flight should be decelerated by the drag force it experiences, not accelerated.

These will both be consequences of the entropy principle.
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Constitutive relations Entropy

The entropy principle is stated axiomatically:

1. there exists an additive objective scalar quantity, the entropy, which a body possesses
much as it possesses mass and energy;

2. the specific entropy η satisfies the balance of entropy

ρ
dη

dt
+∇ · Φ⃗ = ξ

where Φ⃗ is the entropy flux and ξ the entropy production;
3. the second law of thermodynamics is the statement that the entropy production is

nonnegative:
ξ ≥ 0

for all thermodynamic processes (solutions of the balance equations).

For many fluids, the entropy flux is given by

Φ⃗ =
j⃗q
θ
,

which we adopt henceforth. This also tells you the boundary conditions.
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Constitutive relations Entropy

To use this idea, we have to identify the entropy production.

We start with an equation of state
e = e(η, ρ).

Taking the material derivative of this yields

de

dt
=

∂e

∂ρ

dρ

dt
+

∂e

∂η

dη

dt
.

Defining the temperature and pressure as

θ :=
∂e

∂η
, p := ρ2

∂e

∂ρ

isolates an expression for the material derivative of entropy:

dη

dt
= θ−1

[
de

dt
− p

ρ2
dρ

dt

]
.
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Constitutive relations Entropy

Substituting the balance laws for density and energy, and algebraic manipulation, finally yields

θξ := dev(T) : dev(D(v⃗)) + (m+ p)∇ · v⃗ − j⃗q · (∇θ/θ),

for fluids, where
dev S := S− (1/d) tr(S)I, and m = (1/d) tr(T).

Let us now state a more refined version of the second law:

Second law of thermodynamics (summarised from Bothe & Dreyer)

The entropy production ξ is a sum of binary products, each an independent mechanism.

Each summand is the product of a quantity of positive parity and negative parity.

Each summand individually must be nonnegative for all thermodynamic processes.

For example, nonnegativity of the stress power implies that drag forces oppose motion.
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Constitutive relations Constitutive relations from entropy

Subsection 2

Constitutive relations from entropy
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Constitutive relations Constitutive relations from entropy

Gather our terms in the entropy production into vectors:

θξ =
[
dev(T), (m+ p), j⃗q

]
· [dev(D(v⃗)),∇ · v⃗,−(∇θ/θ)]

= J ·A.

We want to specify J = J̃(A).

Key idea

Specify an expression for the entropy production ζ(A) in terms of A.

Our example will be

ζ(A) := 2ν dev(D(v⃗)) : dev(D(v⃗)) + λ̃(∇ · v⃗)2 + κ
|∇θ|2

θ
,

where ν, λ̃, κ are positive functions of state variables.
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Constitutive relations Constitutive relations from entropy

We want to find constitutive relations so that

ξ(J,A) = J ·A = ζ(A).

Key idea

Find constitutive relations J = J̃(A) that maximise ξ subject to ξ = ζ.

In other words, specify the constitutive relations by solving

maximise
A

ζ(A)

subject to ζ(A)− J̃(A) ·A = 0.
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Constitutive relations Constitutive relations from entropy

For our running example, we have

maximise
A

2ν dev(D(v⃗)) : dev(D(v⃗)) + λ̃(∇ · v⃗)2 + κ
|∇θ|2

θ

subject to 2ν dev(D(v⃗)) : dev(D(v⃗)) + λ̃(∇ · v⃗)2 + κ
|∇θ|2

θ
= J̃(A) · [dev(D(v⃗)),∇ · v⃗, (∇θ/θ)] .

In this case of quadratic ζ(A), there is only one choice J̃(A) that satisfies the constraint:

dev(T) = 2ν dev(D(v⃗)),
m+ p = λ̃∇ · v⃗,

j⃗q = −κ∇θ.

These are the constitutive relations for the classical Navier–Stokes–Fourier fluid.
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Constitutive relations Constitutive relations from entropy

You can get other classical models with different ζ:

Euler ζ = 0

Euler–Fourier ζ = κ |∇θ|2
θ

and every possible combination of activating different entropy dissipation mechanisms.

Incompressible and isothermal models arise by demanding that ∇ · v⃗ = 0 or ∇θ = 0
respectively. These demands can be combined with different ζ to arrive at different models.

Various papers of Rajagopal, Málek and coworkers show how you can get

More examples

neo-Hookean and Kelvin–Voigt solids; Maxwell, Oldroyd-B and Giesekus viscoelastic fluids;
Korteweg fluids; power-law fluids, Bingham fluids, . . .
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