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Abstract

Topology optimization finds the optimal material distribution of a continuum
in a domain, subject to PDE and volume constraints. Density-based models
often result in a PDE, volume and inequality constrained, nonconvex, infinite-
dimensional optimization problem. These problems can exhibit many local minima.
In practice, heuristics are used to aid the search for better minima, but these
can fail even in the simplest of cases.

In this thesis we address two core issues related to the nonconvexity of topology
optimization problems: the convergence of the discretization and the computation
of the solutions. First, we consider the convergence of a finite element discretization
of a fluid topology optimization problem. Results available in literature show that
there exists a sequence of finite element solutions that weakly(-*) converges to a
solution of the infinite-dimensional problem. We improve on these classical results.
In particular, by fixing any isolated minimizer, we show that there exists a sequence
of finite element solutions that strongly converges to that minimizer. Moreover,
these results hold for both traditional conforming finite element methods and more
sophisticated divergence-free discontinuous Galerkin finite element methods.

We then focus on developing a solver that can systematically compute multiple
minimizers of a general density-based topology optimization problem. This leads
to the successful computation of 42 distinct solutions of a two-dimensional fluid
topology optimization problem. Finally, by developing preconditioners for the linear
systems that arise during the optimization process, we are able to apply the solver
to three-dimensional fluid topology optimization problems. This culminates in an
example where we compute 11 distinct three-dimensional solutions.
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Any single (topology) optimization formulation that
will produce (close to) 0-1 designs, will be inherently
nonconvex.

—Joakim Petersson & Ole Sigmund, 1998 1
Introduction

1.1 Topology optimization

The design of optimal structures is a ubiquitous task faced in engineering. An

important mathematical technique extensively used in the initial stages of the design

is known as topology optimization. The goal of topology optimization is to find the

optimal design of a structure or device that minimizes an objective functional. The

resulting algorithms are flexible and allow for initial guesses that are substantially

different to the final solution; in particular, prior knowledge of the optimal shape or

topology of the solution is not required. Topology optimization is a more general

technique than its cousin shape optimization, which requires knowledge of the

topology of the solution. The differences are highlighted in Fig. 1.1.

Due to its flexibility, topology optimization has found uses in a number of

industrial applications including airplane wings [1], semiconductor laser designs

[6], sophisticated pumps [15], and orthopaedic implants [175] to name but a few.

Many formulations for topology optimization are infinite-dimensional, nonconvex,

nonsmooth, and constrained optimization problems. As we will discuss throughout

this thesis, such models have a rich complexity in their analysis and pose a distinct

difficulty in the computation of the solutions.

A typical approach for solving topology optimization problems consists of three

components: the formulation, the discretization, and the optimization strategy. The

formulation defines an objective functional to be minimized and states the necessary

constraints. The properties of the continua in question (such as the velocity or

1
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Figure 1.1: Shape (a) vs. topology (b) optimization approaches for minimizing the
compliance of a structure undergoing a force. The initial designs are shown on the left and
the resulting optimal solutions on the right. Shape optimization keeps the topology of the
initial guess during the optimization process. Topology optimization does not have this
requirement and finds a solution with four additional holes, minimizing the compliance
by a further 6%.

position) are normally described by functions that are solutions to partial differential

equations (PDEs). Irrespective of the complexity of the PDEs, infinite-dimensional

solutions to topology optimization problems are very rarely known in practice,

even for baseline problems. Hence, we must discretize the optimization problem in

order to numerically compute approximations to the infinite-dimensional solutions.

The resulting finite-dimensional problem then requires an optimization strategy to

compute the corresponding finite-dimensional solutions. The point at which the

problem is discretized differs between different optimization strategies. We will opt

for an optimize-then-discretize approach, where the first-order optimality conditions

of the infinite-dimensional problem are first derived and then discretized. This is

in contrast to discretizing the optimization problem at the level of the objective

functional. Whilst there is not always a guarantee, an optimize-then-discretize

approach often facilitates the development of mesh-independent solvers [146]. The

choice of formulation, discretization, and optimization strategy tend to be linked.

In this thesis, we focus entirely on the density approach to topology optimization.

First introduced independently by Bendsøe [28] and Zhou and Rozvany [191], in

the density approach, the topology of the solution is parameterized by a function

ρ : Ω → {0, 1}. Optimal regions are defined by the set {ρ = 1 a.e.}, whereas the

subdomain {ρ = 0 a.e.} is interpreted as void or holes in the design domain. Hence,

the problem is reduced to finding the optimal function ρ. In general, restricting the



1. Introduction 3

range of ρ to {0, 1} results in ill-posed or numerically intractable problems. Hence,

the problem is often relaxed to finding functions ρ : Ω→ [0, 1] and an interpolation

scheme is constructed to penalize intermediate values of ρ. The density approach

can be simple to implement. For example, Sigmund and coworkers have designed

code in MATLAB, for certain problems, that are under 100 lines [18, 74, 152].

The construction of the interpolation scheme gives rise to different submodels of

the density approach. Bendsøe [28] and Zhou and Rozvany’s [191] approach was

coined as the solid isotropic material with penalization (SIMP) approach. SIMP is

the most popular interpolation scheme when considering elastic materials [29] and

heat transfer [79]. Other interpolation schemes are known as the rational approxima-

tion of material properties (RAMP) [163] and SINH [44]. An advantage of RAMP

is that there is nonzero sensitivity even if the material distribution value is zero,

which can help remedy certain numerical instabilities. The resulting optimization

problem is an infinite-dimensional PDE-constrained optimization problem. Hence,

any number of classical discretization techniques for the minima can be applied,

including finite difference discretizations [29], finite element discretizations [14, 36,

64, 65], and finite volume discretizations [57, 58, 79, 99, 102, 112, 135, 164, 172].

Many popular optimization strategies are based on calculating the sensitivities of

the objective functional [90, Ch. 1] or by solving the first-order optimality conditions.

By far, the most popular optimization strategy is a nested approach. Here, an update

for the material distribution function is computed via solving the adjoint equation

and then the updates for the state variables are found by solving the forward

problem [142, 165, 166, 191]. The box constraints on the material distribution

complicate the computation of the updates. A popular algorithm to handle the box

constraints is the method of moving asymptotes (MMA) of Svanberg [165].

An alternative to a nested approach is the use of simultaneous analysis and

design (SAND) methods [65, 92]. In a SAND approach, the material distribution

and state variables are simultaneously updated. The advantage of a SAND method

is that it can be reformulated as solving the first-order optimality conditions, which

can be handled by Newton-like methods [90, Ch. 2]. The cost per iteration of
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Newton-like methods can be higher but the convergence is often superlinear [90,

Ch. 2.4.2]. Most importantly for the work in this thesis, Newton-like methods

can be coupled with deflation; an algorithm for computing multiple solutions

of nonlinear PDEs [66]. Rojas-Labanda and Stolpe [141] benchmarked various

nested and SAND based optimizers. The conclusion was that SAND methods

(in particular those based on barrier methods like IPOPT [173]) tended to find

better minimizers than their nested competitors.

Although they are beyond the scope of this thesis, we briefly mention two other

highly successful parameterizations for topology optimization problems; hard-kill

methods and boundary variation methods [53, 154]. In hard-kill methods, the

domain is discretized into (normally square) elements, and the elements are either

tagged with zero or one. If they are tagged as one, they are part of the optimal

design and if not, they are void. In some ways, this can be interpreted as a

density-approach where the material distribution is discretized with a piecewise

constant discretization and the range is not relaxed from {0, 1}. The removal (or

addition) of elements is based on heuristics which do not necessarily involve gradient

information. The most famous hard-kill algorithm is known as the evolutionary

structural optimization method (ESO) [182, 183].

Instead of tracking whole regions, boundary variation methods instead track the

boundaries between the structure and the void. An advantage of these methods is

that they result in clear boundaries, a common criticism of the density approach.

Two commonly used choices of boundary variation methods are level-set methods

[12, 148] and phase-field methods [38]. In level-set methods, the boundary is

tracked by a scalar level-set function which is evolved by implicitly solving the

Hamilton–Jacobi equation. Topological derivatives are sometimes incorporated in

the optimization process in order to aid the introduction of holes away from the

free boundary [11, 47, 176]. In phase-field methods, the boundary is represented

by a scalar phase-field function. Here, the boundary is not tracked throughout

the optimization process and the mechanism of the different “phases” are typically

described by the Allen–Cahn or Cahn–Hilliard equations.
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The first mathematical derivation of a topology optimization problem is often

attributed to a paper of Bendsøe and Kikuchi from 1988 [30]. Their goal was to find

the topology of a two-dimensional linearly elastic material, restricted to occupying

up to a half of a rectangular domain, that minimizes the displacement caused by a

force. This particular problem is known as compliance minimization. Then, in 2003,

the first topology optimization problem for fluids was proposed by Borrvall and

Petersson [36]. They derived a density-based model with an interpolation scheme

similar to RAMP. The setup of an example of a Borrvall–Petersson problem, called

the double-pipe [36, Sec. 4.5], is featured in Fig. 1.2. Here, a Stokes fluid enters

a rectangular domain from two inlets on the left-hand side and exits through two

outlets on the opposing side. The problem enforces a restriction on the volume

that the fluid can occupy: namely, 1/3 of the total area of the rectangle. The goal

is to find the optimal channels, carrying the fluid, that minimize the total power

dissipation of the flow. The velocity profiles of two solutions are given in Fig. 1.3.

Figure 1.2: The setup of the Borrvall–Petersson double-pipe problem, an example of a
topology optimization problem for fluids in Stokes flow. The goal is to find the channels,
restricted to occupying up to 1/3 of the area of the domain, carrying the fluid from the
inlets to the outlets that minimize the power dissipation of the fluid. The setup of the
double-pipe problem is further discussed in Section 4.6.1.

The double-pipe example highlights a key feature of topology optimization

problems: in general they are nonconvex and can support multiple local minima.

This is irrespective of whether a density approach, hard-kill method, or boundary

variation method is used. This was highlighted by Sigmund and Petersson in a

review article published in 1998 [155, Sec. 5] (whom we quote at the beginning
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Figure 1.3: The velocity of two (locally) optimal solutions for the double-pipe problem.
The arrows indicate the direction and magnitude of the flow. The two solutions have
different topologies and the solution on the right results in a power dissipation value that
is roughly 3/4 of the power dissipation of the solution on the left.

of this chapter). Their review focused on the topology optimization of structures.

They drew parallels with the variable thickness sheet problem, which is equivalent

to a special case where the topology optimization problem is convex. Here, it can

be shown a solution exists and is unique [126, Th. 2.1]. However, the solution tends

to be far from a 0-1 solution, leaving significant regions of ambiguity. Typically,

the goal is to find a solution with clearly defined regions where the material should

be placed. Modifying the optimization problem so that the solutions are (close

to) 0-1 solutions typically results in a nonconvex problem.

As topology optimization is generally used in the discovery phase of design,

the ability to compute solutions different to those anticipated by the designer is

extremely valuable. By finding multiple solutions, the designer is able to choose the

best available in a postprocessing step. In particular, designs that are undesirable

due to manufacturing or aesthetic reasons can be discarded. For this reason,

many industrial applications can benefit from having a choice of multiple (locally)

optimal configurations [59].

1.2 Nonconvex optimization

Nonconvex optimization problems can exhibit complicated solution landscapes

consisting of many local and global minima. To this end, we introduce the following

definitions of a global and local minimizer.
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Definition 1.1 (Global minimizer). Consider the set X and a functional J : X → R.

We say that x∗ ∈ X is a global minimizer of J , in the feasible set X, if J(x∗) ≤ J(x)

for all x ∈ X.

Definition 1.2 (Local minimizer). Consider the metric space (X, δX) and a

functional J : X → R. We say that x∗ ∈ X is a local minimizer of J , in the feasible

set X, if there exists an ϵ > 0 such that δX(x∗, x) < ϵ implies that J(x∗) ≤ J(x).

Many efficient optimization strategies, particularly for PDE-constrained opti-

mization problems, are local and utilize gradient information of the problem to

recover a minimum. These algorithms aim to find a stationary solution, i.e. a

solution to the first-order optimality conditions (if they are well-defined for the

problem). However, the stationary solution is not necessarily a global minimizer of

the problem, e.g. in the context of the nonconvex topology optimization problems.

Although many algorithms ensure the computation of a descent direction, there is

often no guarantee whether they converge to a solution that is local or global.

The complications that arise due to the nonconvexity of the infinite-dimensional

optimization problem are two-fold. Firstly, the nonconvexity complicates the

numerical analysis of the convergence of the discretization. In the context of topology

optimization, there is alarmingly scarce analysis on whether the finite element

method converges in a suitable sense to the infinite-dimensional minimizers. Results

on finite element convergence for density-based topology optimization problems

were pioneered by Petersson and coworkers [35, 36, 126–129]. Other finite element

convergence results can also be found in the works of Bourdin [37], Greifenstein and

Stingl [84], Haslinger and Mäkinen [86], and Talischi and Paulino [167]. Often, the

proven convergence is weak in the material distribution, which can allow oscillations

in the approximation. These oscillations are normally called checkerboarding

in the context of topology optimization (see Section 2.3). In some problems, the

convergence of the material distribution is improved to strong convergence. However,

in none of the cited papers does the analysis thoroughly discuss the nonconvexity
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of the problem. It is not clear if there exist finite element sequences that converge

to every infinite-dimensional minimizer of the nonconvex problems.

Secondly, even if we assume that the discretizations are well-behaved, the

challenge of actually computing the discretized minimizers still remains [155]. As

highlighted by Sigmund and Petersson [155, Sec. 4], the most common trick in

topology optimization literature to globally optimize the problem is via continuation

of model parameters. This was first utilized in the context of topology optimization

by Allaire and Francfort [10]. However, continuation is heuristic in this context

and can completely fail. Stolpe and Svanberg [162] have provided elementary

examples where this occurs. For example, a SIMP formulation [29] of the compliance

minimization of a six-bar truss can be reduced to the optimization problem

[162, Sec. 3.1],

min
(x1,x2)∈R2

(
max{ 8βt

xps
1 + 5xps

2
+ 2βt

5xps
1 + xps

2
,

8
xps

1 + 5xps
2

+ 18
5xps

1 + xps
2
}
)

such that x1 + x2 = 1, 0 ≤ x1, x2 ≤ 1.

Here ps denotes the SIMP continuation parameter and βt = 2(1 − ν2
t )/E, where

νt is the Poisson ratio and E is the modulus of elasticity. A typical strategy is

to find a minimizer to the optimization problem at ps = 1, and then, at each

continuation step, use the previous solution as an initial guess for the next value

of ps. In this case, suppose we fix βt = 2.6. A poor starting guess for ps = 1

can result in convergence to the local minimizer x = (0.5, 0.5). Then, even as

ps → ∞, the continuation method will always return x = (0.5, 0.5) and will not

converge to the true global solution, x = (0, 1).

There have been other approaches utilized in the topology optimization literature.

One such technique is a multistart approach, e.g. as applied by Rezayat et al. [139].

Here, the optimization strategy is initialized at various initial guesses in the hope

that the optimization strategy will converge to different minimizers. However, in

general such an approach has a number of limitations:
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• Even after discretization, most topology optimization problems involve com-

puting solutions that are very high-dimensional. Hence, selecting appropriate

initial guesses is nontrivial;

• Without additional mechanisms, this approach can (and often does) converge

to previously found solutions;

• There is no natural termination criterion for stopping the solution landscape

exploration.

A different approach is the use of global search techniques. These algorithms do

not necessarily rely on gradient information and use heuristic and stochastic methods

to update the design. These optimization strategies include genetic algorithms [22,

23, 95, 111, 174, 190], simulated annealing [150], and differential evolution schemes

[179]. However, as documented by Sigmund [153], such approaches do not scale

well as the problem size increases. Moreover, they do not necessarily perform any

better than their gradient-based counterparts [153, Sec. 2]. Other global search

methods include branch-and-bound strategies introduced by Stolpe and others

[4, 5, 136, 187]. However, the solution time of branch-and-bound strategies does

not scale well with increasing problem size.

Another strategy, as investigated by Zhang and Narato [188], is to apply the

tunneling method [107] to these problems, adapting the MMA algorithm. Tunneling

proceeds by finding a single minimum, then looking for other controls that yield the

same functional value (attempting to tunnel into other basins) by solving an auxiliary

equation. Deflation is used in the tunneling phase to ensure that the Gauss–Newton

procedure applied to the tunneling functional does not converge to the current state.

An advantage of this method is that it builds upon current state-of-the-art strategies

already used in the community. However, the tunneling phase has an additional

cost to the algorithm and, for each application, the tunneling parameters require

careful tuning throughout the optimization process [188, Sec. 2]; failing to tune

correctly might result in convergence to solutions that have already been found.
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1.3 Structure and aims of this thesis

The goal of the thesis is to investigate numerical difficulties primarily caused by the

nonconvexity of topology optimization problems. The investigation can be broadly

split into two parts. The first goal is to prove that appropriate discretizations of

a fluid topology optimization problem can suitably approximate all the isolated

minimizers of the infinite-dimensional problem. The second goal is to develop a

solver for systematically computing the multiple discretized solutions of density-

based topology optimization problems.

1.3.1 Analysis

Density-approach models in topology optimization are carefully constructed to

enforce the necessary properties of the continuum in question, whilst also penalizing

intermediate values of the material distribution function. Typically, the material

distribution is coupled to the state variables that are present in the standard

continuum equations. This coupling means that the properties of the state variables,

e.g. higher regularity properties, do not immediately translate to the solutions of

the topology optimization problem. Nevertheless, the solutions tend to exhibit

interesting properties that are not strictly enforced in the model. For instance,

in some models, numerical experiments tend to reveal transitions in the material

distribution that are not sharp, even if the model allows for jumps.

In Chapter 2, we introduce topology optimization models for minimizing the

compliance of elastic structures and minimizing the power dissipation of fluids. In

the latter model, we prove that the volume constraint on the material distribution

is binding, the support of the material distribution is contained within the support

of the velocity, regularity results for the velocity and pressure, and a surprising

regularity result for the material distribution. These analytical results form the

first half of a manuscript that has been submitted for publication [125].

Since a topology optimization problem can feature design domains with compli-

cated geometries and the assumed regularity of the solutions is low, we opt for a

finite element discretization in this work. The finite element method is an umbrella
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term for a large class of different discretizations; we refer to Brenner and Scott

[39] for an introduction. At its core, the finite element method triangulates the

design domain into simple cells and approximates infinite-dimensional functions

by gluing together piecewise polynomials defined on each cell. After posing the

problem in variational form, a finite element method is defined by the choice of the

finite element. The piecewise polynomial can be represented by finite-dimensional

vectors and, hence, can be used for the numerical purposes. A useful property for

any finite element discretization is that as the mesh size tends to zero (i.e. the

maximum diameter of the cells in the triangulation decreases in size), the finite

element solution converges to the infinite-dimensional solution it is approximating.

For (linear) problems with unique solutions, this is normally shown by deriving

approximation estimates [39, Sec. 2.8]. These estimates become increasingly difficult

to prove (if they hold) for nonlinear problems. Hence, convergence is normally proven

indirectly via compactness theorems that can be used to show that subsequences of

bounded sequences of finite element solutions converge. In the case where there

are multiple solutions, one needs to be careful when taking such subsequences as

different subsequences may converge to different solutions.

As previously mentioned, the literature on the convergence of finite element

methods for topology optimization problems is largely underdeveloped. In Chapter 3,

we focus on the Borrvall–Petersson topology optimization problem. We consider

different finite element discretizations, from classical conforming methods to more

modern divergence-free discontinuous Galerkin discretizations. The results for these

different families are similar: for any given isolated minimizer of the problem,

there exists a sequence of finite element solutions, satisfying first-order optimality

conditions, that strongly converges to that minimizer. These are the first results for

the strong convergence of any finite element discretization for the Borrvall–Petersson

problem. We also derive the first error bounds found in literature and show that

the convergence rates of a conforming finite element method can be bounded above

by the convergence of the solutions in weaker norms. The convergence results for

conforming finite element discretizations form the second half of a manuscript that
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has been submitted for publication [125]. The convergence results for divergence-

free discontinuous Galerkin discretizations form a separate manuscript that has

also been submitted for publication [122].

1.3.2 Solvers for the computation of multiple solutions

Given a model and suitable finite element method that can approximate all

the infinite-dimensional isolated minimizers, the next challenge is to develop an

algorithm that can systematically compute these different minimizers. In Chapter 4,

we develop a solver called the deflated barrier method. Although the analytical

and numerical results mainly focus on the Borrvall–Petersson model, the deflated

barrier method is flexible and can be applied to a variety of density-based topology

optimization problems. The deflated barrier method is constructed so that we

retain the property that no prior knowledge of the solutions is required. Hence, in

all examples computed in this thesis, the initial guess for the material distribution

is a constant value in the design domain. The deflated barrier method can be

split into three components:

• deflation, a mechanism for computing multiple solutions of nonlinear problems;

• a primal-dual active set strategy, a Newton-like method that can enforce box

constraints on the solutions;

• barrier-like terms that aid the global nonlinear convergence of the solver.

The deflated barrier method can be seen as a SAND approach. When applied to

the Borrvall–Petersson problem, the setup of the solver is similar to Evgrafov’s

state space Newton’s method [65]. The use of a primal-dual active set strategy

and logarithm terms aid the robustness of the algorithm. The greatest novelty

that the algorithm offers is the application of deflation to topology optimization

problems. Deflation is a technique originally developed for computing all the roots

of a polynomial [178] that has been extended to computing multiple solutions of

nonlinear PDEs [66] and nonlinear variational inequalities [68]. Given a problem with

multiple solutions, the first solution is computed as normal. Deflation is then used
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to quotient out the discovered solution, whilst keeping all the other solutions intact.

The nonlinear solver can no longer converge to the deflated solution and, hence,

will converge to a different solution when reapplied to the problem. Numerically,

deflation is cheap, requiring the evaluation of one inner product after each iteration

of a Newton-like solver and can be incorporated as a post-processing step with

minimal overhead. In Section 4.6 we apply the deflated barrier method to a variety

of compliance and Borrvall–Petersson topology optimization problems. The flagship

example is the computation of 42 distinct solutions to a Borrvall–Petersson problem

with a Navier–Stokes constraint and five holes in the design domain. The deflated

barrier method exhibits superlinear convergence for all problems. For conforming

discretizations of Borrvall–Petersson problems, we find that the iteration counts are

mesh independent and we utilize the solutions to confirm the convergence results

from Chapter 3. The iteration counts are not mesh independent for compliance

problems, however, we use a grid-sequencing strategy that keeps iteration counts

reasonable even on fine meshes. The work in this chapter has been published in

the SIAM Journal on Scientific Computing [124].

A critique of SAND algorithms is that each iteration is more expensive to

compute than their nested approach counterparts. Although the overall iteration

counts may be much lower due to the superlinear convergence, the computational

expense to compute one iteration may become prohibitive when these algorithms

are applied to three-dimensional topology optimization problems. In Chapter 5,

we develop preconditioners for the linear systems that arise when the deflated

barrier method is applied to a Borrvall–Petersson problem with a divergence-free

discontinuous Galerkin finite element discretization. By one application of block

preconditioning, the computational work is immediately reduced to that of a nested

approach whilst still retaining the superlinear convergence properties. However,

we then apply further block preconditioning and control the innermost Schur

complement with an augmented Lagrangian term. As a final step, we develop

a robust multigrid cycle for the augmented momentum block. The multigrid

cycle features a specialized relaxation method, that can handle the semi-definite
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terms arising in the augmented Lagrangian, and a representation of the active

set (as defined by the primal-dual active set strategy) on the coarser levels. This

preconditioner allows us to apply the deflated barrier method to compute multiple

solutions of three-dimensional Borrvall–Petersson problems. The main example

in this chapter is the computation of eleven distinct solutions of a quadruple-pipe

problem with five internal holes in the design domain. The work in this chapter

has been included in a manuscript that is in preparation [123].

In Chapter 6, we summarize the work and discuss directions for future extensions.



The art of structure is where to put the holes.

—Robert Le Ricolais, 1894–1977 2
Topology optimization

In this chapter we discuss the formulation of a density approach to topology

optimization problems. Once the general problem is defined, we develop two

particular models of topology optimization problems: the topology optimization

of the minimization of the displacement of a linearly elastic material, and the

topology optimization of the power dissipation of fluids. We discuss the fluid model

in detail, proving a number of novel results. We show that strict minimizers of the

fluid problem are binding at the volume constraint, satisfy first-order optimality

conditions, and possess higher regularity.

2.1 Functional analysis

Before we construct the models, we first define appropriate spaces for the solutions.

Throughout this work Ω ⊂ Rd, d ∈ {2, 3}, denotes an open and bounded Lipschitz

domain. Let Ck(Ω) denote the set of real-valued k-times continuously differentiable

functions in Ω and let C∞
c (Ω) denote the set of smooth functions with compact

support in Ω. By considering the closure of Ω, denoted Ω̄, we define the norm

∥ · ∥Ck(Ω̄), for any u ∈ Ck(Ω̄) by

∥u∥Ck(Ω̄) = sup
x∈Ω̄
|u(x)|+

k∑
i=1

sup
x∈Ω̄
|∇iu(x)|. (2.1)

A continuous function, u ∈ C0(Ω̄), is Hölder continuous with exponent r ∈ (0, 1]

in Ω, denoted u ∈ C0,r(Ω̄), if there exists c > 0 such that

|u|C0,r(Ω̄) := sup
x ̸=y∈Ω̄

|u(x)− u(y)|
∥x− y∥r

≤ c <∞, (2.2)

15
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where ∥ · ∥ is the Euclidean norm. We say that u ∈ Ck,r(Ω̄) if there exists

c > 0 such that

∥u∥Ck,r(Ω̄) = ∥u∥Ck(Ω̄) + |∇ku|C0,r(Ω̄) ≤ c <∞. (2.3)

We use the standard notation for the Lebesgue and Sobolev spaces equipped with

their standard norms, e.g. (Lr(Ω), ∥ · ∥Lr(Ω)) and (W k,r(Ω), ∥ · ∥W k,r(Ω)). The Banach

space (L∞(Ω), ∥·∥L∞(Ω)) denotes the vector space of essentially bounded measurable

functions equipped with the essential supremum norm. We denote dual spaces with

a star ∗. The space of traces on the boundary of a function in W 1,r(Ω) is denoted

by W 1/r′,r(∂Ω) where r′ is the Hölder conjugate of r, i.e. 1/r + 1/r′ = 1. When

it exists, the boundary trace operator is denoted by |∂Ω : W 1,r(Ω)→ W 1/r′,r(∂Ω).

When k = 1 and r = 2, we define the Hilbert space H1(Ω) := W 1,2(Ω) equipped

with the inner product (u, v)H1(Ω) :=
∫

Ω uv +∇u · ∇v dx where ∇ denotes the weak

gradient [63, Ch. 5.2]. Moreover, the spaces W k,r(Ω)d, d ∈ {2, 3}, are the set of

vector-valued functions u = (u1, . . . , ud) such that each component ui ∈ W k,r(Ω),

i = 1, . . . , d. We define the following subspaces as:

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
, (2.4)

H1
div(Ω)d := {v ∈ H1(Ω)d : div(v) = 0 a.e. in Ω}, (2.5)

H1
0 (Ω)d := {v ∈ H1(Ω)d : v|∂Ω = 0}. (2.6)

Let Γ ⊆ ∂Ω be a subset of the boundary with nonzero Hausdorff measure Hd−1(Γ) >

0. If g ∈ H1/2(Γ)d, then, the following subspaces are defined as:

H1
|Γ,g(Ω)d := {v ∈ H1(Ω)d : v|Γ = g}, (2.7)

H1
|Γ,g,div(Ω)d := H1

|Γ,g(Ω)d ∩H1
div(Ω)d. (2.8)
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We also define the following function spaces which will be utilized when considering

nonconforming velocity finite element spaces in Chapter 3:

H(div; Ω) :=
{
v ∈ L2(Ω)d : div(v) ∈ L2(Ω)

}
, (2.9)

H0(div; Ω) := {v ∈H(div; Ω) : (v · n)|∂Ω = 0} , (2.10)

Hg(div; Ω) := {v ∈H(div; Ω) : (v · n)|∂Ω − g · n = 0} , (2.11)

Hg,div(div; Ω) := {v ∈Hg(div; Ω) : div(v) = 0 a.e. in Ω} . (2.12)

We note that (v ·n)|∂Ω is well defined for all v ∈H(div; Ω) [19, Th. 3.12]. Moreover,

H(div; Ω) is a Hilbert space when equipped with the inner product

(u,v)H(div;Ω) :=
∫

Ω
u · v + div(u) div(v) dx. (2.13)

Throughout this work, we invoke a number of results from functional analysis.

For the convenience of the reader, we quote the main results that we use below.

Theorem 2.1 (Hölder’s inequality, App. B.2 in [63]). Assume that 1 ≤ q, q′ ≤ ∞,

with 1/q + 1/q′ = 1. Then, if u ∈ Lq(Ω) and v ∈ Lq′(Ω), we have that∫
Ω
|uv| dx ≤ ∥u∥Lq(Ω)∥v∥Lq′ (Ω). (2.14)

Theorem 2.2 (Sobolev embedding theorem, Th. 5.4 in [8]). Let Ω be a bounded and

open subset of Rd with a Lipschitz boundary. Assume that u ∈ W k,q(Ω), 1 ≤ q <∞.

(Case A). If k < d/q and q ≤ s ≤ dq
d−kq

, we have that u ∈ Ls(Ω). Moreover,

∥u∥Ls(Ω) ≤ C(k, q, d,Ω)∥u∥W k,q(Ω). (2.15)

(Case B). If k = d/q and q ≤ s <∞, we have that u ∈ Ls(Ω). Moreover,

∥u∥Ls(Ω) ≤ C(k, q, d,Ω)∥u∥W k,q(Ω). (2.16)

(Case C). If k = 1, d < q ≤ ∞ and r = 1 − d/q, we have that u ∈ C0,r(Ω̄).

Moreover,

∥u∥C0,r(Ω̄) ≤ C(k, q, d,Ω)∥u∥W k,q(Ω). (2.17)
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Theorem 2.3 (Rellich–Kondrachov theorem, Th. 6.2 in [8]). Let Ω be a bounded

and open subset of Rd with a Lipschitz boundary. Suppose that 1 ≤ q < d, then

for each 1 ≤ s < q′, where q′ is the Hölder conjugate of q, W 1,q(Ω) is compactly

embedded in Ls(Ω). This is denoted by W 1,q(Ω) ⊂⊂ Ls(Ω).

Theorem 2.4 (Heine–Borel theorem, Th. 11.18 in [75]). A subset of Rn, 1 ≤ n <∞,

is sequentially compact if and only if it is bounded and closed in Rn.

Theorem 2.5 (Mazur’s theorem, App. D.4 in [63]). Let X be a reflexive Banach

space. Then, every convex and norm-closed subset of X is weakly closed.

Theorem 2.6 (Eberlein–Šmulian theorem, Th. A.62 in [76]). Let E be a subset of

a Banach space X. Then the weak closure of E is weakly compact if and only if for

any sequence (xn) ⊂ E there exists a subsequence weakly convergent to some element

of X, i.e. if and only if the weak closure of E is weakly sequentially compact.

Theorem 2.7 (Kakutani’s theorem, Th. A.65 in [76]). A Banach space is reflexive

if and only if the closed unit ball {x ∈ X : ∥x∥X ≤ 1} is weakly compact.

Corollary 2.1 (Corollary of Kakutani’s theorem). If a Banach space X is reflexive,

then every norm-closed, bounded, and convex subset of X is weakly compact.

Proof. By Kakutani’s theorem, we have that (by rescaling if necessary) every norm-

closed ball of X is weakly compact. Let K ⊆ X be norm-closed, bounded, and

convex. By Mazur’s theorem, since K is norm-closed, it is weakly closed. Since

K is bounded, there exists a ball B such that K ⊆ B. Hence, since B is weakly

compact, then K is weakly compact.

Theorem 2.8 (Banach–Alaoglu theorem, Th. A.52 in [76]). If E is a neighborhood

of 0 in a locally convex topological vector space X, then

K := {L ∈ X ′ : |L(x)| ≤ 1 for every x ∈ E}

is weakly-* compact.
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Theorem 2.9 (Banach’s closed range theorem, [25]). Suppose that X and Y are

Banach spaces, and K : Z → Y is a closed linear operator, where Z is dense in X.

Let ker(K) := {x ∈ Z : Kx = 0} denote the kernel of K and let K∗ : Y ∗ → X∗ be

the transpose of K, defined by ⟨K∗y∗, x⟩ = ⟨y∗, Kx⟩, where X∗ and Y ∗ denote the

dual spaces of X and Y , respectively, and ⟨·, ·⟩ is the duality pairing between Y ∗

and Y , or X∗ and X. Then, the following properties are equivalent:

• im(K), the range of K, is closed in Y ;

• im(K∗), the range of K∗, is closed in X∗;

• im(K) = [ker(K∗)]◦ := {y ∈ Y : ⟨y∗, y⟩ = 0 for all y∗ ∈ ker(K∗)};

• im(K∗) = [ker(K)]◦ := {x∗ ∈ X∗ : ⟨x∗, x⟩ = 0 for all x ∈ ker(K)}.

Theorem 2.10 (Implicit Function Theorem, App. C.7 in [63]). Consider the open

set Z ⊂ Rn+m and a function f ∈ C1(Z)m, f : Z → Rm. Consider a point

(x0,y0) ∈ Rn+m, where x0 ∈ Rn and y0 ∈ Rm. Suppose that |det∇yf(x0,y0)| ≠ 0.

Let z0 = f(x0,y0). Then there exists an open set D ⊂ Z, with (x0,y0) ∈ D, an

open set X ⊂ Rn, with x0 ∈ X, and a C1 mapping g : X → Rm, such that

1. g(x0) = y0;

2. f(x, g(x)) = z0, x ∈ X,

and

3. if (x,y) ∈ D and f(x,y) = z0, then y = g(x);

4. if f ∈ Ck(Z)m, then g ∈ Ck(X)m for k ≥ 2.

Theorem 2.11 (Mean value theorem). Let X be a Banach space and suppose

that K ⊂ X is an open convex subset of X. Suppose the functional F : K → R

is continuously Fréchet differentiable. Fix points x, y ∈ K. Then there exists a

constant c ∈ (0, 1) such that

F (y)− F (x) = ⟨F ′((1− c)x+ cy), y − x⟩X,X∗ . (2.18)
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Proof. For t ∈ [0, 1], consider the differentiable function g : [0, 1] → R, g(t) :=

F ((1 − t)x + ty). Applying the mean value theorem in one variable to g implies

that there exists a c ∈ (0, 1) such that

g(1)− g(0) = g′(c). (2.19)

Note that g(1) = F (y) and g(0) = F (x). Computing g′(c) gives the result.

Theorem 2.12 (Mean value inequality, Th. 1.1.1 in [94]). Let X,Z be Banach

spaces and suppose that K ⊂ X is an open convex subset of X. Suppose that

f : K → Z is continuously Fréchet differentiable. Then, for any x, y ∈ X

∥f(y)− f(x)∥Z ≤ sup
u∈K
∥f ′(u)∥L(K,Z)∥y − x∥X . (2.20)

2.2 General formulation

A density approach to modeling a topology optimization problem is formulated as fol-

lows:

min
u∈U , ρ∈Cγ

J(u, ρ) (2.21)

subject to


F (u, ρ) = 0 (PDE constraint),∫

Ω(γ − ρ) dx ≥ 0 (volume constraint),
0 ≤ ρ ≤ 1 (box constraints),
Gk(u, ρ) ≥ 0, k = 1, . . . ,m (additional constraints).

(2.22)

Typically u is a variable of physical interest, often called the state variable and U

is the space of admissible state functions. For example, in incompressible fluid flow,

u often represents the velocity and pressure of the flow and, in elasticity problems,

u denotes the displacement. As mentioned in the previous chapter, the material

distribution function ρ encodes the topology of the optimal design as a subset of the

bounded (design) domain Ω ⊂ Rd, d ∈ {2, 3}. The box constraints on ρ ensure that

we can interpret the topology of the solution. Namely, the set where {ρ = 1 a.e.} ⊂ Ω

is the optimal region that the continuum should occupy and the set {ρ = 0 a.e.} is

interpreted as regions not occupied by the continuum. The volume constraint fixes
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an upper limit for the fraction of the domain Ω that the optimal solution can occupy.

We define the space of admissible material distributions Cγ as the following:

Cγ :=
{
η ∈ L∞(Ω) : 0 ≤ η ≤ 1 a.e. in Ω,

∫
Ω
η dx ≤ γ|Ω|

}
, (2.23)

where γ ∈ (0, 1) is the volume fraction. We see that Cγ incorporates the volume

constraint and box constraints on ρ as part of its definition. Hence, when we

define specific models later, we will not explicitly write out the volume and box

constraints. The functional J : U × Cγ → R is a functional that maps from

the spaces of admissible state and material distribution functions to the real

numbers. The objective of the topology optimization problem is to find the pair

(u, ρ) ∈ U ×Cγ that minimizes J . The PDE constraint F : U ×Cγ → X, where X

is an appropriate Banach space, enforces the relevant physical properties on the state

u. For fluid problems, these can be momentum and incompressibility conditions

and for elasticity, these can be the equations of linear elasticity. Designing the

functional J and PDE constraint F so that they represent the necessary physical

requirements and constraints, whilst also penalizing intermediate values of ρ, is

nontrivial and requires a different construction for each physical system. The

additional constraints often model further desirable properties for the solutions. For

example, these can include the bound formulation of buckling topology optimization

problems [29, Ch. 2.1.2] or stress constraints [29, Ch. 2.3]. Neither of the models

we derive below will have additional constraints.

2.3 Compliance of elastic structures

A significant portion of the topology optimization literature focuses on finding the

optimal topology of an elastic material that minimizes its displacement, whilst

experiencing a force, that can only occupy a fraction of the domain. This is

commonly referred to as the topology optimization of the compliance of a structure.

For simplicity we consider structures that obey linear elasticity. The optimization

problem is posed as follows: given the volume fraction γ ∈ (0, 1), find (u, ρ) ∈ U×Cγ
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that minimizes

J(u, ρ) =
∫

ΓN

f · u ds (C)

subject to the linear elasticity PDE constraint

F (u, ρ) =


−div(SSS) = 0 in Ω,
SSS = k(ρ) [2µlDDD(u) + λltr(DDD(u))III] in Ω,
SSSn = f on ΓN .

(2.24)

Here the space of admissible state functions is U = H1
ΓD,0(Ω)d, i.e. H1 vector-

valued functions which are zero on the boundary ΓD ⊂ ∂Ω. The state u denotes

the displacement of the structure and SSS denotes the stress tensor. The traction

f ∈ H1/2(ΓN)d is known, ΓN ,ΓD ⊂ ∂Ω are known disjoint boundaries on ∂Ω such

that ΓN ∪ ΓD = ∂Ω, µl and λl are the Lamé coefficients, tr(·) is the matrix-trace

operator, III is the d × d identity matrix, n is the unit outward normal and

DDD(u) = 1
2(∇u +∇u⊤), k(ρ) = ϵSIMP + (1− ϵSIMP)ρps ,

where 0 < ϵSIMP ≪ 1 and ps ≥ 1. Unless stated otherwise, we choose ϵSIMP =

10−5 and ps = 3.

Remark 2.1. The choice ϵSIMP = 10−5 is based on the suggestion from Bendsøe and

Sigmund who prescribe an upper limit of 10−3 [29, pg. 10]. However, it should be

noted that in some applications, especially for low volume ratio problems occurring

in three dimensions, the choice ϵSIMP = 10−5 may be unrealistically large and, in

practice, values closer to 10−9 should be used.

The use of k(ρ) is known as the Solid Isotropic Material with Penalization

(SIMP) model. Bendsøe and Sigmund [29, Ch. 1] provide a concise physical

interpretation of the SIMP model. In essence, for ρ close to one, k(ρ) is close to

one, indicating the presence of material, whereas where ρ is close to zero, k(ρ)

approaches ϵSIMP, indicating void. It is typical to raise ρ to the power of ps > 1

in order to penalize intermediate values of ρ.
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We now introduce a Lagrange multiplier v ∈ U and reformulate (C) as finding

the stationary points (u, ρ,v) ∈ U × Cγ × U of∫
ΓN

f · u ds

+
∫

Ω
k(ρ) [2µlDDD(u) : DDD(v) + λltr(DDD(u)) · tr(DDD(v))] dx−

∫
ΓN

f · v ds,
(2.25)

which follows after an integration by parts of the PDE constraint.

We notice that (2.25) has symmetry that can be exploited to reduce the size

of the problem. By deriving the Euler–Lagrange equations of (2.25), we see that

the linear elasticity PDE constraint (2.24) on u must be satisfied. However, if

we consider the adjoint equation involving v, it can be verified that v = −u.

Substituting this relation into (2.25), we see that (2.25) is equivalent to finding

the stationary points (u, ρ) ∈ U × Cγ of

2
∫

ΓN

f · u ds−
∫

Ω
k(ρ) [2µlDDD(u) : DDD(u) + λltr(DDD(u)) · tr(DDD(u))] dx. (2.26)

The substitution is useful as it greatly reduces the size of the problem after discretiza-

tion.

Unfortunately, the optimization problem (C) is ill-posed in general and does not

have minimizers in the continuous setting. Naïve attempts at finding minimizers

often yield checkerboard patterns of ρ. Checkerboarding is a phenomenon where the

discretized material distribution oscillates between the values zero and one between

neighboring elements. An example of checkboarding is given in Fig. 2.1. Such

solutions cannot be manufactured. Although a different choice of finite element

Figure 2.1: Checkerboarding behavior in ρ whilst attempting to find the minimizer of a
Messerschmitt–Bölkow–Blohm (MBB) beam, an example of (C), without a restriction
method. The values of ρ are wildly oscillating between elements.

spaces may avoid the checkerboarding, the solutions will still be mesh dependent.
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As the mesh is refined, the beams of the solutions will become ever thinner, leading

to nonphysical solutions in the limit. There are several schemes employed by

the topology optimization community to obtain physically reasonable solutions

for ρ and they are known as restriction methods [29]. We opt for the addition

of a Ginzburg–Landau energy term,

JGL(u, ρ) := J(u, ρ) + βϵ

2

∫
Ω
|∇ρ|2 dx+ β

2ϵ

∫
Ω
ρ(1− ρ)dx, (CGL)

with 0 < β ≪ 1, 0 < ϵ≪ 1, to the objective function. JGL requires ρ to be weakly

differentiable. Hence we now seek a solution ρ ∈ Cγ ∩ H1(Ω). Physically, the

Ginzburg–Landau term corresponds to penalizing fluctuations in the values of ρ. As

ϵ→ 0, it was shown by Modica [115] that the Ginzburg–Landau energy Γ-converges

to the perimeter functional associated with restricting ρ(x) ∈ {0, 1}, providing

rigorous mathematical grounding for this choice of regularization. For sufficiently

large values of β, this introduces minima and removes the checkerboarding effect.

Other restriction methods used by the topology optimization community include

gradient control [34], perimeter constraints [34], sensitivity filtering [37, 151], design

filtering [45, 106] and regularized penalty [34].

2.4 Power dissipation of fluid flow

The first model for the topology optimization of a fluid was proposed by Borrvall

and Petersson [36]. Their goal was to find the subdomain that minimizes the power

dissipation of a fluid, subject to the Stokes equations and a volume constraint

restricting the proportion of the domain that the fluid can occupy. In their paper,

they derive generalized Stokes equations, which involve the classical velocity and

pressure terms but also incorporate the material distribution, ρ, via an inverse

permeability term α. The presence of fluid is indicated by a value of one in the

material distribution whereas absence of fluid is represented by a value of zero.

The inverse permeability term is constructed in order to favour solutions where

ρ is close to zero or one. From the generalized Stokes equations, Borrvall and

Petersson formulate an infinite-dimensional nonconvex optimization problem with
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inequality and box constraints. The derived optimization problem requires no

further regularization for well-posedness, in contrast to the structural topology

optimization in the previous section. The optimization problem supports (not

necessarily unique) local minima.

Since Borrvall and Petersson’s seminal work, there have been numerous exten-

sions. Evgrafov [64], Olesen et al. [120], and Gersborg-Hansen et al. [80] extended

the model to fluids satisfying stationary Navier–Stokes flow. Aage et al. [3] solved

the first three-dimensional problem. Kreissl et al. [104] and Deng et al. [55] were

the first to consider unsteady Navier–Stokes flow and Deng et al. [54] later included

body forces. Alonso et al. considered rotating bodies in cylindrical coordinates [14,

16]. For a detailed review on the literature of the topology optimization of fluids,

we refer to the work of Alexandersen and Andreasen [9].

2.4.1 The Borrvall–Petersson model

Given a volume constraint on a fluid in a fixed Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3},

the Borrvall–Petersson model attempts to minimize the energy lost by the flow due

to viscous dissipation, whilst maximizing the flow velocities at the applied body

force. More precisely, given the volume fraction γ ∈ (0, 1), the objective is to find

a velocity-material distribution pair (u, ρ) ∈ U × Cγ that minimizes

J(u, ρ) := 1
2

∫
Ω

(
α(ρ)|u|2 + ν|∇u|2 − 2f · u

)
dx, (BP)

where U = H1
|∂Ω,g,div(Ω)d as defined in (2.8).

Here, f ∈ L2(Ω)d is a body force and ν > 0 is the (constant) viscosity. Moreover,

the (possibly inhomogeneous) boundary data g ∈ H1/2(∂Ω)d and g = 0 on a subset

of the boundary Γ ⊂ ∂Ω, with Hd−1(Γ) > 0, i.e. Γ has nonzero Hausdorff measure

on the boundary. Here, α is the inverse permeability, modeling the influence of

the material distribution on the flow. For values of ρ close to one, α(ρ) is small,

permitting fluid flow; for small values of ρ, α(ρ) is very large, restricting fluid flow.

The function α satisfies the following properties:

(A1) α : [0, 1]→ [α, α] with 0 ≤ α < α <∞;
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(A2) α is convex and monotonically decreasing;

(A3) α(0) = α and α(1) = α;

(A4) α is twice continuously differentiable,

generating an operator also denoted α : Cγ → L∞(Ω; [α, α]). Unless stated otherwise,

we fix α = 0. Typically, in the literature α takes the form [36, 65]

α(ρ) = ᾱ

(
1− ρ(q + 1)

ρ+ q

)
, (2.27)

where q > 0 is a penalty parameter, so that limq→∞ α(ρ) = ᾱ(1 − ρ).

Remark 2.2. The inverse permeability term α can be interpreted as a fictitious

permeability term as it appears in the Stokes–Brinkman equations. The Stokes–

Brinkman equations model a slowly moving Newtonian fluid flowing through porous

media and are given by

νKKK−1u− ν∆u +∇p = f in Ω, (2.28)

div(u) = 0 in Ω, (2.29)

u|∂Ω = g on ∂Ω, (2.30)

where u and p are the fluid velocity and pressure, respectively, and KKK is a permeability

tensor allowed to vary over the spatial domain, Ω. In the Borrvall–Petersson case,

we can equate νKKK−1 = α(ρ)III. A rough argument (assuming that u, ρ, and p are

continuous and ᾱ≫ 1), gives the following: for x ∈ Ω where

ρ(x) = 1, (2.28) ≈ −ν∆u(x) +∇p(x) = f(x) =⇒ Stokes momentum equation,

ρ(x) = 0, (2.28) ≈ ᾱu(x) = f(x) =⇒ u(x) ≈ 0.

To summarize, in regions where ρ = 1, (2.28) reduces to the standard Stokes

momentum equation and where ρ = 0, the velocity is approximately zero.

Remark 2.3. At first glance, the optimization problem (BP) lacks a PDE constraint

F : U × Cγ → X. Physically, the velocity u satisfies a generalized momentum

equation and an incompressibility constraint. The incompressibility constraint is
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incorporated into the solution space U and, therefore, is not explicitly stated. In

Proposition 2.4, we will show that minimizers of (BP) automatically satisfy a

weak form of the generalized Stokes momentum equation formulated by Borrvall

and Petersson [36, Eq. 12]. Hence, it does not need to be enforced as a separate

constraint. In the case where the fluid satisfies a different fluid momentum equation

such as a Navier–Stokes momentum equation, the same power dissipation functional

(BP) is minimized and an alternative momentum equation must be added as the

PDE constraint.

The objective functional (BP) can be interpreted as the total potential power

of the flow. The first and second terms in the integral measure the energy lost by

the flow through the porous medium and the energy lost due to viscous dissipation,

respectively. The third term attempts to maximize the flow velocities at the applied

body force. (BP) is discussed in further detail by Borrvall and Petersson [36].

Remark 2.4. The integral in (BP) is well defined. Indeed, since α is assumed to

be convex, it is Borel measurable; also since ρ ∈ Cγ is Lebesgue measurable, the

composition α(ρ) : Ω→ [α, α] is Lebesgue measurable.

The following existence theorem is due to Borrvall and Petersson [36, Th. 3.1].

Theorem 2.13. Suppose that Ω ⊂ Rd is a Lipschitz domain, with d ∈ {2, 3}, and α

is continuously differentiable and satisfies properties (A1)–(A3). Then, there exists

a pair (u, ρ) ∈ U × Cγ that minimizes J (as defined in (BP)).

Due to the lack of strict convexity in (BP), a minimizing pair is not necessarily

unique. The remainder of this subsection is concerned with the rigorous analysis

of the minimizers of (BP).

In the results that follow, we are required to distinguish between different

types of local and global minimizers.

Definition 2.1 (Strict minimizer). Let Z be a Banach space and suppose that the

function z0 ∈ Z is a local or global minimizer of the functional J : Z → R. We say

that z0 is a strict minimizer if there exists an open neighborhood E ⊂ Z of z0 such

that J(z0) < J(z) for all z ̸= z0, z ∈ E.
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Definition 2.2 (Isolated minimizer). Let Z be a Banach space and suppose that

the function z0 ∈ Z is a local or global minimizer of the functional J : Z → R. We

say that z0 is isolated if there exists an open neighborhood E ⊂ Z of z0 such that

there are no other minimizers contained in E.

Remark 2.5. If z is an isolated minimizer, then, it is also a strict minimizer.

First we consider the relationship between a strict minimizer (u, ρ) and the

volume constraint. The volume constraint is typically modeled as an inequality

constraint. However, as we show below, this constraint is active at an optimal

solution. To the best of our knowledge, the following result is novel.

Proposition 2.1. If the pair (u, ρ) ∈ U × Cγ is a strict local or global minimizer

of J as defined in (BP) and γ ∈ (0, 1), then,
∫

Ω ρ dx = γ|Ω|.

Proof by contradiction. Suppose there exists a pair (u, ρ) ∈ U × Cγ that is a strict

local or global minimizer of J(u, ρ) such that V :=
∫

Ω ρ dx < γ|Ω|. By the definition

of a strict minimizer, there exists an r > 0 such that for any (w, η) that satisfies,

∥u−w∥H1(Ω) + ∥ρ− η∥L∞(Ω) < r

then J(u, ρ) < J(w, η). Then, for any function δρ ∈ Cγ such that

0 < ∥δρ∥L1(Ω) ≤ (γ|Ω| − V ), (2.31)

0 < ∥δρ∥L∞(Ω) < r, (2.32)

0 ≤ ρ+ δρ ≤ 1, (2.33)

we have that ρ + δρ ∈ Cγ from (2.31) and (2.33) and ρ + δρ lies in the L∞-r-

neighborhood of ρ from (2.32). Such a δρ exists, for example, for any r0 < r,

δρ = c(1− ρ), where c = min
{

r0

∥1− ρ∥L∞(Ω)
,
γ|Ω| − V
|Ω| − V

}
.

We see that c > 0 since r0 > 0 and V < γ|Ω| < |Ω|. Furthermore δρ satisfies

(2.31)–(2.33) since,

∥δρ∥L1(Ω) = c
∫

Ω
(1− ρ)dx ≤ c(|Ω| − V ) ≤ γ|Ω| − V,

∥δρ∥L∞(Ω) ≤ c∥1− ρ∥L∞(Ω) ≤ r0 < r,

0 ≤ ρ+ δρ = ρ+ c(1− ρ) ≤ ρ+ 1− ρ ≤ 1.
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Since α(·) is monotonically decreasing and ρ and δρ are non-negative and not equal

to zero, then α(ρ + δρ) ≤ α(ρ) a.e. and hence J(u, ρ+ δρ) ≤ J(u, ρ). As δρ ̸= 0,

this contradicts the assumption that (u, ρ) is a strict local or global minimizer.

2.4.2 Support of ρ

The following lemma will be used in the proof of the next proposition.

Lemma 2.1. Consider a nonzero function η ∈ Cγ and the measurable non-empty

set E ⊂⊂ supp(η), where ⊂⊂ denotes that the containment is compact and supp

denotes the support of a function, i.e. η > 0 a.e. in E. Then, there exists an ϵ′ > 0

such that, for all ϵ ∈ (0, ϵ′], there exists a set Eϵ ⊆ E, |Eϵ| > 0, where η > ϵ a.e. in

Eϵ.

Proof. For a contradiction, suppose that there exists no such ϵ′ such that Eϵ′ exists.

This implies that

for all n ≥ 0, |E\Ên| = 0, (2.34)

where Ên := {0 ≤ η ≤ 1/n a.e. in E}. We see that ∅ = E\Ê1 ⊆ E\Ê2 ⊆ · · · ⊆

E\Ên ⊆ · · · , i.e. E\Ên is nondecreasing. Note that the limit of a nondecreasing

sequence of sets (An) can be defined as limn→∞ An := ∪n≥1An. By (2.34) we note

that

lim
n→∞

|E\Ên| = 0. (2.35)

Moreover,

∪∞
n=1E\Ên = lim

n→∞
E\{0 ≤ η ≤ 1/n a.e. in E}

= E\{η = 0 a.e. in E} = E\∅ = E.
(2.36)

Now we see that

0 < |E| = | ∪∞
n=1 E\Ên| = | lim

n→∞
E\Ên| = lim

n→∞
|E\Ên| = 0, (2.37)

where the first equality follows from (2.36), the second equality follows from the

definition of the limit of a nondecreasing sequence of sets, the third equality follows
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from the continuity of the Lebesgue measure, and the fourth equality follows from

(2.35). (2.37) is a contradiction and, therefore, such an ϵ′ > 0 must exist. By

choosing Eϵ = Eϵ′ for all 0 < ϵ ≤ ϵ′, we conclude that the statement holds for all

ϵ ∈ (0, ϵ′].

The following result is novel. We show that if (u, ρ) is a strict minimizer of

(BP), then, the support of ρ is contained in the support of u. This result will be

useful for the numerical analysis of the finite element discretization in Chapter 3.

Proposition 2.2 (Support of ρ). Suppose that Ω ⊂ Rd is a Lipschitz domain,

with d ∈ {2, 3}, and α satisfies properties (A1)–(A4). Further assume that the

minimizer (u, ρ) ∈ U × Cγ of (BP) is a strict minimizer. Then, supp(ρ) ⊆ U ,

where U := supp(u).

Proof. By definition of a strict minimizer, there exists an r > 0 such that, for all

(w, η) ∈ U × Cγ, (w, η) ̸= (u, ρ) that satisfies

∥u−w∥H1(Ω) + ∥ρ− η∥L∞(Ω) < r,

we have that J(u, ρ) < J(w, η). For a contradiction, suppose that there exists a

set E ⊂ Ω, E ∩ U = ∅, of positive measure, where ρ > 0 a.e. in E. By Lemma 2.1,

there exists an ϵ ∈ (0, r) such that there exists a set Eϵ ⊆ E, |Eϵ| > 0 where ρ > ϵ

a.e. in Eϵ. Define ρ̃ as

ρ̃ :=
ρ a.e. in Ω\Eϵ,

ρ− ϵ a.e. in Eϵ.
(2.38)

As ρ ∈ Cγ, also ρ̃ ∈ Cγ. We note that ∥ρ − ρ̃∥L∞(Ω) = ∥ϵ∥L∞(Eϵ) < r and,

therefore, (u, ρ̃) lies inside the minimizing neighborhood of the (u, ρ). However,

J(u, ρ̃) = J(u, ρ) as ρ and ρ̃ only differ on the set Eϵ, but u = 0 a.e. in Eϵ ⊆ E by

assumption. This contradicts the assertion that (u, ρ) is a strict minimizer.
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2.4.3 First-order optimality conditions

In this subsection, we show that minimizers of (BP) also satisfy first-order optimality

conditions. These conditions will be solved by our optimization strategy that

we develop in later chapters. Moreover, they will be essential for our proofs of

regularity in Section 2.4.4 and the proof of the convergence of a finite element

discretization in Chapter 3.

Proposition 2.3 (Partial Fréchet differentiability of J). Suppose that α satisfies

(A1)–(A4). Then, J : H1(Ω)d × Ls(Ω)→ R is partially Fréchet differentiable with

respect to u and partially Fréchet differentiable with respect to ρ, where 1 < s ≤ ∞

in two dimensions and 3/2 ≤ s ≤ ∞ in three dimensions. Moreover, for all

v ∈ H1
0 (Ω)d and ζ, such that ρ+ ζ ∈ Cγ, we have that

⟨J ′
u(u, ρ),v⟩ =

∫
Ω
α(ρ)u · v + ν∇u : ∇v − f · v dx, (2.39)

⟨J ′
ρ(u, ρ), ζ⟩ = 1

2

∫
Ω
α′(ρ)|u|2ζ dx, (2.40)

where J ′
u(u, ρ) denotes the partial Fréchet deriviative of J with respect to u and

J ′
ρ(u, ρ) denotes the partial Fréchet deriviative of J with respect to ρ.

Proof. Consider a variation v ∈ H1
0 (Ω)d. Note that

J(u + v, ρ)− J(u, ρ)

= 1
2

∫
Ω
α(ρ)(|u + v|2 − |u|2) + ν(|∇(u + v)|2 − |∇u|2)− 2f · v dx

=
∫

Ω
α(ρ)u · v + ν∇u : ∇v − f · v dx︸ ︷︷ ︸

=:Av

+ 1
2

∫
Ω
α(ρ)|v|2 + ν|∇v|2 dx︸ ︷︷ ︸

=:R(v)

,

where, for (u, ρ) ∈ H1
g,div(Ω)d × Cγ fixed, A is a linear operator on v and R is a

nonlinear operator on v. Now we note that

R(v) = |R(v)| ≤ max{ᾱ, ν}∥v∥2
H1(Ω),

which implies that

|J(u + v, ρ)− J(u, ρ)− Av|
∥v∥H1(Ω)

= |R(v)|
∥v∥H1(Ω)

→ 0 as v → 0.
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This implies that J is partially Fréchet differentiable with respect to u.

Now let, for (u, ρ) ∈ H1
g,div(Ω)d × Cγ fixed,

Bζ := 1
2

∫
Ω
α′(ρ)ζ|u|2 dx,

where ζ = t(η − ρ), for some t ∈ [0, 1], η ∈ Cγ. By assumption (A4), α is twice

continuously differentiable and, hence, ζ → 0 a.e. in Ω implies that

α(ρ+ ζ)|u|2 − α(ρ)|u|2 − α′(ρ)ζ|u|2 → 0 a.e. in Ω. (2.41)

We note that
J(u, ρ+ ζ)− J(u, ρ)−Bζ

∥ζ∥Ls(Ω)

= 1
2

∫
Ω

(α(ρ+ ζ)− α(ρ)− α′(ρ)ζ)|u|2
∥ζ∥Ls(Ω)

dx

≤
∥α(ρ+ ζ)− α(ρ)∥Ls(Ω)∥u∥2

L2s′ (Ω)

2∥ζ∥Ls(Ω)
+
∥α′(ρ)∥L∞(Ω)∥u∥2

L2s′ (Ω)

2 .

(2.42)

where s′ is the Hölder conjugate of s. By the Sobolev embedding theorem, ∥u∥L2s′ (Ω)

is bounded if, in two dimensions, we have 2s′ < ∞ and, in three dimensions, we

have 2s′ ≤ 6. In turn this implies that s > 1 in two dimensions and s ≥ 3/2 in

three dimensions.

Now by utilizing the mean value inequality (Theorem 2.12) we see that

∥α(ρ+ ζ)− α(ρ)∥Ls(Ω)∥u∥2
L2s′ (Ω)

2∥ζ∥Ls(Ω)

≤ sup
η∈Cγ

∥α′(η)∥L∞(Ω)∥u∥2
L2s′ (Ω)

2 ≤
α′

max∥u∥2
L2s′ (Ω)

2 ,

(2.43)

where α′
max <∞ since α′(·) is continuously differentiable. Hence, the right-hand side

of (2.42) is bounded above by α′
max∥u∥L2s′ (Ω) <∞. Therefore, by the Dominated

Convergence Theorem, we conclude that

|J(u, ρ+ ζ)− J(u, ρ)−Bζ|
∥ζ∥Ls(Ω)

→ 0 as ζ → 0.

This implies that J is partially Fréchet differentiable with respect to ρ.

Remark 2.6. We note that the partial Fréchet differentiability with respect to u is

a standard result for quadratic forms.
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Remark 2.7. It can be checked that if α is (n+ 1)-times continuously differentiable,

then J is n-times partially Fréchet differentiable with respect to ρ.

The following result on first-order optimality conditions is standard. Nevertheless,

we provide a tailored proof, in the context of the Borrvall–Petersson problem, for the

convenience of the reader. More specifically, we show that if (u, ρ) is a minimizer

of the optimization problem (BP), then the minimizer also satisfies first-order

optimality conditions consisting of two equations and a variational inequality.

Proposition 2.4 (First-order optimality conditions). Suppose that Ω ⊂ Rd is a

Lipschitz domain, with d ∈ {2, 3}, and α satisfies properties (A1)–(A4). Fix a

local or global minimizer (u, ρ) ∈ U × Cγ of (BP). Then, there exists a unique

Lagrange multiplier p ∈ L2
0(Ω) such that the following necessary first-order optimality

conditions hold:

aρ(u,v) + b(v, p) = lf (v) for all v ∈ H1
0 (Ω)d, (FOC1)

b(u, q) = 0 for all q ∈ L2
0(Ω), (FOC2)

cu(ρ, η − ρ) ≥ 0 for all η ∈ Cγ, (FOC3a)

where

aρ(u,v) :=
∫

Ω
[α(ρ)u · v + ν∇u : ∇v] dx, lf (v) :=

∫
Ω

f · v dx, (2.44)

b(v, q) := −
∫

Ω
q div(v) dx, cu(ρ, η) := 1

2

∫
Ω
α′(ρ)η|u|2 dx. (2.45)

Proof. We will first show that (FOC1)–(FOC2) are satisfied by generalizing argu-

ments, used for the Stokes system with a homogeneous Dirichlet boundary condition,

found in [121]. For ease of notation we define Xg := H1
|∂Ω,g(Ω)d, X0 := H1

0 (Ω)d,

U 0 := H1
div(Ω)d ∩X0 and M := L2

0(Ω). The respective dual spaces of X0, U 0 and

M are denoted with ∗. We also define the associated operators, A ∈ L(Xg,X
∗
0),

B ∈ L(Xg,M) and B0 ∈ L(X0,M) by

⟨Au,v⟩ := aρ(u,v), ⟨Bw, q⟩ := b(w, q), and ⟨B0v, q⟩ := b(v, q). (2.46)
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We note that ker(B0) = U 0. For any given v ∈ U 0, we see that u + tv ∈ U , t ∈ R.

Since (u, ρ) ∈ U ×Cγ is a local minimizer, then, by definition, there exists an r > 0

such that, for any (w, η) ∈ U × Cγ, (w, η) ̸= (u, ρ) that satisfies

∥u−w∥H1(Ω) + ∥ρ− η∥L∞(Ω) < r (2.47)

we have that J(u, ρ) ≤ J(w, η). Hence, for any given v ∈ U 0, if 0 < t < r/∥v∥H1(Ω),

the following inequality holds

1
t
(J(u + tv, ρ)− J(u, ρ)) ≥ 0. (2.48)

By Proposition 2.3, J is partially Fréchet differentiable, and therefore also partially

Gateaux differentiable, with respect to u. Hence as t→ 0+, we see that

⟨J ′
u(u, ρ),v⟩ ≥ 0 for all v ∈ U 0. (2.49)

By considering the same reasoning with t < 0, we deduce that

⟨J ′
u(u, ρ),v⟩ = 0 for all v ∈ U 0. (2.50)

From Proposition 2.3, we know that J ′
u(u, ρ) = Au− f and hence Au− f ∈ U ◦

0

where

U ◦
0 := (ker(B0))◦ = {h ∈X∗

0 : ⟨h,v⟩ = 0 for all v ∈ U 0}. (2.51)

We know that the operator B0 satisfies the following equivalent version of the inf-sup

condition [82, Ch. 1, Sec. 4.1, Lem. 4.1]:

there exists a β > 0 such that, for all q ∈M, ∥B∗
0q∥X∗

0
≥ β∥q∥M , (2.52)

where B∗
0 is the dual operator of B0, defined by ⟨v, B∗

0q⟩ = ⟨B0v, q⟩. This implies

that B∗
0 is injective (and therefore bijective) from M into im(B∗

0). Furthermore, it

also implies that (B∗
0)−1 is continuous. Consider f ∈ im(B∗

0); then, there exists a

q ∈M such that f = B∗
0q and

∥(B∗
0)−1f∥M ≤

1
β
∥f∥X∗

0
. (2.53)
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Therefore, im(B∗
0) is closed.

Since im(B∗
0) is closed, by Banach’s closed range theorem, we know that

im(B∗
0) = (ker(B0))◦ = U ◦

0. Hence since, Au− f ∈ U ◦
0, there exists a p ∈M such

that

Au +B∗
0p = f . (2.54)

Since B∗
0 is injective, p is also unique. Since u ∈ U , we have that Bu = 0. Hence

(FOC1) and (FOC2) hold.

We will now show that (FOC3a) holds via a direct calculus of variations approach.

We note that Cγ is a convex subset of a linear space. For any given ζ, η ∈ Cγ and

t ∈ [0, 1], we therefore have that ζ + t(η− ζ) ∈ Cγ . Since (u, ρ) is a local minimizer,

it follows that for each η ∈ Cγ , if 0 < t < r/∥η − ρ∥L∞(Ω), with r as in (2.47), then

1
t
(J(u, ρ+ t(η − ρ))− J(u, ρ)) ≥ 0. (2.55)

From Proposition 2.3, we know that J is partially Fréchet differentiable, and

therefore also partially Gateaux differentiable, with respect to ρ. Hence, by taking

the limit as t→ 0, we see that

cu(ρ, η − ρ) = ⟨J ′
ρ(u, ρ), η − ρ⟩ ≥ 0 for all η ∈ Cγ. (2.56)

Therefore (FOC3a) holds.

The variational inequality (FOC3a) only tests against functions that satisfy∫
Ω η dx ≤ γ|Ω|. This is a difficult restriction to enforce in practice. Hence, in

the next proposition we show that we can expand the space of test functions, if

the minimizer is a strict minimizer, at the cost of introducing a new unknown

λ ∈ R. This is a standard result for optimization problems with integral constraints

[63, Ch. 8.4, Th. 2]

Proposition 2.5 (Relaxing the space of test functions). Suppose that Ω ⊂ Rd is

a Lipschitz domain, with d ∈ {2, 3}, α satisfies properties (A1)–(A4) and (u, ρ) ∈

U ×Cγ is a strict minimizer of (BP). Then, there exist unique Lagrange multipliers
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p ∈ L2
0(Ω) and λ ∈ R, such that, for all (η,v, q, ζ) ∈ C[0,1] ×H1

0 (Ω)d × L2
0(Ω)× R,

the following necessary first-order optimality conditions are satisfied:

aρ(u,v) + b(v, p) = lf (v), (FOC1)

b(u, q) = 0, (FOC2)

cu,λ(ρ, η − ρ) := 1
2

∫
Ω
(α′(ρ)|u|2 + λ)(η − ρ)dx ≥ 0, (FOC3b)

dρ(λ, ζ) := −ζ
∫

Ω
(γ − ρ)dx = 0. (FOC4)

Here C[0,1] := ∪γ∈[0,1]Cγ, i.e. we relax the volume constraint on the variation in the

material distribution.

Proof. The existence of p ∈ L2
0(Ω) and the first two equations (FOC1) and (FOC2)

follow from Proposition 2.4. The equation (FOC4) follows from Proposition 2.1

as (u, ρ) is a strict minimizer. It remains to show that there exists a λ ∈ R

such that the variational inequality (FOC3b) is satisfied. Consider the functional

I : C[0,1] → R defined by

I(η) =
∫

Ω
γ − η dx. (2.57)

Consider any two functions η, ζ ∈ C[0,1] with ∥ζ∥L1(Ω) ̸= γ|Ω|. Now for any τ, σ ∈

[0, 1] consider the convex sum ρ+ τ(1− σ)(ζ − ρ) + σ(η − ρ) ∈ C[0,1]. Let i(τ, σ) =

I(ρ+ τ(1− σ)(ζ − ρ) + σ(η − ρ)). Then,

∂τ i(τ, σ) = −
∫

Ω
(1− σ)(ζ − ρ)dx, (2.58)

∂σi(τ, σ) = −
∫

Ω
(η − ρ)− τ(ζ − ρ)dx. (2.59)

The Implicit Function Theorem implies that there exists a ϕ ∈ C1(R;R) and σ0 > 0

such that ϕ(0) = 0 and i(ϕ(σ), σ) = 0 for all σ < σ0. Hence, by differentiating

i(ϕ(σ), σ) with respect to σ, we see that

∂τ i(ϕ(σ), σ)ϕ′(σ) + ∂σi(ϕ(σ), σ) = 0 for all σ < σ0. (2.60)

Therefore, by considering σ = 0 and rearranging, we see that

ϕ′(0) = −
∫

Ω η − ρ dx∫
Ω ζ − ρ dx. (2.61)
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Since, by assumption ∥ζ∥L1(Ω) ̸= γ|Ω|, then
∫

Ω ζ − ρ dx ̸= 0 and, therefore, (2.61)

is finite. Now let w(σ) := ϕ(σ)(1− σ)(ζ − ρ) + σ(η − ρ). For all σ < σ0, we have

that i(ϕ(σ), σ) = 0, which implies that ρ + w(σ) ∈ Cγ for all σ ∈ [0, σ0). Let

j(σ) = J(u, ρ+ w(σ)). Then, since (u, ρ) is a minimizer, we have that

0 ≤ lim
σ→0

1
σ

(J(u, ρ+ w(σ))− J(u, ρ)) = j′(0). (2.62)

By computing j′(0) we see that

j′(0) = cu,0(ρ, η − ρ+ ϕ′(0)(ζ − ρ)) ≥ 0 (2.63)

By choosing

λ = −cu,0(ρ, ζ − ρ)∫
Ω ζ − ρ dx , (2.64)

in (FOC3b), it follows from (2.63) that the variational inequality (FOC3b) holds.

2.4.4 Regularity

In this subsection we prove regularity results for the velocity and pressure terms

and a novel and surprising regularity result for the material distribution. We show

that in a convex domain, and under sufficiently smooth data, if (u, ρ) is a minimizer

of (BP), then u ∈ H2(Ω)d and p ∈ H1(Ω) where p is the Lagrange multiplier

associated with (u, ρ). We also show that (without a convex domain assumption)

if the inverse permeability α is strongly convex (which is the case for all choices

found in literature), and under a homogeneous Dirichlet boundary condition on

u, we have that ρ has H1-regularity inside any compact subset of the support of

u. Hence, although the aim of the topology optimization formulation is to recover

a 0-1 material distribution function, we see that the transitions in the material

distribution are necessarily not jumps as functions that live in H1(E), where E is

a non-empty open set with Lipschitz boundary, cannot jump in E.

Proposition 2.6 (Regularity of u and p). Let the domain Ω be either a convex

polygon in two dimensions or a convex polyhedron in three dimensions and consider

the triple (u, ρ, p) ∈ U × Cγ × L2
0(Ω) that satisfies (FOC1)–(FOC3a). Suppose that



2. Topology optimization 38

the forcing term f ∈ L2(Ω)d and the boundary datum g is the boundary trace of

a function ĝ ∈ H2(Ω)d on the boundary ∂Ω and satisfies
∫

∂Ω g · n ds = 0. Then,

u ∈ H2(Ω)d and p ∈ H1(Ω).

Proof. The idea of the proof is to reduce the system (FOC1)–(FOC2) to a generalized

Stokes system with a homogeneous Dirichlet boundary condition and then, in two

dimensions, invoke the regularity results of Kellogg and Osborn [98] and in three

dimensions the results found in Kozlov et al. [103] and Maz’ya and Shaposhnikova

[113].

Let w := u − ĝ. Since the trace operator is a linear operator, we see that

w|∂Ω = (u − ĝ)|∂Ω = g − g = 0. Since u ∈ H1(Ω)d and ĝ ∈ H2(Ω)d, then

w ∈ H1
0 (Ω)d.

By substituting w into (FOC1)–(FOC2), we see that (FOC1)–(FOC2) is equiva-

lent to finding (w, p) ∈ H1
0 (Ω)d×L2

0(Ω) that satisfies for all (v, q) ∈ H1
0 (Ω)d×L2

0(Ω):∫
Ω
∇w : ∇v − p div(v) dx =

∫
Ω
(f − α(ρ)(w + ĝ)) · v −∇ĝ : ∇v dx, (2.65)∫

Ω
q div(w + ĝ) dx = 0. (2.66)

Define f̂ as f̂ := f − α(ρ)(w + ĝ) + ∆ĝ. Since f ∈ L2(Ω)d, α(ρ) ∈ L∞(Ω),

w ∈ H1
0 (Ω)d, and ĝ ∈ H2(Ω)d, then f̂ ∈ L2(Ω)d. By an application of integration

by parts on the final term on the right-hand side of (2.65), we see that (2.65)–(2.66)

is equivalent to finding (w, p) ∈ H1
0 (Ω)d × L2

0(Ω) that satisfies for all (v, q) ∈

H1
0 (Ω)d × L2

0(Ω): ∫
Ω
∇w : ∇v − p div(v) dx =

∫
Ω

f̂ · v dx, (2.67)∫
Ω
q div(w) dx =

∫
Ω
qϕ dx, (2.68)

where ϕ = −div(ĝ) a.e. and the divergence theorem implies that∫
Ω
ϕ dx = −

∫
∂Ω

g · n ds = 0. (2.69)

We note that (2.67)–(2.68) is a generalized Stokes system with a homogeneous

Dirichlet boundary condition and forcing term f̂ ∈ L2(Ω)d. Therefore, by the elliptic

regularity results found in [98, 103] and [113, Th. 13], we note that w ∈ H2(Ω)d and

p ∈ H1(Ω). Since u = w + ĝ and ĝ ∈ H2(Ω)d, we conclude that u ∈ H2(Ω)d.
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The following result concerning the regularity of the material distribution is novel.

Theorem 2.14 (Regularity of ρ). Suppose that the domain Ω ⊂ Rd is bounded,

the boundary is Lipschitz, and that the datum g = 0 on ∂Ω. Consider a local or

global minimizer, (u, ρ) ∈ U × Cγ, of (BP) such that u is not the zero function

and there exists a closed subset Ūθ ⊂ Ω, with non-empty interior, on which |u|2 is

bounded below by a positive constant, θ > 0. Suppose that (A1)–(A4) hold and that

α ∈ C2([0, 1]) is strongly convex, i.e.,

(A5) There exists a constant α′′
min > 0 such that α′′(y) ≥ α′′

min > 0 for all y ∈ [0, 1].

Consider the (non-empty) interior Uθ ⊂ Ūθ. Then, ∇ρ exists in Uθ and ρ ∈

Cγ ∩H1(Uθ).

Remark 2.8. The statement ρ ∈ H1(Uθ), for any θ > 0, implies that the material

distribution lives in H1 in any compact subset of the support of the velocity.

The assumption (A5) excludes the case where α is linear. This is consistent

with previous theory, as Borrvall and Petersson [36, Sec. 3.2] showed that if α

is linear, then, there exists a minimizer (u, ρ) where ρ is a 0-1 solution (a linear

combination of Heaviside functions) and thus ρ /∈ H1(Ω) due to the jumps. However,

the assumptions (A1)–(A5) do include the choice (2.27), where the lower bound

in (A5) is α′′
min = 2ᾱq/(q + 1)2. We see that this lower bound degrades to zero

as q → ∞. As previously noted, the limit q → ∞ coincides with α(ρ) → ᾱ(1 −

ρ), which is a linear function.

Proof of Theorem 2.14. Let ∂xk
denote the partial derivative with respect to xk.

If we can bound the L2-norm of the difference quotients of ρ, in all coordinate

directions in Uθ, above by constants independent of h, then, by taking the weak

limit, we can deduce that ∂xk
ρ exists as an element of L2(Uθ) for 1 ≤ k ≤ d.

We define U ⊂ Ω as U := supp(u) and fix an open, bounded and connected

domain Ω̂ such that Ω̂ = Ω if U ⊂⊂ Ω and Ω ⊂⊂ Ω̂ otherwise. In the case where U

is not a compact subset of Ω, we extend u and ρ by zero to the whole of Rd. Since
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the trace of u is zero on the boundary, the extension of u by zero lives in H1(Ω̂)d.

Let 0 < |h| < (1/2)dist(U, ∂Ω̂) and choose k ∈ {1, . . . , d}. We define ρh as

ρh(x) =
ρ(x+ hek) for x ∈ Ω− hek,

0 for x ∈ Rd\(Ω− hek).

We define the difference quotient, Dh
k , in the k-th coordinate direction, as

Dh
kρ(x) = ρ(x+ hek)− ρ(x)

h
, h ∈ R\{0}, x ∈ Ω̂.

Let η = (ρh + ρ−h)/2. We note that η ∈ Cγ, since

0 ≤ 1
2ρ

h ≤ 1
2 a.e. in Ω, and 0 ≤ 1

2ρ
−h ≤ 1

2 a.e. in Ω,

which implies that 0 ≤ η ≤ 1 a.e. in Ω and∫
Ω
η dx = 1

2

∫
Ω
ρh + ρ−h dx

= 1
2

∫
Ω−hek∩Ω

ρ dx+ 1
2

∫
Ω+hek∩Ω

ρ dx ≤
∫

Ω
ρ dx ≤ γ|Ω|.

If we multiply (FOC3a) through by 4 and divide by h2 we see that

1
h2

∫
Ω
α′(ρ)|u|2(ρh + ρ−h − 2ρ) dx ≥ 0. (2.70)

We note that,

D−h
k (Dh

kρ) =
ρ−ρ−h

h
− ρh−ρ

h

−h
= ρh + ρ−h − 2ρ

h2 .

Hence, because u is zero outside of Ω, (2.70) is equivalent to∫
Ω̂
α′(ρ)|u|2(D−h

k (Dh
kρ)) dx ≥ 0. (2.71)

In order to obtain a first-order difference quotient, we will perform the finite

difference analogue of integration by parts to shift the D−h
k operator from Dh

kρ to

α′(ρ)|u|2. We note that, by definition, the left-hand side of (2.71) is equal to

−1
h

∫
Ω̂
(α′(ρ)|u|2)(x)

(
(Dh

kρ)(x− hek)− (Dh
kρ)(x)

)
dx, (2.72)

which by a change of variables is equal to

−1
h

(∫
Ω̂−hek

(α′(ρ)|u|2)(x+ hek)(Dh
kρ)(x)dx−

∫
Ω̂
(α′(ρ)|u|2)(x)(Dh

kρ)(x)dx
)
.
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We note that U ⊂⊂ Ω̂ and |h| < (1/2)dist(U, ∂Ω̂), which implies that U ⊂⊂ Ω̂−hek.

Therefore,

∫
Ω̂−hek

(α′(ρ)|u|2)(x+ hek)(Dh
kρ)(x)dx

=
∫

U−hek

(α′(ρ)|u|2)(x+ hek)(Dh
kρ)(x)dx

=
∫

Ω̂
(α′(ρ)|u|2)(x+ hek)(Dh

kρ)(x)dx.

(2.73)

Therefore, from (2.71)–(2.73) we see that

∫
Ω̂
Dh

k(α′(ρ)|u|2)(Dh
kρ) dx ≤ 0. (2.74)

Now we wish to rewrite Dh
k(α′(ρ)|u|2) in a form that we can decouple from Dh

kρ in

order to be able to bound (2.74) above and below. Now,

Dh
k(α′(ρ)|u|2)(x) = 1

h

(
α′(ρ(x+ hek))|u(x+ hek)|2 − α′(ρ(x))|u(x)|2

)
= 1

2h
(
α′(ρ(x+ hek))

(
|u(x+ hek)|2 − |u(x)|2

))
+ 1

2h
(
α′(ρ(x))

(
|u(x+ hek)|2 − |u(x)|2

))
+ 1

2h
(
|u(x+ hek)|2 (α′(ρ(x+ hek))− α′(ρ(x)))

)
+ 1

2h
(
|u(x)|2 (α′(ρ(x+ hek))− α′(ρ(x)))

)
= 1

2
(
α′(ρh) + α′(ρ)

)
Dh

k(|u|2) + 1
2
(
|uh|2 + |u|2

)
Dh

k(α′(ρ)).

Therefore, from (2.74) we see that

∫
Ω̂

[1
2
(
|uh|2 + |u|2

)
Dh

k(α′(ρ))

+1
2
(
α′(ρh) + α′(ρ)

)
Dh

k |u|2
]
Dh

k(ρ) dx ≤ 0.
(2.75)
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Now,

1
2
(
|uh|2 + |u|2

)
Dh

k(α′(ρ)) + 1
2
(
α′(ρh) + α′(ρ)

)
Dh

k |u|2

= 1
h

∫ 1

0

d
ds

[
α′
(
sρh + (1− s)ρ

) 1
2
(
|uh|2 + |u|2

)
+ 1

2
(
α′(ρh) + α′(ρ)

) ∣∣∣suh + (1− s)u
∣∣∣2] ds

= 1
h

∫ 1

0

[
α′′
(
sρh + (1− s)ρ

)]
ds︸ ︷︷ ︸

=:A

1
2
(
|uh|2 + |u|2

)
(ρh − ρ)

+ 1
2h

(
α′(ρh) + α′(ρ)

) ∫ 1

0

[
2
(
suh + (1− s)u

)]
ds︸ ︷︷ ︸

=:B

· (uh − u).

Hence, from (2.75) we find that

1
2

∫
Ω̂
A(|uh|2 + |u|2)|Dh

kρ|2 + (α′(ρh) + α′(ρ))B · (Dh
ku)Dh

kρ dx ≤ 0. (2.76)

Subtracting the second term on the left-hand side in (2.76) from both sides, taking

absolute values on the right-hand side, using the Cauchy–Schwarz inequality and

multiplying by 2, we see that∫
Ω̂
A(|uh|2 + |u|2)|Dh

kρ|2dx ≤
∫

Ω̂
|B||α′(ρh) + α′(ρ)||Dh

ku||Dh
kρ|dx. (2.77)

Furthermore we note that A ≥ α′′
min and

B =
∫ 1

0

[
2
(
suh + (1− s)u

)]
ds = 2

[
s2

2 uh +
(
s− s2

2

)
u

]1

0
= uh + u.

Hence, using Cauchy’s inequality and Young’s inequality, we see that

α′′
min

∫
U−hek

|uh|2|Dh
kρ|2dx+ α′′

min

∫
U
|u|2|Dh

kρ|2dx

≤
∫

Ω̂
|u + uh||α′(ρh) + α′(ρ)||Dh

ku||Dh
kρ|dx

≤
∫

U−hek

|uh||α′(ρh) + α′(ρ)||Dh
ku||Dh

kρ|dx

+
∫

U
|u||α′(ρh) + α′(ρ)||Dh

ku||Dh
kρ|dx

≤ ϵ

2

∫
U−hek

|uh|2|Dh
kρ|2dx+ ϵ

2

∫
U
|u|2|Dh

kρ|2dx

+ 1
2ϵ

∫
U−hek

|α′(ρh) + α′(ρ)|2|Dh
ku|2dx

+ 1
2ϵ

∫
U
|α′(ρh) + α′(ρ)|2|Dh

ku|2dx.

(2.78)
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By fixing ϵ = α′′
min, from (2.78) we see that,

α′′
min
2

∫
U
|u|2|Dh

kρ|2dx

≤ α′′
min
2

∫
U
|u|2|Dh

kρ|2dx+ α′′
min
2

∫
U−hek

|uh|2|Dh
kρ|2dx

≤ 1
α′′

min

∫
Ω̂
|α′(ρh) + α′(ρ)|2|Dh

ku|2dx.

(2.79)

Now |α′(ρh)+α′(ρ)|2 is bounded above by 4 supζ∈Cγ
|α′(ζ)|2 which is independent

of h. Consider a set Ω̃ ⊂ Rd such that Ω̂ ⊂⊂ Ω̃. We note that u ∈ H1(Ω̃)d. By

applying Theorem 3 in [63, pg. 294], we see that
∫

U
|u|2|Dh

kρ|2 dx ≤
C̃(Ω) supζ∈Cγ

|α′(ζ)|2

(α′′
min)2 ∥∇u∥2

L2(Ω̃)

≤
Ĉ(Ω) supζ∈Cγ

|α′(ζ)|2

(α′′
min)2 ∥∇u∥2

L2(Ω) ≤ C <∞,
(2.80)

where C̃, Ĉ and C are constants. The bound is independent of h and k. Because,

by hypothesis, there exists an open subset Uθ ⊂ Ω such that, |u|2 ≥ θ > 0 a.e. in

Uθ, we see from (2.80) that, because Uθ ⊂ U = supp(u), also

θ
∫

Uθ

|Dh
kρ|2dx ≤

∫
Uθ

|u|2|Dh
kρ|2 dx ≤

∫
U
|u|2|Dh

kρ|2 dx ≤ C. (2.81)

Estimate (2.81) implies that

sup
h
∥Dh

kρ∥L2(Uθ) <∞. (2.82)

From (2.82) we see that there exists a function ηk ∈ L2(Uθ) and a subsequence

hi → 0 such that,

Dhi
k ρ ⇀ ηk weakly in L2(Uθ).

Finally, we wish to identify ηk with ∂xk
ρ. First choose any smooth and compactly

supported function, ϕ ∈ C∞
c (Uθ). We note that∫

Uθ

ρ ∂xk
ϕ dx ≤ C∥ρ∥L∞(Uθ)∥ϕ∥W 1,∞(Uθ) <∞.

Since ∂xk
ϕ is compactly supported in Uθ, it follows that∫

Uθ

ρ ∂xk
ϕ dx =

∫
Ω̂
ρ ∂xk

ϕ dx.
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Hence
∫

Uθ

ρ ∂xk
ϕ dx = lim

hi→0

∫
Ω̂
ρ D−hi

k ϕ dx

= − lim
hi→0

∫
Ω̂
(Dhi

k ρ)ϕ dx = − lim
hi→0

∫
Uθ

(Dhi
k ρ)ϕ dx = −

∫
Uθ

ηkϕ dx.

Hence ηk = ∂xk
ρ a.e. in Uθ for k = 1, . . . , d. Therefore, from (2.80) we see by weak

lower semicontinuity that
∫

Uθ

|∂xk
ρ|2 dx ≤ C(Ω, sup

ζ∈Cγ

|α′(ζ)|2, α′′
min), (2.83)

for some constant C. We conclude that ρ ∈ H1(Uθ) ∩ Cγ, θ > 0.

Remark 2.9. The assumption that the boundary datum g = 0 on ∂Ω is required to

expand the domain of integration from Ω in (2.70) to Ω̂ in (2.71) in order to perform

the finite difference analogue of integration by parts in (2.72). A homogeneous

Dirichlet boundary condition on u is rarely imposed in practice. However, we

observe during numerical experiments that ρ possesses additional regularity in the

case of inhomogeneous Dirichlet boundary conditions, and we hypothesize that the

results can be generalized to that case.



A mathematical problem does not cease being math-
ematical just because we have discretized it.

— Arieh Iserles, 2009 3
Numerical analysis of the

Borrvall–Petersson problem

The most common discretization for topology optimization problems is the finite ele-

ment method. Despite this, there is little literature that investigates the convergence

of such discretizations. In particular, it is rarely known if the finite element solutions

strongly converge to their respective infinite-dimensional solutions. Without the

certainty of strong convergence, pathological behavior, such as checkerboarding,

can occur. This problem is exacerbated by the nonconvexity of the models; finite

element solutions might only converge to some minimizers and not others. In this

chapter, we provide the first proofs of the strong convergence of both conforming

and divergence-free discontinuous Galerkin (DG) finite element methods to all

isolated minimizers of the Borrvall–Petersson problem.

Prior to this work, Borrvall and Petersson’s original paper [36, Sec. 3.3] contained

the only known results for the convergence of a finite element approximation to the

Borrvall–Petersson problem. They considered a piecewise constant finite element

approximation of the material distribution coupled with an inf-sup stable conforming

quadrilateral finite element approximation of the velocity and the pressure. They

showed that such approximations of the velocity and material distribution converge

to an unspecified solution (u, ρ) of (BP) in the following sense [36, Th. 3.2]:

uh ⇀ u weakly in H1(Ω)d,

ρh
∗
⇀ ρ weakly-* in L∞(Ω),

ρh → ρ strongly in Ls(Ωb), s ∈ [1,∞),

45
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where Ωb is any measurable subset of Ω where ρ is equal to zero or one a.e. Their

analysis suggests that a finite element method is a suitable discretization, but

it left a number of open problems:

(P1) It is not clear which minimizer the sequence is converging to, as the noncon-

vexity of the problem provides multiple candidates for the limits;

(P2) The convergence is weak-* in the material distribution in regions where

{0 < ρ < 1 a.e.} ⊂ Ω, which permits the presence of checkerboard patterns as

h→ 0 [36, Sec. 3];

(P3) There are no convergence results for the finite element approximation of the

pressure, p.

In general (P1) means that their result does not imply that there necessarily exists

a sequence of finite element solutions that converges to the global minimizer.

In this chapter, we consider two finite element methods. The first is based on

any conforming mixed finite element space such that the velocity and pressure

spaces are inf-sup stable. Here, conforming means that the velocity, pressure,

and material distribution finite element spaces are contained in H1(Ω)d, L2
0(Ω)

and Cγ, respectively. We prove that, for every isolated minimizer of (BP), there

exists a sequence of finite element solutions to the discretized first-order optimality

conditions that strongly converges to the minimizer, as the mesh size tends to zero.

More specifically, we show that, for each isolated infinite-dimensional local minimizer,

there exists a sequence of finite element solutions (uh, ρh, ph) that converges to it

strongly in H1(Ω)d × Ls(Ω) × L2(Ω) as h → 0, where s ∈ [1,∞). We emphasize

that the results hold in the case where the minima are isolated. This analysis

resolves the open problems (P1)–(P3).

Our second finite element method involves divergence-free DG finite element

spaces. Here, the pressure and material distribution finite element spaces remain

conforming but the velocity finite element space is no longer contained in H1(Ω)d

but rather in H(div; Ω). A divergence-free DG approximation of the velocity allows

jumps in the tangential directions across faces of elements. Therefore, we employ
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an interior penalty which increasingly penalizes these jumps as the mesh size tends

to zero. The resulting theorem is similar to that of the conforming finite element

method. Now, the velocity approximation strongly converges in a broken H1-norm

and the sequence of finite element solutions satisfy discretized first-order optimality

conditions that involve interior penalty terms.

In many studies, conforming inf-sup stable mixed finite element methods are

used to discretize the Borrvall–Petersson problem. The main advantage is the

(relative) ease of implementation. In the past couple of decades, discontinuous

Galerkin (DG) methods for fluid flow have become increasingly popular [51, 52,

78, 100, 101]. This is in part due to the existence of divergence-free DG finite

element methods. Some stable finite element methods for fluid flow, such as the

Taylor–Hood finite element pair, do not satisfy the incompressibility constraint,

div(u) = 0 a.e. in Ω, pointwise. This manifests as a dependence of the error in the

velocity on the best approximation error in the pressure. In some problems, not

satisfying the incompressibility constraint pointwise has been observed to support

instabilities that result in nonphysical solutions [97, 109]. In divergence-free finite

element methods, the incompressibility constraint is satisfied pointwise, which is

useful for ensuring pressure robustness [147] and deriving error bounds on the

velocity that are independent of the error of the pressure.

In Borrvall–Petersson topology optimization problems, a natural mesh refinement

to obtain sharper solutions is in regions where 0 < ρ < 1 a.e. It can be empirically

checked that mesh refinement in these regions does not guarantee improvements

in the error of the pressure approximation. If the convergence for the velocity and

material distribution rely heavily on the convergence of the pressure, then only

doing mesh refinement in those areas caps the improvement in the errors for the

velocity and material distribution. This motivates the need for discretizations that

decouple the dependence of the errors of the velocity and material distribution

from the approximation error of the pressure. Crucially, for the work described

in Chapter 5, divergence-free finite element discretizations also allow for an easier

characterization of the kernel of the discretized grad-div term. This characterization
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is key to the development of our robust preconditioner and multigrid cycle for the

systems that arise in our solver developed in Chapter 4 [72, 73, 91, 145].

H1-conforming divergence-free finite element methods exist; for example the

Scott–Vogelius finite element [147]. To ensure inf-sup stability for a general mesh

in a k-th order Scott–Vogelius finite element method, the polynomial order for the

velocity space must be k ≥ 2d, d ∈ {2, 3} [147, 189]. The expense of the high

order method is normally justified by the accompanying high convergence rate.

However, the material distribution ρ is often discretized with piecewise constant

or continuous piecewise linear finite elements due to the box constraints on the

material distribution. The box constraints not only cause algorithmic restrictions

but also reduce the regularity of ρ. The relatively low order approximation of the

material distribution then caps the order of convergence of the velocity and pressure

(as discussed in Section 4.6) which negates the advantage of the high order method.

Inf-sup stability can be achieved for k ≥ d if the mesh is barycentrically refined

[134]. However, barycentrically refined meshes can be difficult to align with jumps

in the infinite-dimensional material distribution, which can lead to poorly resolved

solutions. Moreover, barycentrically refined meshes complicate the generation of a

mesh hierarchy for robust multigrid cycles [72]. In contrast, there exist low-order

divergence-free DG finite element methods that are inf-sup stable on general meshes.

Throughout this chapter we denote the velocity, material distribution, and

pressure finite element spaces by Xh, Cγ,h ⊂ Cγ , and Mh ⊂ L2
0(Ω). When we refer

to a conforming finite element method, we assume that Xh ⊂ H1(Ω)d, whereas

for a divergence-free DG method, we assume that Xh ⊂H(div; Ω). We denote a

family of triangulations of the domain Ω by (Th). The family is characterized by

the mesh size h := maxK∈Th
hK , where hK is the diameter of the element K ∈ Th.

We assume that every triangulation of the family (Th) satisfies:

(M1) (Shape regularity). There exist constants c1, c2 > 0 such that

c1h
d
K ≤ |K| ≤ c2h

d
K for all K ∈ Th.
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as well as a submesh condition as found in the work of Buffa and Ortner [46, As. 2.1].

For a given h, let the set Fh denote the set of all facets of the triangulation Th and

hF represent the diameter of each facet F ∈ Fh. We also assume the following:

(M2) (Contact regularity). There exists a constant c1 > 0 such that

c1h
d−1
K ≤ Hd−1(F ) for all F ∈ Fh, K ∈ Th such that F ⊂ K̄.

3.1 Conforming finite element discretization

3.1.1 Assumptions and the first convergence theorem

In this subsection we assume that Xh ⊂ H1(Ω)d. We state our assumptions

for the conforming finite element methods and the first main theorem of this

chapter. We define X0,h as

X0,h := {vh ∈ Xh : vh|∂Ω = 0}. (3.1)

In general, it will not be possible to represent the boundary data g exactly in

the velocity finite element space. Hence, for each h, we instead consider boundary

data gh (which can be represented) and assume that

(A-C1) gh → g strongly in H1/2(∂Ω)d.

We now define the space Xgh,h := {vh ∈ Xh : vh|∂Ω = gh}. We will also assume

that:

(A-C2) X0,h and Mh satisfy the following inf-sup condition for some cb > 0,

cb ≤ inf
qh∈Mh\{0}

sup
vh∈X0,h\{0}

b(vh, qh)
∥vh∥H1(Ω)∥qh∥L2(Ω)

, (3.2)

where cb is independent of h.

(A-C3) The finite element spaces are dense in their respective function spaces, i.e.,

for any (v, η, q) ∈ H1(Ω)d × Cγ × L2
0(Ω),

lim
h→0

inf
wh∈Xh

∥v −wh∥H1(Ω) = lim
h→0

inf
ζh∈Cγ,h

∥η − ζh∥L2(Ω)

= lim
h→0

inf
rh∈Mh

∥q − rh∥L2(Ω) = 0.
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Moreover we assume there exists at least one minimizer (u, ρ) of (BP) that is

isolated. In particular, we assume that there exists an r > 0 such that (u, ρ) is

the unique minimizer in Br,H1(Ω)×L2(Ω)(u, ρ) ∩ (U × Cγ), where

Br,H1(Ω)×L2(Ω)(u, ρ)

:= {v ∈ H1(Ω)d, η ∈ Cγ : ∥u− v∥H1(Ω) + ∥ρ− η∥L2(Ω) ≤ r}.
(3.3)

We also define Br,H1(Ω)(u) and Br,L2(Ω)(ρ) by

Br,H1(Ω)(u) := {v ∈ H1(Ω)d : ∥u− v∥H1(Ω) ≤ r}, (3.4)

Br,L2(Ω)(ρ) := {η ∈ Cγ : ∥ρ− η∥L2(Ω) ≤ r}. (3.5)

We note that

(U ∩Br/2,H1(Ω)(u))× (Cγ ∩Br/2,L2(Ω)(ρ))

⊂ Br,H1(Ω)×L2(Ω)(u, ρ) ∩ (U × Cγ)

and hence (u, ρ) is also the unique minimizer in (U ∩ Br/2,H1(Ω)(u)) × (Cγ ∩

Br/2,L2(Ω)(ρ)).

Remark 3.1. In the context of the material distribution, it might be a more natural

choice to assume ρ is isolated with respect to the L∞-norm. Assuming ρ is isolated

with respect to the L2-norm is a stronger isolation assumption, as it cannot be

guaranteed that if η lives in an isolated neighborhood with respect to the L2-norm,

η ∈ Br,L2(Ω)(ρ), then, there exists an r∗ > 0, such that η ∈ Br∗,L∞(Ω)(ρ) where

Br∗,L∞(Ω)(ρ) is an isolated neighborhood with respect to the L∞-norm. We make this

stronger isolation assumption as simple and continuous functions are not dense in

L∞(Ω), but are dense in L2(Ω). This has implications in the assumption (A-C3)

and, subsequently, in the remaining results. However, we note that the L2-isolation

assumption is valid for all problems we consider, in particular it holds for all

examples found in Sections 4.6 and 5.3.

Remark 3.2. We note that balls centred at ρ are equivalent if measured against

any Ls-norm for s ∈ [1,∞). More precisely, for any s, q ∈ [1,∞), if η ∈ Br,Lq(Ω)(ρ),

there exists an r∗ > 0, depending on s ∈ [1,∞), such that η ∈ Br∗,Ls(Ω)(ρ). Hence,
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the assumption that the material distribution is isolated with respect to L2-norm is

not a stronger assumption than being isolated with respect to the Ls-norm provided

s ∈ [1,∞).

We now state the main theorem concerning the convergence of a conforming

finite element method.

Theorem 3.1 (Convergence of the conforming finite element method). Let Ω ⊂ Rd

be a polygonal domain in two dimensions or a polyhedral Lipschitz domain in three

dimensions. Suppose that the inverse permeability α satisfies (A1)–(A5) and there

exists an isolated local or global minimizer (u, ρ) ∈ U × Cγ of (BP). Moreover,

assume that, for θ > 0, Uθ is the subset of Ω where |u|2 ≥ θ a.e. in Uθ and suppose

that there exists a θ′ > 0 such that Uθ is closed and has non-empty interior for all

θ ≤ θ′. Let p denote the unique Lagrange multiplier associated with (u, ρ) such that

(u, ρ, p) satisfy the first-order optimality conditions (FOC1)–(FOC3a).

Consider the conforming finite element spaces Xh ⊂ H1(Ω)d, Cγ,h ⊂ Cγ, and

Mh ⊂ L2
0(Ω) and suppose that the assumptions (A-C1)–(A-C3) hold.

Then, there exists an h̄ > 0 such that, for h ≤ h̄, h→ 0, there is a sequence of

solutions (uh, ρh, ph) ∈ Xgh,h × Cγ,h ×Mh to the following discretized first-order

optimality conditions

aρh
(uh,vh) + b(vh, ph) = lf (vh) for all vh ∈X0,h, (FOC1h)

b(uh, qh) = 0 for all qh ∈Mh, (FOC2h)

cuh
(ρh, ηh − ρh) ≥ 0 for all ηh ∈ Cγ,h, (FOC3ah)

such that uh → u strongly in H1(Ω)d, ρh → ρ strongly in Ls(Ω), s ∈ [1,∞), and

ph → p strongly in L2(Ω) as h→ 0.

In the next subsection we give the proof of Theorem 3.1. In Proposition 3.1, by

fixing a ball around an isolated minimizer, we show that finite element minimizers of

a modified optimization problem converge weakly in H1(Ω)d×L2(Ω) to the infinite-

dimensional isolated minimizer. From this we deduce that there exists a subsequence

of finite element minimizers (uh) that converges strongly to the infinite-dimensional
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isolated minimizer in L2(Ω)d. We then strengthen the convergence of ρh to strong

convergence in Ls(Ω), s ∈ [1,∞), in Proposition 3.2 and strengthen the convergence

of uh to strong convergence in H1(Ω)d in Proposition 3.3. In Proposition 3.4, we

prove that there exists an h̄ > 0 such that there is a subsequence, h < h̄, h → 0,

of strongly converging finite element minimizers that also satisfy the discretized

first-order optimality conditions of (BP). Finally, in Proposition 3.5, we show

that the Lagrange multiplier, ph ∈ Mh, that satisfies the discretized first-order

optimality conditions, converges strongly in L2(Ω) to the infinite-dimensional

Lagrange multiplier.

3.1.2 Proof of the convergence of a conforming finite el-
ement method

Fix a minimizer (u, ρ) ∈ U × Cγ of (BP) that is isolated in the sense of (3.3).

Also consider the spaces U gh,h and U 0,h defined by

U gh,h := {vh ∈Xgh,h : b(vh, qh) = 0 for all qh ∈Mh},

U 0,h := {vh ∈X0,h : b(vh, qh) = 0 for all qh ∈Mh}.

Proposition 3.1 (Weak convergence of (uh, ρh) in H1(Ω)d × L2(Ω)). Suppose that

the conditions of Theorem 3.1 hold. Fix an isolated minimizer (u, ρ) of (BP).

Consider the finite-dimensional optimization problem: find (uh, ρh) that minimizes

min
(vh,ηh)∈(Ugh,h∩Br/2,H1(Ω)(u))×(Cγ,h∩Br/2,L2(Ω)(ρ))

J(vh, ηh). (BPh)

Then, a global minimizer (uh, ρh) of (BPh) exists and there exist subsequences (up

to relabeling) such that

uh ⇀ u weakly in H1(Ω)d, (3.6)

uh → u strongly in L2(Ω)d, (3.7)

ρh
∗
⇀ ρ weakly-* in L∞(Ω), (3.8)

ρh ⇀ ρ weakly in Ls(Ω), s ∈ [1,∞). (3.9)
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Proof. The functional J is continuous and

(U gh,h ∩Br/2,H1(Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)) (3.10)

is a finite-dimensional, closed and bounded set. Moreover, for sufficiently small h it

is non-empty. Therefore, it is sequentially compact by the Heine–Borel theorem.

Hence J attains its infimum in (U gh,h ∩Br/2,H1(Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)) and,

therefore, a global minimizer (uh, ρh) exists.

By a corollary of Kakutani’s Theorem (Corollary 2.1), if a Banach space is

reflexive then every norm-closed, bounded and convex subset of the Banach space

is weakly compact and thus, by the Eberlein–Šmulian theorem, sequentially weakly

compact. It can be checked that H1(Ω)d ∩Br/2,H1(Ω)(u) and Cγ ∩Br/2,L2(Ω)(ρ) are

norm-closed, bounded and convex subsets of the reflexive Banach spaces H1(Ω)d

and L2(Ω), respectively. Therefore, H1(Ω)d ∩Br/2,H1(Ω)(u) is weakly sequentially

compact in H1(Ω)d and Cγ ∩Br/2,L2(Ω)(ρ) is weakly sequentially compact in L2(Ω).

Hence we can extract subsequences, (uh) and (ρh) of the sequence generated by

the global minimizers of (BPh) such that

uh ⇀ û ∈ H1(Ω)d ∩Br/2,H1(Ω)(u) weakly in H1(Ω)d, (3.11)

ρh ⇀ ρ̂ ∈ Cγ ∩Br/2,L2(Ω)(ρ) weakly in L2(Ω). (3.12)

By assumption (A-C3), there exists a sequence of finite element functions

ρ̃h ∈ Cγ,h that strongly converges to ρ in L2(Ω). Moreover let ũh ∈ U gh,h be a finite

element function taken from the sequence of finite element functions that satisfy

ũh → u strongly in H1(Ω)d. Such a sequence is shown to exist in [36, Lem. 3.1].
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We now wish to identify the limits û and ρ̂. Consider the following bound:

2|J(ũh, ρ̃h)− J(u, ρ)|

≤
∫

Ω
|(α(ρ)− α(ρ̃h))|u|2|+ |α(ρ̃h)(|u|2 − |ũh|2)| dx

+
∫

Ω
ν
∣∣∣|∇u|2 − |∇ũh|2|

∣∣∣+ 2|f · (u− ũh)| dx

≤ Lα∥u∥2
L4(Ω)∥ρ̃h − ρ∥L2(Ω)

+ ᾱ∥ũh − u∥L2(Ω)(∥ũh − u∥L2(Ω) + 2∥u∥L2(Ω))

+ ν∥ũh − u∥H1(Ω)(∥ũh − u∥H1(Ω) + 2∥u∥H1(Ω))

+ 2∥f∥L2(Ω)∥ũh − u∥L2(Ω),

(3.13)

where Lα denotes the Lipschitz constant for α. From (3.13) we see that

J(ũh, ρ̃h)→ J(u, ρ) as h→ 0. (3.14)

Furthermore, for sufficiently small h > 0, we note that

(ũh, ρ̃h) ∈ (U gh,h ∩Br/2,H1(Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)).

Therefore,

J(uh, ρh) ≤ J(ũh, ρ̃h). (3.15)

By taking the limit as h→ 0, and utilizing (3.14) and (3.15), we see that

lim
h→0

J(uh, ρh) ≤ J(u, ρ). (3.16)

(A-C1) implies that

uh|∂Ω = gh → g strongly in H1/2(∂Ω)d. (3.17)

By assumption (A-C3), for every q ∈ L2
0(Ω), there exists a sequence of q̃h ∈Mh such

that q̃h → q strongly in L2(Ω). Since uh ⇀ û weakly in H1(Ω)d and uh ∈ U gh,h,

we see that

b(û, q) = lim
h→0

b(uh, q̃h) + lim
h→0

b(uh, q − q̃h) = 0 for all q ∈ L2
0(Ω). (3.18)

Hence û is pointwise divergence-free and together with (3.17), we deduce that

û ∈ U ∩Br/2,H1(Ω)(u). By construction ρ̂ ∈ Cγ ∩Br/2,L2(Ω)(ρ).
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With a small modification to the proof found in [36, Th. 3.1], we note that J is

weakly lower semicontinuous on H1(Ω)d × L2(Ω). Therefore,

J(û, ρ̂) ≤ lim inf
h→0

J(uh, ρh). (3.19)

We note that (u, ρ) is the unique minimizer of (U∩Br/2,H1(Ω)(u))×(Cγ∩Br/2,L2(Ω)(ρ))

which implies that J(u, ρ) ≤ J(û, ρ̂). Hence, from (3.16) and (3.19), it follows that

J(û, ρ̂) = J(u, ρ). (3.20)

Since (u, ρ) is the unique minimizer in the spaces we consider, we can identify the

limits û and ρ̂ as u and ρ, respectively, and state that uh ⇀ u weakly in H1(Ω)d

and ρh ⇀ ρ weakly in L2(Ω). By the Rellich–Kondrachov theorem, we can extract

a further subsequence such that uh → u strongly in L2(Ω)d.

We note that by the Banach–Alaoglu theorem, the closed unit ball of the dual

space of a normed vector space, (for example L1(Ω)), is compact in the weak-*

topology. Hence, we can also find a subsequence such that ρh
∗
⇀ ρ̂ ∈ Cγ ∩ {η :

∥ρ− η∥L∞(Ω) ≤ r/2} weakly-* in L∞(Ω). By the uniqueness of the weak limit, we

can identify ρ̂ = ρ a.e. in Ω and, thus, we deduce that ρh
∗
⇀ ρ weakly-* in L∞(Ω).

Consequently, ρh ⇀ ρ weakly in Ls(Ω) for all s ∈ [1,∞).

Corollary 3.1 (Strong convergence of ρh in Ls(Ωb)). Suppose that the conditions of

Theorem 3.1 hold. Fix any isolated minimizer of (BP) and let Ωb be any measurable

subset of Ω of positive measure on which ρ is equal to zero or one a.e. (if such a set

exists). Then, there exists a sequence of finite element minimizers, ρh, of (BPh)

that converge strongly in Ls(Ωb) to the isolated local or global minimizer of (BP),

where s ∈ [1,∞).

Proof. We have shown that there exists a sequence of finite element minimizers

(uh, ρh) of (BPh) that converge to the isolated minimizer (u, ρ). In particular

ρh
∗
⇀ ρ weakly-* in L∞(Ω) and ρh ⇀ ρ weakly in Ls(Ω) for all s ∈ [1,∞). The

result is then deduced by following the proof of Corollary 3.2 in [126].
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Proposition 3.2 (Strong convergence of ρh in Ls(Ω), s ∈ [1,∞)). Suppose that the

conditions stated in Theorem 3.1 hold. Fix an isolated minimizer (u, ρ) of (BP).

Then, there exists a subsequence of minimizers, (ρh), of (BPh) such that

ρh → ρ strongly in Ls(Ω), s ∈ [1,∞). (3.21)

Proof. We note that Cγ,h ∩ Br/2,L2(Ω)(ρ) is a convex set, and hence for any ηh ∈

Cγ,h ∩ Br/2,L2(Ω)(ρ), t ∈ [0, 1], we have that ρh + t(ηh − ρh) ∈ Cγ,h ∩ Br/2,L2(Ω)(ρ).

Since (uh, ρh) is a minimizer of (BPh), by the arguments used in Proposition 2.4

we deduce that
∫

Ω
α′(ρh)|uh|2(ηh − ρh)dx ≥ 0 for all ηh ∈ Cγ,h ∩Br/2,L2(Ω)(ρ). (3.22)

Hence, (FOC3a) and (3.22) imply that for all η ∈ Cγ and ηh ∈ Cγ,h ∩Br/2,L2(Ω)(ρ)

we have that
∫

Ω
α′(ρ)|u|2ρ dx ≤

∫
Ω
α′(ρ)|u|2η dx, (3.23)∫

Ω
α′(ρh)|uh|2ρh dx ≤

∫
Ω
α′(ρh)|uh|2ηh dx. (3.24)

By subtracting
∫

Ω α
′(ρ)|u|2ρhdx from (3.23) and

∫
Ω α

′(ρh)|uh|2ρ dx from (3.24), we

see that
∫

Ω
α′(ρ)|u|2(ρ− ρh) dx ≤

∫
Ω
α′(ρ)|u|2(η − ρh)dx, (3.25)∫

Ω
α′(ρh)|uh|2(ρh − ρ) dx ≤

∫
Ω
α′(ρh)|uh|2(ηh − ρ) dx. (3.26)

Summing (3.25) and (3.26) and rearranging the left-hand side, we see that∫
Ω
(α′(ρ)− α′(ρh))|u|2(ρ− ρh)dx+

∫
Ω
α′(ρh)(|u|2 − |uh|2)(ρ− ρh)dx

≤
∫

Ω
α′(ρ)|u|2(η − ρh)dx+

∫
Ω
α′(ρh)|uh|2(ηh − ρ)dx.

(3.27)

By fixing η = ρh ∈ Cγ and subtracting the second term on the left-hand side of

(3.27) from both sides we deduce that∫
Ω
(α′(ρ)− α′(ρh))|u|2(ρ− ρh)dx

≤
∫

Ω
α′(ρh)|uh|2(ηh − ρ)dx+

∫
Ω
α′(ρh)(|uh|2 − |u|2)(ρ− ρh)dx.

(3.28)
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By an application of the mean value theorem, we note that there exists a c ∈ (0, 1)

such that ∫
Ω
(α′(ρ)− α′(ρh))|u|2(ρ− ρh)dx

=
∫

Ω
α′′(ρh + c(ρ− ρh))|u|2(ρ− ρh)2dx.

(3.29)

By (A5) and the definition of Uθ we bound (3.29) from below:∫
Ω
α′′(ρh + c(ρ− ρh))|u|2(ρ− ρh)2dx

≥
∫

Uθ

α′′(ρh + c(ρ− ρh))|u|2(ρ− ρh)2dx ≥ α′′
minθ∥ρ− ρh∥2

L2(Uθ).
(3.30)

Now we bound the right-hand side of (3.28) as follows,∫
Ω
α′(ρh)|uh|2(ηh − ρ)dx+

∫
Ω
α′(ρh)(|uh|2 − |u|2)(ρ− ρh)dx

≤ 2α′
max(∥u∥2

L4(Ω) + ∥u− uh∥2
L4(Ω))∥ρ− ηh∥L2(Ω)

+ α′
max∥ρ− ρh∥Lq(Ω)∥u + uh∥Lq′ (Ω)∥u− uh∥L2(Ω),

(3.31)

where 2 < q′ < ∞ in two dimensions, 2 < q′ ≤ 6 in three dimensions, and

q = 2q′/(q′ − 2). We note that

∥u + uh∥Lq′ (Ω) ≤ ∥u∥Lq′ (Ω) + ∥uh∥Lq′ (Ω)

≤ ∥u∥H1(Ω) + ∥uh∥H1(Ω) ≤ Ĉ <∞,
(3.32)

where the second inequality holds thanks to the Sobolev embedding theorem.

Combining (3.28)–(3.32) we see that

∥ρ− ρh∥2
L2(Uθ) ≤ C

(
∥ρ− ηh∥L2(Ω) + ∥ρ− ρh∥Lq(Ω)∥u− uh∥L2(Ω)

)
, (3.33)

where C = C(α′
max, α

′′
min, θ, ∥u∥L4(Ω), Ĉ). By assumption (A-C3), there exists a

sequence of finite element functions ρ̃h ∈ Cγ,h such that ρ̃h → ρ strongly in

L2(Ω). Thanks to the strong convergence, we note that for sufficiently small h,

ρ̃h ∈ Cγ,h ∩ Br/2,L2(Ω)(ρ). Hence we can fix ηh = ρ̃h. By Proposition 3.1, we

know that uh → u strongly in L2(Ω)d and since ρ ∈ Cγ, ρh ∈ Cγ,h ⊂ Cγ, then

∥ρ − ρh∥Lq(Ω) ≤ |Ω|1/q∥ρ − ρh∥L∞(Ω) ≤ |Ω|1/q. Therefore, the right-hand side of

(3.33) tends to zero as h→ 0. Hence, we deduce that

ρh → ρ strongly in L2(Uθ), θ > 0. (3.34)
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Now we note that

∥ρ− ρh∥L2(Ω) = ∥ρ− ρh∥L2(Uθ) + ∥ρ− ρh∥L2(U\Uθ) + ∥ρ− ρh∥L2(Ω\U). (3.35)

If U\Uθ or Ω\U are empty, we neglect the corresponding term in (3.35) with no loss

of generality. Suppose Ω\U is non-empty. By definition of U , u = 0 a.e. in Ω\U .

By Proposition 2.2, this implies that ρ = 0 a.e. in Ω\U . Therefore, Corollary 3.1

implies that

ρh → ρ strongly in L2(Ω\U). (3.36)

Suppose U\Uθ is non-empty. Since, ρ, ρh ∈ Cγ we see that

∥ρ− ρh∥L2(U\Uθ) ≤ |U\Uθ|1/2 → 0 as θ → 0. (3.37)

Therefore, by first taking the limit as h→ 0 and then by taking the limit as θ → 0,

(3.34)–(3.37) imply that ρh → ρ strongly in L2(Ω).

Since ∥ρ− ρh∥L1(Ω) ≤ |Ω|1/2∥ρ− ρh∥L2(Ω), we see that ρh → ρ strongly in L1(Ω).

Hence, for any s ∈ [1,∞),∫
Ω
|ρ− ρh|sdx =

∫
Ω
|ρ− ρh|s−1|ρ− ρh|dx ≤ 1s−1∥ρ− ρh∥L1(Ω), (3.38)

which implies that ρh → ρ strongly in Ls(Ω).

Proposition 3.3 (Strong convergence of uh in H1(Ω)d). Suppose that the conditions

stated in Theorem 3.1 hold. Fix an isolated minimizer (u, ρ) of (BP). Then, there

exists a subsequence of minimizers, (uh), of (BPh) such that

uh → u strongly in H1(Ω)d. (3.39)

Proof. We note that the set W h := U gh,h ∩Br/2,H1(Ω)(u) is convex. Hence it can

be shown that minimizers of (BPh) satisfy the variational inequality

aρh
(uh,wh − uh)− lf (wh − uh) ≥ 0 for all wh ∈W h. (3.40)

From Proposition 2.4 we deduce that, for all wh ∈W h,

aρ(u,wh − uh) + b(wh − uh, p) = lf (wh − uh). (3.41)



3. Numerical analysis of the Borrvall–Petersson problem 59

Hence

aρh
(uh,uh −wh) ≤ aρ(u,uh −wh) + b(uh −wh, p). (3.42)

By subtracting aρh
(wh,uh −wh) from both sides we see that

aρh
(uh −wh,uh −wh)

≤ aρ(u,uh −wh)− aρh
(wh,uh −wh) + b(uh −wh, p− qh).

(3.43)

We note that aρh
is coercive and bounded with constants,

ca = ν/(c2
p + 1), Ca = max{ν, α},

and b is bounded with constant Cb. Hence,

∥uh −wh∥2
H1(Ω) ≤

1
ca

aρh
(uh −wh,uh −wh)

≤ 1
ca

(aρ(u,uh −wh)− aρh
(wh,uh −wh) + b(uh −wh, p− qh))

= 1
ca

(∫
Ω
α(ρh)(u−wh) · (uh −wh) + (α(ρ)− α(ρh)) u · (uh −wh)dx

+
∫

Ω
ν∇(u−wh) : ∇(uh −wh)dx+ b(uh −wh, p− qh)

)
≤ 1
ca

ᾱ∥u−wh∥L2(Ω)∥uh −wh∥L2(Ω)

+ 1
ca

∥(α(ρ)− α(ρh))u∥L2(Ω)∥uh −wh∥L2(Ω)

+ ν

ca

|u−wh|H1(Ω)|uh −wh|H1(Ω) + Cb

ca

∥uh −wh∥H1(Ω)∥p− qh∥L2(Ω).

Hence,

∥uh −wh∥H1(Ω) ≤ C
(
∥u−wh∥H1(Ω) + ∥(α(ρ)− α(ρh))u∥L2(Ω) + ∥p− qh∥L2(Ω)

)
,

where C = C(ᾱ, ν, Ca, ca, Cb) is a constant. This implies that, for all wh ∈W h,

∥u− uh∥H1(Ω)

≤ C ′
(
∥u−wh∥H1(Ω) + ∥(α(ρ)− α(ρh))u∥L2(Ω) + ∥p− qh∥L2(Ω)

)
.

(3.44)

where C ′ = C ′(ᾱ, ν, Ca, ca, Cb, Lα). For sufficiently small h, we note that ũh ∈W h

(where ũh is defined in the proof of Proposition 3.1) and ũh → u strongly in H1(Ω)d.

Moreover, by assumption (A-C3), there exists a sequence of finite element functions
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p̃h ∈ Mh that converges to p strongly in L2(Ω). Suppose wh = ũh and qh = p̃h.

From Proposition 3.2, we know that there exists a subsequence (not indicated) such

that ρh → ρ strongly in L4(Ω). We now observe that

∥(α(ρ)− α(ρh))u∥L2(Ω) ≤ Lα∥ρ− ρh∥L4(Ω)∥u∥L4(Ω) (3.45)

where Lα is the Lipschitz constant for α. Hence by taking the limit as h→ 0, we

deduce that uh → u strongly in H1(Ω)d.

In the following proposition, we show that (up to a subsequence) minimizers of

(BPh) also satisfy the first-order optimality conditions, (FOC1h)–(FOC3ah), that

are the finite-dimensional analogue of the first-order optimality conditions (FOC1)–

(FOC3a) associated with (BP). This allows us to consider the finite-dimensional

optimization problem over the whole set U gh,h × Cγ,h, rather than the restricted

set (U gh,h ∩ Br/2,H1(Ω)(u)) × (Cγ,h ∩ Br/2,L2(Ω)(ρ)).

Proposition 3.4 (Discretized first-order optimality conditions). Suppose that the

conditions stated in Theorem 3.1 hold. Then, there exists an h̄ > 0 such that for all

h < h̄, there exists a unique Lagrange multiplier ph ∈ Mh such that the functions

(uh, ρh) that locally minimize (BPh) satisfy the first-order optimality conditions

(FOC1h)–(FOC3ah).

Proof. From Proposition 3.3, we know that uh → u strongly in H1(Ω)d. Hence

by definition of strong convergence, there exists an h̄ > 0 such that, for all h ≤ h̄,

∥u− uh∥H1(Ω) ≤ r/4. Therefore, for each vh ∈ U 0,h, if |t| < r/(4∥vh∥H1(Ω)) then

uh + tvh ∈ U gh,h ∩Br/2,H1(Ω)(u). Now we can follow the reasoning of the proof of

Proposition 2.4 (adding the subscript h where necessary) to deduce the existence of

a unique ph ∈Mh such that (FOC1h)–(FOC3ah) hold.

Proposition 3.5 (Strong convergence of ph in L2(Ω)). Suppose that the conditions

stated in Theorem 3.1 hold. Then, there is a subsequence of the unique ph ∈ Mh

defined in Proposition 3.4 that converges strongly in L2(Ω) to the p ∈ L2
0(Ω) that

solves (FOC1)–(FOC3a) for the given isolated minimizer (u, ρ).
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Proof. The inf-sup condition (A-C2) for Mh and X0,h implies that, for any qh ∈Mh,

cb∥qh − ph∥L2(Ω) ≤ sup
wh∈X0,h\{0}

b(wh, qh − ph)
∥wh∥H1(Ω)

= sup
wh∈X0,h\{0}

b(wh, p− ph) + b(wh, qh − p)
∥wh∥H1(Ω)

≤ sup
wh∈X0,h\{0}

|b(wh, p− ph)|+ |b(wh, qh − p)|
∥wh∥H1(Ω)

= sup
wh∈X0,h\{0}

|aρ(u,wh)− aρh
(uh,wh)|+ |b(wh, qh − p)|
∥wh∥H1(Ω)

≤ ∥(α(ρ)− α(ρh))u∥L2(Ω) + (ᾱ + 1) ∥u− uh∥H1(Ω)

+ Cb∥p− qh∥L2(Ω).

(3.46)

Hence,

∥p− ph∥L2(Ω) ≤ C∥(α(ρ)− α(ρh))u∥L2(Ω)

+ C∥u− uh∥H1(Ω) + C∥p− qh∥L2(Ω),
(3.47)

where C = C(cb, Cb, ᾱ, Lα). By assumption (A-C3), there exists a sequence of finite

element functions, p̃h ∈Mh that satisfies p̃h → p strongly in L2(Ω). Let qh = p̃h. We

have already shown that uh → u strongly in H1(Ω)d in Proposition 3.3. Similarly,

in the proof of Proposition 3.3 we also showed that ∥(α(ρ) − α(ρh))u∥L2(Ω) → 0.

Hence we conclude that ph → p strongly in L2(Ω).

We now have the necessary ingredients to prove Theorem 3.1.

Proof of Theorem 3.1. Fix an isolated minimizer (u, ρ) of (BP) and its unique

associated Lagrange multiplier p. By the results of Propositions 3.1, 3.2, 3.3, and

3.4, there exists a mesh size h̄ such that for, h < h̄, there exists a sequence of finite

element solutions (uh, ρh, ph) ∈ U gh,h × Cγ,h ×Mh satisfying (FOC1h)–(FOC3ah)

that converges to (u, ρ, p). By taking a subsequence if necessary (not indicated),

Proposition 3.2 implies that ρh → ρ strongly in Ls(Ω), s ∈ [1,∞), Proposition 3.3

implies that uh → u strongly in H1(Ω)d, and Proposition 3.5 implies that ph → p

strongly in L2(Ω).

Corollary 3.2 (Relaxing the volume constraint). Suppose that the conditions of

Theorem 3.1 hold. Fix an isolated minimizer (u, ρ) of (BP) and its associated
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Lagrange multiplier p. Consider the finite element space C[0,1],h ⊂ C[0,1] with C[0,1]

as defined in Proposition 2.5. Then, there exists a sequence (λh) ∈ R such that

the sequence (uh, ρh, ph) ∈Xgh,h × Cγ,h ×Mh, satisfying (FOC1h)–(FOC3ah), that

converges to (u, ρ, p) strongly in H1(Ω)d ×Ls(Ω)×L2(Ω), s ∈ [1,∞), also satisfies,

for all (ηh, ζh) ∈ C[0,1],h × R,

cuh,λh
(ρh, ηh − ρh) ≥ 0, (FOC3bh)

dρh
(λh, ζh) = 0, (FOC4h)

with cuh,λh
and dρh

as defined in Proposition 2.5.

Proof. By construction (uh, ρh) minimizes (BPh). Hence, the result can be deduced

in similar fashion to the proof of Proposition 2.5.

3.2 Divergence-free DG finite element discretiza-
tion

In this section we adapt the proof of Theorem 3.1 to a nonconforming divergence-

free DG discretization of the velocity where Xh ̸⊂ H1(Ω)d but Xh ⊂ H(div; Ω).

The two main difficulties are the following:

• ∇vh is not well-defined on Ω for a general function vh ∈Xh. Therefore, we

need to introduce a new power dissipation functional Jh and form ah,ηh
so

that Jh(vh, ηh) and ah,ηh
(vh, ·) are well-defined for functions vh ∈ Xh and

ηh ∈ Cγ,h;

• A crucial result utilized in the proof of Theorem 3.1 was the extraction of

a strongly converging subsequence (uh) in L2(Ω)d from a weakly converging

sequence in H1(Ω)d in Proposition 3.1. This compactness result can no longer

be used as the minimizing velocity finite element functions do not generate a

sequence that is bounded in H1(Ω)d. Hence, a different compactness result is

required to extract a strongly converging subsequence in L2(Ω)d.
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In order to define the modified functional Jh, we must first define notation

for the elements and faces for a given mesh Th. We split the set of facets Fh

into the union Fh = F i
h ∪ F∂

h where F i
h is the subset of interior facets and F∂

h

collects all Dirichlet boundary facets F ⊂ ∂Ω. If F ∈ F i
h, then F = ∂K+ ∩ ∂K−

for two elements K−, K+ ∈ Th. We write n+
F and n−

F to denote the outward

normal unit vectors to the boundaries ∂K+ and ∂K−, respectively. If F ∈ F∂
h ,

then nF is the outer unit normal vector n. We make the following assumption

concerning the triangulation at the boundary:

(M3) (Boundary regularity). There exists a constant c1 > 0 such that:

c1h ≤ hF for all F ∈ F∂
h .

We denote the space of discontinuous finite element functions with degree

no higher than k by

XDGk
:= {v ∈ L1(Ω) : v|K ∈ Pk for all K ∈ Th}, (3.48)

where Pk denotes the set of polynomials of order no higher than k. Let ϕ ∈ (XDGk
)d

and ΦΦΦ ∈ (XDGk
)d×d be any piecewise vector or matrix-valued function, respectively

with traces from within the interior of K± denoted by ϕ± and ΦΦΦ±, respectively. We

define the jump [[·]]F and the average {{·}}F operators across interior facets F ∈ F i
h by

[[ϕ]]F = ϕ+ ⊗ n+
F + ϕ− ⊗ n−

F and {{ΦΦΦ}}F = 1
2
(
ΦΦΦ+ + ΦΦΦ−

)
. (3.49)

If F ∈ F∂
h , we set [[ϕ]]F = ϕ ⊗ nF and {{ΦΦΦ}}F = ΦΦΦ. We note that, for any

F ∈ F∂
h ,

∫
F |[[ϕ]]F |2 ds =

∫
F |ϕ|2 ds.

A function, v ∈ XDGk
, only has a well-defined weak derivative on each element

on the mesh. Hence, we define the broken Sobolev space H1(Th) as:

H1(Th) := {v ∈ L1(Ω) : v ∈ H1(K) for all K ∈ Th}. (3.50)
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Moreover, for a function v ∈ H1(Th)d, we define the broken H1-seminorm and norms

as:

|v|2H1(Th) :=
∑

K∈Th

∥∇v∥2
L2(K) +

∑
F ∈Fi

h

∫
F
h−1

F |[[v]]F |2ds, (3.51)

∥v∥2
H1(Th) := ∥v∥2

L2(Ω) + |v|2H1(Th), (3.52)

∥v∥2
H1

g (Th) := ∥v∥2
H1(Th) +

∑
F ∈F∂

h

∫
F
h−1

F |[[v − g]]F |2ds. (3.53)

The two families of DG finite elements of interest for the velocity are the Brezzi–

Douglas–Marini (BDM) finite element [40, 41] and the Raviart–Thomas (RT) finite

element [119, 138]. The k-th order BDM finite element is defined for d = 2 in [41,

Sec. 2] and for d = 3 in [40, Sec. 2]. The k-th order RT finite element is defined in [138,

Sec. 3] and [119, Sec. 2] for d = 2 and d = 3, respectively. The finite element spaces

induced by the k-th order BDM and RT finite elements are denoted by XBDMk
and

XRTk
, respectively. We note that XRTk

⊂XBDMk
⊂ Zh where, for a given k ≥ 1,

Zh := {v ∈ (XDGk
)d : div(v) ∈ XDGk−1 ∩ L2(Ω)}. (3.54)

We note that Zh ⊂ H(div; Ω) and Zh ⊂ H1(Th)d. We define the following

subspaces of Xh:

X0,n,h := {v ∈Xh : (v · n)|∂Ω = 0}, (3.55)

Xg,n,h := {v ∈Xh : (v · n)|∂Ω − g · n = 0}. (3.56)

We now define the discrete Borrvall–Petersson power dissipation functional

for a DG finite element discretization. Consider the functions uh ∈ Xh ⊂ Zh

and ρh ∈ Cγ,h. We note that, in general, J(uh, ρh) is ill-defined as ∇uh is not

defined on all of Ω. Hence, given a penalization parameter σ > 0, we define
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the discrete analogue Jh as

Jh(uh, ρh) := 1
2

∫
Ω

(
α(ρh)|uh|2 − 2f · uh

)
dx+ ν

2
∑

K∈Th

∫
K
|∇uh|2dx

+ ν

2
∑

F ∈Fi
h

σh−1
F

∫
F
|[[uh]]F |2ds− ν

∑
F ∈Fi

h

∫
F
{{∇uh}}F : [[uh]]F ds

+ ν

2
∑

F ∈F∂
h

σh−1
F

∫
F
|[[uh − gh]]F |2ds

− ν
∑

F ∈F∂
h

∫
F
{{∇uh}}F : [[uh − gh]]F ds.

(3.57)

Remark 3.3. This particular choice for Jh as the discrete analogue of J is motivated

by an interior penalty approach for DG formulations. In Proposition 3.12, we prove

that the velocity minimizers of Jh satisfy a fluid momentum equation featuring terms

that arise in the interior penalty DG discretization of the Stokes equations [52, 78].

Remark 3.4. For any vh ∈ Zh the terms {{∇vh}}F and [[vh]]F as they appear in

Jh are well-defined [20, Sec. 3.1].

Proposition 3.6 (Consistency of Jh). Consider any (v, η) ∈ H1
g(Ω)d × Cγ such

that v ∈ Hr(Ω)d for some r > 3/2. Then, Jh, h > 0 is consistent, i.e.

Jh(v, η) = J(v, η). (3.58)

Proof. Since v ∈ Hr(Ω)d, for some r > 3/2, we note that Jh(v, η) is well-defined and

there can be no jumps in v across elements. Hence, for all F ∈ F i
h, integrals involving

[[v]]F are equal to zero. Moreover v|∂Ω = g and, therefore,
∫

F |[[v − g]]F |2 ds = 0 for

all F ∈ F∂
h . Hence,

Jh(v, η) = 1
2

∫
Ω

(
α(η)|v|2 − 2f · v

)
dx+ ν

2
∑

K∈Th

∫
K
|∇v|2dx = J(v, η). (3.59)

For a sufficiently large penalization parameter σ > 0, we define the broken

form ah,ρ(u,v) by

ah,ρ(u,v) :=
∑

K∈Th

∫
K
α(ρ)u · v + ν∇u : ∇v dx+ ν

∑
F ∈Fh

σh−1
F

∫
F

[[u]]F : [[v]]F ds

− ν
∑

F ∈Fh

∫
F
{{∇u}}F : [[v]]F ds− ν

∑
F ∈Fh

∫
F

[[u]]F : {{∇v}}F ds,

(3.60)
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and the linear functional lh,f ,g as

lh,f ,g(v) :=
∫

Ω
f · v dx

+ ν
∑

F ∈F∂
h

σh−1
F

∫
F

[[g]]F : [[v]]F ds− ν
∑

F ∈F∂
h

∫
F

[[g]]F : {{∇v}}F ds.
(3.61)

Proposition 3.7 (Consistency of ah,ρ). Suppose that (u, ρ) ∈ U ×Cγ is an isolated

minimizer of (BP) and let p ∈ L2
0(Ω) denote the Lagrange multiplier such that

(u, ρ, p) satisfy (FOC1)–(FOC3a). Moreover, assume that u ∈ Hr(Ω)d for some

r > 3/2. Then, for all vh ∈ H1(Th)d ∩H0(div; Ω), we have that

ah,ρ(u,vh) + b(vh, p) = lh,f ,g(vh). (3.62)

Proof. By (FOC1), we have that, for all wh ∈ H1
0 (Ω)d,

aρ(u,wh) + b(wh, p) = lf (wh). (3.63)

Since, by assumption, f ∈ L2(Ω)d, then, by an integration by parts, we see that

α(ρ)u− ν∆u +∇p = f a.e. in Ω. (3.64)

Therefore, as the set of smooth functions is dense in L2(Ω), we can test (3.64)

against any vh ∈ H1(Th)d ∩H0(div; Ω) ⊂ L2(Ω)d. Thus, by performing a second

integration by parts, we have that
∑

K∈Th

∫
K
α(ρ)u · vh + ν∇u : ∇vh − p div(vh) dx

− ν
∑

F ∈Fh

∫
F
{{∇u}}F : [[vh]]F ds =

∫
Ω

f · vh dx.
(3.65)

The element-wise surface integrals arising by the integration by parts of the ∇p

term drop out due to the continuity of vh · n across faces of elements for all

vh ∈H0(div; Ω). Similarly the boundary surface integrals drop out since vh ·n = 0

on ∂Ω. As u ∈ U , for all F ∈ F i
h, we have that [[u]]F = 0 and for all F ∈ F∂

h ,

[[u]]F = [[g]]F . As u ∈ Hr(Ω)d, for some r > 3/2, the traces of ∇u on F ∈ Fh are

well-defined. We conclude that (3.62) holds.
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Proposition 3.8 (Coercivity and boundedness of ah,ρ). There exists a σ0 > 0, such

that for all σ ≥ σ0, wh,uh ∈Xh and η ∈ Cγ, there exist constants ca, Ca > 0 such

that

ca∥wh∥2
H1(Th) ≤ ah,η(wh,wh), (3.66)

ah,η(wh,uh) ≤ Ca∥wh∥H1(Th)∥uh∥H1(Th). (3.67)

Proof. We note that, by assumption (A1), 0 ≤ α(η) ≤ ᾱ for all η ∈ Cγ . Hence, the

result follows from classical coercivity and boundedness results for DG discretizations

for interior penalty methods [20, Sec. 4.1–4.2].

Definition 3.1. For some gh defined on ∂Ω, that can represented exactly in Xh,

we define the spaces U gh,n,h and U 0,n,h as:

U gh,n,h := {u ∈Xgh,n,h : b(uh, qh) = 0 for all qh ∈ XDGk−1} (3.68)

U 0,n,h := {u ∈X0,n,h : b(uh, qh) = 0 for all qh ∈ XDGk−1}. (3.69)

In the following lemma we provide the proof that functions vh ∈ U 0,n,h and

vh ∈ U gh,n,h are pointwise divergence-free.

Lemma 3.1 (Pointwise divergence-free). Suppose that Xh ⊂ Zh. Consider a

function vh ∈ U 0,n,h or vh ∈ U gh,n,h. Then, div(vh) = 0 a.e. in Ω.

Proof. Since U 0,n,h,U gh,n,h ⊂ Xh ⊂ Zh then, by definition, div(vh) ∈ XDGk−1 .

Hence, there exists a qh ∈ XDGk−1 such that qh = div(vh). Therefore,

b(vh, qh) = ∥div(vh)∥2
L2(Ω) = 0, (3.70)

which implies that div(vh) = 0 a.e. in Ω.

3.2.1 Assumptions and the second convergence theorem

As before, the boundary data g cannot be represented in the finite element space.

Hence we instead approximate the boundary data with a finite element function

gh (which can be represented) and assume that

(A-DG1) h−1∥g − gh∥L2(∂Ω) → 0 as h→ 0.
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We also assume that:

(A-DG2) X0,n,h and Mh satisfy the following inf-sup condition for some cb > 0,

cb ≤ inf
qh∈Mh\{0}

sup
vh∈X0,n,h\{0}

b(vh, qh)
∥vh∥H1(Th)∥qh∥L2(Ω)

, (3.71)

where cb is independent of h.

(A-DG3) The finite element spaces are dense in their respective function spaces, i.e.,

for any (v, η, q) ∈ H1(Th)d × Cγ × L2
0(Ω),

lim
h→0

inf
wh∈Xh

∥v −wh∥H1(Th) = lim
h→0

inf
ζh∈Cγ,h

∥η − ζh∥L2(Ω)

= lim
h→0

inf
rh∈Mh

∥q − rh∥L2(Ω) = 0.

Remark 3.5. The inf-sup (A-DG2) and density (A-DG3) conditions are satisfied

by either Xh = XBDMk
or Xh = XRTk

with the choice of the pressure finite element

space Mh = XDGk−1 [51].

We extend the definition of the functional J in (BP) to functions v ̸∈ H1
g(Ω)d by

J(v, η) = +∞ for all v ̸∈ H1
g(Ω)d, η ∈ Cγ. (3.72)

Finally, we assume that there exists at least one isolated minimizer (u, ρ) ∈

U × Cγ of (BP). In particular, there exists an r > 0 such that (u, ρ) is the unique

minimizer of (BP) in Br,H(div;Ω)×L2(Ω)(u, ρ) ∩ (Hg,div(div; Ω) × Cγ), where

Br,H(div;Ω)×L2(Ω)(u, ρ)

:= {v ∈H(div; Ω), η ∈ Cγ : ∥u− v∥H(div;Ω) + ∥ρ− η∥L2(Ω) ≤ r}.
(3.73)

We also define Br,H(div;Ω)(u) by

Br,H(div;Ω)(u) := {v ∈H(div; Ω) : ∥u− v∥H(div;Ω) ≤ r}. (3.74)

We note that

(Hg,div(div; Ω) ∩Br/2,H(div;Ω)(u))× (Cγ ∩Br/2,L2(Ω)(ρ))

⊂ Br,H(div;Ω)×L2(Ω)(u, ρ) ∩ (Hg,div(div; Ω)× Cγ)

and hence (u, ρ) is also the unique minimizer in (Hg,div(div; Ω)∩Br/2,H(div;Ω)(u))×

(Cγ ∩ Br/2,L2(Ω)(ρ)).
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Remark 3.6. The extension of J in (3.72) to functions v ∈ Hg,div(div; Ω) such

that v ̸∈ H1
g(Ω)d means that functions v ̸∈ H1

g(Ω)d cannot be minimizers.

Remark 3.7. As mentioned in Remarks 3.1 and 3.2, assuming that ρ is isolated

with respect to the L2-norm is a reasonable assumption for the problems we consider.

Remark 3.8. In contrast to the conforming case, we are required to make the

stronger assumption that u is isolated with respect to the H(div; Ω)-norm. This is

necessary to construct the discretized problem (BP-DGh) below. However, in all

examples we consider in Sections 4.6 and 5.3, the velocity minimizers are always

isolated with respect to the H(div; Ω)-norm.

We can now state our second main theorem of this chapter.

Theorem 3.2 (Convergence of the divergence-free DG finite element method). Let

Ω ⊂ Rd be a polygonal domain in two dimensions or a polyhedral Lipschitz domain

in three dimensions. Suppose that the inverse permeability α satisfies (A1)–(A5)

and there exists an isolated local or global minimizer (u, ρ) ∈ U × Cγ of (BP) that

has the additional regularity u ∈ Hr(Ω)d for some r > 3/2. Moreover, assume that,

for θ > 0, Uθ is the subset of Ω where |u|2 ≥ θ a.e. in Uθ and suppose that there

exists a θ′ > 0 such that Uθ is closed and has non-empty interior for all θ ≤ θ′. Let

p denote the unique Lagrange multiplier associated with (u, ρ) such that (u, ρ, p)

satisfy the first-order optimality conditions (FOC1)–(FOC3a).

Consider the finite element spaces Xh ⊂ Zh, Cγ,h ⊂ Cγ, and Mh ⊂ L2
0(Ω) and

suppose that the assumptions (A-DG1)–(A-DG3) hold.

Then, there exists an h̄ > 0 such that, for h ≤ h̄, h→ 0, there is a sequence of

solutions (uh, ρh, ph) ∈Xgh,n,h × Cγ,h ×Mh to the following discretized first-order

optimality conditions

ah,ρh
(uh,vh) + b(vh, ph) = lh,f ,gh

(vh) for all vh ∈X0,n,h, (FOC1-DGh)

b(uh, qh) = 0 for all qh ∈Mh, (FOC2-DGh)

cuh
(ρh, ηh − ρh) ≥ 0 for all ηh ∈ Cγ,h, (FOC3a-DGh)

such that, ∥u− uh∥H1
g (Th) → 0, ρh → ρ strongly in Ls(Ω), s ∈ [1,∞), and ph → p

strongly in L2(Ω) as h→ 0.
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3.2.2 Proof of the convergence of a divergence-free DG
finite element method

The proof follows a similar pattern to the proof of Theorem 3.1. The nonconvexity of

the optimization problem is handled by fixing an isolated minimizer and introducing

a modified optimization involving Jh that has the fixed isolated minimizer as the

unique solution. We then show that there exists a sequence of discretized solutions

that converges to the minimizer in the appropriate norms. The modified optimization

problem is related back to the original optimization problem by showing that a

subsequence of the strongly converging minimizers satisfy the first-order optimality

conditions (FOC1-DGh)–(FOC3a-DGh), that can be solved numerically.

An important fact we utilize later is the existence of sequences in U gh,n,h

that converge strongly to u.

Lemma 3.2 (Strongly converging sequences). Suppose that (A-DG1)–(A-DG3)

hold and Xh ⊂ Zh. Consider any isolated minimizer (u, ρ) ∈ U × Cγ of (BP).

Then, there exists a sequence of functions (ũh, p̃h) ∈ U gh,n,h ×Mh such that ∥u−

ũh∥H1
g (Th) → 0 and ∥p− p̃h∥L2(Ω) → 0.

Proof. For sufficiently large σ > 0, consider the problem, find (ũh, p̃h) ∈ U gh,n,h ×

Mh that satisfies

ah,ρ(ũh,vh) + b(vh, p̃h) = lh,f ,gh
(vh) for all vh ∈X0,n,h, (3.75)

b(ũh, qh) = 0 for all qh ∈Mh. (3.76)

Then, under assumptions (A-DG1)–(A-DG3), by standard results for H(div; Ω)

finite element discretizations of the Stokes and Stokes–Brinkman equations with

an interior penalty [52, 100, 101], the pair (ũh, p̃h) exists, is unique, and ∥u −

ũh∥H1
g (Th) → 0, ∥p− p̃h∥L2(Ω) → 0 as h→ 0.

Proposition 3.9 (Weak convergence of (uh, ρh) in H(div; Ω)× L2(Ω)). Suppose

that the conditions of Theorem 3.2 hold. Fix an isolated minimizer (u, ρ) of (BP).
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For a given h > 0, consider the finite-dimensional optimization problem: find

(uh, ρh) ∈ (U gh,n,h ∩Br/2,H(div;Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)) that minimizes

Jh(uh, ρh). (BP-DGh)

Then, a global minimizer (uh, ρh) of (BP-DGh) exists and there exist subsequences

(up to relabeling) such that as h→ 0:

uh ⇀ u weakly in H(div; Ω), (3.77)

uh → u strongly in Lq(Ω)d, (3.78)

uh → u strongly in Lr(∂Ω)d, (3.79)

ρh
∗
⇀ ρ weakly-* in L∞(Ω), (3.80)

ρh ⇀ ρ weakly in Ls(Ω), s ∈ [1,∞), (3.81)

where 1 ≤ q, r < ∞ in two dimensions and 1 ≤ q < 6, 1 ≤ r < 4 in three

dimensions.

Proof. The functional Jh is continuous and

(U gh,n,h ∩Br/2,H(div;Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)) (3.82)

is a finite-dimensional, closed and bounded set and, for sufficiently small h, non-

empty, therefore, sequentially compact by the Heine–Borel theorem. Hence, Jh

attains its infimum in (U gh,n,h∩Br/2,H(div;Ω)(u))×(Cγ,h∩Br/2,L2(Ω)(ρ)) and, therefore,

a global minimizer (uh, ρh) exists for all h > 0.

It can be checked that H(div; Ω) ∩ Br/2,H(div;Ω)(u) and Cγ ∩ Br/2,L2(Ω)(ρ) are

norm-closed, bounded and convex subsets of the reflexive Banach spaces H(div; Ω)

and L2(Ω), respectively. Therefore, by the arguments in the proof of Proposition 3.1,

H(div; Ω) ∩Br/2,H(div;Ω)(u) is weakly sequentially compact in H(div; Ω) and Cγ ∩

Br/2,L2(Ω)(ρ) is weakly sequentially compact in L2(Ω).

Hence we extract subsequences (up to relabeling), (uh) and (ρh) of the sequence

generated by the global minimizers of (BP-DGh) such that

uh ⇀ û ∈H(div; Ω) ∩Br/2,H(div;Ω)(u) weakly in H(div; Ω), (3.83)

ρh ⇀ ρ̂ ∈ Cγ ∩Br/2,L2(Ω)(ρ) weakly in L2(Ω). (3.84)
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By assumption (A-DG3), there exists a sequence of finite element functions

ρ̃h ∈ Cγ,h that strongly converges to ρ in L2(Ω). Moreover, Lemma 3.2 implies the

existence of a sequence (ũh) ∈ U gh,n,h that satisfies ∥u− ũh∥H1
g (Th) → 0.

We now wish to identify the limits û and ρ̂. Consider the following bound:

2|Jh(ũh, ρ̃h)− J(u, ρ)|

≤
∫

Ω
|(α(ρ)− α(ρ̃h))|u|2|+ |α(ρ̃h)(|u|2 − |ũh|2)|+ 2|f · (u− ũh)| dx

+ ν
∑

K∈Th

∫
K

∣∣∣|∇u|2 − |∇ũh|2|
∣∣∣ dx

+ ν
∑

F ∈Fi
h

∫
F
σh−1

F |[[ũh]]F |2 ds+ ν
∑

F ∈F∂
h

∫
F
σh−1

F |[[ũh − gh]]F |2 ds

+ 2ν
∑

F ∈Fi
h

∫
F
|{{∇ũh}}F : [[ũh]]F | ds

+ 2ν
∑

F ∈F∂
h

∫
F
|{{∇ũh}}F : [[ũh − gh]]F | ds.

(3.85)

For all v ∈ H1(Th)d, ΦΦΦ ∈ (XDGk
)d×d, h > 0, the following inequality holds [46,

Lem. 7] ∑
F ∈Fh

∫
F
|{{ΦΦΦ}}F : [[v]]F | ds

≤ C

 ∑
F ∈Fh

∫
F
h−1

F |[[v]]F |2 ds
1/2 ∑

K∈Th

∥ΦΦΦ∥2
L2(K)

1/2

,

(3.86)

for a constant C that only depends on the mesh quality. Hence, we see that

2|Jh(ũh, ρ̃h)− J(u, ρ)|

≤ Lα∥u∥2
L4(Ω)∥ρ̃h − ρ∥L2(Ω) + 2∥f∥L2(Ω)∥ũh − u∥L2(Ω)

+ ᾱ∥ũh − u∥L2(Ω)(∥ũh − u∥L2(Ω) + 2∥u∥L2(Ω))

+ ν
∑

K∈Th

∥∇ũh −∇u∥L2(K)(∥∇ũh −∇u∥L2(K) + 2∥∇u∥L2(K))

+ ν
∑

F ∈Fi
h

∫
F
σh−1

F |[[ũh]]F |2ds+ ν
∑

F ∈F∂
h

∫
F
σh−1

F |[[ũh − gh]]F |2ds

+ Cν

 ∑
F ∈Fi

h

∫
F
h−1

F |[[ũh]]F |2ds


1/2 ∑

K∈Th

∥∇ũh∥2
L2(K)

1/2

+ Cν

 ∑
F ∈F∂

h

∫
F
h−1

F |[[ũh − gh]]F |2ds


1/2 ∑

K∈Th

∥∇ũh∥2
L2(K)

1/2

.

(3.87)
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Thanks to the strong convergence of ũh in the broken H1
g -norm to u and by

assumption (A-DG1), from (3.87) we deduce that

Jh(ũh, ρ̃h)→ J(u, ρ) as h→ 0. (3.88)

Furthermore, for sufficiently small h > 0, we note that

(ũh, ρ̃h) ∈ (U gh,n,h ∩Br/2,H(div;Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)).

Therefore, since (uh, ρh) is a global minimizer of (BP-DGh) in Br/2,H(div;Ω)(u))×

(Cγ,h ∩Br/2,L2(Ω)(ρ)),

Jh(uh, ρh) ≤ Jh(ũh, ρ̃h). (3.89)

By taking the limit as h→ 0, and utilizing (3.88) and (3.89), we see that

lim
h→0

Jh(uh, ρh) ≤ J(u, ρ). (3.90)

By construction ρ̂ ∈ Cγ ∩ Br/2,L2(Ω)(ρ). By assumption (A-DG3), for every

q ∈ L2
0(Ω), there exists a sequence of q̃h ∈Mh such that q̃h → q strongly in L2(Ω).

Since uh ⇀ û weakly in H(div; Ω) and uh ∈ U gh,n,h, we see that

b(û, q) = lim
h→0

b(uh, q̃h) + lim
h→0

b(uh, q − q̃h) = 0 for all q ∈ L2
0(Ω). (3.91)

Hence, û is pointwise divergence-free. The final step to identify û as u is to show

that û ∈ H1
g(Ω)d. Now, the sequence (uh) also defines a bounded sequence in

H1(Th)d such that

sup
h>0

[
∥uh∥L1(Ω) + |uh|H1(Th)

]
< +∞.

Hence, by the compact embedding lemma from Buffa and Ortner [46, Lem. 8], there

exists a subsequence (up to relabeling) and a limit ŵ ∈ H1(Ω)d such that

uh → ŵ strongly in Lq(Ω)d, (3.92)

where 1 ≤ q < ∞ in two dimensions and 1 ≤ q < 6 in three dimensions. By the

uniqueness of limits ŵ = û a.e. in Ω and thus û ∈ H1(Ω)d. Moreover, the same

compact embedding lemma implies that

uh → û strongly in Lr(∂Ω)d, (3.93)
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where 1 ≤ r < ∞ in two dimensions and 1 ≤ r < 4 in three dimensions. If

∥uh − g∥L2(∂Ω) ̸→ 0, then Jh(uh, ρh)→ +∞. Since (uh) is a bounded sequence, we

must have that ∥uh − g∥L2(∂Ω) → 0. Hence,

∥û− g∥L2(∂Ω) ≤ ∥û− uh∥L2(∂Ω) + ∥uh − g∥L2(∂Ω) → 0. (3.94)

Thus, (3.91), (3.92), and (3.94) imply that û ∈ U ∩Br/2,H(div;Ω)(u).

Consider the following decomposition of the functional Jh(uh, ρh) = J1,h(uh, ρh)+

J2,h(uh) where

J1,h(uh, ρh) = 1
2

∫
Ω
α(ρh)|uh|2 − 2f · uh dx, (3.95)

and J2,h(uh) = Jh(uh, ρh) − J1,h(uh, ρh). It follows from (3.92) and a small

modification to the proof in [36, Th. 3.1] that

J1,h(û, ρ̂) ≤ lim inf
h→0

J1,h(uh, ρh). (3.96)

Moreover, it follows from a convergence result in Buffa and Ortner [46, Th. 6.1] that

J2,h(uh)→ 1
2

∫
Ω
|∇û|2 dx. (3.97)

Hence, we have the following weak lower semicontinuity result:

J(û, ρ̂) ≤ lim inf
h→0

Jh(uh, ρh). (3.98)

Since (u, ρ) is the unique minimizer of (BP) in

(Hg,div(div; Ω) ∩Br/2,H(div;Ω)(u))× (Cγ ∩Br/2,L2(Ω)(ρ)),

we see that J(u, ρ) ≤ J(û, ρ̂). Hence, from (3.90) and (3.98), it follows that

J(û, ρ̂) = J(u, ρ). (3.99)

Since (u, ρ) is the unique minimizer in the spaces we consider, we identify the limits

û and ρ̂ as u and ρ, respectively, and state that uh ⇀ u weakly in H(div; Ω),

uh → u strongly in Lq(Ω)d, uh → u strongly in Lr(∂Ω)d and ρh ⇀ ρ weakly in

L2(Ω), where 1 ≤ q, r < ∞ in two dimensions and 1 ≤ q < 6, 1 ≤ r < 4 in three

dimensions.

By the same argument as in the proof of Proposition 3.1, we conclude that

ρh
∗
⇀ ρ weakly-* in L∞(Ω) and ρh ⇀ ρ weakly in Ls(Ω) for all s ∈ [1,∞).
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Proposition 3.10 (Strong convergence of ρh in Ls(Ω), s ∈ [1,∞)). Suppose that

the conditions stated in Theorem 3.2 hold. Fix an isolated minimizer (u, ρ) of (BP).

Then, there exists a subsequence of minimizers, (ρh), of (BP-DGh) such that

ρh → ρ strongly in Ls(Ω), s ∈ [1,∞). (3.100)

The proof of Proposition 3.10 follows from the proof of Proposition 3.2 with

some small modifications.

Proposition 3.11 (Strong convergence of uh in the H1
g(Th)-norm). Suppose that

the conditions stated in Theorem 3.2 hold. Fix an isolated minimizer (u, ρ) of (BP).

Then, there exists a subsequence of minimizers, (uh), of (BP-DGh) such that

∥u− uh∥H1
g (Th) → 0. (3.101)

Proof. We note that U gh,n,h ∩ Br/2,H(div;Ω)(u) is a convex set, and hence for any

wh ∈ U gh,n,h∩Br/2,H(div;Ω)(u), t ∈ [0, 1], we have that uh + t(wh−uh) ∈ U gh,n,h∩

Br/2,H(div;Ω)(u). Since (uh, ρh) is a global minimizer of (BP-DGh), we note that

1
t

[Jh(uh + t(wh − uh), ρh)− Jh(uh, ρh)] ≥ 0. (3.102)

By taking the limit t → 0, a calculation shows that, for all wh ∈ U gh,n,h ∩

Br/2,H(div;Ω)(u),

ah,ρh
(uh,wh − uh) ≥ lh,f ,gh

(wh − uh). (3.103)

We note that wh − uh ∈ U 0,n,h. Hence, from Proposition 3.7 and Lemma 3.1, we

deduce that

ah,ρ(u,wh − uh) = lh,f ,g(wh − uh). (3.104)

Therefore, from (3.103) and (3.104), we see that

ah,ρh
(uh,uh −wh) ≤ ah,ρ(u,uh −wh)

+ lh,f ,gh
(uh −wh)− lh,f ,g(uh −wh).

(3.105)
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Hence, by subtracting ah,ρh
(wh,uh −wh) from both sides of (3.105), and utilizing

the coercivity of ah,ρh
(·, ·) as stated in Proposition 3.8, we have that

ca∥uh −wh∥2
H1(Th) ≤ ah,ρ(u,uh −wh)− ah,ρh

(wh,uh −wh)

+ lh,f ,gh
(uh −wh)− lh,f ,g(uh −wh).

(3.106)

Now, by assumption (M3), for all F ∈ F∂
h , there exists a c > 0 such that h−1

F ≤ ch−1,

where c depends on the mesh regularity. By taking the absolute value of the right-

hand side of (3.106), collecting terms, utilizing the inequality (3.86), and the

boundedness of ah,ρh
by Ca as stated in Proposition 3.8, we have that

ca∥uh −wh∥2
H1(Th) ≤ ᾱ∥u−wh∥L2(Ω)∥uh −wh∥L2(Ω)

+ ∥(α(ρ)− α(ρh))u∥L2(Ω)∥uh −wh∥L2(Ω)

+ Ca∥u−wh∥H1(Th)∥uh −wh∥H1(Th)

+ Ch−1∥g − gh∥L2(∂Ω)∥uh −wh∥L2(∂Ω)

+ Ch−1∥g − gh∥L2(∂Ω)∥uh −wh∥H1(Th),

(3.107)

for some constant C = C(ν, σ) that also depends on the mesh regularity.

We note that ∥u−wh∥L2(Ω) ≤ ∥uh−wh∥H1(Th) by definition. Moreover, by the

broken trace theorem, as found in Buffa and Ortner [46, Th. 4.4], there exists a

constant CBT such that, for all v ∈ H1(Th)d, d ∈ {2, 3} we have

∥v∥L2(∂Ω) ≤ CBT∥v∥H1(Th). (3.108)

Therefore, by bounding the L2(Ω) and L2(∂Ω)-norms of uh − wh above by the

broken H1-norm, and dividing through by ca∥uh −wh∥H1(Th) we see that

∥uh −wh∥H1(Th) ≤ C∥u−wh∥L2(Ω) + C∥(α(ρ)− α(ρh))u∥L2(Ω)

+ C∥u−wh∥H1(Th) + Ch−1∥g − gh∥L2(∂Ω),
(3.109)

for some constant C that depends on ca, Ca, CBT, ᾱ, σ and the mesh regularity.

For sufficiently small h, we note that ũh ∈ U gh,n,h ∩Br/2,H(div;Ω)(u) (where ũh

is defined in Lemma 3.2) and ũh → u strongly in H1(Th)d. Fix wh = ũh.

From Proposition 3.10, we know that there exists a subsequence (not indicated)

such that ρh → ρ strongly in L4(Ω). We now observe that

∥(α(ρ)− α(ρh))u∥L2(Ω) ≤ Lα∥ρ− ρh∥L4(Ω)∥u∥L4(Ω). (3.110)
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∥u∥L4(Ω) is bounded for d ∈ {2, 3} thanks to the Sobolev embedding theorem.

Hence, by taking the limit as h → 0 in (3.109), from (A-DG1), Lemma 3.2, and

(3.110), we deduce that ∥u−uh∥H1(Th) → 0 as h→ 0. In Proposition 3.9, we showed

that uh → u strongly in L2(∂Ω)d. Hence, we conclude that ∥u− uh∥H1
g (Th) → 0 as

h→ 0.

Proposition 3.12 (Discretized first-order optimality conditions). Suppose that

the conditions stated in Theorem 3.2 hold. Then, there exists an h̄ > 0 such

that for all h < h̄, there exists a unique Lagrange multiplier ph ∈ Mh such that

the functions (uh, ρh), that minimize (BP-DGh), satisfy the first-order optimality

conditions (FOC1-DGh)–(FOC3a-DGh).

Proof. The goal is to utilize the strong convergence proven in Proposition 3.11 to

obtain an equation in weak form for uh tested against functions in U 0,n,h. Then

from the proof of Proposition 2.4, we can deduce the existence of ph.

From Proposition 3.11, we know that uh → u strongly in H1(Th)d. Hence by

definition of strong convergence, there exists an h̄1 > 0 such that, for all h ≤ h̄1,

∥u− uh∥H1(Th) ≤ r/4. Moreover, since u ∈ U , we have that div(u) = 0 a.e. in Ω

and by Lemma 3.1, we have that div(uh) = 0 a.e. in Ω. Therefore,

∥u− uh∥2
H(div;Ω) = ∥u− uh∥2

L2(Ω) + ∥div(u− uh)∥2
L2(Ω)

= ∥u− uh∥2
L2(Ω) ≤ ∥u− uh∥2

H1(Th) ≤ r2/16.
(3.111)

Hence, for each vh ∈ U 0,n,h, if |t| < r/(4∥vh∥H1(Th)) then uh + tvh ∈ U gh,n,h ∩

Br/2,H(div;Ω)(u). From Proposition 3.10 we have that ρh → ρ strongly in L2(Ω).

Hence, there exists an h̄2 > 0 such that, for all h ≤ h̄2, ∥ρ − ρh∥L2(Ω) ≤ r/4.

Therefore, for each ηh ∈ Cγ,h, if 0 < t < r/(4∥ηh − ρh∥L2(Ω)) then ρh + t(ηh − ρh) ∈

Cγ,h ∩Br/2,L2(Ω)(ρ). Let h̄ = min{h̄1, h̄2} and consider h ≤ h̄.

Since (uh, ρh) is a global minimizer of (BP-DGh), then, for all vh ∈ U 0,n,h, if

|t| < r/(4∥vh∥H1(Th)) we have

1
t

[Jh(uh + tvh, ρh)− Jh(uh, ρh)] ≥ 0. (3.112)
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By considering the limits for t→ 0+ and t→ 0−, we have that, for all vh ∈ U 0,n,h,

ah,ρh
(uh,vh) = lh,f ,gh

(vh). (3.113)

From (3.113), the existence of a unique ph ∈ Mh such that (uh, ρh, ph) satisfy

(FOC1-DGh)–(FOC2-DGh) follows from the inf-sup condition (A-DG2) and the

argument given in the proof of Proposition 2.4.

Similarly, since (uh, ρh) is a global minimizer of (BP-DGh), then, for all ηh ∈ Cγ,h,

if 0 < t < r/(4∥ηh − ρh∥L2(Ω)) we have

1
t

[Jh(uh, ρh + t(ηh − ρh))− Jh(uh, ρh)] ≥ 0. (3.114)

By taking the limit as t→ 0, we deduce that (FOC3a-DGh) holds.

Proposition 3.13. Suppose that the conditions stated in Theorem 3.2 hold. Then,

there is a subsequence of the unique ph ∈ Mh defined in Proposition 3.12 that

converges strongly in L2(Ω) to the p ∈ L2
0(Ω) that solves (FOC1)–(FOC3a) for the

given isolated minimizer (u, ρ).

Proof. The inf-sup condition (A-DG2) for Mh and X0,n,h implies that, for any

qh ∈Mh,

cb∥qh − ph∥L2(Ω) ≤ sup
wh∈X0,n,h\{0}

b(wh, qh − ph)
∥wh∥H1(Th)

= sup
wh∈X0,n,h\{0}

b(wh, p− ph) + b(wh, qh − p)
∥wh∥H1(Th)

≤ sup
wh∈X0,n,h\{0}

|b(wh, p− ph)|+ |b(wh, qh − p)|
∥wh∥H1(Th)

.

(3.115)

From Proposition 3.7 and Proposition 3.12, it follows that

b(wh, p− ph) = ah,ρh
(uh,wh)− ah,ρ(u,wh) + lh,f ,g(wh)− lh,f ,gh

(wh). (3.116)

Therefore,

cb∥qh − ph∥L2(Ω)

≤ sup
wh∈X0,n,h\{0}

|ah,ρh
(uh,wh)− ah,ρ(u,wh)|
∥wh∥H1(Th)

+ sup
wh∈X0,n,h\{0}

|lh,f ,g(wh)− lh,f ,gh
(wh)|+ |b(wh, qh − p)|

∥wh∥H1(Th)
.

(3.117)
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By using the same argument we used to bound (3.107) by (3.109), we see that

(3.117) implies that

cb∥qh − ph∥L2(Ω) ≤ C∥(α(ρ)− α(ρh))u∥L2(Ω) + C∥u− uh∥H1(Th)

+ Ch−1∥g − gh∥L2(∂Ω) + Cb∥p− qh∥L2(Ω).
(3.118)

where Cb is the boundedness constant for b(·, ·) and C is dependent on Ca, CBT, ᾱ,

Lα, ν, σ and the mesh regularity. Hence, by an application on the Cauchy–Schwarz

inequality,

∥p− ph∥L2(Ω) ≤ C∥(α(ρ)− α(ρh))u∥L2(Ω) + C∥u− uh∥H1(Th)

+ Ch−1∥g − gh∥L2(∂Ω) + C∥p− qh∥L2(Ω),
(3.119)

where C is dependent on cb, Cb, Ca, CBT, ᾱ, Lα, ν, σ and the mesh regularity.

By assumption (A-DG3), there exists a sequence of finite element functions,

p̃h ∈ Mh that satisfies p̃h → p strongly in L2(Ω). Let qh = p̃h. We have already

shown that uh → u strongly in H1(Th)d in Proposition 3.11. Similarly, in the

proof of Proposition 3.11 we also showed that ∥(α(ρ) − α(ρh))u∥L2(Ω) → 0. By

assumption (A-DG1), h−1∥g − gh∥L2(∂Ω) → 0. Hence, we conclude that ph → p

strongly in L2(Ω).

We now have the required results to prove Theorem 3.2.

Proof of Theorem 3.2. Fix an isolated minimizer (u, ρ) of (BP) and its unique

associated Lagrange multiplier p. By the results of Propositions 3.9, 3.10, 3.11, and

3.12, there exists a mesh size h̄ such that for, h < h̄, there exists a sequence of

finite element solutions (uh, ρh, ph) ∈Xgh,n,h × Cγ,h ×Mh satisfying (FOC1-DGh)–

(FOC3a-DGh) that converges to (u, ρ, p). By taking a subsequence if necessary (not

indicated), Proposition 3.10, implies that ρh → ρ strongly in Ls(Ω), s ∈ [1,∞),

Proposition 3.11 implies that ∥u − uh∥H1
g (Th) → 0, and Proposition 3.13 implies

that ph → p strongly in L2(Ω).

Corollary 3.3 (Relaxing the volume constraint). Suppose that the conditions of

Theorem 3.2 hold. Fix an isolated minimizer (u, ρ) of (BP) and its associated

Lagrange multiplier p. Consider the finite element space C[0,1],h ⊂ C[0,1] with C[0,1]
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as defined in Proposition 2.5. Then, there exists a sequence (λh) ∈ R such that the

sequence (uh, ρh, ph) ∈Xgh,n,h×Cγ,h×Mh, satisfying (FOC1-DGh)–(FOC3a-DGh),

that converges to (u, ρ, p) strongly in H1
g(Th)d × Ls(Ω) × L2(Ω), s ∈ [1,∞), also

satisfies, for all (ηh, ζh) ∈ C[0,1],h × R,

cuh,λh
(ρh, ηh − ρh) ≥ 0, (FOC3b-DGh)

dρh
(λh, ζh) = 0, (FOC4-DGh)

with cuh,λh
and dρh

as defined in Proposition 2.5.

Proof. By construction (uh, ρh) minimizes (BP-DGh). Hence, the result can be

deduced as in the proof of Proposition 2.5.

For each isolated minimizer, Theorems 3.1 and 3.2 guarantee the existence of

a sequence of mesh sizes h0 > h1 > h2 > · · · such that the finite element solu-

tions for that sequence, (uhi
, ρhi

, phi
), satisfy the discretized first-order optimality

conditions and strongly converge to the infinite-dimensional isolated minimizer

in H1(Ω)d × Ls(Ω) × L2(Ω), s ∈ [1,∞), for a conforming discretization and in

H1
g(Th)d × Ls(Ω) × L2(Ω), s ∈ [1,∞), for a divergence-free DG discretization.

However, the uniqueness of the finite element solutions is not guaranteed. In

practice, it is possible that for a given sequence of mesh sizes hi, there exist

two sequences of finite element solutions, (uhi
, ρhi

, phi
) and (ûhi

, ρ̂hi
, p̂hi

), that

strongly converge to the same isolated minimizer. This possibility is discussed

and numerically verified in Section 4.6.1.

3.3 Error bounds

In the following section we restrict ourselves to a conforming discretization and

derive error bounds that depend on the L2-norm error of the velocity. Hence, if we

have an estimate of the convergence rate of the L2-norm error of the velocity, we

can deduce the convergence rates for the H1-norm error of the velocity, the L2-norm

error of the material distribution, and the L2-norm error of the pressure.
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Theorem 3.3 (Error bounds). Suppose that the conditions stated in Theorem 3.1

hold, (u, ρ) is an isolated minimizer of (BP) and (u, ρ, p) satisfy the first-order

optimality conditions (FOC1)–(FOC3a). Moreover, let the domain be either a

convex polygon in two dimensions or a convex polyhedron in three dimensions. Let

(uh, ρh, ph) ∈Xgh,h×Cγ,h×Mh denote finite element solutions satisfying (FOC1h)–

(FOC3ah) that converge to (u, ρ, p) as h→ 0. Furthermore, suppose that the support

of ρ is compactly contained in the support of u and there exists a mesh size h′ > 0

such that, for all h < h′, the support of ρh is also compactly contained in the support

of u. Moreover, assume that the boundary data g is the restriction of a function

ĝ ∈ H2(Ω)d on the boundary ∂Ω, where div(ĝ) = 0 a.e. in Ω.

Then, for any (wh, ηh, qh) ∈ Xgh,h × Cγ,h ×Mh, h < h′, the following error

bounds hold:

∥u− uh∥H1(Ω) ≤ C
(
∥u−wh∥H1(Ω) + ∥ρ− ηh∥1/2

L2(Ω)

+∥p− qh∥L2(Ω) + ∥u− uh∥r
L2(Ω)

)
,

(3.120)

∥ρ− ρh∥L2(Ω) ≤ C
(
∥ρ− ηh∥1/2

L2(Ω) + ∥u− uh∥r
L2(Ω)

)
, (3.121)

∥p− ph∥L2(Ω) ≤ C
(
∥u−wh∥H1(Ω) + ∥ρ− ηh∥1/2

L2(Ω)

+∥p− qh∥L2(Ω) + ∥u− uh∥r
L2(Ω)

)
,

(3.122)

where C is a constant independent of h, r = 1 − ϵ, for any 0 < ϵ < 1, in two

dimensions, and r = 3/4 in three dimensions.

Proof. (Material distribution error bound). From (3.33), we know that, for any

θ > 0,

∥ρ− ρh∥2
L2(Uθ) ≤ C

(
∥ρ− ηh∥L2(Ω) + ∥u− uh∥L2(Ω)∥ρ− ρh∥Lq(Ω)

)
, (3.123)

where C is a constant dependent on α′′
min, α

′
max, θ, ∥u∥L4(Ω), and ∥u∥Lq(Ω), 2 < q <∞

in two dimensions, and 3 ≤ q < ∞ in three dimensions. We note that since ρ,

ρh ∈ Cγ,

∥ρ− ρh∥q
Lq(Ω) =

∫
Ω
|ρ− ρh|q−2|ρ− ρh|2dx ≤ ∥ρ− ρh∥2

L2(Ω). (3.124)

By assumption, the supports of ρ and ρh are compactly contained in the support

of u and thus there exists a θ′(h′) > 0 such that supp(ρ), supp(ρh) ⊂ Uθ′ for all
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h < h′. Therefore, by an application of Young’s inequality with ϵ, from (3.123) and

(3.124) we deduce that

∥ρ− ρh∥2
L2(Ω) = ∥ρ− ρh∥2

L2(Uθ′ )

≤ C
(
∥ρ− ηh∥L2(Ω) + ∥u− uh∥L2(Ω)∥ρ− ρh∥2/q

L2(Ω)

)
≤ C

(
∥ρ− ηh∥L2(Ω) + c(ϵ)∥u− uh∥2r

L2(Ω) + ϵ∥ρ− ρh∥2
L2(Ω)

)
,

(3.125)

where c(ϵ) = (ϵq)−2r/q(2r)−1 and r is half the Hölder conjugate of q, i.e. 0 < r < 1 in

two dimensions and 0 < r ≤ 3/4 in three dimensions. By fixing ϵ = C−1/2, moving

the third term over to the left-hand side, taking the square root, and applying the

Cauchy–Schwarz inequality, we deduce that (3.121) holds.

(Velocity error bound). Proposition 3.4 implies that

aρh
(uh,wh − uh)− lf (wh − uh) = 0 for all wh ∈ U gh,h. (3.126)

Hence by following the proof of Proposition 3.3, and replacing W h by U gh,h

until (3.44), we conclude that, for all wh ∈ U gh,h,

∥u− uh∥H1(Ω)

≤ C
(
∥u−wh∥H1(Ω) + ∥(α(ρ)− α(ρh))u∥L2(Ω) + ∥p− qh∥L2(Ω)

)
.

(3.127)

Given the assumptions stated in this theorem, Proposition 2.6 implies that u ∈

H2(Ω)d. By the Sobolev embedding theorem we see that u ∈ L∞(Ω)d. Thus,

∥(α(ρ)− α(ρh))u∥L2(Ω) ≤ Lα∥u∥L∞(Ω)∥ρ− ρh∥L2(Ω). (3.128)

Hence, by (3.127) and (3.128), we deduce that

∥u− uh∥H1(Ω)

≤ C
(
∥u−wh∥H1(Ω) + ∥ρ− ρh∥L2(Ω) + ∥p− qh∥L2(Ω)

)
.

(3.129)

It is known that the inf-sup condition implies that infwh∈Ugh,h
∥u − wh∥H1(Ω) ≤

C∥u− vh∥H1(Ω) for all vh ∈Xgh,h [39, Th. 12.5.17]. By substituting (3.121) into

(3.129), we deduce that (3.120) holds.

(Pressure error bound). In Proposition 3.5 we showed that

∥p− ph∥L2(Ω)

≤ C
(
∥(α(ρ)− α(ρh))u∥L2(Ω) + ∥u− uh∥H1(Ω) + ∥p− qh∥L2(Ω)

)
.

(3.130)
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By applying (3.128), and then by substituting (3.121) and (3.120) into (3.130), we

conclude that (3.122) holds.

Corollary 3.4. Suppose that the conditions stated in Theorems 2.14 and 3.3 hold.

Consider the Taylor–Hood finite element discretization, (CG2)d × CG1, for the

velocity and pressure and any conforming finite element space for the material

distribution ρ. Provided ρ ∈ H1(Ω), suppose that the following best approximation

error bound holds:

inf
ηh∈Cγ,h

∥ρ− ηh∥L2(Ω) ≤ Ch∥ρ∥H1(Ω). (3.131)

Then, the error bounds satisfy the following rate of convergence:

∥u− uh∥H1(Ω)+∥ρ− ρh∥L2(Ω) + ∥p− ph∥L2(Ω)

≤ O(h1/2) +O(∥u− uh∥r
L2(Ω)),

(3.132)

where r = 1 − ϵ, for any 0 < ϵ < 1 in two dimensions and r = 3/4 in three

dimensions.

Proof. Proposition 2.6 implies that u ∈ H2(Ω)d and p ∈ H1(Ω). Moreover, since

the conditions stated in Theorem 2.14 hold and, by assumption, the support of

ρ is compactly contained in the support of u, then ρ ∈ H1(Ω). Since wh ∈ X0,h

and qh ∈Mh in (3.120)–(3.122) are arbitrary, by well-known approximation results

(e.g. using the nodal interpolant for u and the Scott–Zhang interpolant for p) [39,

Ch. 4]

inf
wh∈X0,h

∥u−wh∥H1(Ω) ≤ Ch∥u∥H2(Ω), (3.133)

inf
qh∈Mh

∥p− qh∥L2(Ω) ≤ Ch∥p∥H1(Ω). (3.134)

By assumption an approximation result exists for ρ. Substituting (3.131), (3.133),

and (3.134) into (3.120)–(3.122), we obtain (3.132).

Corollary 3.5. Suppose that the conditions of Corollary 3.4 hold and we fix the

finite element space approximating the material distribution to CG1. Moreover,
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suppose that the material distribution has additional regularity, ρ ∈ Cγ ∩H2(Ω) and

the following best approximation result holds

inf
ηh∈Cγ,h

∥ρ− ηh∥L2(Ω) ≤ Ch2∥ρ∥H2(Ω). (3.135)

Then, the convergence rate (3.132) can be sharpened to

∥u− uh∥H1(Ω) + ∥ρ− ρh∥L2(Ω) + ∥p− ph∥L2(Ω)

≤ O(h) +O(∥u− uh∥r
L2(Ω)),

(3.136)

where r = 1 − ϵ, for any 0 < ϵ < 1 in two dimensions and r = 3/4 in three

dimensions.

Proof. The proof follows the same reasoning as the proof for Corollary 3.4, but

applications of (3.131) are replaced with (3.135).

Remark 3.9. The best approximation bounds (3.131) and (3.135) are standard

results in interpolation theory if we were to relax the function space of the material

distribution from Cγ to L∞(Ω) [39, Ch. 4.8].

The L2-norm error of the velocity on the right-hand sides of (3.132) and (3.136)

prevents a direct realization of the convergence rate of the finite element method.

In the standard Stokes system, with a sufficiently regular domain and data, it can

be shown that, for a Taylor–Hood (CG2)d × CG1 discretization of the velocity-

pressure pair, the L2-norm error of the velocity converges at a rate of O(h2). Such

a result cannot be extrapolated to the Borrvall–Petersson problem at this time.

We also remark that there is a discrepancy in the predicted rate of convergence

in two and three dimensions. We numerically explore convergence rates in two

dimensions in Section 4.6.2.



An algorithm must be seen to be believed.

— Donald Knuth, 1968 4
The deflated barrier method

In this chapter we introduce the deflated barrier method; a novel algorithm for

computing multiple solutions of topology optimization problems. This is achieved by

solving the first-order optimality conditions of a barrier functional with an enlarged

feasible set. The deflated barrier method uses deflation to discover different branches

of solutions. Then, by using continuation to decrease the barrier parameter to

zero, we drive the branches of solutions to different isolated minimizers of the

original topology optimization problem.

The subproblems arising during the continuation of the barrier parameter are

solved with a primal-dual active set solver to enforce the box constraints on ρ,

following an optimize-then-discretize (OTD) approach. This is in contrast to

traditional discretize-then-optimize (DTO) primal-dual interior point methods (such

as IPOPT [173]), which do not use the structure of the original infinite-dimensional

optimization problem. In the context of PDE-constrained optimization, ignoring the

problem structure often results in mesh-dependence of the solver. Mesh-dependence

is the phenomenon where, with each refinement of the mesh, the number of iterations

required by the optimization algorithm increases in an unbounded way [146].

The chapter is organized as follows: in Section 4.1 we formulate barrier function-

als for the topology optimization of fluids and compliance of elastic structures. We

then discuss the solver that will be used to find solutions to the first-order optimality

conditions of the barrier functional in Section 4.2. The deflation mechanism is

introduced in Section 4.3 and we discuss the implementation of the deflated barrier

method in Section 4.4. We present several numerical examples in Section 4.6 where

85
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we also discuss the performance of the algorithm and explore the convergence

of the finite element solutions.

4.1 Formulating a barrier functional

Due to the 0-1 nature of the material distribution, a typical strategy to aid

convergence is the use of a continuation scheme. In the deflated barrier method,

we relax the original optimization problem by augmenting the objective functional

with barrier-like terms. The goal now becomes to find a pair (u, ρ) ∈ U × Cγ

that minimizes

J ϵlog
µ (u, ρ) := J(u, ρ)− µ

∫
Ω
(log(ϵlog + ρ) + log(1 + ϵlog − ρ))dx, (4.1)

subject to the PDE constraints of (BP) (where U = H1
|∂Ω,g,div(Ω)d) or (C) (where

U = H1
ΓD,0(Ω)d). Here, 0 ≤ ϵlog ≪ 1 enlarges the feasible region enforced by

the barrier-like terms and µ ≥ 0 is the barrier parameter. We note that the box

constraints imposed by the barrier-like terms are never active as 0 ≤ ρ ≤ 1 a.e.

We recover the original optimization problem when µ = 0. In the deflated barrier

method we do not use the barrier-like terms to enforce the box constraints on ρ,

as in a traditional interior point approach, but rather to perform continuation in

the barrier parameter to follow a central path. This provides robust nonlinear

convergence and offers an opportunity to find other solutions of the optimization

problem, as explained in Section 4.4.

Proposition 4.1 (Γ-convergence). Suppose that J(u, ρ) is weak × weak-* lower

semicontinuous in the weak × weak-* topology of H1(Ω)d × L∞(Ω). Then J
ϵlog
µ

Γ-converges to J as µ→ 0 in the weak × weak-* topology of H1(Ω)d × L∞(Ω).

Proof. If we show that a liminf property holds and there exists a recovery sequence,

then the proposition is proven. Firstly, if (vµ, ηµ) is a sequence that converges to

(v, η) ∈ H1(Ω)× Cγ in the weak × weak-* topology of H1(Ω)d × L∞(Ω) as µ→ 0,

then we require that

J(v, η) ≤ lim inf
µ→0

J ϵlog
µ (vµ, ηµ). (4.2)
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We note that

J ϵlog
µ (vµ, ηµ)− J(v, η) = J(vµ, ηµ)− J(v, η)

− µ
∫

Ω
(log(ϵlog + ηµ) + log(1 + ϵlog − ηµ))dx.

(4.3)

By assumption, J is weak × weak-* lower semicontinuous and hence it remains to

show that the barrier integral goes to zero as µ→ 0. However, since ηµ ∈ Cγ, the

integral remains finite and as µ→ 0∣∣∣∣µ ∫
Ω
(log(ϵlog + ηµ) + log(1 + ϵlog − ηµ))dx

∣∣∣∣
= µ

∣∣∣∣∫
Ω
(log(ϵlog + ηµ) + log(1 + ϵlog − ηµ))dx

∣∣∣∣→ 0.
(4.4)

For any pair (v, η), we also need to show that there exists a recovery sequence,

(vµ, ηµ), such that J ϵlog
µ (vµ, ηµ)→ J(v, η) as µ→ 0. Choosing the trivial sequence

(vµ, ηµ) := (v, η) satisfies this criterion.

Remark 4.1. The space H1(Ω)d×L∞(Ω) is weak × weak-* compact and, therefore,

the sequence of minimizers of J ϵlog
µ must converge. By the properties of Γ-convergence,

minimizers converge to minimizers: if (uµ, ρµ) is a minimizer for J ϵlog
µ , then every

cluster point of the sequence (uµ, ρµ) is a minimizer of J .

4.1.1 The Borrvall–Petersson model

Proposition 4.2. Suppose that Ω ⊂ Rd is a Lipschitz domain, with d ∈ {2, 3}, α

satisfies properties (A1)–(A3) and is continuously differentiable. Then, there exists

a pair (u, ρ) ∈ U × Cγ that minimizes J ϵlog
µ (as defined in (4.1)).

The following proof mimics the proof of a similar result by Evgrafov [65, Sec. 4].

Proof. Borrvall and Petersson [36, Th. 3.1] proved the weak × weak-* sequential

lower semicontinuity of J , and the weak × weak-* compactness of the space

H1
g,div(Ω)d × Cγ. We note that the − log(·) terms are convex, which by Tonelli’s

theorem [76, Th. 5.14] implies that they are also weakly-* lower semicontinuous.

Hence, we conclude that the relaxation of (BP) to (4.1) still admits a solution.
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As with the original optimization problem, (BP), the minimizers of (4.1) are

not necessarily unique.

The result of Proposition 2.1 can be extended to include (4.1) by utilizing the

fact that − log(x), x > 0, is a monotonically decreasing function in x. Hence, since

we can tighten the inequality volume constraint to an equality volume constraint,

we define the enlarged feasible-set barrier functional as:

Lϵlog
µ (u, ρ, p, p0, λ) := J ϵlog

µ (u, ρ)−
∫

Ω
p div(u)dx

−
∫

Ω
p0p dx−

∫
Ω
λ(γ − ρ)dx;

(4.5)

where p ∈ L2
0(Ω) denotes the pressure, λ is the Lagrange multiplier for the

volume constraint, and p0 ∈ R is the Lagrange multiplier to fix the integral of the

pressure (as required by the space L2
0(Ω)). By a slight modification to the proofs

of Propositions 2.4 and 2.5, one can show that minimizers of (4.1) necessarily

satisfy the first-order optimality conditions of (4.5), i.e., for all (η,v, q, ζ) ∈

C[0,1] × H1
0 (Ω)d × L2

0(Ω) × R, we have:

aρ(u,v) + b(v, p) = lf (v), (L1)

b(u, q) = 0, (L2)

c
µ,ϵlog
u,λ (ρ, η − ρ) ≥ 0, (L3)

dρ(λ, ζ) = 0, (L4)

where

c
µ,ϵlog
u,λ (ρ, η) := 1

2

∫
Ω

(
α′(ρ)|u|2 + λ− µ

ϵlog + ρ
+ µ

1 + ϵlog − ρ

)
η dx. (4.6)

We see that, when µ = 0, (L3) reduces to (FOC3b).

Remark 4.2. If we are using a divergence-free DG finite element approximation

for the velocity, we instead consider the base functional Jh (as defined in (3.57))

instead of J and construct the barrier functional Lϵlog
µ as above. The first-order

optimality condition (L1) becomes (FOC1-DGh).
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4.1.2 Mixed boundary conditions in fluid flow

One could argue that fixing the outlet flows with a Dirichlet boundary condition in

(BP) is inherently nonphysical and a more realistic model would prescribe natural

boundary conditions on the outlets (while keeping the Dirichlet boundary conditions

on the inlets) [56]. The correct choice of Neumann boundary conditions is nontrivial.

Heywood et al. [87] provided an investigation into various formulations. In this

work we opt for the natural boundary condition,

(−pIII + 2νDDD(u)) n = 0 on ΓN , (4.7)

where DDD(u) := (∇u + (∇u)⊤)/2 denotes the symmetrized gradient, III denotes the

d× d identity matrix, and ΓN ⊂ ∂Ω denotes the outlets. Heywood et al. [87] note

that such a formulation does not support Poiseuille flow. However, Limache et

al. [108] proved that (4.7) does satisfy the principle of objectivity, which is often

violated by other common formulations, including (−pIII + ν∇u) n = 0. The natural

boundary condition (4.7) is achieved by altering the objective functional J in (BP) to

JN(u, ρ) = 1
2

∫
Ω
α(ρ)|u|2 + 2ν|DDD(u)|2 dx. (4.8)

By utilizing the identity div((∇u)⊤) = ∇(div(u)) and the fact that div(u) = 0,

it can be shown that the minimizers of (4.8) satisfy the first-order optimality

conditions of (BP) combined with the natural boundary conditions of (4.7). The

barrier functional Lϵlog
µ is then constructed as in (4.5), using JN as the base power

dissipation functional instead of J . The other alteration in the optimization problem

is the removal of the Lagrange multiplier, p0, since the absolute pressure level is

set by the outflow boundary condition.

4.1.3 Navier–Stokes and non-Newtonian flow

In the case where we wish to minimize the power dissipation of a fluid flow governed

by the Navier–Stokes or a non-Newtonian momentum equation, we are required to

introduce extra Lagrange multipliers to enforce the momentum and incompressibility

equations. Consider the incompressible Navier–Stokes equations (non-Newtonian
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flow follows similarly). Then, we introduce the Lagrange multipliers, v ∈ H1
0 (Ω)d,

q ∈ L2
0(Ω), and q0 ∈ R, and define the barrier functional as

Lϵlog
µ (u, ρ, p, p0,v, q, q0, λ)

= J ϵlog
µ (u, ρ)−

∫
Ω
p div(u)dx−

∫
Ω
p0p dx−

∫
Ω
λ(γ − ρ)dx−

∫
Ω
q0q dx

−
∫

Ω
ν∇u : ∇v + δ(u · ∇)u · v + α(ρ)u · v − q div(v) dx,

(4.9)

where J ϵlog
µ is as defined in (4.1) (J is chosen as defined in (BP)) and δ denotes the

(constant) fluid density. By computing the first-order optimality conditions induced

by (4.9), we see that (u, ρ) will satisfy a generalized Navier–Stokes momentum

equation, the incompressibility constraint (FOC2), and will also minimize (BP).

We note that in the case of slow, laminar, non-Newtonian flow where the

convective term may be neglected, it may be possible to match the objective

functional with the corresponding non-Newtonian momentum equation as is done

in the case of Stokes flow. Hence, the three additional Lagrange multipliers

would not be required.

4.1.4 Compliance of elastic structures

Considering the minimization problem (CGL) and using the reduction (2.26), one

can show the appropriate barrier functional for the compliance of linearly elastic

structures is given by

Lϵlog
µ (u, ρ, λ) := 2

∫
ΓN

f · u ds−
∫

Ω
k(ρ) [2µlDDD(u) : DDD(u) + λltr(DDD(u)) · tr(DDD(u))] dx

+ βϵ

2

∫
Ω
|∇ρ|2dx+ β

2ϵ

∫
Ω
ρ(1− ρ)dx−

∫
Ω
λ(γ − ρ)dx

− µ
∫

Ω
(log(ϵlog + ρ) + log(1 + ϵlog − ρ))dx,

where λ ∈ R is the Lagrange multiplier for the equality volume constraint.

4.2 Choosing a solver for the subproblems

Approximately solving the first-order optimality conditions of L0
µ as µ → 0 is

the classical primal interior point approach to finding the minima of (BP) and
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(C). Without additional care, however, a naïve implementation results in the

following poor numerical behavior:

(B1) The Hessian of L0
µk

(z) has condition number O(1/µk). Hence, as µ decreases,

the computed Newton updates may become inaccurate and require more

solver time [77, Th. 4.2];

(B2) An initial guess of z∗ = zk for the subproblem µ = µk+1 is asymptotically

infeasible if an exact full Newton update of the primal interior point method

is used. More precisely, if δρ0
k+1 is the calculated Newton update for ρ at the

first iteration of the Newton solver at µ = µk+1, then as µ→ 0, we see that

0 ≤ ρk + δρ0
k+1 ≤ 1 a.e. does not hold [77, Sec. 4.3.3].

Typically, to avoid the poor numerical behavior of (B1) and (B2), the DTO primal

interior point method is reformulated as a primal-dual interior point method,

eliminating the rational expressions arising from the logarithmic terms in the

objective functional. In a discretize-then-optimize approach, the slack variables

associated with box constraints are associated to the primal variable component-wise.

This manifests as a block identity matrix within the full Hessian. The Hessian can

then be reduced and the primal-dual approach is reformulated into a condensed form.

It is well known that PDE-constrained optimization solvers suffer from mesh-

dependence when they do not properly treat the structure of the underlying infinite-

dimensional problem [146]. In order to obtain accurate solutions, where it is clear

if the material distribution indicates material or void, we may require several

refinements of the mesh; in this context, it is clear that mesh-dependence would

be particularly disadvantageous. The mesh-independence of our algorithm will be

carefully studied in the subsequent numerical examples.

In order to properly treat the structure of the underlying infinite-dimensional

problem, we opt for an optimize-then-discretize (OTD) method. The full Hessian

arising from an OTD primal-dual interior point method may be harder to reduce,

since the block associated with the slack variables is now a mass matrix, rather than

the identity. The goal is to formulate an OTD approach whilst avoiding solving
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uncondensed large systems involving three times the number of degrees of freedom

of a primal approach and the poor numerical behavior of (B1) and (B2). One

workaround is to discretize the slack variables with a DG discretization which would

allow an easier reduction of the full Hessian. Here, in a novel approach, we solve

the subproblems arising from the first-order optimality conditions of the enlarged

feasible-set barrier functional Lϵlog
µ , while still enforcing the true box constraints,

0 ≤ ρ ≤ 1 a.e., with a primal-dual active set solver. Whereas in a standard barrier

method, the barrier terms act as a replacement for the box constraints on ρ, here

we retain the box constraints to be handled by the primal-dual active set solver. The

barrier-like terms are instead used for continuation of the problem, to aid nonlinear

global convergence and to search for other branches of solutions.

The two inner nonlinear solvers we consider for the first-order optimality

conditions of Lϵlog
µ , for a fixed µ, are Hintermüller et al.’s primal-dual active set

strategy (HIK) [88] and Benson and Munson’s active-set reduced space strategy

(BM) [31]. We briefly illustrate the basic approach taken to solve the individual

subproblems using the log-barrier approach coupled with a primal-dual active set

solver. Let J : Rn → R be a twice-continuously differentiable function and consider

the following box-constrained nonlinear program:

min
z∈Rn

J(z) subject to a ≤ z ≤ b. (4.10)

Here, we assume that a,b ∈ Rn such that a < b (in each component) and we

understand the inequality constraints a ≤ z ≤ b component-wise. Next, we

formulate an ‘outer approximation’ of (4.10) using enlarged feasible-set log-barrier-

like terms (for any µ, ϵlog > 0):

min
z∈Rn

{
J(z)− µ

n∑
i=1

[log(zi − (ai − ϵlog)) + log((bi + ϵlog)− zi)] : a ≤ z ≤ b
}
.

We emphasize that there are two pairs of box constraints: the true box constraints

[ai,bi], i = 1, . . . , n, and the enlarged feasible-set box constraints [ai − ϵlog,bi +
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ϵlog], i = 1, . . . , n, ϵlog > 0, that will never be active. For any fixed µ > 0, the

associated KKT-system has the form

f(z)− λa + λb = 0, (4.11)

λa, λb ≥ 0, (4.12)

z− a ≥ 0, b− z ≥ 0, (4.13)

⟨λa, z− a⟩(Rn)∗,Rn = ⟨λb,b− z⟩(Rn)∗,Rn = 0, (4.14)

where, λa,λb ∈ (Rn)∗ are Lagrange multipliers associated with the true box

constraints and

f(z) := J ′(z)− µ

z− (a − ϵlog)
+ µ

b + ϵlog − z
, (4.15)

where the rational expressions are interpreted component-wise. The equivalent

mixed complementarity problem is given by

either ai < zi < bi and f(z)i = 0, (4.16)

or ai = zi and f(z)i ≥ 0, (4.17)

or zi = bi and f(z)i ≤ 0. (4.18)

Consider the natural residual function φ(x, y) = x−(x−y)+ where (·)+ := max(·, 0).

This is an example of an NCP function, a class of functions that for x, y ∈ R satisfy

φ(x, y) = 0 if and only if x, y ≥ 0, xy = 0. (4.19)

Using φ, we note that (4.11)–(4.14) can be reformulated as the following:

f(z)− λa + λb = 0, (4.20)

φ(λa, z− a) = λa − (λa − (z− a))+ = 0, (4.21)

φ(λb,b− z) = λb − (λb − (b− z))+ = 0. (4.22)

Assuming we are given a strictly enlarged-set feasible iterate z ∈ Rn, a − ϵlog <

z < b + ϵlog, we linearize around the point (z,λa,λb) using the associated Newton-

derivative and reduce the system based on the estimates of the active and inactive

sets predicted by the semismooth Newton step.
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In HIK, the linearized system in the direction of (δz, δλa, δλb) is given by

f ′(z)δz− δλa + δλb = −f(z) + λa − λb, (4.23)

where f ′(z) ∈ Rn×n denotes the Fréchet derivative of f and

zi + δzi = ai if i ∈ Aa = {i : λa
i − zi + ai > 0}, (4.24)

zi + δzi = bi if i ∈ Ab = {i : λb
i − bi + zi > 0}, (4.25)

λa
i + δλa

i = 0 if i ∈ Ia = {i : λa
i − zi + ai ≤ 0}, (4.26)

λb
i + δλb

i = 0 if i ∈ Ib = {i : λb
i − bi + zi ≤ 0}. (4.27)

We define the active set by A = Aa ∪ Ab and the inactive set by I = Ia ∩ Ib.

Consider an arbitrary matrix AAA ∈ Rn×m and the subsets Sn ⊂ {1, . . . , n} and

Sm ⊂ {1, . . . ,m}. Then, the matrix AAASn,Sm ∈ R|Sn|×|Sm| is defined by eliminating

the rows of AAA in {1, . . . , n}\Sn and the columns in {1, . . . ,m}\Sm. Similarly for

any column vector x ∈ Rn, the vector xSn ∈ R|Sn| is constructed by eliminating

the rows in the set {1, . . . , n}\Sn of x.

Now, by substituting (4.24)–(4.27) into (4.23) and removing the rows associated

with the active set, we observe that

f ′(z)I,IδzI = −f ′(z)I,AδzA − f(z)I. (4.28)

We can therefore solve the reduced linear system (4.28) to find the inactive

set unknown components of δz (the active set components of δz are fixed by

(4.24) and (4.25)).

BM attempts to solve (4.16)–(4.18) as follows. Given a feasible iterate z with

respect to the true box constraints, a ≤ z ≤ b, the active set is defined by

A = {i : zi = ai and f(z)i > 0} ∪ {i : zi = bi and f(z)i < 0}, (4.29)

and the inactive set is given by I = {i}n
i=1\A. The linearized system in the

direction of δz takes the form

f ′(z)I,IδzI = −f(z)I and δzA = 0. (4.30)
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The next iterate is then given by π(z+δz), where π is the component-wise projection

onto the true box constraints, i.e.

π(z + δz)i =


ai if zi + δzi < ai,

zi + δzi if ai ≤ zi + δzi ≤ bi,

bi if zi + δzi > bi.

(4.31)

The HIK solver is a well-established method and under suitable assumptions is

equivalent to a semismooth Newton method [132, 133, 169] in both finite and

infinite-dimensions [88]. This equivalence ensures local superlinear convergence

and under further assumptions guarantees mesh-independence [89]. Until now,

the BM solver had no supporting theoretical results, although it is conveniently

included in the PETSc solver library [24]. Experimentally, we observe that the

BM solver also enjoys superlinear convergence. At first glance, the two solvers

may appear quite different, but we now prove that for a linear elliptic control

problem, if the active and inactive sets coincide between the two algorithms, then

the updates given by HIK and BM are identical.

In the following we show that in certain problems the updates of HIK and BM

are a half-step out of sync, where we define the notion of a half-step below. If the

active and inactive sets of BM were redefined to be the same as HIK, then BM

would inherit the provably-good convergence properties of HIK. To our knowledge,

this is the first analytical result concerning BM. Although the result does not cover

the nonlinear case, it might help build an intuitive understanding as to why BM

effectively solves the semismooth formulations found in this work.

Consider the minimization problem

min
y∈L2(Ω)

J(y) := 1
2(y, Ay)L2(Ω) − (f, y)L2(Ω) subject to y ≥ ϕ, (4.32)

where (·, ·)L2(Ω) denotes the inner product in L2(Ω), f and ϕ ∈ L2(Ω), inequalities

between L2(Ω) functions are understood in the a.e. sense, and A ∈ L(L2(Ω))

is self-adjoint and coercive. It can be shown there exists a unique solution y∗

to (4.32) and there exists a Lagrange multiplier λ∗ ∈ L2(Ω) such that (y∗, λ∗)
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is the unique solution to

Ay − λ = f,

y ≥ ϕ, λ ≥ 0, (λ, y − ϕ)L2(Ω) = 0.
(4.33)

In order to avoid confusion, we denote the iterates generated by HIK by yk and the

iterates generated by BM by uk. The active and inactive sets at iteration k, Ak and

Ik in HIK and the active and inactive sets Ak and Ik in BM are defined by

Ak = {x : λk − (yk − ϕi) > 0}, and Ik = {x : λk − (yk − ϕ) ≤ 0},

Ak = {x : uk = ϕ and F (uk) > 0}, and Ik = {x : uk > ϕ or F (uk) ≤ 0},

where F (uk) ∈ L2(Ω) is the L2-dual representation of the Fréchet derivative of J(uk).

As in Hintermüller et al. [88, Sec. 4], we define EAk
the extension-by-zero operator

for L2(Ak) to L2(Ω)-functions, and its transpose E∗
Ak

, the restriction operator of

L2(Ω) to L2(Ak)-functions. Identifying the transpose of the extension operator as

the restriction operator is well documented as discussed in [168, Ch. 23]. We define

EIk
, E∗

Ik
, EAk

, E∗
Ak

, EIk
and E∗

Ik
similarly. We note that all these restriction

and extension operators are linear. We now present the infinite-dimensional

description of the BM strategy:

(BM1) Choose a feasible guess u0 ∈ L2(Ω) and set k = 0;

(BM2) Find δuk ∈ L2(Ω) such that E∗
Ik
AEIk

E∗
Ik
δuk = −E∗

Ik
(Auk − f)

and E∗
Ak
δuk = 0;

(BM3) Set uk+1 = π(uk + δuk) where π is the L2-projection onto the constraint, i.e.

for any given u ∈ L2(Ω), π(u) ∈ K := {v ∈ L2(Ω) : v ≥ ϕ} satisfies

∥u− π(u)∥L2(Ω) ≤ ∥u− v∥L2(Ω) for all v ∈ K.

(BM4) If convergence is reached, terminate; otherwise set k ← k + 1 and go to step

(BM2).

Theorem 4.1 (Equivalence of HIK and BM). Let yk denote the primal variable of

HIK at iteration k and let δyk denote the update calculated at iteration k. Let λk
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denote the dual variable at iteration k. We define half steps such that the active set

is updated first, i.e. EAk
yk+1/2 = EAk

yk+1 and EIk
yk+1/2 = EIk

yk.

Let uk denote the primal variable of BM at iteration k and let δuk denote the

update calculated at iteration k.

Suppose that Ak = Ak, Ik = Ik and E∗
Ik
yk = E∗

Ik
uk. Then the following three

equalities hold;

(E1) yk+1/2 = uk;

(E2) E∗
Ik
δyk = E∗

Ik
δuk;

(E3) yk+3/2 = uk+1.

Proof. It is shown in [88] that the update for the inactive set of HIK satisfies

E∗
Ik

(Aδyk) = −E∗
Ik

(Ayk − f).

Expanding the left and right-hand sides, we see that

E∗
Ik
AEIk

E∗
Ik
δyk + E∗

Ik
AEAk

E∗
Ak
δyk = −E∗

Ik
AEIk

E∗
Ik
yk − E∗

Ik
AEAk

E∗
Ak
yk + E∗

Ik
f.

Subtracting the second term on the left-hand side, we see that

E∗
Ik
AEIk

E∗
Ik
δyk = −E∗

Ik
AEIk

E∗
Ik
yk − E∗

Ik
AEAk

E∗
Ak

(yk + δyk) + E∗
Ik
f. (4.34)

By definition E∗
Ak

(y + δyk) = E∗
Ak
yk+1/2 and by assumption Ak = Ak, Ik = Ik and

E∗
Ik
yk = E∗

Ik
uk. Furthermore, since by assumption Ak = Ak and since E∗

Ak
δyk =

E∗
Ak

(ϕ− yk) as derived in [88], we observe that

E∗
Ak
yk+1/2 = E∗

Ak
(yk + ϕ− yk) = E∗

Ak
uk. (4.35)

Since, by definition, the first half step in HIK is only an update on the active set,

we see that E∗
Ik
yk+1/2 = E∗

Ik
yk = E∗

Ik
uk. We therefore have that

yk+1/2 = uk, (4.36)

and (E1) holds. From (4.35), we can see that (4.34) is equivalent to

E∗
Ik
AEIk

E∗
Ik
δyk = −E∗

Ik
(Auk − f). (4.37)
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We note that (4.37) is the linear system solved to calculate the update for the

inactive set of BM and hence

E∗
Ik
δyk = E∗

Ik
δuk. (4.38)

Hence (E2) holds. We now show that yk+3/2 = uk by considering four possible cases.

(First case). Consider C = Ik ∩ Ik+1. If C has measure zero, then we are

done. Suppose that |C| > 0. Then since the dual variable is set to zero on the

inactive set, we know that E∗
Cλk+1 = 0. Therefore, by definition of Ik+1, we

know that E∗
Cyk+1 ≥ E∗

Cϕ. Hence E∗
Cuk + E∗

Cδuk ≥ E∗
Cϕ and therefore E∗

Cuk+1 =

E∗
Cπ(uk + δuk) = E∗

Cuk +E∗
Cδuk = E∗

Cyk+1. The first half step in HIK only changes

the active set, hence E∗
Cyk+3/2 = E∗

Cuk+1.

(Second case). Consider C = Ik∩Ak+1. If C has measure zero, then we are done.

Suppose that |C| > 0. Then since the dual variable is set to zero on the inactive

set, we know that E∗
Cλk+1 = 0. Therefore, by definition of Ak+1, we know that

E∗
Cyk+1 < E∗

Cϕ. Hence E∗
Cuk + E∗

Cδuk < E∗
Cϕ and therefore E∗

Cuk+1 = E∗
Cπ(uk +

δuk) = E∗
Cϕ. By the half-step update of the active set, Ak+1, E∗

Cyk+3/2 = E∗
Cϕ.

Hence E∗
Cyk+3/2 = E∗

Cuk+1.

(Third case). Consider C = Ak ∩Ak+1. If C has measure zero, then we are done.

Suppose that |C| > 0. This implies that E∗
Cyk+3/2 = E∗

Cϕ. Since Ak = Ak, we know

that E∗
Cuk+1 = E∗

Cϕ. Hence E∗
Cyk+3/2 = E∗

Cuk+1.

(Fourth case). Consider C = Ak ∩ Ik+1. If C has measure zero, then we are

done. Suppose that |C| > 0. By definition of Ak, this implies that E∗
Cyk+1 = E∗

Cϕ.

Furthermore, by definition of Ik+1 and since the first half step of HIK only changes

the active set, we see that E∗
Cyk+3/2 = E∗

Cϕ. By definition of Ak, we know that

E∗
Cuk+1 = E∗

Cϕ. Hence E∗
Cyk+3/2 = E∗

Cuk+1.

From the four cases, we conclude that

yk+3/2 = uk+1. (4.39)
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Both HIK and BM perform a pointwise projection on the iterates generated

by the subproblems of the barrier functional. In the context of a classical OTD

primal-dual interior point method applied to a PDE-constrained optimal control

problem, under certain assumptions, Ulbrich and Ulbrich [170, 171] proved that

local superlinear convergence holds if the iterates of the control and its associated

Lagrange multipliers are pointwise projected to a controlled neighborhood of the

central path. Although not all their assumptions hold in our case (in particular

these problems are not convex), the combination of a primal-dual active set solver

and barrier method mimics the computation of a Newton step of a primal-dual

approach and then performing a pointwise projection. An advantage of our method

is that our pointwise projection is unique and cheap to compute.

Numerically, applying HIK or BM to solve the first-order optimality conditions

induced by the barrier functional, Lϵlog
µ , only requires solving linear systems that

are less than or equal to the size of the linear systems in a standard barrier method.

Moreover, in the BM solver, the constrained variables can never reach the bounds of

the enlarged feasible-set, ensuring that the Hessian remains bounded. Furthermore,

both the BM and the HIK solver removes the rows and columns in the Hessian

associated with the active constraints. It is these active constraints which are the

source of the unbounded eigenvalues that cause the ill-conditioning of the barrier

method as µ approaches zero, which addresses problem (B1). In Fig. 4.5 we give an

example demonstrating that the condition number is controlled by the elimination

of the active set. Removing rows and columns associated with the active set mimics

the principle of Nash et al.’s stabilized barrier method [117, 118].

(B2) is observed in numerical examples if we use a Newton solver; however, not

when using semismooth HIK or BM. In particular, BM updates can never reach the

enlarged box constraints due to the pointwise projection. Hence the logarithmic

terms do not influence the step sizes of the active and inactive sets.



4. The deflated barrier method 100

4.3 Deflation

Deflation is an algorithm for the calculation of multiple solutions of systems of

nonlinear equations, starting from the same initial guess. Let V and W be Banach

spaces. Suppose a system of PDEs, F (z) = 0, F : V → W has multiple solutions

z = z1, . . . , zn, that we wish to find. We find the first solution by utilizing a

Newton-like algorithm to find z1 from some initial guess. Now we introduce a

modified system G(z) = 0 such that:

1. G(z) = 0 if and only if F (z) = 0, for z ̸= z1;

2. A Newton-like solver starting from any initial guess z∗ ̸= z1 applied to G will

not converge to z1.

(a) Before deflation. (b) After the deflation of z1.

Figure 4.1: The solutions z1, z2, z3 and, z4 are zeros of the system F (z). The circles
around the solutions represent the basins of attraction within which a Newton-like solver
converges to that particular solution.

This process is visualized in Fig. 4.1. In principle, one can use the same initial guess

to converge to multiple solutions. The modified system is obtained by applying

a deflation operator, M(z; z1) : W → W , to F such that:

(D1) M(z; z1) is invertible for all z ̸= z1 in a neighborhood of z1;

(D2) lim inf
z→z1

∥M(z; z1)F (z)∥ > 0.

(D1) ensures that the resulting system has a solution if the original problem has an

unknown solution, and (D2) ensures that a Newton-like method applied to the newly

deflated system does not converge as z → z1. In this work we consider the shifted
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deflation operator M(z; z1) = (∥z − z1∥−2
V + 1)I, where I : W → W is the identity

operator [66]. In particular, in all the numerical examples discussed in Sections

4.6 and 5.3, deflation is implemented with respect to the material distribution,

i.e. M(z; z1) = (∥ρ − ρ1∥−2
L2(Ω) + 1)I, where z = (u, ρ, p, p0, λ) and z = (u, ρ, λ)

in fluid and compliance problems, respectively.

Deflation can be implemented very efficiently. In particular, the conditioning

of the Jacobian of the deflated system does not cause computational difficulty,

since the Newton update of the discrete deflated system is expressed as a scaling

of the Newton update of the original discrete undeflated system via the Sherman–

Morrison formula [66, Sec. 3]. This is essential for the preconditioning discussed

in the next chapter; one can immediately apply preconditioners for the undeflated

system to the deflated one.

Let Fh : Vh → Wh be an approximation to F on the finite-dimensional spaces

Vh and Wh. Let δzh denote the solution of the deflated Newton system evaluated

at zh ∈ Vh, to be computed, and let δyh denote the solution of the undeflated

Newton system of Fh, assembled at the same current iterate zh. Let z, δz, and

δy be the discrete coefficient vectors of zh, δzh, and δyh, respectively. Moreover,

let m(z) =M(zh, z1,h) and denote the derivative of m with respect to z by m′(z).

The following proposition is due to Farrell et al. [66, Sec. 3].

Proposition 4.3 (Deflation). The solution δz of the discrete deflated Newton

system can be computed by scaling the solution δy of the discrete undeflated Newton

system as follows:

δz =
(

1 + m−1(m′)⊤(δy)
1−m−1(m′)⊤(δy)

)
δy. (4.40)

Proof. Let f ∈ Rn and HHH ∈ Rn×n denote the residual and Jacobian of the Newton-

like system, respectively, that Fh induces, where n is the number of degrees of

freedom of the discretization. By definition δz satisfies

(mf)′δz = (mHHH + f(m′)⊤)δz = −mf . (4.41)
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Now, by an application of the Sherman–Morrison formula, we see that

δz = (mHHH + f(m′)⊤)−1(−mf)

=
(
m−1HHH−1 − m−1HHH−1(f(m′)⊤)m−1HHH−1

1 + (m′)⊤m−1HHH−1f

)
(−mf)

=
(

(−HHH−1f) + m−1(−HHH−1f)(m′)⊤(−HHH−1f)
1−m−1(m′)⊤(−HHH−1f)

)
.

(4.42)

The result follows by noting that, by definition, δy = −HHH−1f .

The formula (4.40) applies if multiple solutions have been deflated, i.e. if m(z) =

M(zh, z1,h) · · ·M(zh, zn,h) for n > 1. The simple structure of (4.40) arises because

the deflated residual is a (nonlinear) scalar multiple of the original residual.

In summary, in order to compute the update δz for the discretized deflated

system, only the original, discretized, undeflated system is solved. Its solution

δy is then scaled as in (4.40).

Deflation was first introduced in the context of polynomials by Wilkinson [178].

It was then extended to differentiable finite-dimensional maps F : Rn → Rn by

Brown and Gearhart [42]. More recently, Farrell et al. extended the original Brown

and Gearhart technique to Fréchet-differentiable maps between Banach spaces [66].

Deflation has been used to discover multiple solutions of cholesteric liquid crystals,

Bose–Einstein condensates, mechanical metamaterials, aircraft stiffeners, and other

applications [50, 61, 114, 140, 180]. It has also been extended to semismooth

mappings [68], which is necessary in the current context of topology optimization.

4.4 Implementation

The essential idea is to use deflation to attempt to find other branches during the

continuation of the barrier parameter, as visualized in Fig. 4.2. As summarized

in Fig. 4.3, the deflated barrier method is divided into three phases: prediction,

continuation and deflation.

(Prediction). Given a solution zk−1 at µ = µk−1, the algorithm calculates an

initial guess for the corresponding solution at µ = µk < µk−1. This is done via a

feasible tangent prediction method (as described in Section 4.5), a classical tangent
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prediction method [149, Sec. 4.4.1] or a secant prediction method [149, Sec. 4.4.2].

A feasible tangent prediction method is identical to its classical counterpart but

with box constraints on the predictor step to ensure the initial guess is feasible.

(Continuation). Given an initial guess for each branch at the new barrier parameter

µk, the algorithm calculates the new solution along each branch with a primal-dual

active set solver whilst deflating away all solutions already known at µ = µk.

(Deflation). At some subset of the continuation steps, the algorithm searches for

new branches at µ = µk using solutions on different branches found at µ = µk−1

as initial guesses. The search terminates when all the initial guesses have been

exhausted (reached a maximum number of iterations without converging) or when

a certain number of branches βmax have been found.

Figure 4.2: A visualization of the deflated barrier method. Branch 0 is discovered at
µ0. A predictor-corrector scheme is used to to follow the branch as µ decreases, denoted
by circles. At µ = µk, deflation is used to discover a new solution on a different branch
(branch 1), using the solution on branch 0 at µ = µk−1 as an initial guess. This newly
discovered branch is then also continued as µ decreases, and is denoted by the crosses.

We now explain the notation used in Algorithm 1. Let z = (u, ρ, p, p0, λ) in

the Borrvall–Petersson case and z = (u, ρ, λ) in the compliance case. The value of

the barrier parameter at subproblem iteration k is denoted µk. The initial guess

for the material distribution is denoted ρ0 and the initial guess for the volume

constraint Lagrange multiplier is denoted λ0. The generator for the next value of µ

is denoted by Θ. The µ-update can be adaptive or chosen a priori, provided it gives

a strictly decreasing sequence. Under suitable conditions, the first-order optimality

conditions of Lϵlog
µ (z) together with the box constraints on ρ can be reformulated
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Prediction
Predict the solution at µ = µk for
each branch.

Continuation

For each branch, approximately
solve M (Sµk

)Fµk
(z) = 0 with

the initial guess given by the pre-
diction phase.

Deflation

Search for new branches
by approximately solving
M (Sµk

)Fµk
(z) = 0 with initial

guesses zj ∈ Sµk−1
.

k
←
k

+
1

Figure 4.3: A flowchart depicting the three phases involved in the deflated barrier
method.

into perturbed KKT conditions [171, Rem. 3] which in turn can be reformulated

as a semismooth system of partial differential equations, Fµ(z). Let

y =
(u, p, p0) in the Borrvall–Petersson case,

u in the compliance case.
(4.43)

Let ′|zi
denote the Fréchet derivative with respect to zi and Sµk

denote the set

of solutions, {z}i, found at µk. We denote the deflation operator by M(·) and

the function space of z by Z.
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Algorithm 1 Deflated barrier method
1: Initialize:

k ← 0 ▷ Initial iteration number
µ0 ▷ Initial barrier parameter
tol ▷ Approximate solve tolerance
βmax ▷ Maximum number of branches sought
ρ0(x)← γ ▷ Constant initial material distribution
λ0 ▷ Initial volume constraint multiplier

2: Approximately solve (Lϵlog
µ0 )′|y(y, ρ0) = 0 for y

3: z∗ ← (y, ρ0, λ0) ▷ Initial guess
4: Approximately solve Fµ0(z) = 0 with initial guess z∗.
5: Sµ0 ← Sµ0 ∪ {z} ▷ Include solution in solution set
6: µ1 ← Θ(µ0), k ← 1 ▷ Update µ and k
7: while µk ≥ 0 and |Sµk−1| ≠ ∅ do
8: for zi ∈ Sµk−1 do
9: ▷ Prediction

10: Predict solution at µk, denoted z∗.
11: ▷ Continuation
12: Attempt to solve M (Sµk

)Fµk
(z) = 0 with initial guess z∗.

13: if ∥Fµk
(z)∥Z∗ ≤ tol then

14: Solve has succeeded; set Sµk
← Sµk

∪ {z}.
15: end if
16: end for
17: ▷ Deflation
18: for zj ∈ Sµk−1 do
19: if |Sµk

| ≥ βmax then
20: break
21: end if
22: Attempt to solve M (Sµk

)Fµk
(z) = 0 with initial guess zj.

23: if ∥Fµk
(z)∥Z∗ ≤ tol then

24: Solve has succeeded; set Sµk
← Sµk

∪ {z}.
25: end if
26: end for
27: µk+1 ← Θ(µk) ▷ Choose new value of µ
28: k ← k + 1
29: end while



4. The deflated barrier method 106

4.5 Feasible tangent prediction

In this section we introduce a novel predictor method that can be used in the

prediction phase of the deflated barrier method. Predictor-corrector methods

are often used in tracing bifurcation diagrams [149]. The idea is that as the

parameter of the problem changes, a cheap predictor generates an initial guess

for the solution of the system with the new parameter. A corrector method is

then used to converge from this initial guess to the true solution. In our context,

the primal-dual active-set solver is the corrector method. Our feasible tangent

predictor method draws inspiration from the usual tangent predictor method, which

solves a linear equation to find an initial guess, but applies box constraints to

ensure the predicted guess is feasible.

The usual tangent predictor is derived as follows. Consider a Fréchet-differentiable

equation F (z0, µ0) = 0, where µ = µ0 is the parameter we wish to vary. Consider a

new parameter µ = µ1 and let δµ := µ1 − µ0. Furthermore, let w := (z, µ). The

goal is to find δz such that z0 + δz ≈ z1 where z1 is the solution to

F (z1, µ1) = 0. (4.44)

A first-order approximation of (4.44) is

0 = F (z1, µ1) ≈ F (z0, µ0) + F ′(w)δw = F ′
z(z0, µ0)δz + F ′

µ(z0, µ0)δµ. (4.45)

Hence an initial guess, z∗ = z0 + δz, can be calculated by solving

F ′
z(z0, µ0)δz = −F ′

µ(z0, µ0)δµ, (4.46)

for δz. In the context of the deflated barrier method this is equivalent to solving

(Lϵlog
µ0 )′′|z,z(z0)δz + (Lϵlog

µ0 )′′|z,µ(z0)δµ = 0, (4.47)

for δz. The traditional tangent predictor has no guarantee that 0 ≤ ρ0 + δρ ≤ 1

a.e. To ensure that the initial guess is feasible, we instead transform (4.47) into a

complementarity problem. Consider the linear operator, T (w) defined by

⟨T (w0), δw⟩ = (Lϵlog
µ0 )′′|z,z(z0)δz + (Lϵlog

µ0 )′′|z,µ(z0)δµ.
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Given sufficient regularity of the dual variable T (w) and the primal variable δw,

we can consider the following complementarity problem,

δρ(x) = −ρ0(x) and T (w0)(x) ≥ 0, (4.48)

or − ρ0(x) < δρ(x) < 1− ρ0(x) and T (w0)(x) = 0, (4.49)

or δρ(x) = 1− ρ0(x) and T (w0)(x) ≤ 0. (4.50)

Solving (4.48)–(4.50) constructs a feasible tangent predictor, z∗. We note that this

method does not perform a pointwise projection. For example, in the topology

optimization of compliance, where we require the material distribution to live

in H1(Ω), we are instead performing an H1-projection on the prediction update.

In the case where (4.49) holds a.e. in Ω, finding the feasible tangent predictor

reduces to solving (4.47).

4.6 Numerical results

All examples of this section were implemented with the finite element software

FEniCS [110] and the resulting linear systems were solved by a sparse LU factor-

ization with MUMPS [17] and PETSc [24]. The meshes were either created in

FEniCS or Gmsh [81]. We present four different examples of the minimization of

the power dissipation of a fluid constrained by the Stokes equations, one constrained

by the Navier–Stokes equations, and two examples of the minimization of the

compliance constrained by linear elasticity. Throughout the numerical examples,

hmin := minK∈Th
hK denotes the minimum diameter of all simplices in the mesh,

where the simplex diameter is computed as the maximum edge length. Similarly

hmax := h = maxK∈Th
hK denotes the maximum diameter of all simplices in the

mesh. All solutions depicted are presented as computed by the deflated barrier

method, with no truncation or postprocessing of the material distribution.

4.6.1 Borrvall–Petersson double-pipe

The double-pipe problem is the first fluid topology optimization problem found

in literature that supports two minimizers [36, Sec. 4.5]. The design domain is a
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rectangle Ω = (0, 3/2)× (0, 1) with two prescribed flow inputs and two prescribed

outputs, and the Dirichlet boundary conditions on u are given by the boundary data

g(x, y) =


(1− 144(y − 3/4)2, 0)⊤ if 2/3 ≤ y ≤ 5/6, x = 0 or 3/2,
(1− 144(y − 1/4)2, 0)⊤ if 1/6 ≤ y ≤ 1/3, x = 0 or 3/2,
(0, 0)⊤ elsewhere on ∂Ω.

(4.51)

The volume fraction is γ = 1/3, the viscosity ν = 1, the forcing term f(x, y) =

(0, 0)⊤ and we use α as given in (2.27), with α = 2.5 × 104 and q = 1/10. Here

q is a penalty parameter which controls the level of intermediate values (between

zero or one) in the optimal design, with larger q giving sharper interfaces. The

setup of the problem is depicted in Fig. 1.2.

We test our algorithm with two finite element discretizations: a Taylor–Hood

(CG2)2 × CG1 discretization and a divergence-free Scott–Vogelius (CG2)2 × DG1

discretization for the velocity and pressure. In both discretizations we use continuous

piecewise linear CG1 elements for the material distribution. Stability of the Scott–

Vogelius discretization is ensured by using a barycentrically-refined mesh [134].

Both of these choices of discretization applied to this problem satisfy the necessary

conditions of Theorem 3.1 for the existence of strongly converging sequences to

the infinite-dimensional isolated minimizers.

Deflated barrier method results

The deflated barrier method is applied to the perturbed first-order optimality

conditions (L1)–(L4) induced by the barrier functional described in Section 4.1.1.

For the BM solver, we begin with µ0 = 100 and apply deflation immediately to

find the second branch of solutions. For HIK, this strategy did not converge to

the second branch, although the second branch is discovered with µ0 = 105. In

both cases tangent prediction is used, as well as a damped l2-minimizing linesearch

[43, Alg. 2]. Fig. 4.4 shows the minimizers of the double-pipe problem computed

using the deflated barrier method.

In Table 4.1 we explore the mesh-independence of the primal-dual active set

solvers. We observe that with each refinement of the mesh, the number of iterations
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Figure 4.4: The material distribution of the local (left) and global (right) minimizers of
the double-pipe optimization problem with mesh size h = 0.0141. Black corresponds to a
value of ρ = 0 and white corresponds to a value of ρ = 1. The objective functional values
are J = 32.58 (left) and J = 23.87 (right).

stays roughly constant. In particular, we notice that the behavior is consistent

for both HIK and BM in both discretizations. This is a recurring theme and

holds in subsequent examples.

In Fig. 4.5 we plot the condition number of the Hessian as in a classical barrier

method, and the condition number of the Hessian with the rows and columns

associated with the active-set removed. We observe that the condition number of

the latter is significantly smaller, accounting for why our proposed methodology

does not suffer from ill-conditioning.

Figure 4.5: The condition number of the Hessian at each iteration of the solver in the
subproblem with µ = 7 × 10−5. The condition number of the Hessian of L0

µ arising in
the linear systems of a standard Newton solver (left) is six to seven orders of magnitude
larger than the condition number of the Hessian of L

ϵlog
µ arising in the linear systems of

the HIK solver (right).
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BM Solver Taylor–Hood Branch 0 Branch 1
h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0283 38,256 124 0 22 115 30 22
0.0177 97,206 123 0 22 109 30 22
0.0141 151,506 110 0 22 116 29 22

HIK solver Taylor–Hood Branch 0 Branch 1
h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0283 38,256 174 0 43 261 14 43
0.0177 97,206 189 0 43 223 13 43
0.0141 151,506 173 0 43 197 13 43

BM solver Scott–Vogelius Branch 0 Branch 1
hmin/hmax Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0278/0.0501 58,685 155 0 22 139 29 22
0.0139/0.0250 234,005 124 0 22 120 29 22

Table 4.1: The cumulative total numbers of primal-dual active-set solver iterations
required in the continuation, deflation and prediction phases of the double-pipe problem.
Branch 0 discovers the local minimum shown in Fig. 4.4 and branch 1 discovers the global
minimum. As we can see, the number of iterations stays roughly constant for both solvers
as we refine the mesh.

Convergence results

Given that the deflated barrier method efficiently computes solutions to (FOC1h)–

(FOC3ah), we numerically verify the result of Theorem 3.1, i.e. there exists a

sequence of finite element solutions that strongly converges to the straight channel

solution and a different sequence of solutions that strongly converges to the double-

ended wrench solution.

Infinite-dimensional solutions for the straight channel and double-ended wrench

are not known for choices of the inverse permeability, α, used in practice. Hence,

errors are measured with respect to a heavily-refined finite element solution, which is

constructed as follows; first the finite element solutions are computed on a mesh with

mesh size h = 0.028, using the deflated barrier method. Next, the mesh is adaptively

refined three times in areas where the material distribution is between 1/10 and

9/10. Each time the mesh is refined, the coarse-mesh solution is interpolated onto

the finer mesh as an initial guess and the first-order optimality conditions are
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re-solved using the deflated barrier method. The error plots are given in Fig. 4.6.
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Figure 4.6: The convergence of uh, ρh, and ph for the double-pipe problem for both
the straight channel and double-ended wrench solutions on an unstructured mesh with a
CG1 × (CG2)2 × CG1 discretization for (ρh, uh, ph).

In principle, there can be infinitely many different subsequences of finite

element solutions that strongly converge to the same infinite-dimensional minimizer

at different convergence rates. Separate subsequences cause difficulties in the

interpretation of the convergence plots as they present themselves as oscillations

in the error. This is observed in practice and appears to be caused by at least

the following two observations:

• Multiple finite element solutions can exist on the same mesh that represent

the same infinite-dimensional solution, e.g. Fig. 4.7;

• A fine mesh can align worse than a coarser mesh with the jumps in the

infinite-dimensional material distribution.
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The first observation is not surprising in the context of nonlinear PDEs and

nonconvex variational problems. In such cases, an additional selection mechanism

is required in order to favour one particular solution over others coexisting on

the same mesh. Selection mechanisms are problem-dependent. In the case of

nonlinear hyperbolic conservation laws, the entropy condition plays this role. In the

present context, one might propose choosing the solution, minimizing the modified

optimization problem (BPh), that attains the smallest objective functional value

for J , within the basin of attraction of the isolated local minimizer. For sufficiently

small h, a minimizer satisfying this selection mechanism must exist. However, it is

not necessarily unique and numerically enforcing such a condition can be difficult.

In order to promote convergence to the minimizer of (BPh) with the smallest value

J , we interpolate the heavily-refined finite element solutions onto coarser meshes as

initial guesses for the deflated barrier method. This strategy was effective in practice.

The effects of the second observation are harder to test. However, in Fig. 4.6, we

attempt to minimize mesh bias by measuring errors on unstructured meshes.

It may be possible to find a sequence of mesh sizes, (hi), such that there exist

two different sequences of finite element solutions that strongly converge to the

same isolated minimizer. In Fig. 4.7, we depict two different straight channel finite

element solutions that exist on the same unstructured mesh where h = 0.04. Both

solutions satisfy the discretized first-order optimality conditions (FOC1h)–(FOC3ah)

and both locally minimize J(vh, ηh). Choosing one over the other would change the

convergence pattern of the strongly converging sequence. This may cause difficulty

in practice, as optimization strategies are unlikely to discover the discretized global

minimum without additional selection mechanisms.

4.6.2 Discontinuous-forcing

The following example is constructed to satisfy the regularity results of Proposi-

tion 2.6 and Theorem 2.14 and we solely explore the convergence rates of the finite

element solutions. Consider the optimization problem (BP), with a homogeneous
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Figure 4.7: Two different straight channel finite element solutions of the double-pipe
optimization problem that exist on the same unstructured mesh where h = 0.04. The
differences can be spotted at the midway point of the top channel.

Dirichlet boundary condition on u, Ω = (0, 1)2, volume fraction γ = 1/3, viscosity

ν = 1 and a forcing term given by

f(x, y) =
(10, 0)⊤ if 3/10 < x < 7/10 and 3/10 < y < 7/10,

(0, 0)⊤ otherwise.
(4.52)

The inverse permeability, α, is as given in (2.27), with α = 2.5× 104 and q = 1/10,

which satisfies (A1)–(A5). Fig. 4.8 depicts the material distribution of three

minimizers: one local minimizer is in the shape of a figure eight and the two Z2

symmetric global minimizers are in the shape of annuli. Since the domain is convex,

Figure 4.8: The material distribution of a local (left) and the global (middle and right)
minimizers of the discontinuous-forcing optimization problem. Black corresponds to a
value of ρ = 0 and white corresponds to a value of ρ = 1, with the grey regions indicating
intermediate values. The arrows indicate the velocity profile of the solutions.

g(x, y) = 0, and f ∈ L2(Ω)d, then, by the regularity results of Proposition 2.6,

u ∈ H2(Ω)2 and p ∈ H1(Ω). Moreover, the conditions of Theorem 2.14 hold and,

therefore, ρ ∈ H1(Uθ) for every θ > 0. In this particular example, the support
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of ρ is compactly contained in the support of the velocity in all three solutions.

Therefore, we conclude that ρ ∈ H1(Ω).

Consider a Taylor–Hood (CG2)2 × CG1 finite element discretization for the

velocity-pressure pair, and a piecewise constant DG0 finite element discretization

for the material distribution. Since all three solutions are isolated local minimizers,

by Theorem 3.1, there exists a sequence of finite element solutions to the discretized

first-order optimality conditions that strongly converges to the figure eight solution,

and different sequences of different finite element solutions that strongly converge

to the two annulus solutions. Their existence is confirmed in Fig. 4.9.

Since ρ ∈ H1(Ω) and we are using a DG0 finite element discretization, a naïve

prediction for the convergence rate of the L2-norm error of the material distribution

is O(h). This rate is observed in the bottom left panel of Fig. 4.9. Moreover,

since the minimum regularity of the velocity is u ∈ H2(Ω)d, and we are using a

(CG2)2 finite element discretization, a prediction for the minimum convergence

rates of the velocity are O(h) and O(h2) for the H1-norm and L2-norm errors

of the velocity, respectively.

In the standard Stokes system, the regularity of u is related to the regularity

of the forcing term f ∈ Hs(Ω)d, such that u ∈ Hs+2(Ω)d (assuming the domain

and boundary data are also suitably regular). Here, the regularity of the forcing

term satisfies s < 1/2. If we assume that the velocity has the additional regularity

u ∈ Hs+2(Ω)d, s ∈ (0, 1/2), in this context, a prediction for the upper limit of

the convergence rate is O(hr) and O(ht+1), for some r, t ∈ [1, s + 1], for the H1-

norm and L2-norm errors of the velocity, respectively. The rates observed in the

top panels of Fig. 4.9 match this prediction. The H1-norm error is decreasing

at a rate slightly faster than O(h3/2) for all three solutions and the L2-norm

error convergence rate is O(h2) for the figure eight solution and O(h5/2) for the

annuli solutions. We hypothesize that the upper limit of the convergence rate

of the L2-norm error of the velocity is bounded by the relatively slower rate of

the convergence of the material distribution.
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Finally, since the minimum regularity of the pressure is p ∈ H1(Ω) and the

discretization is CG1, a prediction for the convergence rate of the L2-norm error

is O(hr), for some r ∈ [1, s + 1]. Initially, the convergence rate is O(h3/2) which

matches our naïve prediction. However, on finer meshes, the convergence rate

increases. We hypothesize that this speedup is artificial and is caused by the lack

of resolution of the refined finite element solutions that are being used as proxies

for the infinite-dimensional solutions in the error norm estimate. Qualitatively,

it can be checked that mesh refinement in areas where the discretized material

distribution lies between 1/10 and 9/10 is an ineffective strategy for improving the

approximation of the infinite-dimensional pressure over the whole domain.
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Figure 4.9: The convergence of uh, ρh, and ph in the discontinuous-forcing problem for
the figure eight and annulus solutions on structured meshes, with a DG0 × (CG2)2 ×CG1
discretization for (ρh, uh, ph).
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4.6.3 Neumann-outlet double-pipe

In this example we consider the double-pipe problem with Neumann boundary

conditions on the outlets, whilst keeping all other model parameters the same.

We employ the Taylor–Hood (CG2)2 × CG1 discretization for the velocity-pressure

pair and a CG1 discretization for the material distribution. The barrier functional

is described in Section 4.1.2. The barrier parameter is initialized at µ0 = 1000

and the BM solver is used to solve the perturbed first-order optimality conditions.

Deflation finds the second, third, and fourth branches at µ = 82.4. For h = 0.0333,

deflation discovers branch 2, then branch 1 and 3, whereas for the other mesh sizes,

deflation discovers the branches in ascending order.

The removal of an imposed outlet flow has an interesting effect. The global

minimizer in the shape of a double-ended wrench is now a local minimizer. Two new

Z2-symmetric global minimizers now exist as shown in Fig. 4.10. This is not entirely

surprising. There is a cost associated with the pipe splitting and if the optimization

problem does not require the flow to leave both outlets, then it is favorable for the

flow to exit via one outlet, not both. This is reflected in the resulting cost.

The mesh-independence of the algorithm is investigated in Table 4.2. As before,

mesh-independence is observed.

BM Solver Branch 0 Branch 1
h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0333 27,455 118 0 53 108 49 34
0.0250 48,605 136 0 37 107 34 37
0.0125 193,205 113 0 35 106 45 36

Branch 2 Branch 3
h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0333 27,455 166 199 55 166 149 55
0.0250 48,605 145 123 45 145 157 45
0.0125 193,205 128 151 46 128 146 46

Table 4.2: The cumulative total numbers of BM solver iterations required in the
continuation, deflation and prediction phases of the double-pipe problem with natural
boundary conditions on the outlets.
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(a) Branch 0. (b) Branch 1.

(c) Branch 2. (d) Branch 3.

Figure 4.10: The material distribution of two local and two global minimizers of the
double-pipe optimization problem with natural boundary conditions on the outlets, instead
of Dirichlet conditions, with h = 0.0125. Black corresponds to a value of ρ = 0 and white
corresponds to a value of ρ = 1. Branches 0, 1, 2, and 3 have the objective functional
values JN = 32.35, 22.92, 18.46, and 18.46, respectively.

4.6.4 Roller-type pump

In this example problem [56, Sec. 2.1.4.4], the domain is given by

Ω = (0, 1)2\
{
(x, y) ∈ (0, 1)2 : (x− 0.5)2 + (y − 0.5)2 ≤ (0.3)2

}
.

The boundary data g on u is given by:

g(x, y) =


(0, 1− 20(x− 0.61)2)⊤, if 0.56 < x < 0.66 and y = 0,
(1− 20(y − 0.95)2, 0)⊤, if x = 1 and 0.9 < y < 1,
10/3(y − 1/2, 1/2− x)⊤, if (x− 0.5)2 + (y − 0.5)2 = (0.3)2,

(0, 0)⊤, elsewhere.

These boundary conditions model an inlet on the bottom of the domain and an

outlet on the right of the domain with a pump rotating at a constant velocity in

the center of the domain where the fluid experiences no-slip boundary conditions.
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We employ the Taylor–Hood discretization and initialize µ0 = 1000. The barrier

functional is as given in Section 4.1.1. Deflation finds the second branch at µ = 6.78.

A global and local minimum of the problem are shown in Fig. 4.11a. The

local minimum chooses to avoid the pump in favor of taking the path with the

shortest distance from the inlet to the outlet, while the global minimum exploits

the rotation given by the pump. The local minimizer for q = 1/10 has areas where

ρ ≈ 1/2, which has an ambiguous physical interpretation. In order to verify whether

ρ should be equal to zero or one in such areas, a mixture of grid-sequencing and

continuation in q was performed, resulting in the solution shown in Fig. 4.11b. The

mesh-independence of the algorithm is verified in Table 4.3.

BM solver Branch 0 Branch 1
hmin/hmax Dofs Cont. Defl. Pred. Cont. Defl. Pred.
0.0258/0.0509 7388 260 0 55 118 80 35
0.0127/0.0255 29,174 186 0 51 75 117 25
0.0064/0.0127 113,096 177 0 46 83 99 29

Table 4.3: The cumulative total numbers of BM solver iterations required in the
continuation, deflation and prediction phases of the roller-type pump problem to find the
solutions shown in Fig. 4.11a. The iteration counts are mesh-independent.

(a) The local (left) and global (right) minimizers, ρ. (b) Refined local minimizer.

Figure 4.11: (a) The material distribution of the local and global minimizers of the
roller-type pump optimization problem, with hmin = 6.4× 10−3. Black corresponds to a
value of ρ = 0 and white corresponds to a value of ρ = 1. The grey area is the hole removed
from the domain. The arrows indicate the direction and magnitude of the velocity, u.
The values of the objective functional are J = 26.84 (left) and J = 22.67 (right). (b) A
mixture of grid-sequencing of the mesh where ρ ≈ 1/2 and the continuation of q to larger
values was performed on the local minimum of the roller-type pump optimization problem
in order to remove areas where ρ ≈ 1/2. The resulting refined solution has clearly defined
areas of ρ = 0 and ρ = 1. Here hmin = 3.3× 10−3, q = 0.65, and J = 29.17.
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4.6.5 Five-holes double-pipe with Navier–Stokes

In this example we consider a Navier–Stokes flow through a nonconvex domain

with a minimizing power dissipation. The setup is similar to the original Borrvall–

Petersson double-pipe problem with Dirichlet outflow conditions, but the domain

now includes five small decagonal holes with inscribed radius 0.05 positioned at

(1/2, 1/3), (1/2, 2/3), (1, 1/4), (1, 1/2) and (1, 3/4), as shown in Fig. 4.12. The

barrier functional is as given in Section 4.1.3. We choose ν = 1 and δ = 1, with other

variables equal to those in the original double-pipe problem. We employ the Taylor–

Hood discretization for the velocity-pressure pair and a CG1 discretization for the

material distribution. We initialize at µ0 = 200, use feasible tangent prediction,

and apply an l2-minimizing linesearch in the continuation.

In total we find 42 solutions which are shown in Fig. 4.13. The holes prevent the

channels passing directly from the inlets to the outlets and substantially increase

the number of local minima. This example reveals that the number of local minima

of a topology optimization problem is not always small and that the deflated

barrier method is effective in finding many of them. A small number of solutions

found exhibited regions of ambiguity ρ ≈ 1/2, and underwent grid-sequencing and

continuation in q in order to remove these areas. We note that there are more

solutions that our algorithm did not find, since there are missing Z2 symmetric

pairs which must also be solutions. We note that, in this example, the mesh is

unstructured and, therefore, not Z2 symmetric.

Figure 4.12: Setup of the five-holes double-pipe problem.
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Figure 4.13: The material distribution of 42 solutions of the five-holes double-pipe
optimization problem as discovered by the deflated barrier method, and their associated
energies J . The fluid flow is governed by the incompressible Navier–Stokes equations.
Black corresponds to a value of ρ = 0, white corresponds to a value of ρ = 1, and the
grey regions are the five small holes.
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4.6.6 Cantilever beam

In this example we use the deflated barrier method to find multiple stationary points

of compliance problems. However, due to the lack of regularity of the Lagrange

multipliers associated with the box constraints on ρ, the solver exhibits mesh-

dependent behavior. With each refinement of the mesh, the number of iterations

required for the solver to converge increases in an unbounded way. This is difficult

to resolve, and appropriate techniques to address this are the subject of ongoing

research. Practically, we first run the algorithm on a coarse mesh and then use

grid-sequencing to obtain refined solutions.

The two-dimensional cantilever beam optimization problem is to find minimizers

of (C) that satisfy the boundary conditions

SSSn = (0,−1)⊤ on ΓN ,

u = (0, 0)⊤ on ΓD,

SSSn = (0, 0)⊤ on ∂Ω\{ΓN ∪ ΓD},

with domain Ω = (0, 1.5) × (0, 1), where

ΓD = {(x, y) ∈ ∂Ω : x = 0},

ΓN = {(x, y) ∈ ∂Ω : 0.1 ≤ y ≤ 0.2, x = 1.5} ∪ {(x, y) ∈ ∂Ω : 0.8 ≤ y ≤ 0.9, x = 1.5} .

These boundary conditions describe a cantilever clamped to the y-axis with two

traction forces pulling the cantilever vertically downwards in two places at x = 1.5.

We use CG1 finite elements for u and ρ. The barrier functional is as given in

Section 4.1.4. We initialize the deflated barrier method at µ0 = 10 and discover the

second branch at µ = 4.25× 10−3. The two solutions found are shown in Fig. 4.14.
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Figure 4.14: The material distribution of two solutions of the cantilever beam. The
parameters are hmin = 3.56× 10−3, hmax = 5.70× 10−2, ϵ = 4.40× 10−3, β = 1.8× 10−4,
γ = 0.5, ϵSIMP = 10−5, ps = 3, and the Lamé coefficients are µl = 75.38 and λl = 64.62.
J = 6.18× 10−3 (left) and J = 6.08× 10−3 (right).

4.6.7 Messerschmitt–Bölkow–Blohm (MBB) beam

The two-dimensional MBB beam optimization problem is to find minimizers of

(C) that satisfy the boundary conditions

u · (1, 0)⊤ = 0 on ΓD1 ,

u · (0, 1)⊤ = 0 on ΓD2 ,

SSSn = (0,−10)⊤ on ΓN ,

SSSn = (0, 0)⊤ on ∂Ω\{ΓN ∪ ΓD1 ∪ ΓD2},

where Ω = (0, 3) × (0, 1) and

ΓD1 = {(x, y) ∈ ∂Ω : x = 0}, ΓD2 = {(x, y) ∈ ∂Ω : y = 0, 2.9 ≤ x ≤ 3} ,

ΓN = {(x, y) ∈ ∂Ω : y = 1, 0 ≤ x ≤ 0.1} .

These boundary conditions describe a half-beam that is fixed horizontally on the

y-axis and fixed vertically at its bottom right corner on the x-axis. There is a

boundary force pushing vertically downwards at the top left corner, which represents

the middle of the beam when the half-beam is mirrored. The barrier functional

is as given in Section 4.1.4. We use the same finite element discretization and

initialize the deflated barrier method at µ0 = 50. Deflation discovers the second
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branch at µ = 1.58 × 10−1. As in the cantilever problem, the algorithm is mesh-

dependent and grid-sequencing is used to find refinements. The two solutions

found are shown in Fig. 4.15.

Figure 4.15: The material distribution of two solutions of the MBB beam. The
parameters are hmin = 7.07× 10−3, hmax = 2.83× 10−2, ϵ = 1.90× 10−2, β = 9× 10−3,
γ = 0.535, ϵSIMP = 10−5, ps = 3, and the Lamé coefficients are µl = 75.38 and λl = 64.62.
J = 0.723 (left) and J = 0.681 (right).

4.7 Code availability

The deflated barrier method algorithm, as used in all the numerical examples in

this chapter, has been implemented in a Python library called deflatedbarrier, using

FEniCS [110] as the finite element backend. The library can be found at https:

//github.com/ioannisPApapadopoulos/deflatedbarrier/. For reproducibility,

the code used to run these examples has been archived on Zenodo [156, 158, 160].

The library has been designed to quickly facilitate applying the deflated barrier

method to new topology optimization problems. In a standard implementation,

we first import the FEniCS library [110] and the deflated barrier library. Then,

we define a Python class that contains information about the mesh, the mixed

finite element function space, the barrier functional, and the boundary conditions

of the problem as exemplified in Listing 4.1.
1 from dolfin import *
2 from deflatedbarrier import *
3

4 class TopologyOptimizationProblem ( PrimalInteriorPoint ):
5

6 def mesh(self , comm):
7 ...
8

9 def function_space (self , mesh):
10 ...
11

12 def lagrangian (self , z, params ):

https://github.com/ioannisPApapadopoulos/deflatedbarrier/
https://github.com/ioannisPApapadopoulos/deflatedbarrier/
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13 ...
14

15 def boundary_conditions (self , Z, params ):
16 ...

Listing 4.1: Pseudocode for defining a topology optimization problem in the deflated
barrier method library.

Since the underlying library is FEniCS, which utilizes UFL [13] for compact

syntax, the implementation is greatly simplified. For instance, the barrier functional

for the Borrvall–Petersson problem, discretized with a conforming finite element

method, can be implemented as follows:
1 def alpha(self , rho , params ):
2 (gamma , alphabar , q) = params
3 return alphabar *(1- rho *(q+1) /( rho+q))
4

5 def lagrangian (self , z, params ):
6 (rho , u, p, p0 , lmbda) = split(z)
7 # rho - material distribution
8 # u - velocity
9 # p - pressure

10 # p0 - constant to fix the integral of the pressure
11 # lmbda - Lagrange multiplier for the volume constraint
12 (gamma , alphabar , q) = params
13 L = (
14 0.5 * inner(grad(u), grad(u))*dx
15 - inner(p, div(u))*dx
16 - inner(p0 , p)*dx
17 + 0.5 * self.alpha(rho , params ) * inner(u, u)*dx
18 - inner(lmbda , gamma -rho)*dx
19 )
20 return L

Listing 4.2: Implementation of the barrier functional in the Borrvall–Petersson problem.

In lines 1–3, we implement the action of the inverse permeability function α(·)

as defined in (2.27). Then, in lines 14–18, we implement the viscous term, the

incompressibility constraint, the integral of the pressure, the Brinkman term, and

the volume constraint, in that order.

Once the problem has been defined, we call the deflated barrier algorithm via

deflatedbarrier or, having already computed solutions, we grid-sequence the

solutions via gridsequencing. Both deflatedbarrier and gridsequencing are

methods implemented in the deflated barrier method library.
1 problem = TopologyOptimizationProblem ()
2 deflatedbarrier (problem , ...)
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3 gridsequencing (problem , ...)

Listing 4.3: Pseudocode for calling the deflated barrier method or grid-sequencing
algorithm.



Preconditioning will always be an art rather than a
science.

— Andrew Wathen, 2015 5
Preconditioning

Topology optimization applications tend to be three-dimensional in nature. Accord-

ing to a recent review [9], around a quarter of literature dealing with the topology

optimization of pure fluid flow includes the optimization of a three-dimensional

example. Strategies that solve fluid three-dimensional topology optimization

problems use preconditioning techniques [65], level-set implementations coupled

with efficient optimization strategies [49, 54, 192], topological derivatives [143],

adaptive methods [26, 96], lattice Boltzmann methods [130, 186], and efficient

parallel implementations [2, 3], or enforce symmetry in the problem to reduce the

three-dimensional problem to two dimensions [15]. The need for these methods

is caused by the increase in the size of the linear problems that are solved during

the optimization process. The computational effort is often further impacted

by a solvers’ mesh-dependence, ultimately rendering three-dimensional topology

optimization computationally expensive.

In this chapter we restrict our focus to the three-dimensional Borrvall–Petersson

problem and develop iterative methods for the linear systems that arise in the

deflated barrier method. We choose a divergence-free DG BDM finite element

discretization for the velocity and pressure pair [40, 41]. Preconditioning strategies

are required for iterative methods to converge within an acceptable number of

iterations. We will show that block preconditioning can reduce the linear systems

arising in the deflated barrier method to ones that resemble the systems arising in

the discretization of the Stokes–Brinkman equations [65]. Then, we apply modern

block preconditioning, pioneered by Wathen and coworkers [60, 161, 177], to further

126
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reduce the linear systems. The block preconditioning is combined with an augmented

Lagrangian term to control the innermost Schur complement term. Finally, we

develop a geometric multigrid method for the augmented momentum block with a

vertex-star patch relaxation that captures the kernel of the augmented Lagrangian

term [71, 73, 91, 145]. The multigrid scheme requires a characterization of the

active set on all levels of the mesh hierarchy, which we discuss.

Throughout this chapter, we fix our finite element spaces as, for k ≥ 1:

Cγ,h ⊂ C[0,1],h = {ηh ∈ XDG0 : 0 ≤ ηh ≤ 1 a.e. in Ω}, (5.1)

Xh = XBDMk
, (5.2)

Mh = XDGk−1 . (5.3)

This choice of finite element spaces satisfies Theorem 3.2. Hence, by Corollary 3.3,

for each isolated local minimizer of (BP), there exists a sequence of finite element

solutions (uh, ρh, ph, λh) ∈ Xgh,n,h × Cγ,h ×Mh × R to the system comprised of

(FOC1-DGh), (FOC2-DGh), (FOC3b-DGh), and (FOC4-DGh) such that (uh, ρh, ph)

strongly converges to the minimizer in H1
g(Th)d×Ls(Ω)×L2(Ω), s ∈ [1,∞), as h→ 0.

5.1 Benson–Munson linear system

We restrict our analysis to the BM solver introduced in Section 4.2 since the BM

solver generally required fewer iterations than the HIK solver. To recap: the BM

solver attempts to find roots of a complementarity problem via linearizations of the

residual constrained to the inactive set. First, the discrete Newton system is formed

and the indices in the active set are identified. The active set contains the degrees of

freedom that satisfy a strict complementarity condition in the primal and residual

vectors. Next, the rows and columns of the Jacobian in the Newton system associated

with the active set degrees of freedom are set to those of the identity. Finally, the

rows on the right-hand side vector associated with the active set degrees of freedom

are fixed to zero. Once the update, δzk, of this modified system is computed, the

new iterate zk+1 = zk + δzk is component-wise projected onto the box constraints.
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For a given barrier parameter µ ≥ 0 and interior penalty penalization parameter

σ > 0, the barrier functional we consider in this chapter is given by

Lϵlog
µ (u, ρ, p, λ) := J

ϵlog
h,µ (u, ρ)−

∫
Ω
p div(u)dx−

∫
Ω
λ(γ − ρ)dx, (5.4)

where J ϵlog
h,µ is the functional Jh (as defined in (3.57)) augmented with the barrier-like

as discussed in Section 4.1.1. Unlike in Section 4.1.1, in this chapter, we fix the

integral of the pressure implicitly in the solver and we do not require the addition

of an additional Lagrange multiplier p0 ∈ R. This is achieved by orthogonalizing

against the nullspace of the discretized pressure, which is spanned by the constant

vector, within the Krylov method [24]. This strategy was not possible in the previous

chapter where we used a direct LU factorization with no outer Krylov method.

By deriving the first-order optimality conditions for u, ρ, p, and λ and employing

the divergence-free DG finite element discretization, we note that the deflated barrier

method subproblem is to find (ρh,uh, ph, λh) ∈ Cγ,h ×Xgh,n,h ×Mh ×R such that,

for all (ηh,vh, qh, ζh) ∈ C[0,1],h × X0,n,h × Mh × R,

ah,ρh
(uh,vh) + b(vh, ph) = lh,f ,gh

(vh), (5.5)

b(uh, qh) = 0, (5.6)

c
µ,ϵlog
uh,λh

(ρh, ηh − ρh) ≥ 0, (5.7)

dρh
(λh, ζh) = 0. (5.8)

The forms ah,ρh
, b, lh,f ,gh

, cµ,ϵlog
uh,λh

, and dρh
are as defined in (3.60), Proposition 2.4,

(3.61), (4.6), and (FOC4), respectively. We note that (5.5), (5.6), and (5.8) are

the same equations as (FOC1-DGh), (FOC2-DGh), and (FOC4-DGh), respectively.

Moreover, (5.7) reduces to (FOC3b-DGh) when µ = 0.

We now derive the linear systems that arise by using the BM active set strategy

to solve the nonlinear system (5.5)–(5.8). Denote the basis functions of the finite

element spaces of the material distribution, the velocity, the pressure, and R by

ηi,ϕi, ψi, and r, respectively and the number of degrees of freedom by nρ, nu,

np, and 1, respectively, so that the total number of degrees of freedom of the

system is given by n = nρ + nu + np + 1. Consider the finite element BM iterate
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zh,k = (ρh,k,uh,k, ph,k, λh,k). Let fk : Rn → Rn denote the nonlinear residual

induced by complementarity reformulation of (5.5)–(5.8). In the following, we drop

the subscript iteration number k for clarity. Let z denote the discrete coefficient

vector of zh and define the active set by

A = {i : zi = ai and f(z)i > 0} ∪ {i : zi = bi and f(z)i < 0}, (5.9)

where a and b are the lower- and upper-bound box constraints, respectively. In

this context, ai = 0 and bi = 1 for all degrees of freedom associated with ρh and

ai = −∞, bi = +∞, otherwise. Define the inactive set as I = {i}n
i=1\A. Then,

the BM updates are computed by solving the linear system:

HHHρ,u,p,λδz =


CCCµ DDD⊤ 000 EEE⊤

DDD AAA BBB⊤ 000
000 BBB 000 000
EEE 000 000 000



δρ
δu
δp
δλ

 = −


fρ

fu

fp

fλ

 = −f , (5.10)

where δρ, δu, δp and δλ denote the discrete coefficient vector BM updates for ρ,u, p

and λ, and fρ, fu, fp, and fλ are the corresponding blocks of the nonlinear residual

with the active set rows, i ∈ A, in fρ zeroed. The entries of AAA and BBB are given by

[AAA]ij = ah,ρh
(ϕi,ϕj) and [BBB]ij = b(ϕj, ψi). (5.11)

Furthermore, if j ∈ I, then

[DDD]ij =
∫

Ω
(α′(ρh)uh · ϕi)ηj dx, [EEE]ij = −r

∫
Ω
ηj dx. (5.12)

Otherwise, if j ∈ A, then [DDD]ij = 0 and [EEE]ij = 0 for all i. Finally, if i, j ∈ I, then

[CCCµ]ij =
∫

Ω

[
1
2α

′′(ρh)|uh|2 + µ

(ρh + ϵlog)2 + µ

(1 + ϵlog − ρh)2

]
ηiηjdx. (5.13)

Otherwise, if i ∈ A or j ∈ A, then [CCCµ]ij = δij, where δij is the Kronecker delta.

Remark 5.1. EEE is a row vector of size 1× nρ.

Proposition 5.1. The matrix AAA ∈ Rnu×nu is symmetric, and provided the penaliza-

tion parameter σ > 0 is sufficiently large, then it also positive-definite.
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Proof. Symmetry is realized by swapping the indices i and j of the basis functions

in their respective definitions and noting that the resulting integrals are equal.

Positive-definiteness of AAA, for sufficiently large σ > 0, follows from α(ρ) ≥ 0 and

[91, Sec. 3.3].

Proposition 5.2. Suppose that µ > 0. Then, the matrix CCCµ is symmetric positive-

definite.

Proof. The symmetry of CCCµ is realized by swapping the indices i and j of the basis

functions in its definition and noting that the resulting integrals are equal. Consider

the unmodified matrix ĈCCµ, defined by (5.13) for all i and j. Pick an arbitrary

function ηh ∈ XDG0 and its discrete coefficient vector η ∈ Rnρ . We note that

η⊤ĈCCµη =
∫

Ω

[
1
2α

′′(ρh)|uh|2 + µ

(ρh + ϵlog)2 + µ

(1 + ϵlog − ρh)2

]
|ηh|2dx. (5.14)

Assumption (A5) implies that α′′(ρh) ≥ 0 and by definition |uh|2 ≥ 0. Moreover,

the rational expressions are greater than zero for µ > 0 as 0 ≤ ρh ≤ 1. Hence, the

right-hand side of (5.14) is equal to zero if and only if ηh = 0, which is true if and

only if η = 0. Therefore, η⊤ĈCCµη ≥ 0 with equality if and only if η = 0. Hence, ĈCCµ

is symmetric positive-definite. Since the discretization for ρ is piecewise constant,

ĈCCµ is a diagonal matrix and, therefore, all diagonal entries must be positive. The

procedure of zeroing rows and columns associated with the BM active set and

replacing the diagonal entry with a one will result in a diagonal matrix with positive

diagonal entries. We conclude that CCCµ must be symmetric positive-definite.

5.2 Preconditioning

In this section, we develop a preconditioner for solving (5.10). As discussed in

Section 4.3, preconditioning strategies that are robust for the undeflated system can

also be used to compute solutions of the deflated systems. On the outermost level

of the deflated barrier method, we perform continuation in the barrier parameter

µ. Next, at a given µ, we use the BM solver to find a solution of (5.5)–(5.8). At

each BM iteration, we use a preconditioned FGMRES method [144].
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A direct sparse LU factorization of (5.10) is infeasible on fine meshes of three-

dimensional problems. Thus we turn to preconditioning techniques to reduce the

cost of each inner linear solve. The preconditioning is made difficult by the saddle

point nature of the matrix in (5.10) and the barrier-like in CCCµ. In the following

subsections we introduce a nested block preconditioning method for solving (5.10),

where the Schur complements are controlled with an augmented Lagrangian term.

5.2.1 Block preconditioning

Consider the well-posed linear system(
A B
C D

)(
x
y

)
=
(

c
d

)
, (5.15)

where A ∈ Rn1×n1 is invertible, B ∈ Rn1×n2 , C ∈ Rn2×n1 and D ∈ Rn2×n2 . Then,

the inverse of the matrix in (5.15) admits a full block factorization of the form [32]
(
A B
C D

)−1

=
(
I −A−1B
0 I

)(
A−1 0

0 S−1

)(
I 0

−CA−1 I

)
, (5.16)

where S = D−CA−1B. Good preconditioners for (5.15) can be found by developing

cheap approximations to A−1 and S−1 and substituting them into (5.16) [116, 177].

The subspace spanned by the volume constraint Lagrange multiplier λ is one-

dimensional and can be handled by at most one iteration of a Krylov subspace

solver or via block preconditioning. Experimentally, we found that a full block

preconditioning of the real block performed best. Consider the density-momentum-

pressure block:

HHHρ,u,p :=

CCCµ DDD⊤ 000
DDD AAA BBB⊤

000 BBB 000

 . (5.17)

Then, we choose A = HHHρ,u,p, B = EEE⊤, C = EEE, and D = 000. The Schur complement,

S = SSS0 := −EEEHHH−1
ρ,u,pEEE⊤, (5.18)

is one-dimensional and can be inverted by taking its reciprocal. Hence, the difficulty

now lies in solving linear systems involving (5.17). Since we have only decreased the
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Continuation in µ

BM active-set strategy with line search

Krylov solver (FGMRES)

Block preconditioner of (5.10) w.r.t. R-block

Invert 1× 1 Schur complement (5.18)

Solve density-momentum-pressure block (5.17)

Figure 5.1: Main components of the deflated barrier method solver. The remainder of
this section will focus on developing preconditioners for the item in blue.

size of the linear system by one dimension, an LU factorization is still infeasible and

we consider block preconditioners for (5.17). We summarize the initial components

of the solver in Fig. 5.1.

A block preconditioner approach for (5.17) is to take the Schur complement of

(5.17) with respect to the momentum-pressure block. This approach was utilized

by Evgrafov for preconditioning the linear systems arising in a similar solver [65,

Sec. 5]. In the notation of (5.15), A = CCCµ, B = (DDD⊤ 000), C = (DDD 000)⊤, and

D =
(

AAA BBB⊤

BBB 000

)
. (5.19)

We know that CCCµ is invertible by Proposition 5.2. Hence, we can write A−1 = CCC−1
µ .

We define ŜSS1 by

ŜSS1 :=
(

AAA BBB⊤

BBB 000

)
, (5.20)

and the true Schur complement is given by

S = SSS1 := ŜSS1 −
(

DDD
000

)
CCC−1

µ

(
DDD⊤ 000

)
=
(

AAA−DDDCCC−1
µ DDD⊤ BBB⊤

BBB 000

)
. (5.21)

The reason we use a DG0 piecewise constant discretization for the material distri-

bution is to ensure that SSS1 is sparse. Since the material distribution is discretized

with DG0 finite elements, CCCµ is a diagonal matrix, DDDCCC−1
µ DDD⊤ is still sparse and

hence SSS1 is also sparse.

Remark 5.2. The Schur complement approximation ŜSS1 resembles the linear system

that arises in the discretization of the Stokes–Brinkman equations (introduced in

Remark 2.2).
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The proposed application of block preconditioning has reduced solving the

linear system (5.10) to the following:

1. An outer FGMRES solver;

2. Apply the reciprocal of SSS0 ∈ R;

3. Invert the diagonal matrix CCCµ;

4. Apply the action of the inverse of the 2× 2 block matrix SSS1. SSS1 is the same

size as the matrix that arises in a discretized pure Stokes problem.

We must now develop solvers for SSS1 as given in (5.21). One option is to use a

direct solver. However, we can further reduce the computational work with another

application of block preconditioning. Consider taking the inner Schur complement

in SSS1 with respect to the pressure block. Using the notation of (5.15), B = BBB⊤,

C = BBB, and A = AAA−DDDCCC−1
µ DDD⊤. The inner Schur complement takes the form

S = SSS2 := −BBB(AAA−DDDCCC−1
µ DDD⊤)−1BBB⊤. (5.22)

This time, SSS2 is dense, and we require a sparse approximation. Let −∆h denote the

negative discretized Laplacian matrix. In the context of the incompressible Stokes

equations, it is well known [60, Th. 5.22], that BBB(−∆h)−1BBB⊤ is spectrally equivalent

to the viscosity-scaled pressure mass matrix ν−1MMMp, i.e. there exist constants c1

and c2, independent of the dimension of the problem such that

c2
1 ≤

q⊤BBB(−∆h)−1BBB⊤q
ν−1q⊤MMMpq

≤ c2
2 for any q ∈ Rnp . (5.23)

In the case of homogeneous Dirichlet boundary conditions on uh, c2 = 1 and c1 = cb,

where cb is the inf-sup constant. MMMp is a sparse mass matrix and can be cheaply

factorized or solved with a multigrid method. Therefore, a good approximation to

the Schur complement of the pure Stokes problem is given by ν−1MMMp. The idea is

that the momentum block can then be solved with a direct solver, multigrid methods,

or other alternative solvers. Unfortunately, in the context of the Stokes–Brinkman

equations, Popov [131] noted that the presence of the Brinkman term α(ρh)uh

in the momentum block AAA renders the approximation given by ν−1MMMp ineffective.
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Popov proposed a Schur complement preconditioning technique based on incomplete

LU factorization, but such factorizations do not generally yield mesh-independent

preconditioners. An alternative is a preconditioning scheme utilized by Borrvall

and Petersson in their original paper [36, Sec. 2.6] based on the work of Cahouet

and Chabard [48]. However, we found that an augmented Lagrangian approach

performed better. We compare the effectiveness of the augmented Lagrangian

approach with the Cahouet–Chabard preconditioning strategy in Section 5.3.1 below.

In the remainder of this subsection, we propose an augmented Lagrangian

strategy to control the second Schur complement SSS2. The augmented Lagrangian

strategy converges in O(1) outer FGMRES iterations per BM iteration with no inner

Krylov iterations required when a direct solver is used for the augmented momentum

block, scaled pressure mass matrix, and density block (which is a diagonal matrix).

The augmented Lagrangian approach has also been shown to be robust for a variety

of difficult saddle-point systems such as the stationary Navier–Stokes equations

at high Reynolds number [73]. Hence, this approach has potential for extension

to different fluid topology optimization problems.

There are two possible augmented Lagrangian approaches: continuous and

discrete. These approaches are mathematically equivalent for exactly divergence-

free elements such as the BDM mixed finite element. We choose to introduce

the method in the discrete setting. Post-discretization, the matrix AAA in (5.10) is

modified by adding an augmented Lagrangian term

AAAγd
:= AAA + γdBBB⊤MMM−1

p BBB, (5.24)

where γd ≫ 0, and the right-hand side of (5.10) is modified so that the solution of

linear system remains unchanged (since BBBu is known). In particular, if the current

velocity iterate is divergence-free, then γdBBB⊤MMM−1
p BBBδu = 0. While it does not change

the solution, the addition of the augmented Lagrangian term influences the nature

of the inner Schur complements. In particular, SSS1 becomes

SSS1,γd
=
(

AAAγd
−DDDCCC−1

µ DDD⊤ BBB⊤

BBB 000

)
, (5.25)
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and SSS2 becomes

SSS2,γd
= −BBB(AAAγd

−DDDCCC−1
µ DDD⊤)−1BBB⊤ ≈ −BBB(γdBBB⊤MMM−1

p BBB)−1BBB⊤ ≈ −γ−1
d MMMp. (5.26)

The approximation of SSS2,γd
by the scaled pressure mass matrix improves as γd →∞

[33, Th. 4.2]. If assembled naïvely, the triple matrix product BBB⊤MMM−1
p BBB, as it

occurs in the augmented Lagrangian term, is expensive to compute. However, it

can be checked that the augmented Lagrangian term γdBBB⊤MMM−1
p BBB corresponds to

augmenting the weak form ah,ρh
(uh,vh) in (5.5) by

γd

∫
Ω

ΠMh
(div(uh))ΠMh

(div(vh))dx, (5.27)

where ΠMh
is the projection onto the discretized pressure space Mh. The projection

is the identity for the BDM-DG pair. Therefore, assembling BBBMMM−1
p BBB⊤ is equivalent

to assembling the matrix associated with the bilinear form
∫

Ω div(ϕi)div(ϕj)dx,

where ϕi, i = 1, . . . , nu, are the basis functions of the velocity finite element space.

With the proposed nested block preconditioning, we have reduced solving linear

systems involving (5.10) into the following steps:

1. An outer FGMRES solver;

2. Apply the reciprocal of SSS0 ∈ R;

3. Invert the diagonal matrix CCCµ;

4. Factorize and solve the block-diagonal pressure mass matrix MMMp;

5. Apply the action of the inverse of the augmented momentum block AAAγd
−

DDDCCC−1
µ DDD⊤.

Factorizing CCCµ, MMMp, and AAAγd
−DDDCCC−1

µ DDD⊤ with a direct solver such as MUMPS [17] is

faster than factorizing the full matrix in (5.10). We note that MMMp only needs to be

factorized once at the start of the algorithm. Hence, most of the computational

time during the run of the deflated barrier method is spent on factorizing AAAγd
−

DDDCCC−1
µ DDD⊤ at each BM iteration.
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Remark 5.3. A property of divergence-free DG discretizations utilized in our

proposed nested block preconditioning approach is the identification of the projection

ΠMh
as the identity. This is used in (5.27) to cheaply construct the triple matrix

product BBBMMM−1
p BBB⊤ in the augmented momentum block. We note that the projection

ΠMh
can also been characterized in other discretizations, e.g. the Scott–Vogelius

(CGk)d × DGk−1 pair (paired with a barycentrically refined mesh if k ∈ [d, 2d])

[72], the (CGd)d×DG0 pair, and the (CG1⊕BF
3 )3×DG0 pair where (CG1⊕BF

3 )3

represents a piecewise linear velocity space enriched with bubble functions on each

facet [73].

Remark 5.4. In a continuous augmented Lagrangian approach, the projection ΠMh

is neglected and the barrier functional Lϵlog
µ (u, ρ, p, λ) in (5.4) is augmented with the

term

γc

2

∫
Ω

div(uh) div(uh)dx. (5.28)

After a suitable discretization, for sufficiently large γc, the approximation (5.26) still

holds; although for methods that are not divergence-free, the velocity finite element

solution uh and update δu are different to that of the unaugmented system. An

advantage of the continuous approach is that (5.28) can be used for preconditioning

the BM systems arising in any conforming finite element discretization, such as the

Taylor–Hood mixed finite element. Therefore, our block preconditioning approach

would still yield an effective decrease in the computational work to solve linear

systems in (5.10), when a direct solver is used for the augmented momentum block.

A continuous approach comes at the cost that it can be difficult to develop an effective

multigrid cycle for the augmented momentum block when ΠMh
is not the identity.

In Fig. 5.2, we summarize the block preconditioning strategy for solving linear

systems involving the density-momentum-pressure block (5.17). In the next section

we develop a specialized geometric multigrid scheme to efficiently solve linear systems

involving AAAγd
−DDDCCC−1

µ DDD⊤ (highlighted in pink in Fig. 5.2) in order to reduce the

computational time further when the problem is discretized on a fine mesh.
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Solve density-momentum-pressure block (5.17)

Block preconditioner of (5.17) w.r.t. augmented momentum-pressure block

Exact inverse of diagonal density block CCCµ (5.13)

Exact Schur complement SSS1,γd
(5.25)

Block preconditioner of (5.25) w.r.t. pressure block

Solve AAAγd
−DDDCCC−1

µ DDD⊤

γdMMM−1
p for approximate Schur complement inverse SSS−1

2,γd
(5.26)

Figure 5.2: The preconditioning strategy to solve the density-momentum-pressure block
(5.17). We develop a geometric multigrid scheme for the item in pink in Section 5.2.2.

5.2.2 A specialized multigrid scheme for AAAγd
−DDDCCC−1

µ DDD⊤

The tradeoff for using an augmented Lagrangian term to control the Schur comple-

ment SSS2,γd
, defined in (5.26), is that AAAγd

−DDDCCC−1
µ DDD⊤ becomes difficult to solve, due

to the semi-definite term with a large coefficient γd ≫ 0. Recently, there has been

progress on specialized multigrid schemes, based on the work of Schöberl [145], to

handle the effects of the augmented Lagrangian term in AAAγd
. Such a strategy has been

shown to be extremely effective in parameter-robust preconditioning of the three-

dimensional incompressible Navier–Stokes equations [72, 73], Oseen–Frank models of

cholesteric liquid crystals [181], implicitly-constituted non-Newtonian incompressible

flow [67, 69], and magnetohydrodynamics [105]. The multigrid scheme has also

been analyzed in the context of the H(div; Ω) Riesz map [21] and, more relevant to

our problem, an H(div; Ω)-conforming discretization of the Stokes equations [91].

Recall that a typical multigrid solver requires the following components:

(MG1) A relaxation method;

(MG2) A solver for the coarse-level correction;

(MG3) Transfer operators to inject functions from fine to coarse levels and prolong

functions from coarse to fine levels;

(MG4) Construction of the coarse-level operators, i.e. the representation of AAAγd
−

DDDCCC−1
µ DDD⊤ on coarser levels.

For a discussion on multigrid methods in the context of preconditioning we refer

to [177]. In this work, we construct a mesh hierarchy and construct our multigrid

solver as a geometric multigrid method. The coarse-level operators are induced
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from (5.5)–(5.8) via rediscretization. Moreover, in all our examples, we choose a

direct solver for the coarse-level solver. Schöberl’s analysis gives requirements on

(MG1) and (MG3) to achieve robustness in the context of multigrid cycles applied

to symmetric positive-definite problems augmented with a parameter-dependent

positive semi-definite term. The first is that the relaxation method must stably

capture the kernel of the semi-definite term. The second requirement is that the

prolongation operator must have a continuity constant that is independent of γd. As

noted by Hong et al. [91, Sec. 1], in a nested mesh hierarchy, an exactly divergence-

free function on the coarse-grid will be divergence-free on the fine-grid. Therefore,

in our context, the natural prolongation operator suffices thanks to our choice of a

divergence-free DG discretization, and we only discuss the relaxation method in

this work. The kernel of the semi-definite term involving γd is

Nh = {wh ∈XBDMk
: (div(wh), div(vh))L2(Ω) = 0 for all vh ∈XBDMk

}, (5.29)

i.e. all functions with divergence zero. For large γd, AAAγd
becomes increasingly singular.

Common relaxation methods like Jacobi and Gauss-Seidel do not offer γd-robust

smoothing and yield ineffective multigrid cycles. To understand the degradation of

Jacobi and Gauss–Seidel as γd →∞, it is fruitful to view the relaxation method as

a subspace correction method [184, 185]. Consider the space decomposition

XBDMk
=
∑

i

X i, (5.30)

where the sum is not necessarily direct. In Jacobi and Gauss-Seidel, the decom-

position, (5.30), is given by {X i} = {ϕi} where ϕi, i = 1, . . . , nu, are the velocity

basis functions. The difference between Jacobi and Gauss-Seidel is whether the

updates are applied in parallel (Jacobi) or sequentially (Gauss-Seidel).

A necessary condition for the subspace correction method induced by the

decomposition (5.30) to be robust in γd for a symmetric positive-definite matrix,

is that the decomposition captures the kernel Nh in the following sense:

Nh =
∑

i

X i ∩Nh. (5.31)
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In other words, the decomposition must be sufficiently rich so that any divergence-

free velocity can be written as a combination of divergence-free functions from

the subspaces X i. Jacobi fails this criterion, as each ϕi is not divergence-free.

A decomposition satisfying (5.31) was developed by Hong et al. [91, Sec. 4.5],

where the decomposition is the star patch around every vertex of the mesh. This

decomposition is visualized in Fig. 5.3 for a BDM1 discretization in two dimensions

and is easily extended to higher orders and three dimensions. Since AAAγd
−DDDCCC−1

µ DDD⊤

is not guaranteed to be positive-definite, the theory does not guarantee robust

convergence. Nevertheless, we find that a small number of FGMRES iterations

preconditioned with the vertex-star patch iteration is very effective as a smoother,

as reported in [73] and subsequent works.

Figure 5.3: The patch of degrees of freedom (black dots inside the blue patch) around a
vertex (red diamond) used in the multigrid relaxation for a BDM1 discretization in two
dimensions. Each vertex-star patch contains 12 degrees of freedom in two dimensions.

Injecting the active set

A complication arises in the representation of AAAγd
−DDDCCC−1

µ DDD⊤ on the coarser levels.

By first ignoring the BM active set, we note that AAAγd
−DDDCCC−1

µ DDD⊤ can be assembled

by injecting the current finite element iterates, uh and ρh, to the correct level on the

mesh hierarchy, assembling the submatrices AAA, DDD, DDD⊤ and CCCµ, applying the Dirichlet

boundary conditions of the injected velocity to the relevant rows and columns of

AAA, DDD and DDD⊤, and subtracting the triple matrix product DDDCCC−1
µ DDD⊤ from AAA. The

triple matrix product is sparse and cheap to compute as CCCµ is diagonal on all levels.

However, we found that an accurate representation of the active set on the coarser
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levels is essential for the convergence of the multigrid scheme. Hence, the difficulty

lies in defining the active set on the coarser levels. One choice is to use the definitions

of A and I in (5.9) defined via the injected material distribution iterate. However,

we found that this choice resulted in poor iteration counts as verified in Section 5.3.1.

Consider a two-grid method with the fine-level triangulation Th, h = H/2,

obtained by a uniform refinement of the simplices in coarse-level triangulation TH .

As the material distribution is discretized with DG0 elements, each degree of freedom

i associated with the fine-level material distribution iterate can be associated with

an element Kh ∈ Th in the fine level and analogously with the degrees of freedom of

the coarse-level material distribution iterate with elements in the coarse level. We

say that a fine-level element Kh ∈ Th is in the active set Ah (written as Kh ∈ Ah)

if the degree of freedom associated with Kh is in the active set Ah. This definition

naturally extends to the coarse-level elements and active set.

We now utilize an idea inspired by the work of Hoppe [93] and Engel and

Griebel [62] to define the coarse-level active sets. A coarse-level element, KH ∈ TH

containing the parent fine-level elements Kh,1, . . . , Kh,s ∈ Th is defined to be in

the coarse-level active set AH if

|{Kh,j ∈ Ah : j = 1, . . . , s}| ≥ m, (5.32)

where m ∈ [1, s] and s = 4 in two dimensions and s = 8 in three dimensions. In

other words, the coarse-level element is in the coarse-level active set if it contains m

or more fine-level parent elements that are in the fine-level active set. By starting

at the finest-level active set that is defined by (5.9), we recursively define all the

active sets in mesh hierarchy via (5.32). Experiments revealed that a good choice

for m is m = s/2, i.e. a coarse-level element is active if at least half of its parent

fine-level elements are active. This choice is exemplified in Fig. 5.4 and a summary

of the multigrid strategy is given in Fig. 5.5.

Remark 5.5. The choice of (5.32) is more generous than utilizing the definition

of the fine-level active set directly with the injected material distribution iterate.

In particular, some coarse cells that are “borderline” between the active set and
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(a) KH ̸∈ AH (b) KH ̸∈ AH (c) KH ∈ AH

(d) KH ∈ AH (e) KH ∈ AH

Figure 5.4: Characterization of a two-dimensional coarse element based on whether half
or more of its parent fine-level elements are in the fine-level active set. Blue and white
fine-level elements are in the fine-level active set and inactive set, respectively.

inactive set are placed in the active set by (5.32) but in the inactive set when defining

the active set via the injected material distribution. Numerically, we see that the

iteration counts suffer if the criteria for a coarse cell to be in the coarse-level active

set are too strict.

5.3 Numerical results

All examples in this chapter were implemented with the finite element software

Firedrake [137]. Block preconditioning and Krylov subspace methods were imple-

mented using Firedrake [137] and PETSc [24], and sparse LU factorizations were

performed with MUMPS [17]. Vertex-star patch relaxation is implemented via

the PCPATCH functionality [71] that was recently introduced to PETSc. The

meshes were created in Firedrake or Gmsh [81]. The uniqueness of the pressure
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Solve AAAγd
−DDDCCC−1µ DDD>

Krylov solver (FGMRES)

Full multigrid cycle

Coarse-grid solver

LU factorization

Prolongation operator

Standard operator

Relaxation

FGMRES

Additive star patch iteration

Figure 5.5: The multigrid solver strategy of Section 5.2.2 to solve AAAγd
−DDDCCC−1

µ DDD⊤.

was enforced by orthogonalizing against the nullspace of constants in the Krylov

method. The coarse-level correction in the multigrid scheme of Section 5.2.2 is

computed via an LU factorization. The BM updates are scaled with a (damped)

l2-minimizing linesearch [43, Alg. 2] and we do not use a prediction step in any

examples. Wherever (F)GMRES is used, it is not restarted.

5.3.1 Double-pipe

The first example is the two-dimensional double-pipe problem as introduced in

Section 4.6.1. As before, the double-pipe problem is posed on a rectangular domain

Ω = (0, 3/2)× (0, 1) with two inlets and two outlets fixed by the Dirichlet boundary

condition given in (4.51). We choose a volume fraction of γ = 1/3 and the inverse

permeability α is given in (2.27), with ᾱ = 2.5× 104 and q = 1/10. The problem

supports two minima: a local minimum of two straight channels from each inlet to

its opposite outlet, and a global minimum in the shape of a double-ended wrench.

These solutions are depicted in Fig. 4.4. The two strategies we utilize for solving

the linear systems are the following:

(aL1) The nested block preconditioning approach of Section 5.2.1 on (5.10) with

γd = 104, and an LU factorization for the pressure mass matrix MMMp, diagonal

matrix CCCµ, and augmented momentum block AAAγd
−DDDCCC−1

µ DDD⊤;
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(aL2) The nested block preconditioning approach of Section 5.2.1 on (5.10) with

γd = 104, an LU factorization for the pressure mass matrix MMMp and diagonal

matrix CCCµ, and the geometric multigrid method of Section 5.2.2 to approximate

the action of the inverse of AAAγd
−DDDCCC−1

µ DDD⊤. We fix the relaxation to 5 FGMRES

iterations preconditioned with a vertex-star patch iteration and a full multigrid

cycle is used.

We opt for a first-order Brezzi–Douglas–Marini BDM1 × DG0 mixed finite

element discretization for the velocity-pressure pair, with interior penalty parameter

σ = 10, and a DG0 discretization for the material distribution. For all mesh

sizes, we initialize the deflated barrier method at µ0 = 105 and perform deflation

immediately to find the second branch. The first and second branches converge to

the straight channels and double-ended wrench solutions, respectively, as µ → 0.

If h > 10−2, for µ > 0 and µ = 0, each subproblem is solved to an absolute

tolerance of 10−6 and 10−7, respectively. If h ≤ 10−2, each subproblem is solved to

an absolute tolerance of 10−5. In Tables 5.1 and 5.2, we list the iteration counts

for the strategies (aL1) and (aL2) on meshes with decreasing mesh sizes. In the

(aL2) strategy, the augmented block solve is approximated to an absolute tolerance

of 10−8 or a relative tolerance of 10−9.

(aL1)
h Dofs BM OK
0.0361 25,201 562 1055 (1.88)
0.0180 100,401 660 1227 (1.86)
0.0090 400,801 733 1283 (1.75)
0.0045 1,601,601 809 1607 (1.99)

Table 5.1: The total cumulative number of iterations to compute both minimizers of
the double-pipe problem over all the subproblems with the (aL1) preconditioner. BM
stands for the number of Benson–Munson iterations and OK stands for the number of
outer Krylov FGMRES iterations. The numbers in brackets in the OK column are the
number of average Krylov iterations per BM iteration.

We see that the Krylov iterations per BM iteration are robust to the mesh

size for both preconditioning strategies. The preconditioning strategy with an

LU factorization for the augmented momentum block (aL1) averages to under 2
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(aL2) 2-grid
h Dofs BM OK IK
0.0180 100,401 660 1315 (1.99) 113,881 (12.67)
0.0090 400,801 779 1416 (1.82) 108,740 (10.47)

Table 5.2: The total cumulative number of iterations to compute both minimizers of
the double-pipe problem over all the subproblems with the (aL2) preconditioner. BM
stands for the number of Benson–Munson iterations, OK stands for the number of outer
Krylov FGMRES iterations, and IK is the number of inner Krylov FGMRES iterations
preconditioned with the geometric multigrid method of Section 5.2.2 to solve linear
systems involving AAAγd

−DDDCCC−1
µ DDD⊤. The numbers in brackets in the OK and IK columns

are the number of average Krylov iterations per BM iteration and per AAAγd
−DDDCCC−1

µ DDD⊤

solve, respectively.

preconditioned FGMRES iterations per BM iteration. Similarly with (aL2), where

the augmented block solve is approximated with FGMRES preconditioned with a

2-grid multigrid cycle, the outer FGMRES iterations remain under 2 preconditioned

FGMRES iterations per BM iteration on average. Moreover, the inner FGMRES

iterations remain under 13 iterations per augmented momentum block solve over

all mesh sizes. We note that, unlike the conforming discretizations in Section 4.6,

the number of BM iterations slowly increases with decreasing mesh size. This may

be due to the divergence-free DG discretization or could be related to the fact

that the linear systems are not being solved exactly.

We now compare our choice for the definition of the coarse-level active sets with

other approaches. We consider the final continuation step in the application of the

deflated barrier method to the double-pipe problem on a mesh where h = 0.0180.

The linear systems are solved with the preconditioner (aL2) with a 2-grid multigrid

cycle for the augmented momentum block. Given the two branches of solutions at

µ = 3.81× 10−4, we use these as initial guesses for the nonlinear solves at µ = 0.

In Table 5.3, we report the cumulative number of BM iterations, outer FGMRES

iterations, and inner FGMRES iterations preconditioned with the multigrid cycle

for varying choices of the definition of the coarse-level active set. We consider two

families of strategies. The first is defined by (5.32). In the work of Hoppe [93] and

Engel and Griebel [62], a coarse-level cell was only active if all the parent cells where

active (m = 4), whereas we found that the iteration counts were lower when only half
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the parent cells are required to be in the active set (m = 2). The other strategy is

defined by the fine-level definition (5.9) combining the injected material distribution

iterate ρh and the restricted residual f . We found that a direct application of

this definition did not result in converging multigrid cycles; the first augmented

momentum block solve reached 500 inner FGMRES iterations without converging.

However, we found this could be remedied if the tolerances were loosened, i.e. we

made the following modification to the definition of the coarse-level active set:

Ac = {i : zi ≤ ai + c and f(z)i > 0} ∪ {i : zi ≥ bi − c and f(z)i < 0}. (5.33)

We report the iteration counts for this choice of definition for the coarse-level

active set with varying choices of c. We conclude that the definition described in

Section 5.2.2, where m = 2, outperforms all the other choices for the definition

of the coarse-level active set.

Strategy BM OK IK
(5.32), m = 2 12 21 (1.75) 1832 (14.54)
(5.32), m = 4 13 23 (1.77) 3185 (23.08)
(5.33), c = 10−10 12 21 (1.75) 2976 (23.62)
(5.33), c = 10−5 12 23 (1.92) 3841 (27.91)

Table 5.3: The total cumulative number of iterations to compute both solutions of the
double-pipe problem at µ = 0 using the solutions at µ = 3.81× 10−4 as initial guesses,
with the (aL2) preconditioner. BM stands for the number of Benson–Munson iterations,
OK stands for the number of outer Krylov FGMRES iterations, and IK is the number of
inner Krylov FGMRES iterations preconditioned with the geometric multigrid method
to solve linear systems involving AAAγd

−DDDCCC−1
µ DDD⊤. The numbers in brackets in the OK

and IK columns are the number of average Krylov iterations per BM iteration and per
AAAγd
−DDDCCC−1

µ DDD⊤ solve, respectively.

Next, we test the robustness of the preconditioning strategy to higher order BDM

discretizations. On the same mesh, we interpolate the two solutions at h = 0.0180

discretized with a first-order BDM1×DG0 discretization (100,401 degrees of freedom)

to higher order BDMk ×DGk−1 discretizations for the velocity-pressure pairs, and

reinitialize the deflated barrier method at µ0 = 0. The first-order optimality

conditions are solved to an absolute residual tolerance of 10−6. In Table 5.4 we give

iteration counts for k = 2, 3, and 4 using the preconditioning strategy (aL2) with a
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2-grid and 3-grid multigrid scheme. The augmented block solve tolerances remain

the same. We see that the number of outer FGMRES iterations per BM iteration

averages to below 2 for any order of the discretization. The 2-grid multigrid scheme

is effective in solving the augmented momentum block, regardless of the order

of the discretization, averaging between 10 and 12 iterations for any order. The

iteration counts increase for the 3-grid cycle due to the quality of the coarse-grid

representation, but they are also robust to the polynomial order, averaging to less

than 25 iterations per augmented momentum block solve. We note that high-order

(aL2) 2-grid (aL2) 3-grid
k Dofs BM OK IK BM OK IK
2 230,601 10 16 (1.60) 1112 (11.58) 10 16 (1.60) 2343 (24.41)
3 420,801 11 17 (1.55) 1095 (10.74) 10 18 (1.80) 2620 (24.26)
4 671,001 10 19 (1.90) 1135 (10.91) 10 19 (1.90) 2607 (22.87)

Table 5.4: The total cumulative iteration counts for both solutions when using the (aL2)
preconditioner for polynomial order refinement. The initial guesses are the two solutions
approximated by the first-order discretization (k = 1) on the same mesh. The deflated
barrier method is initialized at µ0 = 0. The columns BM, OK, and IK, as well as the
numbers in brackets, have the same meaning as in Table 5.2.

discretizations for the velocity-pressure pair are not practical since our solver relies

upon a DG0 discretization for the material distribution.

Comparison with the Cahouet–Chabard preconditioner

We now compare our augmented Lagrangian preconditioner with the Cahouet–

Charbard preconditioning strategy utilized by Borrvall and Petersson in their

original work [36]. Borrvall and Petersson used a nested approach via the first-

order MMA algorithm [165] to find minimizers of their problems. MMA relies on

sensitivity analysis by solving forward/adjoint problems. Hence, given a material

distribution iterate, the most computationally expensive step in MMA is the repeated

forward solve of (5.5) and (5.6) to compute the velocity and pressure iterates.

Borrvall and Petersson used the Cahouet–Chabard preconditioner to precondition

the momentum-pressure block. In our framework, the natural application for the

Cahouet–Chabard preconditioner is for preconditioning SSS1. We emphasize that the
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Cahouet–Chabard preconditioner was designed to handle the momentum block AAA

and not AAA augmented with −DDDCCCµDDD⊤ as found in the top left block of SSS1. This

is reflected in our numerical results.

The Cahouet–Chabard preconditioner requires an H1-conforming discretization

of the pressure since the preconditioner involves assembling a matrix induced by

a weak form that features ∇ψi, where ψi, i = 1, . . . , np, are the pressure basis

functions. Hence, we test the preconditioner with a DG0 discretization for the

material distribution and a Taylor–Hood (CG2)2 × CG1 discretization for the

velocity-pressure pair. This strategy follows the same steps as our strategy up to

and including block preconditioning with respect to the augmented momentum-

pressure block step in Fig. 5.2, except without the addition of the augmented

Lagrangian term. Hence, the solve is reduced to an outer FGMRES solver, taking

the reciprocal of the real number SSS0, inverting the diagonal matrix CCCµ, and applying

the action of the inverse of the 2 × 2 block matrix SSS1.

Here, we apply an inner FGMRES method to approximate the inverse action of

SSS1. The FGMRES method is preconditioned by ŜSS1 as defined in (5.20). We apply

block preconditioning to approximate the action of ŜSS
−1
1 , reducing the solve to a

preconditioned outer FGMRES solver, taking the reciprocal of the real number

SSS0, inverting the diagonal matrix CCCµ, an inner preconditioned FGMRES solver for

SSS1, factorizing the momentum block AAA, and approximating the inverse action of

the innermost Schur complement ŜSS2 := −BBB⊤AAA−1BBB.

As we no longer include an augmented Lagrangian term, solving linear systems

involving the momentum block AAA is much easier due to the lack of the semi-definite

term γdBBB⊤MMM−1
p BBB. However, the difficulty now shifts to approximating the Schur

complement ŜSS2. Here, ŜSS2 is dense and should not be assembled. Hence, the action

of ŜSS
−1
2 is approximated by a (preconditioned) conjugate gradient algorithm (CG).

The Cahouet–Chabard strategy is used to precondition this CG solver, where the

Cahouet–Chabard preconditioner is

KKK−1
p,ρ + νMMM−1

p , [KKKp,ρ]ij :=
∫

Ω
α(ρh)−1∇ψi · ∇ψj dx, (5.34)
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where ψi, i = 1, . . . , np, are the basis functions of the pressure discretization. Since

the reciprocal of α(·) appears in KKKp,ρ, we must have a positive lower bound for

α. Hence, in this example we choose

α(ρ) = ᾱ + (α− ᾱ)ρ(1 + q)
ρ+ q

, (5.35)

with ᾱ = 2.5× 104, q = 1/10, and α = 10−5. The action of ŜSS2 in the CG iteration

requires the action of a momentum block inverse AAA−1 which is already computed

as part of the strategy. In summary, the strategy is the following:

1. Apply an outer FGMRES solver;

2. Apply the reciprocal of SSS0 ∈ R;

3. Invert the diagonal matrix CCCµ;

4. Apply an inner FGMRES solver for SSS1;

5. Factorize and solve the momentum block AAA;

6. Apply a CG solver for the innermost Schur complement ŜSS2;

7. Factorize and solve KKKp,ρ;

8. Factorize and solve MMMp (only required once and then cached).

In our tests we use an LU factorization for KKKp,ρ, MMMp, and AAA, and CG preconditioned

with (5.34) to approximate the inverse action of ŜSS2 to an absolute tolerance of 10−8 or

relative tolerance of 10−5. The actions of AAA−1 and ŜSS
−1
2 are then used to precondition

the inner FGMRES method that approximates the inverse of the outermost Schur

complement SSS−1
1 to a relative tolerance of 10−5. The outer FGMRES solver was

terminated once an absolute tolerance of 10−8 was reached.

In Table 5.5, we apply this strategy to the deflated barrier method applied in

order to compute the solution on the first branch of the double-pipe problem at

the subproblem where µ = 105. We compare it with the augmented Lagrangian

approach of (aL1). The runtime measurements are as recorded using all four cores

of a computer with an i5-7500T CPU running at 2.7 GHz. We note that, for

the Cahouet–Chabard strategy, the number of outermost FGMRES iterations per
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BM iteration is 1, whereas for the augmented Lagrangian strategy it averages to 2

outermost FGMRES iterations per BM iteration. However, in the Cahouet–Chabard

strategy, we require O(10) inner FGMRES iteration per outer FGMRES iteration

to approximate the inverse action of SSS1 and a further 7–9 inner preconditioned

CG iterations per approximate ŜSS2 solve. These inner iterations are not required

in the augmented Lagrangian approach. Hence, each outer FGMRES iteration

is significantly more expensive and our augmented Lagrangian preconditioner is

faster and more effective for the problems discussed in this chapter. We note the

BM iterations differ due to the different discretizations (Taylor–Hood vs. BDM)

of the problem in the two strategies.

Cahouet–Chabard (aL1)
h BM OK IK CG Time (s) BM OK Time (s)
0.0361 8 8 569 4272 73.75 11 23 22.08
0.0180 7 7 487 3459 307.02 12 23 78.61

Table 5.5: The cumulative total number of iterations and runtime for deflated barrier
method at µ = 105 to find the first branch of the double-pipe problem utilizing the
Cahouet–Chabard preconditioning strategy vs. the augmented Lagrangian (aL1) strategy.
BM stands for the number of Benson–Munson iterations, OK stands for the number
of outer preconditioned FGMRES iterations to solve linear systems involving the full
matrix (5.10), IK stands for the number of inner preconditioned FGMRES iterations to
solve linear systems involving SSS1, and CG stands for the number of preconditioned CG
iterations to approximate the inverse of ŜSS2.

Convergence results

Akin to Section 4.6.1, we investigate the convergence of the finite element solutions

to the double-pipe problem. If we assume that the traces of ∇u are well-defined

on the faces of each element in both solutions, then the consistency result in

Proposition 3.7 holds. Since we are using a BDM discretization for the velocity-

pressure pair and a DG0 discretization for the material distribution, all the conditions

of Theorem 3.2 are satisfied and hence there exists a sequence of solutions to (FOC1-

DGh)–(FOC3a-DGh) that converges strongly to the straight channels solution and

a different sequence of solutions that converges to the double-ended wrench. The

existence of these sequences is numerically verified in Fig. 5.6 for a DG0 ×BDM1 ×
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DG0 discretization for (ρh,uh, ph). The linear systems are preconditioned using

the augmented Lagrangian strategy (aL1). As for the conforming finite element

method case, the two solutions are not known analytically. Hence, the errors are

measured with respect to the most heavily-refined finite element solution where

h = 1.41× 10−3 resulting in 16,389,121 degrees of freedom for the first-order BDM

discretization. To aid the convergence to solutions on the same sequence, we

first compute the solutions on the coarsest mesh, uniformly refine the mesh, and

successively interpolate the solutions onto the finer mesh as initial guesses for the

deflated barrier method initialized at µ0 = 0.
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Figure 5.6: The convergence of uh, ρh, and ph for the double-pipe problem for both the
straight channels solution and double-ended wrench solution on a sequence of uniformly
refined meshes with a DG0 × BDM1 ×DG0 discretization for (ρh, uh, ph).

A key property of the BDM discretization that was also utilized in our precon-

ditioning strategy is that the incompressibility constraint is satisfied pointwise. To

test the difference between the BDM discretization and a finite element method

that is not divergence-free, we report the values of ∥div(uh)∥L2(Ω) in Table 5.6
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for the BDM discretization alongside the equivalent solutions computed with a

Taylor–Hood (CG2)2 × CG1 discretization for the velocity-pressure pair and a DG0

discretization for the material distribution on the same meshes. Even on coarse

meshes, the L2-norm of the divergence of the velocity in the BDM discretization is

small with values in the range of 10−6 ∼ 10−8 for both minimizers. We note that the

values of ∥div(uh)∥L2(Ω) are not exactly zero as the systems are solved to an absolute

tolerance of 10−5. By contrast, the pointwise violation of the incompressibility

constraint for the Taylor–Hood discretization manifests as relatively large values of

∥div(uh)∥L2(Ω). Even on the finest mesh where h = 2.82× 10−3, which results in

4,512,004 degrees of freedom, the L2-norm is still O(10−2), 5 orders of magnitude

larger than the equivalent BDM discretization.

Straight channels Double-ended wrench
h BDM Taylor–Hood BDM Taylor–Hood
4.51× 10−2 7.16× 10−7 2.10× 10−1 3.72× 10−6 3.12× 10−1

2.25× 10−2 8.31× 10−8 1.03× 10−1 3.06× 10−8 1.30× 10−1

1.13× 10−2 2.56× 10−8 6.21× 10−2 1.27× 10−8 6.61× 10−2

5.63× 10−3 7.00× 10−8 3.28× 10−2 2.52× 10−7 3.34× 10−2

2.82× 10−3 8.01× 10−8 1.72× 10−2 4.74× 10−7 1.72× 10−2

Table 5.6: Reported values for ∥div(uh)∥L2(Ω) in a BDM and Taylor–Hood discretization
for the double-pipe problem, as measured on five meshes, in a uniformly refined mesh
hierarchy.

5.3.2 3D cross-channel

The first three-dimensional example we consider is the cross-channel problem as

found in Sá et al. [143, Sec. 7.5]. The domain is the unit cube, Ω = (0, 1)3, with

two circular inlets and two circular outlets that are arranged in a cross pattern

as visualized in Fig. 5.7. The volume fraction is given by γ = 1/10 and we

use (2.27) as our choice of α, with ᾱ = 2.5 × 104 and q = 1/10. The Dirichlet

boundary datum is given by

g(x, y, z) =
(
1− 12π((y − a)2 + (z − b)2), 0, 0

)⊤
, (5.36)

if 12π((y − a)2 + (z − b)2) ≤ 1 and x = 0 with a = 1/2, b ∈ {1/4, 3/4} or x = 1

with a ∈ {1/4, 3/4}, b = 1/2, and g(x, y, z) = (0, 0, 0)⊤ elsewhere on ∂Ω.
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Figure 5.7: Setup of the 3D cross-channel problem. This problem features a unit cube
domain with two inlets and two outlets arranged in a cross pattern.

We apply the same first-order BDM discretization, with interior penalty pe-

nalization parameter σ = 10, and run the deflated barrier method twice. The

first pass is on a 20× 20× 20 mesh resulting in 391,201 degrees of freedom. The

augmented Lagrangian parameter is chosen to be γd = 106. Due to the nested

block preconditioning, the action of the inverse of the augmented momentum block

AAAγd
−DDDCCC−1

µ DDD⊤ must be applied six times per outer FGMRES iteration. On this

relatively coarse mesh, it is cheaper to factorize AAAγd
−DDDCCC−1

µ DDD⊤ with MUMPS at

the start of each BM iteration and reuse the factorization, rather than iteratively

solve AAAγd
−DDDCCC−1

µ DDD⊤ with multigrid each time an inverse action is required, i.e. we

use the augmented Lagrangian preconditioner (aL1) for the linear systems. We

initialize the barrier parameter at µ0 = 100. A second branch of solutions is found

at µ = 38.74 and a third branch at µ = 34.87.

These coarse-mesh solutions are interpolated onto a finer 40 × 40 × 40 mesh

resulting in 3,100,801 degrees of freedom. The deflated barrier method is then

reinitialized at µ0 = 10−6; we found that the BM solver often diverges if initialized at

µ0 = 0. On this finer mesh, we again apply the augmented Lagrangian preconditioner

(γd = 105). Now a direct solve of the augmented momentum block is prohibitive and
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we switch to the (aL2) strategy where each approximate inverse of the augmented

momentum block is solved to an absolute or relative tolerance of 10−8 or 10−9,

respectively, with the (2-grid) multigrid scheme of Section 5.2.2. For the relaxation

on the fine level, we use 5 FGMRES iterations preconditioned with the vertex-

star patch relaxation.

The resulting three solutions are shown in Fig. 5.8. Two of these are symmetric

straight channel solutions where the inlets swap which outlet they exit from. Their

symmetry results in similar costs. A third global minimizer comes in the form of

a merged channel solution; the two channels briefly merge in the middle of the

box domain before splitting to exit via the two outlets.

The iteration counts for the initial search on a 20 × 20 × 20 mesh and the

refinement on a 40 × 40 × 40 mesh are given in Table 5.7. We see that our

preconditioner is effective in both cases. When using a direct solve of the augmented

momentum block, we average slightly more than one outer FGMRES iterations

per BM iteration. Similarly, the tolerances for the augmented momentum block

solve on the fine mesh are strict enough so that the outer FGMRES iterations

average between 2.24 and 2.55. Moreover, each augmented momentum block solve

requires an average in the range of 15.77–16.77 multigrid preconditioned FGMRES

iterations to reach the prescribed tolerances.

Coarse mesh, γd = 106 Fine mesh, γd = 105

Branch BM OK BM OK IK
0 828 829 (1.00) 49 110 (2.24) 10,405 (15.77)
1 444 445 (1.00) 52 121 (2.33) 12,176 (16.77)
2 409 422 (1.03) 53 135 (2.55) 13,085 (16.15)

Table 5.7: Cumulative number of BM iterations, outer FGMRES iterations (OK), and
for the fine mesh, inner FGMRES iterations preconditioned with the multigrid scheme of
Section 5.2.2 (IK) for the 3D cross-channel problem. The bracketed numbers in the OK
and IK columns are the average number of outer FGMRES iterations per BM iteration
and average number of inner FGMRES iterations per augmented momentum block solve,
respectively. The barrier parameter is initialized at µ0 = 100 on the coarse mesh and
µ0 = 10−6 on the fine mesh.
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(a) Branch 0 (b) Branch 1

(c) Branch 2

Figure 5.8: The material distribution of the solutions discovered by the deflated barrier
method to the 3D cross-channel optimization problem discretized with 3,100,801 degrees
of freedom. The power dissipation values are Jh = 14.51, 14.62 and 13.08 for branches 0,
1, and 2, respectively.

5.3.3 3D five-holes quadruple-pipe

In Section 4.6.5, we saw that introducing holes in a rectangular domain caused a

significant increase in the number of solutions. We now extend this idea to three

dimensions and introduce the generalization of the fives-holes double-pipe problem.

This problem features a box domain Ω = (0, 3/2)× (0, 1)× (0, 1) with five internal
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holes in the shape of cubes, of edge length 1/10, with centres at (3/4, 1/4, 1/4),

(3/4, 1/4, 3/4), (3/4, 3/4, 1/4), (3/4, 3/4, 3/4), and (3/4, 1/2, 1/2). There are four

inlets and four outlets. The circular inlets of radius 1/
√

12π are positioned on the

face where x = 0 with the centres (y, z) = (1/4, 1/4), (1/4, 3/4), (3/4, 1/4), and

(3/4, 3/4). The circular outlets of the same radius are positioned on the face where

x = 3/2 with the same centres. The domain setup is depicted in Fig. 5.9. We

impose a parabolic Dirichlet boundary condition on the inlets and outlets and a zero

Dirichlet boundary condition elsewhere on the boundary (including the boundary

of the five internal holes), i.e. the Dirichlet boundary condition is given by:

g(x, y, z) =
(
1− 12π((y − a)2 + (z − b)2), 0, 0

)⊤
, (5.37)

if 12π((y − a)2 + (z − b)2) ≤ 1, where a, b ∈ {1/4, 3/4}, x = 0 or 3/2 and

g(x, y, z) = (0, 0, 0)⊤, (5.38)

elsewhere on ∂Ω, including the boundaries of the five internal holes. We choose

a volume fraction of γ = 1/5 and the inverse permeability term α is given by

(2.27), with ᾱ = 2.5 × 104 and q = 1/10.

Figure 5.9: Setup of the 3D five-holes quadruple-pipe problem. This problem features 4
inlets and 4 outlets. The domain is a box, Ω = (0, 3/2)× (0, 1)× (0, 1), with five internal
holes in the shape of cubes with edge length 1/10 that are centred at (3/4, 1/4, 1/4),
(3/4, 1/4, 3/4), (3/4, 3/4, 1/4), (3/4, 3/4, 3/4), and (3/4, 1/2, 1/2).

We choose a first-order BDM discretization for the velocity-pressure pair, with

interior penalty penalization parameter σ = 103, and run the deflated barrier method
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twice. The larger choice for σ is required to sufficiently enforce the boundary condi-

tions in the tangential directions. The first run is on a (relatively) coarse mesh with

30,848 elements which results in 256,745 degrees of freedom. The barrier parameter

is initialized at µ0 = 200 and we use the augmented Lagrangian preconditioner (aL1)

for the linear systems, with an augmented Lagrangian parameter value of γd = 105.

In total we find 11 solutions. Branches 1 and 2 are found at µ = 53.81. Branches

3, 4, 5, and 6 are found at µ = 11.39. Branch 7 is found at µ = 10.25. Branch 8 is

found at µ = 9.23. Branch 9 is found at µ = 6.73 and branch 10 is found at µ = 6.05.

We uniformly refine the mesh and interpolate the coarse-level solutions onto

the finer mesh which results in 2,014,113 degrees of freedom. We reinitialize the

deflated barrier method at µ0 = 10−6, using the coarse-level solutions as initial

guesses, and apply the augmented Lagrangian (2-grid) multigrid preconditioner

(aL2) with 5 FGMRES iterations for the relaxation of the fine level and γd = 105.

The augmented momentum block solve was terminated after 20 iterations. The

resulting iteration counts are given in Table 5.8 and the resulting fine mesh solutions

are shown in Fig. 5.10 and Fig. 5.11. In Fig. 5.12, we plot the crinkled cross-sections

of the discovered solutions at x = 3/4. As expected, the five holes obstruct the

channels and prevent a large channel passing through the centre. The best solutions

found are branches 0, 1, and 10 where the channels form one large channel and

either move to the left, upwards or downwards to avoid the middle internal hole.

As in the five-holes double-pipe example, there are remaining solutions that we

have not yet computed as there are missing symmetrical solutions.

5.4 Code availability

The deflated barrier method algorithm, as used in all the numerical examples in this

chapter, has been implemented in a Python library called fir3dab using Firedrake

[137] as the finite element backend. The implementation required changes to

Firedrake and PETSc [24] in order to facilitate applying the BM active-set strategy

[31], together with preconditioners, to the topology optimization problems. The

fir3dab library can be found at https://github.com/ioannisPApapadopoulos/

https://github.com/ioannisPApapadopoulos/fir3dab/
https://github.com/ioannisPApapadopoulos/fir3dab/
https://github.com/ioannisPApapadopoulos/fir3dab/
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Coarse mesh Fine mesh
Branch BM OK BM OK IK
0 438 438 (1) 22 52 (2.36) 6240 (20)
1 338 338 (1) 26 72 (2.77) 8640 (20)
2 396 396 (1) 27 107 (3.96) 12,840 (20)
3 254 254 (1) 44 127 (2.89) 15,240 (20)
4 236 236 (1) 29 81 (2.79) 9720 (20)
5 222 222 (1) 45 113 (2.51) 13,560 (20)
6 223 223 (1) 31 111 (3.58) 13,320 (20)
7 221 221 (1) 51 185 (3.63) 22,200 (20)
8 224 224 (1) 52 164 (3.15) 19,680 (20)
9 227 227 (1) 33 117 (3.55) 14,040 (20)
10 183 183 (1) 48 135 (2.81) 16,200 (20)

Table 5.8: Cumulative number of BM iterations, outer FGMRES iterations (OK), and
for the fine mesh, inner FGMRES iterations preconditioned with the multigrid scheme of
Section 5.2.2 (IK) for the 3D five-holes quadruple-pipe problem. The bracketed numbers
in the OK and IK columns are the average number of outer FGMRES iterations per BM
iteration and average number of inner FGMRES iterations per augmented momentum
block solve, respectively. The barrier parameter is initialized at µ0 = 200 on the coarse
mesh and µ0 = 10−6 on the fine mesh.

fir3dab/. For reproducibility, the code used to run these examples has been

archived on Zenodo [157, 159].

https://github.com/ioannisPApapadopoulos/fir3dab/
https://github.com/ioannisPApapadopoulos/fir3dab/
https://github.com/ioannisPApapadopoulos/fir3dab/
https://github.com/ioannisPApapadopoulos/fir3dab/
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(a) Branch 0 (b) Branch 1

(c) Branch 2 (d) Branch 3

(e) Branch 4 (f) Branch 5

Figure 5.10: The material distribution of the first six solutions discovered by the deflated
barrier method to the 3D fives-holes quadruple-pipe optimization problem discretized
with 2,014,113 degrees of freedom. The resulting power dissipation values for branches
0–5 are Jh = 55.03, 54.73, 63.78, 62.22, 59.56, and 63.31, respectively.
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(a) Branch 6 (b) Branch 7

(c) Branch 8 (d) Branch 9

(e) Branch 10

Figure 5.11: The material distribution of the final five solutions discovered by the deflated
barrier method to the 3D fives-holes quadruple-pipe optimization problem discretized
with 2,014,113 degrees of freedom. The resulting power dissipation values for branches
6–10 are Jh = 59.55, 63.35, 62.52, 62.37, and 55.38, respectively.



5. Preconditioning 160

(a) Branch 0 (b) Branch 1 (c) Branch 2

(d) Branch 3 (e) Branch 4 (f) Branch 5

(g) Branch 6 (h) Branch 7 (i) Branch 8

(j) Branch 9 (k) Branch 10

Figure 5.12: The crinkled cross sections at x = 3/4 for the discovered solutions of the
3D five-holes quadruple-pipe. The grey regions are part of the five cuboid holes in the
box domain. The material distribution has a value of one in the red regions and zero in
the blue regions, with intermediate values for the intermediate coloured regions.



6
Conclusions and outlook

In this thesis we analyzed the nonconvexity of topology optimization problems, with a

particular emphasis on the Borrvall–Petersson model for the topology optimization of

fluid flow. We developed a framework for the analysis of finite element discretizations

of all the isolated infinite-dimensional minimizers of the problem and constructed

a solver that can systemically compute these multiple minimizers.

6.1 Analysis

The first part of this thesis was concerned with deriving analytical and numerical

results concerning isolated minimizers of the Borrvall–Petersson model for the

topology optimization of the power dissipation of fluid flow. In Chapter 2 we

showed that minimizers (u, ρ, p) of the Borrvall–Petersson problem satisfy the

following properties:

• If the minimizer is a strict minimizer, then the support of the material

distribution function is contained within the support of the velocity function;

• If the domain is convex and the data is suitably regular, then the velocity

lives in H2(Ω)d and the pressure lives in H1(Ω);

• (Main result) If the inverse permeability term satisfies a strong convexity

assumption and the problem features a homogeneous Dirichlet boundary

condition on the velocity, then the material distribution has H1-regularity

inside any compact subset of the support of the velocity.

161
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The first couple of results are expected properties of the solutions. The additional

regularity of the material distribution is surprising but was likely anticipated by

Borrvall and Petersson in their initial derivation of the model. Borrvall and Petersson

remark that if the inverse permeability term α(·) is linear (and hence does not satisfy

the strong convexity assumption), then there exists at least one minimizer where

range of the material distribution is {0, 1}. Given that the material distribution is

not the zero function and there is a volume constraint, this means there must be

sharp jumps. This is ideal for the interpretation of the solutions, but is difficult to

deal with numerically. Sharp interfaces are difficult to resolve and the numerical

method will often fail to converge if a linear inverse permeability term is used. On

the other hand, if a strongly convex inverse permeability term is used, then the

interfaces become regular and the numerical scheme converges with more ease. The

standard choice of inverse permeability term (2.27) is controlled via a “greyness”

parameter q > 0. As q →∞ the inverse permeability tends to a linear function. This

fact is reflected in the proof of Theorem 2.14 as the regularity constants degrade

as q → ∞. A potential future objective is to extend the material distribution

regularity result to the case of inhomogeneous Dirichlet boundary conditions on the

velocity. Numerical evidence suggests that the support of the material distribution

is compactly contained in the support of the velocity except at the boundaries where

the velocity boundary condition is nonzero. An argument to extend the regularity

result will need to resolve how to extend the functions outside the domain.

In Chapter 3 we considered finite element discretizations of the Borrvall–

Petersson problem. The two families we considered are a conforming finite element

method, where the finite element spaces for the velocity, material distribution,

and pressure are contained within H1(Ω)d, Cγ, and L2
0(Ω), respectively, as well

as a divergence-free DG method where the finite element spaces for the material

distribution and pressure remain conforming, but now the velocity is approximated

by discontinuous piecewise polynomials. Borrvall and Petersson’s [36] original

discretization was a conforming finite element method. Their proof of convergence

showed that the sequence of finite element solutions to the optimization problem, as
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the mesh size tended to zero, had a weakly(-*) converging subsequence whose limit

was a solution to the original infinite-dimensional problem. This framework is typical

for the convergence results of finite element methods for topology optimization

problems [35, 36, 126–129]. However, the analysis left a number of open problems.

For example, can all the isolated local minimizers be approximated by a sequence of

computable finite element functions and can these sequences be shown to converge

strongly? We proved a positive result for minimizers that are isolated with respect to

the L2-norm for the material distribution and the H1-norm for the velocity (or with

respect to the H(div; Ω)-norm in the case of a divergence-free DG discretization).

By fixing an isolated minimizer and considering its basin of attraction, we showed

that a sequence of finite element minimizers, satisfying a modified optimization

problem, will strongly converge to the isolated minimizer. Moreover, a subsequence

of the finite element minimizers of the modified optimization problem also satisfy

the discretized first-order optimality conditions of the original Borrvall–Petersson

problem. Hence, by computing multiple solutions of the discretized first-order

optimality conditions, we can approximate the multiple solutions of the infinite-

dimensional nonconvex problem. The convergence results also resolve the lack of

checkerboarding in the material distribution approximation.

There are several open problems left to consider. These include whether similar

finite element convergence results can be proven for finite volume discretizations of

the Borrvall–Petersson model, Borrvall–Petersson models where the fluid satisfies

Navier–Stokes or non-Newtonian flow, and other topology optimization problems,

e.g. density models for the compliance of elastic structures. Moreover, an estimate for

the convergence rate of the L2(Ω)-norm error of the velocity in a Taylor–Hood mixed

finite element discretization for the velocity-pressure pair would automatically give

convergence rates for the H1-norm error of the velocity, L2-norm error of the material

distribution, and the L2-norm error of the pressure, due to our results in Section 3.3.

A key step in the proof for the finite element convergence is the extraction of an

L2(Ω)d-strongly converging subsequence of the velocity finite element minimizers.
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In the conforming finite element method case, this followed by applying the Rellich–

Kondrachov theorem to the H1(Ω)d-weakly converging sequence. In the divergence-

free DG methods case, we required alternative compactness results as found in

the work of Buffa and Ortner [46]. We hypothesize that our arguments can be

extended to discretizations of the Borrvall–Petersson problem where this extraction

is possible. This has potential applications in resolving convergence results for finite

volume discretizations. For Borrvall–Petersson models with more complicated fluid

flow, careful consideration would be required, and traditional results from standard

Navier–Stokes and non-Newtonian flow would need to be utilized [27, 70, 82, 83].

6.2 Solvers for computing multiple solutions of
topology optimization problems

Having resolved whether the finite element method can approximate all the different

isolated minimizers of Borrvall–Petersson problem, we then developed a solver

that can compute these multiple minimizers in a systematic way. To this end,

we developed the deflated barrier method in Chapter 4. The deflated barrier

method can be applied to a general density-based topology optimization problem

and consists of three main components:

• deflation, a mechanism that prevents a Newton-like solver from converging to

a previously found solution;

• a primal-dual active set strategy, a Newton-like solver that can enforce the

box constraints on the material distribution;

• barrier-like terms that aid the global nonlinear convergence of the algorithm.

First the barrier functional of the optimization problem is constructed. This consists

of the Lagrangian of the problem appended by log-barrier-like terms. Then the

first-order optimality conditions of the barrier functional are (automatically) derived

and the system is solved with the primal-dual active set strategy to enforce the box

constraints on the material distribution. Here, the discovered solution is deflated

and the first-order optimality conditions are solved again. Since the algorithm can
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no longer converge to the discovered solution, the primal-dual active set strategy

(hopefully) converges to a different solution. The deflation process can be repeated

any number of times to discover multiple solutions. The barrier parameter is then

decreased and the previous solutions are used as initial guesses in the continuation

scheme. In this way, we follow branches of solutions as the barrier parameter goes

to zero. The algorithm is terminated when the first-order optimality conditions

are solved with a barrier parameter value of zero.

The deflated barrier method was applied to a number of problems. Our

highlighted examples are the discovery of 42 solutions of a five-holes double-pipe

(a Borrvall–Petersson problem constrained by the Navier–Stokes equations), 4

solutions of the double-pipe problem with natural boundary conditions on the

outlets, 2 solutions of a fluid problem with a roller pump, 2 solutions of a cantilever

compliance problem, and 2 solutions of an MBB compliance problem. In a

conforming discretization, the primal-dual active set strategy iteration counts are

mesh independent for the Borrvall–Petersson problem, i.e. they remained roughly

constant as the mesh is refined, irrespective of the choice of the finite element

discretization. Moreover, the method converged superlinearly at each subproblem.

We explored how the use of the active set helps control the ill-conditioning caused

by the barrier-like terms as the barrier parameter approaches zero. The iteration

counts were not mesh independent for the compliance problems, but a simple

grid-sequencing strategy can be used to obtain solutions with sharp interfaces

on fine meshes with relative ease.

The mesh dependence in the case of compliance problems is likely caused by the

presence of ∇ρ in the formulation. It is well understood that primal-dual active set

strategies applied to infinite-dimensional obstacle-like problems are not semismooth

Newton methods [88, Sec. 4]. The discrepancy of being a valid semismooth Newton

method in finite dimensions and not a valid semismooth Newton method in infinite

dimensions manifests precisely as mesh dependence. A future objective would be to

develop a deflated barrier method variant that is mesh independent for compliance
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problems. One suggestion is to swap the primal-dual active set strategy and barrier-

like terms for a different continuation scheme that is mesh independent for obstacle

problems, e.g. Newton’s method coupled with a Moreau–Yosida regularization [7, 68].

However, we note that developing a converging continuation scheme is nontrivial.

A natural question is whether deflation could be combined with a more traditional

optimization strategy in topology optimization such as MMA [165, 166]. An issue

that arises is that the deflation modification to the update of the optimization

process (see Proposition 4.3) is tied to the choice of a Newton-like solver. It

is not immediately clear how to translate this to nested first-order methods.

Implementations found in the literature tend to quotient the discovered solution on

the level of the objective functional [85, 188]. For example, if x∗ ∈ Rn is an already

discovered solution, then the original problem is modified as follows: for a, b > 0,

min
x
J(x) −→︸︷︷︸

deflate x∗

min
x

(
1

a∥x− x∗∥p
+ b

)
J(x). (6.1)

However, unlike the deflation mechanism described in Section 4.3, (6.1) may

introduce minimizers that do not exist in the original problem or remove undiscovered

minimizers. Moreover, since the energy landscape is modified, the minimizers of

the original problem are perturbed. To help remedy this, the constants a and b

must be chosen adaptively throughout the optimization process, whereas in our

implementation they are constant, in not just the optimization process, but across

all examples. Since deflation is ideally a post-processing step after the computation

of the update, these real-time modifications are undesirable.

In order to apply the deflated barrier method to three-dimensional Borrvall–

Petersson problems, we developed preconditioners for the linear systems that are

solved during the optimization process in Chapter 5. This was made possible as

we only solve undeflated systems, even if we are deflating discovered solutions

[66]. We fix the discretization to a piecewise constant discretization of the material

distribution and a Brezzi–Douglas–Marini discretization for the velocity-pressure

pair [40, 41]. By deriving the linear systems arising during the Benson–Munson

primal dual active-set strategy, we showed that we are solving a 4× 4 block matrix
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system at each iteration. One block is a row/column vector and can be row

eliminated. After applying block preconditioning to the remaining 3× 3 block, we

reduced the solve to the size of a standard Stokes system [65]. Then, by using

an augmented Lagrangian control term, we applied another block preconditioning

that reduced the solve to inverting a diagonal matrix, factorizing a block diagonal

matrix (that can be cached), and applying the inverse action of an augmented

momentum block [60, 161, 177]. In order to solve the augmented momentum block

on fine meshes, we developed a multigrid cycle with a specialized relaxation scheme

that can handle the parameter-dependent semi-definite augmented Lagrangian

term [71, 73, 91, 145] and also required a characterization of the active set of the

Benson–Munson strategy on the coarser levels [62, 93].

We applied the preconditioner to three different examples. The first was the

double-pipe problem that was introduced in Section 4.6.1. Here we showed that

the preconditioner was robust to the mesh size and the polynomial order of the

discretization. Moreover, we compared our preconditioner to the Cahouet–Chabard

strategy [36, 48] and showed that our preconditioner was more effective for the

problems considered in this thesis. The convergence results in Chapter 3 for

divergence-free DG discretizations were also numerically verified and we compared

the violation of the incompressibility constraint between a Taylor–Hood and BDM

discretization for the velocity-pressure pair. The first three-dimensional example we

considered was a cross-channel problem [143, Sec. 7.5]. For computational efficiency,

we first discretized the problem on a coarse mesh and used an LU factorization

for the augmented momentum block. This led to the discovery of three distinct

solutions, which were subsequently grid-sequenced onto a finer mesh. On the finer

mesh, we used FGMRES preconditioned with our specialized multigrid cycle for the

augmented momentum block solve. Finally, the work in this chapter culminated

in the computation of eleven distinct solutions to a three-dimensional five-holes

quadruple-pipe problem (an extension of the two-dimensional five-holes double-pipe

problem of Section 4.6.5). Again, the solutions were originally found on a coarse

mesh and grid-sequenced to a fine mesh.
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A key extension for industrial applications would be to develop preconditioners

for the deflated barrier method applied to the Borrvall–Petersson problem with a

Navier–Stokes constraint. In this case, the linear systems would involve a 7 × 7

block matrix. It may be possible to utilize similar ideas including using block

preconditioning for the volume constraint row and material distribution block.

Thinking more broadly, the deflated barrier method is an attractive approach

for a number of problems including time-dependent Borrvall–Petersson problems,

the topology optimization of heat transfer, and compliance problems involving

materials that are hyperelastic. The deflated barrier method, accompanied with the

theoretical finite element convergence theorems, provide a bedrock for exploring

the solution landscape of density-based topology optimization problems. Once

computed, the solutions can be utilized as initial guesses for industrial shape and

topology optimization algorithms, where other practical considerations can be

taken into account.
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