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Introduction

A multicomponent fluid is composed of N ≥ 2 distinct chemical species in a common
thermodynamic phase.

Different kinds of models are used, with different simplifications.

class primitive variables

class III ρi, vi, Ti

class II ρi, vi, T
class I ρi, v, T

Each class needs more constitutive relations than the one below it (III > II > I).

This talk

We describe a class-I model, the Navier–Stokes–Onsager–Stefan–Maxwell equations.
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Examples

We consider the microfluidic mixing of benzene (C6H6) and cyclohexane (C6H12).

This forms a non-ideal mixture with nonlinear activity coefficients in the thermodynamic
equation of state: interactions between B-C molecules different to B-B or C-C.

We use order five finite elements in a curved geometry: discrete problem has 6m unknowns.
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Examples

Mole fraction x1 of benzene and streamlines of its velocity v1.
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Examples

A Hull cell is a device used to test electroplating.

The electroplating of copper. A Hull cell.

Images from www.yamamoto-ms.co.jp/en/what-is-hull-cell/ and en.wikipedia.org/wiki/Electroplating.

7 / 42



Examples

We consider LiPF6 in ethyl methyl carbonate (EMC), which dissolves into Li+ and PF6
– .

an
o
d
e
(s
tr
ip
p
in
g) cathode

(plating)

insulated

insulated

We model the electroplating of lithium from the anode to the cathode. We impose a voltage
difference of 10 mV, and Robin conditions on the current and lithium flux.

We fit ionic conductivity, Stefan–Maxwell diffusivity, Darken factor, cation transference
number, and density from experimental data reported by

A. A. Wang et al. “Shifting-reference concentration cells to refine composition-dependent
transport characterization of binary lithium-ion electrolytes”. In: Electrochimica Acta 358
(2020), p. 136688. doi: 10.1016/j.electacta.2020.136688.
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Examples

Solvent streamlines and mole fraction.
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The model

We present the model in isothermal, nonreactive conditions.

There is a beautiful, thermodynamically rigorous derivation of a thermal
class-II model with chemical reactions and its associated class-I reduction in

D. Bothe and W. Dreyer. “Continuum thermodynamics of chemically
reacting fluid mixtures”. In: Acta Mechanica 226.6 (2014),
pp. 1757–1805. doi: 10.1007/s00707-014-1275-1.

. . . but our numerics haven’t gotten that far yet.

Dieter Bothe

Wolfgang Dreyer
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The model Continuity equations

Subsection 1

Continuity equations
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The model Continuity equations

Let ρi and vi denote the mass density and velocity of species i, i = 1 : N .

Mass continuity in the absence of chemical reactions requires that

∂tρi +∇ · (ρivi) = 0,

where ρivi is the mass flux.

Summing over i yields the global continuity equation

∂tρ+∇ · (ρv) = 0,

where ρ =
∑

i ρi is the total density and v = ρ−1
∑

i ρivi is the barycentric velocity.

The relation
ρv =

∑
i

ρivi

is the mass-average constraint on the fluxes.
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The model Continuity equations

Class-II model

In a class-II model, we would solve balance equations for each vi.

Class-I model

In a class-I model, we solve a balance equation for v and model vi (or a related function like
v − vi or ρivi) with constitutive relations.

This is reasonable when
UV

C2
≪ 1

where U is the reference diffusive speed, V is the reference speed, and C =
√
p0/ρ0 is on the

order of the speed of sound. Here p0 is the reference pressure and ρ0 the reference density.

Onsager relations

We employ Onsager’s linear framework for constitutive relations (more later).
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The model Momentum equation

Subsection 2

Momentum equation
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The model Momentum equation

The balance equation we solve for v is the usual Cauchy momentum
equation with pressure p, deviatoric stress S and body force f :

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · S = ρf.

We again require a constitutive equation relating Dv to S. We employ the
usual Newtonian relation:

S = 2µDv + λ(∇ · v)I.

Augustin-Louis Cauchy
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The model Constitutive relations for transport

Subsection 3

Constitutive relations for transport
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The model Constitutive relations for transport

The entropy production ξ in the isothermal, nonreactive case is given by

Tξ =
∑
i

di · (vi − v) + S : Dv

where di are the diffusion driving forces

di := −ci∇µi + (ρi/ρ)∇p,

with µi the (electro)chemical potential of species i, ci := ρi/Mi its molar
concentration, and Mi is its molar mass.

Employing the constitutive framework of Onsager yields

di =

N∑
j=1

Mij(vj − v), Dv = AS,

where M and A are symmetric positive semi-definite operators (at least).

Lars Onsager
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The model Constitutive relations for transport

Warning

Linear does not mean simple!

The Onsager transport matrix Mij models the drag exerted between species, and encodes
Stefan–Maxwell coefficients:

Mij :=

{
−RTcicj

DijcT
if i ̸= j,∑n

k=1,k ̸=i
RTcick
DikcT

if i = j,

where cT :=
∑

i ci. M thus depends nonlinearly on our state variables. The Stefan–Maxwell
diffusivities Dij can also depend on concentrations and pressure.

More significantly, the matrix Mij is singular with nullspace of constants (if all species are
present in nonzero amounts). The Onsager–Stefan–Maxwell equations

di =
N∑
j=1

Mij(vj − v)

therefore appear ill-posed?
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The model Constitutive relations for transport

The remedy is to realise that the diffusion driving forces must satisfy the
Gibbs–Duhem relation ∑

i

di = 0.

So we have a singular system but the data is in its range.

The Onsager–Stefan–Maxwell equations thus define {vi} up to a constant.

Imposing the mass-average constraint

ρv =
∑
i

ρivi

finally yields a unique solution for {vi}.

Josiah Willard Gibbs

Pierre Duhem
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The model Constitutive relations for thermodynamics

Subsection 4

Constitutive relations for thermodynamics
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The model Constitutive relations for thermodynamics

Let’s gather the equations we have seen so far.

∂tρi +∇ · (ρivi) = 0 ∀i ∈ 1 : N,

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · (A−1Dv) = ρf,

ρ =
∑

j ρj ,

ρv =
∑

j ρjvj ,

di(T, p, {ρj}, {µj}) =
∑

j Mij(T, p, {ρl})(vj − v) ∀i ∈ 1 : N.

This still is not closed: the diffusion driving forces depend on chemical potentials {µi}, but do
not yet have equations for them.
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The model Constitutive relations for thermodynamics

To understand chemical potentials, it’s useful to first think about two homogeneous gases
initially separated by a partition.

p1, V1 p2, V2

What happens when the partition is removed?

The two gases exchange volume until the pressures equalise. Why?
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The model Constitutive relations for thermodynamics

In thermodynamics, variables come in conjugate pairs, where one is
extensive and one is intensive.

An intensive property is one whose magnitude is independent of the size of
the system: pressure, temperature, chemical potential.

An extensive property is one whose magnitude is additive with the extent of
the system: if a system is doubled, its volume, entropy S, number of moles
n all double.

For any thermodynamic potential, these variables can be paired, with units
of energy:

dG = −TdS + V dP +
∑

i µidni,

where G is the Gibbs free energy.

Georg Helm
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The model Constitutive relations for thermodynamics

When the partition between two homogeneous gases is removed, they exchange extensive
variables until the intensive variables equalise.

So they exchange volume until pressures equalise, exchange entropy (carried by internal energy
flow) until temperatures equalise, and exchange molecules until chemical potentials equalise.

Formally, the chemical potentials are the partial derivatives of the Gibbs free energy, holding
everything else constant:

µi =

(
∂G

∂ni

)
T,p,{nj ,j ̸=i}

.

Particles tend to move from higher to lower chemical potentials because this reduces the free
energy.
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The model Constitutive relations for thermodynamics

For the thermodynamics it is convenient to reformulate the equations in terms of mole
fractions

xi :=
ci
cT

instead of partial densities ρi. These satisfy
∑

i xi = 1, so one is redundant.

Why? Because the thermodynamic constitutive relations only depend on {xi}, not {ci}.

If we determine {xi} and cT , we can compute the partial densities via

ρi = xiMicT .

With this, we close the system with given thermodynamic relations of the form

µi = gi(T, p, {xj})

1/cT =
∑
i

xiVi(T, p, {xj})

where {gi} are partial molar Gibbs functions and {Vi} are partial molar volume functions.
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If we determine {xi} and cT , we can compute the partial densities via

ρi = xiMicT .

With this, we close the system with given thermodynamic relations of the form
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The model Constitutive relations for thermodynamics

It might be useful to see concrete examples of these. For the benzene and
cyclohexane mixture, we employ a Margules model

µ1 = g1(T, p, x1, x2) = p/cref1 +RT lnx1 +RTx22(A12 + 2(A21 −A12)x1),

µ2 = g2(T, p, x1, x2) = p/cref2 +RT lnx2 +RTx21(A21 + 2(A12 −A21)x2).

The reference values and coefficients are drawn from Perry’s Chemical
Engineers’ Handbook:

D. W. Green and M. Z. Southard, eds. Perry’s Chemical Engineers’
Handbook. 9th Edition. New York: McGraw-Hill Education, 2019.
isbn: 9780071834087.

The partial molar volumes are then computed from

Vi :=

(
∂µi

∂p

)
T,{xj}

.

Max Margules

John H. Perry
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The model Problem statement

Subsection 5

Problem statement
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The model Problem statement

We are now in a position to state the PDE system to solve:

∂tρi +∇ · (ρivi) = 0 ∀i ∈ 1 : N,

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · (A−1Dv) = ρf,

ρ =
∑

j ρj ,

ρv =
∑

j ρjvj ,

di(T, p, {ρj}, {µj}) =
∑

j Mij(T, p, {ρl})(vj − v) ∀i ∈ 1 : N,

ρi = xiMicT ∀i ∈ 1 : N,∑
j xj = 1,

µi = gi(T, p, {xj}) ∀i ∈ 1 : N,

c−1
T =

∑
j xjVj(T, p, {xj}).

We also need initial and boundary conditions, of course!
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Simplifications

Section 4

Simplifications
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Simplifications

We should relate our PDE system to more familiar ones.

Dilute regime

One species (i = N) is present in much greater excess: nN ≫ ni, i ∈ 1 : N − 1.

In this regime it is reasonable to approximate

ρ ≈ ρN , v ≈ vN .

Each solute in a dilute mixture interacts almost solely with solvent molecules, so the solute
fluxes can be modelled by Fick’s law:

Ji = −Di∇ci, i = 1 : N − 1.

Consequence

The system reduces to usual Navier–Stokes + decoupled convection-diffusion equations.
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Simplifications

Another case of relevance is the ideal mixture.

Ideal mixture

Molecules of different species interact just like molecules of the same species.

Consequence

With this, the partial molar Gibbs functions simplify greatly, and we can solve for

{ci} instead of {xi}, {µi}, cT .

An added benefit: Stefan–Maxwell diffusivities are much better approximated by constants.
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Discretisation

Section 5

Discretisation
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Discretisation Formulation and constraints

Many questions arise: there has been almost no numerical work on the full system, only
simplifications. The first is which variables to solve for.

Our current preferred variational formulation solves

Primary variables

{xi} ∈ [L2]N ,

{µi} ∈ [L2]N ,

v ∈ H1 ⊗ Rd,

p ∈ L2,

ρ−1 ∈ H1,

{Ji} ∈ [H(div)]N

where the species mass fluxes relate to the species velocities by

Ji = ρivi.

The other variables are eliminated algebraically.
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Discretisation Formulation and constraints

We have a “chain” of constraints:

1. For mass continuity ∂tρ+∇ · (ρv) = 0 to hold, we must satisfy the mass-average
constraint

ρv =
∑

i ρivi. (1)

2. For the Onsager–Stefan–Maxwell equations to be solvable subject to (1), we must satisfy
the Gibbs–Duhem relation ∑

i di = 0. (2)

3. To satisfy (2), since µi = gi(T, p, {xj}), we must satisfy the mole fraction constraint∑
i xi = 1. (3)

The interplay between these constraints, and to what extent they imply one another, is very
subtle, especially upon discretisation.
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Discretisation Augmentation

A second question. How do we deal with the nullspace of the Onsager transport matrix M?

One strategy is to neglect pressure diffusion, eliminate one of the species velocities (say vN ),
and invert the Onsager transport matrix to get the Onsager–Fick formulation:

vi =
N−1∑
j=1

Dij∇cj ∀i ∈ 1 : N − 1.

However, this has several disadvantages:

▶ only works for simple expressions for µi;

▶ it neglects pressure diffusion (and other effects);

▶ it breaks the symmetry among the species;

▶ the (N − 1)× (N − 1) matrix D loses all structural properties: not even symmetric.

This approach is not going to be structure-preserving.
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Discretisation Augmentation

Instead, we adopt the augmentation strategy proposed by Helfand in 1960.

Define ωi := ρi/ρ, the mass fraction of species i. For an augmentation
parameter γ > 0, we replace the Onsager–Stefan–Maxwell equations by

di + γωiv =
∑

j Mij(vj − v) + γωiωj(vj − v)

=
∑

j M
γ
ij(vj − v).

The matrix Mγ is symmetric positive-definite, which makes a key bilinear
form coercive.

This was used by Giovangigli & Ern for simulations of ideal mixtures.

It turns out to be advantageous to add a dual augmentation to the
momentum balance:

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · S+ γv − γ
∑

ωjvj = ρf.

Eugene Helfand

Vincent Giovangigli

37 / 42



Discretisation Augmentation

Instead, we adopt the augmentation strategy proposed by Helfand in 1960.

Define ωi := ρi/ρ, the mass fraction of species i. For an augmentation
parameter γ > 0, we replace the Onsager–Stefan–Maxwell equations by

di + γωiv =
∑

j Mij(vj − v) + γωiωj(vj − v) =
∑

j M
γ
ij(vj − v).

The matrix Mγ is symmetric positive-definite, which makes a key bilinear
form coercive.

This was used by Giovangigli & Ern for simulations of ideal mixtures.

It turns out to be advantageous to add a dual augmentation to the
momentum balance:

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · S+ γv − γ
∑

ωjvj = ρf.

Eugene Helfand

Vincent Giovangigli

37 / 42



Discretisation Augmentation

Instead, we adopt the augmentation strategy proposed by Helfand in 1960.

Define ωi := ρi/ρ, the mass fraction of species i. For an augmentation
parameter γ > 0, we replace the Onsager–Stefan–Maxwell equations by

di + γωiv =
∑

j Mij(vj − v) + γωiωj(vj − v) =
∑

j M
γ
ij(vj − v).

The matrix Mγ is symmetric positive-definite, which makes a key bilinear
form coercive.

This was used by Giovangigli & Ern for simulations of ideal mixtures.

It turns out to be advantageous to add a dual augmentation to the
momentum balance:

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · S+ γv − γ
∑

ωjvj = ρf.

Eugene Helfand

Vincent Giovangigli

37 / 42



Discretisation Augmentation

Instead, we adopt the augmentation strategy proposed by Helfand in 1960.

Define ωi := ρi/ρ, the mass fraction of species i. For an augmentation
parameter γ > 0, we replace the Onsager–Stefan–Maxwell equations by

di + γωiv =
∑

j Mij(vj − v) + γωiωj(vj − v) =
∑

j M
γ
ij(vj − v).

The matrix Mγ is symmetric positive-definite, which makes a key bilinear
form coercive.

This was used by Giovangigli & Ern for simulations of ideal mixtures.

It turns out to be advantageous to add a dual augmentation to the
momentum balance:

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · S+ γv − γ
∑

ωjvj = ρf.

Eugene Helfand

Vincent Giovangigli

37 / 42



Discretisation Augmentation

Instead, we adopt the augmentation strategy proposed by Helfand in 1960.

Define ωi := ρi/ρ, the mass fraction of species i. For an augmentation
parameter γ > 0, we replace the Onsager–Stefan–Maxwell equations by

di + γωiv =
∑

j Mij(vj − v) + γωiωj(vj − v) =
∑

j M
γ
ij(vj − v).

The matrix Mγ is symmetric positive-definite, which makes a key bilinear
form coercive.

This was used by Giovangigli & Ern for simulations of ideal mixtures.

It turns out to be advantageous to add a dual augmentation to the
momentum balance:

∂t(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · S+ γv − γ
∑

ωjvj = ρf.

Eugene Helfand

Vincent Giovangigli

37 / 42



Discretisation Elements

We discretise (v, p) using inf-sup stable Stokes elements, e.g.

v ∈ [CGk]
d, p ∈ CGk−1.

These are for incompressible flow, but they arise here, because instead of

div v = 0

we enforce

div v = div

(
ρ−1

∑
i

Ji

)
.

We discretise ({Ji}, {µi}, {xi}) using mixed-Poisson elements, e.g.

Ji ∈ BDMk, µi ∈ DGk−1, xi ∈ DGk−1, i ∈ 1 : N.

With this we can prove convergence and quasi-optimality of the discretisation for a Picard
linearisation.
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Discretisation Nonlinear iteration

The Picard iteration exhibits poor convergence. We really want to solve a Newton iteration.

Solving the Newton iteration threw up many unanticipated subtleties.

First, the pressure diffusion term ∇p in di appears to lead to suboptimal convergence by one
power of h. It’s not clear how to circumvent this.

Second, we need to add ‘density consistency terms’. For the true solution, we have

v · ν =
∑

i ρ
−1Ji · ν,

where ν is the outward normal on ∂Ω, but discretely we only satisfy the mass-average
constraint approximately

vh · ν ≈
∑

i ρ
−1
h Jh,i · ν,

and we need to account for this in the discretisation.

However, we have solved these problems and now appear to have robust solvers in place!
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Conclusions

Good news

We can now robustly discretise the Navier–Stokes–Onsager–Stefan–Maxwell equations.

This includes electroneutrality, time-dependence, non-ideality . . . .

Bad news

It can be hard to get the data for the constitutive relations for transport and thermodynamics.

The experiments for LiPF6 in EMC took about one three-year postdoc!

Good news

I still think there are many important applications to be tackled.
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Conclusions

Our immediate next steps are to use the thermal, electroneutral equations to simulate puzzling
experiments for LiPF6 in EMC.

A key numerical question is efficient solvers. We now have excellent preconditioners for the
non-ideal, thermal Onsager–Stefan–Maxwell equations with specified mass-average velocity,
and we are starting on the full equations.

Future work

Numerical analysis, applications in electrochemistry and physiology, porous media,
non-Newtonian mixtures, phase change, chemical reactions, . . . .
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