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A fundamental problem in fluid mechanics:

Stationary incompressible Navier–Stokes

For Reynolds number Re ∈ R+, find (u, p) ∈ [H1(Ω)]d × L2(Ω) such that

−div
(
2Re−1ε(u)

)
+ div (u⊗ u) + grad p = f in Ω,

div u = 0 in Ω,

u = g on ΓD,

2Re−1ε(u) · n = pn on ΓN .

2 / 35



A fundamental problem in fluid mechanics:

Stationary incompressible Navier–Stokes

For Reynolds number Re ∈ R+, find (u, p) ∈ [H1(Ω)]d × L2(Ω) such that

−div
(
2Re−1ε(u)

)
+ div (u⊗ u) + grad p = f in Ω,

div u = 0 in Ω,

u = g on ΓD,

2Re−1ε(u) · n = pn on ΓN .

This talk

Preconditioner with Reynolds-robust GMRES performance in 2D & 3D.

Combines and develops many techniques that are useful for other difficult PDEs.
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Saddle point problems

Section 1

Saddle point problems
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Saddle point problems

These equations have a saddle point structure. Consider the following minimisation problem:

u = argmin
v∈H1

0 (Ω;Rn)

1

2

∫
Ω
2Re−1ϵ(v) : ϵ(v) dx−

∫
Ω
f · v dx,

subject to ∇ · v = 0.

Introducing a Lagrange multiplier p ∈ L2
0(Ω) for the incompressibility constraint yields the

Lagrangian

L(u, p) =
1

2

∫
Ω
2Re−1ϵ(u) : ϵ(u) dx−

∫
Ω
f · u dx−

∫
Ω
p∇ · u dx.

The solution of this problem (u, p) is a saddle point of the Lagrangian because it satisfies

L(u, q) ≤ L(u, p) ≤ L(v, p) for all v ∈ H1
0 (Ω;Rn), q ∈ L2

0(Ω).
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Saddle point problems

Taking the optimality conditions, we find exactly the Stokes equations:

−2Re−1∇·(ϵ(u)) +∇p = f,

−∇·u = 0.

We want to build solvers for saddle point problems like

Au+B⊤p = f,

Bu = 0.

If A is invertible, then we can left-multiply the first equation by A−1 to get

u = A−1f −A−1B⊤p,

and substituting this into the second equation yields

−BA−1B⊤p = −BA−1f,

where the new operator
S := −BA−1B⊤

is called the Schur complement. The Schur complement is dense.
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Saddle point problems

In fact, more generally, if A is invertible[
A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 S

] [
I A−1B
0 I

]
.

where S = D − CA−1B again is the Schur complement.

This is extremely useful, because we can write an explicit formula for the inverse:[
A B
C D

]−1

=

[
I −A−1B
0 I

] [
A−1 0
0 S−1

] [
I 0

−CA−1 I

]
.
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Saddle point problems

This gives rise to four related theorems about block preconditioners.

Theorem (full)

The choice of preconditioner

P =

(
I 0

CA−1 I

)(
A 0
0 S

)(
I A−1B
0 I

)
will yield GMRES convergence in 1 iteration.

How do you use this?

We have to build solvers for A and S.

Andy Wathen

Gene Golub
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Saddle point problems

This gives rise to four related theorems about block preconditioners.

Theorem (lower)

The choice of preconditioner

P =
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)(
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)
will yield GMRES convergence in 2 iterations.
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Andy Wathen
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Saddle point problems

For Stokes,

Aij = 2Re−1

∫
Ω
ϵ(ϕj) : ϵ(ϕi) dx,

a nice symmetric, coercive operator (with boundary conditions).

Multigrid/domain decomposition is the natural choice to approximate A−1.

But what about the Schur complement S?

Theorem (Fortin, 1970s)

For a stable discretisation, the Schur complement is spectrally equivalent to
the scaled pressure mass matrix:

cx⊤Qνx ≤ x⊤Sx ≤ c̄x⊤Qνx,
where

(Qν)ij =

∫
Ω

Re

2
ψjψi dx.

Andy Wathen

David Silvester
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Saddle point problems

For the Stokes equations, this gives a solver like:

Krylov solver: GMRES

Block preconditioner (upper)

A: velocity operator solve

geometric multigrid

S: Schur complement solve

Auxiliary operator: mass matrix Qν

geometric multigrid
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Saddle point problems

Good news!

This approach works very well for the Stokes equations!

Bad news!

This doesn’t work at all for the Navier–Stokes equations! No control over Schur complement.

Previous attempts

Different approximations for the Schur complement. They all break down at Reynolds number
in the hundreds.

Challenge

How can we recover control of the Schur complement?
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Augmented Lagrangians

Section 2

Augmented Lagrangians
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Augmented Lagrangians

One idea is the augmented Lagrangian method.

We augment the Lagrangian with a penalty term, γ ≥ 0:

Lγ(u, p) = L(u, p) +
γ

2

∫
Ω
(∇ · u)2 dx.

The Schur complement is approximated by

S ∼ (
2

Re
+ γ)−1Q

with the spectral equivalence improving for larger γ.

Augmented momentum equation

−div
(
2Re−1ε(u)

)
+ div (u⊗ u) + grad p− γ grad divu = f

Michel Fortin

Roland Glowinski
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Augmented Lagrangians

This gives us control of the Schur complement, even for the Navier–Stokes equations:

γ # iterations

0 >1000
1 10
10 6

100 4
1000 2
10000 2

Good news

The Schur complement approximation improves as γ increases.
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Augmented Lagrangians

The catch . . .

. . . is that it makes the velocity solve much harder.

The operator

Aij = 2Re−1

∫
Ω
ϵ(ϕj) : ϵ(ϕi) dx

is very amenable to standard multigrid methods.

But even for Stokes, the augmented operator

(Aγ)ij = 2Re−1

∫
Ω
ϵ(ϕj) : ϵ(ϕi) dx+ γ

∫
Ω
(∇ · ϕj)(∇ · ϕi) dx

is very difficult to solve for γ ≫ Re.
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Solving the augmented block

Section 3

Solving the augmented block
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Solving the augmented block

Multigrid algorithm

▶ Begin with an initial guess.

▶ Apply a relaxation method to smooth the error.

▶ Approximate the smooth error on a coarse space.

▶ Prolong the error approximation to the fine grid and subtract.

Error of initial guess.
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Solving the augmented block

Building a geometric multigrid solver for Aγ hinges on the kernel of div.

Schöberl’s theory (1999)

For a parameter-robust multigrid method, you need:

▶ kernel-capturing multigrid relaxation;

▶ kernel-mapping prolongation.

Schöberl’s theory applies to symmetric problems with singular terms. But
amazingly it works even for much harder problems!

Today we will only discuss the relaxation, since that is all we need.

Joachim Schöberl

Jinchao Xu 17 / 35
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Schöberl’s theory (1999)

For a parameter-robust multigrid method, you need:

▶ kernel-capturing multigrid relaxation;

▶ kernel-mapping prolongation.
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Solving the augmented block

Consider the variational problem: find u ∈ V , dim(V ) <∞, such that

a(u, v) = (f, v) ∀v ∈ V.

The way we design relaxation methods is via subspace correction.

Subspace correction method

Choose an initial guess uk and a space decomposition

V =
∑
i

Vi.

Solve for error approximations: for each i, find Vi ∋ ei ≈ u− uk such that

a(ei, v) = a(u, v)− a(uk, v) = (f, v)− a(uk, v) ∀v ∈ Vi.

Then combine the updates with weights:

uk+1 = uk +
∑
i

wi(ei).
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Solving the augmented block

Examples:

Jacobi

Let V = span(ϕ1, . . . , ϕN ). Taking
Vi = span(ϕi)

yields the usual Jacobi iteration.

Domain decomposition

If you partition the domain into overlapping Ω = Ω1 ∪ Ω2 ∪ · · ·ΩN and take

Vi = {functions in V supported on Ωi}

you get a classical domain decomposition method.

19 / 35



Solving the augmented block

Examples:

Jacobi

Let V = span(ϕ1, . . . , ϕN ). Taking
Vi = span(ϕi)

yields the usual Jacobi iteration.

Domain decomposition

If you partition the domain into overlapping Ω = Ω1 ∪ Ω2 ∪ · · ·ΩN and take

Vi = {functions in V supported on Ωi}

you get a classical domain decomposition method.

19 / 35



Solving the augmented block

Kernel-capturing multigrid relaxation

Now consider the problem: for α, β > 0, find u ∈ V such that

αa(u, v) + βb(u, v) = (f, v) ∀v ∈ V,

where a is symmetric coercive and b is symmetric positive semidefinite.
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Now consider the problem: for α, β > 0, find u ∈ V such that

αa(u, v) + βb(u, v) = (f, v) ∀v ∈ V,

where a is symmetric coercive and b is symmetric positive semidefinite.

For Stokes with augmented Lagrangian, we have

a(u, v) =

∫
Ω
ϵ(u) : ϵ(v) dx, b(u, v) =

∫
Ω
div u div v dx.
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Solving the augmented block

Kernel-capturing multigrid relaxation

Now consider the problem: for α, β > 0, find u ∈ V such that

αa(u, v) + βb(u, v) = (f, v) ∀v ∈ V,

where a is symmetric coercive and b is symmetric positive semidefinite.

Theorem [Schöberl (1999), Lee, Wu, Xu, Zikatanov (2007)]

Define the kernel of the semidefinite term

N = {u ∈ V : b(u, v) = 0 ∀v ∈ V }.

If the decomposition captures the kernel

N =
∑
i

N ∩ Vi,

in a stable way then the convergence will be robust wrt α and β.
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Solving the augmented block

How do we decompose the kernel of the divergence operator?

The function spaces arising in the Navier–Stokes equations form a complex:

R id−→ H2 curl−−→ H1 ×H1 div−−→ L2 null−−→ 0.

In other words . . .

On a simply connected domain, ker(div) = range(curl).

Consequence

By studying the space to the left, we can understand ker(div).

Doug Arnold

Ralf Hiptmair
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Solving the augmented block

In 2D, for velocity degree p < 4, we don’t know what the potential space is.

But for p ≥ 4, we do: it is given by the Morgan–Scott element.

H2 H1 ×H1 L2

MS5 CG4 × CG4 DG3

curl div

curl div

John Morgan

Ridgway Scott
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Solving the augmented block

Why is this useful?

By exactness of the complex, if u ∈ CG4 and div u = 0, then

u = curlϕ, ϕ ∈ MS5.

Let {ζ1, . . . , ζN} be the (local) basis for MS5. Then we can write

u = curlϕ = curl
N∑
i=1

ciζi

=

N∑
i=1

cicurl ζi.

This tells us that a good idea for a space decomposition is one that captures each ζi in a
single subspace.
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Solving the augmented block

This motivates the vertex-star space decomposition.

In our space decomposition

V =
∑

Vi,

we construct each Vi by

Vi = {all functions supported on the patch of cells around a vertex}.
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Solving the augmented block

With this knowledge, our solver diagram becomes

Krylov solver: FGMRES

Block preconditioner (upper)

Aγ : geometric multigrid

h-fine

FGMRES

Vertex-star relaxation

h-coarse

LU factorisation

Sγ : Schur complement solve

Auxiliary pressure mass matrix

Exact inverse

Augmented Lagrangian multigrid solver for Navier–Stokes.
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Numerical results

Section 4

Numerical results
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Numerical results

2D lid-driven cavity

2D lid-driven cavity at Re = 5000
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Numerical results

Numerical results in 2D

# refinements # dofs Reynolds number
10 100 1000 5000 10000

Lid Driven Cavity

1 9.3× 104 2.50 2.33 2.33 5.50 8.50
2 3.7× 105 2.00 2.00 2.00 4.00 6.00
3 1.5× 106 2.00 1.67 1.67 2.50 3.50
4 5.9× 106 2.00 1.67 1.50 1.50 4.00

Backwards Facing Step

1 1.0× 106 2.00 2.50 2.50 5.00 7.50
2 4.1× 106 2.50 2.50 1.50 3.00 4.00
3 1.6× 107 2.50 2.50 1.50 1.50 2.50

Table: Average outer Krylov iterations per Newton step for two 2D benchmark problems.
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Numerical results

3D lid-driven cavity

3D regularised lid-driven cavity at Re = 5000
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Numerical results

Numerical results in 3D

# refinements # dofs Reynolds number
10 100 1000 2500 5000

1 1.0× 106 3.00 3.67 3.50 4.00 5.00
2 8.2× 106 3.50 3.67 4.00 4.00 4.00
3 6.5× 107 3.00 3.33 3.50 3.50 4.00

Table: Average outer Krylov iterations per Newton step for the 3D lid driven cavity.
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Numerical results
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(a) 3D lid-driven cavity
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(b) 3D backwards-facing step

Weak scaling efficiency . . .

. . . of 80% on ARCHER2 up to 25K cores with 1 billion degrees of freedom.
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Magnetohydrodynamics

Section 5

Magnetohydrodynamics
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Magnetohydrodynamics

2D lid-driven cavity

u B

2D lid-driven cavity at Rem = 5000, Re = 5000
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Magnetohydrodynamics

Numerical results for 3D lid-driven cavity

Rem\Re 1 1,000 10,000

1 6.0 4.3 4.3
1,000 4.5 3.0 3.0
10,000 4.5 5.5 5.7

Average outer Krylov iterations per Newton step.
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Conclusion

Conclusions

Main toolkit
Block preconditioning + augmented Lagrangians + subspace correction + Hilbert complexes.

Can use these techniques to build preconditioners for

▶ complex and coupled physical problems

▶ with much greater parameter robustness than previously achieved.
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