Reynolds-robust solvers for incompressible flow problems

Patrick E. Farrell^{1,2}

Lawrence Mitchell³

Ridgway Scott⁴

Florian Wechsung¹

 $^1 {\sf University}$ of Oxford

²Charles University

³NVIDIA

⁴University of Chicago

A fundamental problem in fluid mechanics:

Stationary incompressible Navier–Stokes

For Reynolds number $\operatorname{Re} \in \mathbb{R}_+$, find $(u,p) \in [H^1(\Omega)]^d \times L^2(\Omega)$ such that

- $-\operatorname{div}\left(2\operatorname{Re}^{-1}\varepsilon(u)\right) + \operatorname{div}\left(u \otimes u\right) + \operatorname{grad} p = f \quad \text{in } \Omega,$
 - $\operatorname{div} u = 0 \qquad \text{in } \Omega,$
 - u = g on Γ_D ,

$$2\operatorname{Re}^{-1}\varepsilon(u)\cdot n = pn$$
 on Γ_N .

A fundamental problem in fluid mechanics:

Stationary incompressible Navier–Stokes

For Reynolds number $\operatorname{Re} \in \mathbb{R}_+$, find $(u,p) \in [H^1(\Omega)]^d \times L^2(\Omega)$ such that

- $-\operatorname{div}\left(2\operatorname{Re}^{-1}\varepsilon(u)\right) + \operatorname{div}\left(u \otimes u\right) + \operatorname{grad} p = f \quad \text{in } \Omega,$
 - $\operatorname{div} u = 0 \qquad \text{in } \Omega,$

$$u=g$$
 on Γ_D ,

$$2\operatorname{Re}^{-1}\varepsilon(u)\cdot n = pn$$
 on Γ_N .

This talk

Preconditioner with Reynolds-robust GMRES performance in 2D & 3D.

Combines and develops many techniques that are useful for other difficult PDEs.

Section 1

Saddle point problems

These equations have a *saddle point structure*. Consider the following minimisation problem:

$$\begin{split} u &= \mathop{\mathrm{arg\,min}}_{v \in H^1_0(\Omega;\mathbb{R}^n)} \;\; \frac{1}{2} \int_{\Omega} 2 \mathrm{Re}^{-1} \epsilon(v) : \epsilon(v) \; \mathrm{d}x - \int_{\Omega} f \cdot v \; \mathrm{d}x, \\ & \text{subject to} \; \nabla \cdot v = 0. \end{split}$$

These equations have a *saddle point structure*. Consider the following minimisation problem:

$$\begin{split} u &= \mathop{\mathrm{arg\,min}}_{v \in H^1_0(\Omega;\mathbb{R}^n)} \;\; \frac{1}{2} \int_{\Omega} 2 \mathrm{Re}^{-1} \epsilon(v) : \epsilon(v) \; \mathrm{d}x - \int_{\Omega} f \cdot v \; \mathrm{d}x, \\ & \text{subject to} \; \nabla \cdot v = 0. \end{split}$$

Introducing a Lagrange multiplier $p\in L^2_0(\Omega)$ for the incompressibility constraint yields the Lagrangian

$$L(u,p) = \frac{1}{2} \int_{\Omega} 2\operatorname{Re}^{-1} \epsilon(u) : \epsilon(u) \, \mathrm{d}x - \int_{\Omega} f \cdot u \, \mathrm{d}x - \int_{\Omega} p \nabla \cdot u \, \mathrm{d}x.$$

These equations have a *saddle point structure*. Consider the following minimisation problem:

$$\begin{split} u &= \mathop{\mathrm{arg\,min}}_{v \in H^1_0(\Omega;\mathbb{R}^n)} \;\; \frac{1}{2} \int_{\Omega} 2 \mathrm{Re}^{-1} \epsilon(v) : \epsilon(v) \; \mathrm{d}x - \int_{\Omega} f \cdot v \; \mathrm{d}x, \\ & \text{subject to} \; \nabla \cdot v = 0. \end{split}$$

Introducing a Lagrange multiplier $p\in L^2_0(\Omega)$ for the incompressibility constraint yields the Lagrangian

$$L(u,p) = \frac{1}{2} \int_{\Omega} 2\operatorname{Re}^{-1} \epsilon(u) : \epsilon(u) \, \mathrm{d}x - \int_{\Omega} f \cdot u \, \mathrm{d}x - \int_{\Omega} p \nabla \cdot u \, \mathrm{d}x.$$

The solution of this problem (u, p) is a saddle point of the Lagrangian because it satisfies

$$L(u,q) \leq L(u,p) \leq L(v,p) \text{ for all } v \in H^1_0(\Omega;\mathbb{R}^n), \ q \in L^2_0(\Omega).$$

$$-2\operatorname{Re}^{-1}\nabla \cdot (\epsilon(u)) + \nabla p = f,$$

$$-\nabla \cdot u = 0.$$

$$-2\operatorname{Re}^{-1}\nabla \cdot (\epsilon(u)) + \nabla p = f,$$

$$-\nabla \cdot u = 0.$$

We want to build solvers for saddle point problems like

$$Au + B^{\top}p = f,$$

$$Bu = 0.$$

$$-2\operatorname{Re}^{-1}\nabla \cdot (\epsilon(u)) + \nabla p = f,$$

$$-\nabla \cdot u = 0.$$

We want to build solvers for saddle point problems like

$$Au + B^{\top}p = f,$$

$$Bu = 0.$$

If A is invertible, then we can left-multiply the first equation by A^{-1} to get $u = A^{-1}f - A^{-1}B^\top p,$

$$-2\operatorname{Re}^{-1}\nabla \cdot (\epsilon(u)) + \nabla p = f,$$

$$-\nabla \cdot u = 0.$$

We want to build solvers for saddle point problems like

$$Au + B^{\top}p = f,$$

$$Bu = 0.$$

If A is invertible, then we can left-multiply the first equation by A^{-1} to get $u = A^{-1}f - A^{-1}B^{\top}p,$

and substituting this into the second equation yields

$$-BA^{-1}B^{\top}p = -BA^{-1}f,$$

where the new operator

$$S \coloneqq -BA^{-1}B^{\top}$$

is called the Schur complement. The Schur complement is dense.

In fact, more generally, if A is invertible

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

where $S = D - CA^{-1}B$ again is the Schur complement.

In fact, more generally, if A is invertible

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

where $S = D - CA^{-1}B$ again is the Schur complement.

This is extremely useful, because we can write an explicit formula for the inverse:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} I & -A^{-1}B \\ 0 & I \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ 0 & S^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -CA^{-1} & I \end{bmatrix}.$$

Theorem (full)

The choice of preconditioner

$$\mathcal{P} = \begin{pmatrix} I & 0 \\ CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$

will yield GMRES convergence in 1 iteration.

Andy Wathen

Theorem (lower)

The choice of preconditioner

$$\mathcal{P} = \begin{pmatrix} I & 0 \\ CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix}$$

will yield GMRES convergence in 2 iterations.

Andy Wathen

Theorem (upper)

The choice of preconditioner

$$\mathcal{P} = \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$

will yield GMRES convergence in 2 iterations.

Andy Wathen

Theorem (diag)

The choice of preconditioner

$$P = \begin{pmatrix} A & 0 \\ 0 & -S \end{pmatrix}$$

will yield GMRES convergence in 3 iterations, if D = 0.

Andy Wathen

Theorem (diag)

The choice of preconditioner

$$\mathcal{P} = \begin{pmatrix} A & 0 \\ 0 & -S \end{pmatrix}$$

will yield GMRES convergence in **3** iterations, if D = 0.

How do you use this?

We have to build solvers for A and S.

Andy Wathen

$$A_{ij} = 2 \operatorname{Re}^{-1} \int_{\Omega} \epsilon(\phi_j) : \epsilon(\phi_i) \, \mathrm{d}x,$$

a nice symmetric, coercive operator (with boundary conditions).

Andy Wathen

David Silvester

$$A_{ij} = 2 \operatorname{Re}^{-1} \int_{\Omega} \epsilon(\phi_j) : \epsilon(\phi_i) \, \mathrm{d}x,$$

a nice symmetric, coercive operator (with boundary conditions).

Multigrid/domain decomposition is the natural choice to approximate A^{-1} .

Andy Wathen

David Silvester

$$A_{ij} = 2 \operatorname{Re}^{-1} \int_{\Omega} \epsilon(\phi_j) : \epsilon(\phi_i) \, \mathrm{d}x,$$

a nice symmetric, coercive operator (with boundary conditions).

Multigrid/domain decomposition is the natural choice to approximate A^{-1} .

But what about the Schur complement S?

Andy Wathen

David Silvester

$$A_{ij} = 2 \operatorname{Re}^{-1} \int_{\Omega} \epsilon(\phi_j) : \epsilon(\phi_i) \, \mathrm{d}x,$$

a nice symmetric, coercive operator (with boundary conditions).

Multigrid/domain decomposition is the natural choice to approximate A^{-1} .

But what about the Schur complement S?

Theorem (Fortin, 1970s)

For a stable discretisation, the Schur complement is *spectrally equivalent* to the scaled pressure mass matrix:

$$\underline{c}x^{\top}Q_{\nu}x \le x^{\top}Sx \le \overline{c}x^{\top}Q_{\nu}x,$$

where

$$(Q_{\nu})_{ij} = \int_{\Omega} \frac{\operatorname{Re}}{2} \psi_j \psi_i \, \mathrm{d}x.$$

Andy Wathen

David Silvester

For the Stokes equations, this gives a solver like:

This approach works very well for the Stokes equations!

This approach works very well for the Stokes equations!

Bad news!

This doesn't work at all for the Navier-Stokes equations! No control over Schur complement.

This approach works very well for the Stokes equations!

Bad news!

This doesn't work at all for the Navier-Stokes equations! No control over Schur complement.

Previous attempts

Different approximations for the Schur complement. They all break down at Reynolds number in the hundreds.

This approach works very well for the Stokes equations!

Bad news!

This doesn't work at all for the Navier-Stokes equations! No control over Schur complement.

Previous attempts

Different approximations for the Schur complement. They all break down at Reynolds number in the hundreds.

Challenge

How can we recover control of the Schur complement?

Section 2

Augmented Lagrangians

Michel Fortin

Roland Glowinski

We augment the Lagrangian with a penalty term, $\gamma \geq 0:$

$$L_{\gamma}(u,p) = L(u,p) + \frac{\gamma}{2} \int_{\Omega} (\nabla \cdot u)^2 \, \mathrm{d}x$$

Michel Fortin

Roland Glowinski

We augment the Lagrangian with a penalty term, $\gamma \geq 0$:

$$L_{\gamma}(u,p) = L(u,p) + \frac{\gamma}{2} \int_{\Omega} (\nabla \cdot u)^2 \, \mathrm{d}x.$$

The Schur complement is approximated by

$$S \sim (\frac{2}{\mathrm{Re}} + \gamma)^{-1}Q$$

with the spectral equivalence improving for larger $\gamma.$

Michel Fortin

Roland Glowinski

We augment the Lagrangian with a penalty term, $\gamma \geq 0$:

$$L_{\gamma}(u,p) = L(u,p) + \frac{\gamma}{2} \int_{\Omega} (\nabla \cdot u)^2 \, \mathrm{d}x.$$

The Schur complement is approximated by

$$S \sim (\frac{2}{\mathrm{Re}} + \gamma)^{-1}Q$$

with the spectral equivalence improving for larger γ .

Augmented momentum equation

$$-\operatorname{div}\left(2\operatorname{Re}^{-1}\varepsilon(u)\right) + \operatorname{div}\left(u \otimes u\right) + \operatorname{grad} p - \underline{\gamma}\operatorname{grad}\operatorname{div} u = f$$

Michel Fortin

Roland Glowinski

This gives us control of the Schur complement, even for the Navier-Stokes equations:

γ	# iterations
0	>1000
1	10
10	6
100	4
1000	2
10000	2

This gives us control of the Schur complement, even for the Navier-Stokes equations:

γ	# iterations
0	>1000
1	10
10	6
100	4
1000	2
10000	2

Good news

The Schur complement approximation improves as γ increases.

The catch ...

... is that it makes the velocity solve **much** harder.

The catch ...

... is that it makes the velocity solve **much** harder.

The operator

$$A_{ij} = 2 \operatorname{Re}^{-1} \int_{\Omega} \epsilon(\phi_j) : \epsilon(\phi_i) \, \mathrm{d}x$$

is very amenable to standard multigrid methods.
The catch ...

... is that it makes the velocity solve **much** harder.

The operator

$$A_{ij} = 2 \operatorname{Re}^{-1} \int_{\Omega} \epsilon(\phi_j) : \epsilon(\phi_i) \, \mathrm{d}x$$

is very amenable to standard multigrid methods.

But even for Stokes, the augmented operator

$$(A_{\gamma})_{ij} = 2\operatorname{Re}^{-1} \int_{\Omega} \epsilon(\phi_j) : \epsilon(\phi_i) \, \mathrm{d}x + \gamma \int_{\Omega} (\nabla \cdot \phi_j) (\nabla \cdot \phi_i) \, \mathrm{d}x$$

is very difficult to solve for $\gamma \gg \text{Re.}$

Section 3

Solving the augmented block

► Begin with an initial guess.

Error of initial guess.

- ► Begin with an initial guess.
- ► Apply a *relaxation method* to smooth the error.

Error after relaxation.

- ▶ Begin with an initial guess.
- ► Apply a *relaxation method* to smooth the error.
- ► Approximate the smooth error on a *coarse space*.

Error approximated on coarse grid.

- ▶ Begin with an initial guess.
- ► Apply a *relaxation method* to smooth the error.
- ► Approximate the smooth error on a *coarse space*.
- ▶ *Prolong* the error approximation to the fine grid and subtract.

Error approximated on coarse grid.

Schöberl's theory (1999)

For a parameter-robust multigrid method, you need:

- ► kernel-capturing multigrid relaxation;
- ► kernel-mapping prolongation.

Schöberl's theory (1999)

For a parameter-robust multigrid method, you need:

- ► kernel-capturing multigrid relaxation;
- ► kernel-mapping prolongation.

Schöberl's theory applies to symmetric problems with singular terms. But amazingly **it works even for much harder problems**!

Schöberl's theory (1999)

For a parameter-robust multigrid method, you need:

- ► kernel-capturing multigrid relaxation;
- ► kernel-mapping prolongation.

Schöberl's theory applies to symmetric problems with singular terms. But amazingly **it works even for much harder problems**!

Today we will only discuss the relaxation, since that is all we need.

 $a(u,v) = (f,v) \quad \forall v \in V.$

 $a(u,v) = (f,v) \quad \forall v \in V.$

The way we design relaxation methods is via subspace correction.

Subspace correction method

Choose an initial guess u_k and a space decomposition

$$V = \sum_{i} V_i.$$

 $a(u,v) = (f,v) \quad \forall v \in V.$

The way we design relaxation methods is via subspace correction.

Subspace correction method

Choose an initial guess u_k and a space decomposition

$$V = \sum_{i} V_{i}$$

Solve for error approximations: for each i, find $V_i \ni e_i \approx u - u_k$ such that

$$a(e_i, v) = a(u, v) - a(u_k, v) = (f, v) - a(u_k, v) \quad \forall v \in V_i.$$

 $a(u,v) = (f,v) \quad \forall v \in V.$

The way we design relaxation methods is via subspace correction.

Subspace correction method

Choose an initial guess u_k and a space decomposition

$$V = \sum_{i} V_{i}$$

Solve for error approximations: for each i, find $V_i \ni e_i \approx u - u_k$ such that

$$a(e_i, v) = a(u, v) - a(u_k, v) = (f, v) - a(u_k, v) \quad \forall v \in V_i.$$

Then combine the updates with weights:

$$u_{k+1} = u_k + \sum_i w_i(e_i).$$

Examples:

Jacobi

Let $V = \operatorname{span}(\phi_1, \ldots, \phi_N)$. Taking

$$V_i = \operatorname{span}(\phi_i)$$

yields the usual Jacobi iteration.

Examples:

Jacobi

Let
$$V = \operatorname{span}(\phi_1, \ldots, \phi_N)$$
. Taking

$$V_i = \operatorname{span}(\phi_i)$$

yields the usual Jacobi iteration.

Domain decomposition

If you partition the domain into overlapping $\Omega = \Omega_1 \cup \Omega_2 \cup \cdots \Omega_N$ and take

 $V_i = \{$ functions in V supported on $\Omega_i \}$

you get a classical domain decomposition method.

Kernel-capturing multigrid relaxation

Now consider the problem: for $\alpha,\beta>0,$ find $u\in V$ such that

$$\alpha a(u,v)+\beta b(u,v)=(f,v) \quad \forall v \in V,$$

where a is symmetric coercive and b is symmetric positive semidefinite.

Kernel-capturing multigrid relaxation

Now consider the problem: for $\alpha, \beta > 0$, find $u \in V$ such that

$$\alpha a(u,v) + \beta b(u,v) = (f,v) \quad \forall v \in V,$$

where a is symmetric coercive and b is symmetric positive semidefinite.

For Stokes with augmented Lagrangian, we have

$$a(u,v) = \int_{\Omega} \epsilon(u) : \epsilon(v) \, \mathrm{d}x, \quad b(u,v) = \int_{\Omega} \mathrm{div} \, u \, \mathrm{div} \, v \, \mathrm{d}x.$$

Kernel-capturing multigrid relaxation

Now consider the problem: for $\alpha, \beta > 0$, find $u \in V$ such that

```
\alpha a(u,v) + \beta b(u,v) = (f,v) \quad \forall v \in V,
```

where a is symmetric coercive and b is symmetric positive semidefinite.

Theorem [Schöberl (1999), Lee, Wu, Xu, Zikatanov (2007)]

Define the kernel of the semidefinite term

$$\mathcal{N} = \{ u \in V : b(u, v) = 0 \ \forall v \in V \}.$$

If the decomposition captures the kernel

$$\mathcal{N} = \sum_{i} \mathcal{N} \cap V_i,$$

in a stable way then the convergence will be robust wrt α and β .

How do we decompose the kernel of the divergence operator?

The function spaces arising in the Navier–Stokes equations form a *complex*:

$$\mathbb{R} \xrightarrow{\mathrm{id}} H^2 \xrightarrow{\mathrm{curl}} H^1 \times H^1 \xrightarrow{\mathrm{div}} L^2 \xrightarrow{\mathrm{null}} 0.$$

Doug Arnold

Ralf Hiptmair

How do we decompose the kernel of the divergence operator?

The function spaces arising in the Navier–Stokes equations form a *complex*:

$$\mathbb{R} \xrightarrow{\mathrm{id}} H^2 \xrightarrow{\mathrm{curl}} H^1 \times H^1 \xrightarrow{\mathrm{div}} L^2 \xrightarrow{\mathrm{null}} 0.$$

In other words . . .

On a simply connected domain, ker(div) = range(curl).

Doug Arnold

Ralf Hiptmair

How do we decompose the kernel of the divergence operator?

The function spaces arising in the Navier–Stokes equations form a *complex*:

$$\mathbb{R} \xrightarrow{\mathrm{id}} H^2 \xrightarrow{\mathrm{curl}} H^1 \times H^1 \xrightarrow{\mathrm{div}} L^2 \xrightarrow{\mathrm{null}} 0.$$

In other words . . .

On a simply connected domain, ker(div) = range(curl).

Consequence

By studying the space to the left, we can understand $\ker({\rm div}).$

Doug Arnold

Ralf Hiptmair

In 2D, for velocity degree $p<4\ensuremath{\text{,we}}$ don't know what the potential space is.

John Morgan

Ridgway Scott

In 2D, for velocity degree $p<4\ensuremath{\text{,we don't know what the potential space is.}}$

But for $p \ge 4$, we do: it is given by the *Morgan–Scott element*.

John Morgan

Ridgway Scott

Solving the augmented block

In 2D, for velocity degree p < 4, we don't know what the potential space is.

But for $p \ge 4$, we do: it is given by the *Morgan–Scott element*.

Ridgway Scott

By exactness of the complex, if $u \in \mathbb{CG}_4$ and $\operatorname{div} u = 0$, then

 $u = \operatorname{curl} \phi, \quad \phi \in \mathbb{MS}_5.$

By exactness of the complex, if $u \in \mathbb{CG}_4$ and $\operatorname{div} u = 0$, then

 $u = \operatorname{curl} \phi, \quad \phi \in \mathbb{MS}_5.$

Let $\{\zeta_1, \ldots, \zeta_N\}$ be the (local) basis for \mathbb{MS}_5 . Then we can write

$$u = \operatorname{curl} \phi = \operatorname{curl} \sum_{i=1}^{N} c_i \zeta_i$$
$$= \sum_{i=1}^{N} c_i \operatorname{curl} \zeta_i.$$

By exactness of the complex, if $u \in \mathbb{CG}_4$ and $\operatorname{div} u = 0$, then

 $u = \operatorname{curl} \phi, \quad \phi \in \mathbb{MS}_5.$

Let $\{\zeta_1,\ldots,\zeta_N\}$ be the (local) basis for \mathbb{MS}_5 . Then we can write

$$u = \operatorname{curl} \phi = \operatorname{curl} \sum_{i=1}^{N} c_i \zeta_i$$
$$= \sum_{i=1}^{N} c_i \operatorname{curl} \zeta_i.$$

This tells us that a good idea for a space decomposition is one that captures each ζ_i in a single subspace.

This motivates the *vertex-star* space decomposition.

In our space decomposition

$$V = \sum V_i,$$

we construct each V_i by

 $V_i = \{ all functions supported on the patch of cells around a vertex \}.$

With this knowledge, our solver diagram becomes

Augmented Lagrangian multigrid solver for Navier-Stokes.

Section 4

Numerical results

2D lid-driven cavity

2D lid-driven cavity at $\mathrm{Re}=5000$

Numerical results in 2D

# refinements	# dofs	Reynolds number									
		10	100	1000	5000	10000					
Lid Driven Cavity											
1	$9.3 imes 10^4$	2.50	2.33	2.33	5.50	8.50					
2	$3.7 imes 10^5$	2.00	2.00	2.00	4.00	6.00					
3	$1.5 imes 10^6$	2.00	1.67	1.67	2.50	3.50					
4	$5.9 imes 10^6$	2.00	1.67	1.50	1.50	4.00					
Backwards Facing Step											
1	$1.0 imes 10^6$	2.00	2.50	2.50	5.00	7.50					
2	$4.1 imes 10^6$	2.50	2.50	1.50	3.00	4.00					
3	$1.6 imes 10^7$	2.50	2.50	1.50	1.50	2.50					

Table: Average outer Krylov iterations per Newton step for two 2D benchmark problems.

3D lid-driven cavity

3D regularised lid-driven cavity at $\mathrm{Re}=5000$

Numerical results in 3D

# refinements	# dofs	Reynolds number					
		10	100	1000	2500	5000	
1	$1.0 imes 10^6$	3.00	3.67	3.50	4.00	5.00	
2	8.2×10^6	3.50	3.67	4.00	4.00	4.00	
3	$6.5 imes 10^7$	3.00	3.33	3.50	3.50	4.00	

Table: Average outer Krylov iterations per Newton step for the 3D lid driven cavity.

Weak scaling efficiency ...

 \ldots of 80% on ARCHER2 up to 25K cores with 1 billion degrees of freedom.

Section 5

Magnetohydrodynamics

2D lid-driven cavity

2D lid-driven cavity at $\mathrm{Rem}=5000,\,\mathrm{Re}=5000$

Numerical results for 3D lid-driven cavity

$\operatorname{Rem}\backslash\operatorname{Re}$	1	1,000	10,000
1	6.0	4.3	4.3
1,000	4.5	3.0	3.0
10,000	4.5	5.5	5.7

Average outer Krylov iterations per Newton step.

Conclusions

Main toolkit

Block preconditioning + augmented Lagrangians + subspace correction + Hilbert complexes.

Can use these techniques to build preconditioners for

Conclusions

Main toolkit

Block preconditioning + augmented Lagrangians + subspace correction + Hilbert complexes.

Can use these techniques to build preconditioners for

complex and coupled physical problems

Conclusions

Main toolkit

Block preconditioning + augmented Lagrangians + subspace correction + Hilbert complexes.

Can use these techniques to build preconditioners for

- complex and coupled physical problems
- ▶ with much greater parameter robustness than previously achieved.