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Symplecticity

The differential equation preserves the symplectic 2-form.
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Symmetry

The system is invariant under e.g. translation, rotation, time reversal + momentum negation.
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Here are four properties an initial value problem might have:
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Conservation

The equation preserves invariants, like energy or angular momentum.
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Introduction

Here are four properties an initial value problem might have:
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The equation dissipates certain quantities like entropy at a known, definite rate.
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Here are four properties an initial value problem might have:

Emst Hairer
Christian Lubich

symplecticity ‘ symmetry

conservation | dissipation Geometric LS

Integration
Structure-Preserving
Algorithms for Ordinary
Differential Equations
Second Edition

&) Springer

This talk

We aim to preserve conservation laws and dissipation inequalities on discretisation . ..

...in a symmetric way, without projections onto manifolds or Lagrange multipliers.
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Consider the two-body Kepler problem with Hamiltonian

1

1
H = pl* - —
(p,q) 2HpH Tl

inducing the differential equations

x = BVH(x), B:[O _I], x = [p,q].

Johannes Kepler
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Consider the two-body Kepler problem with Hamiltonian

1

1
H(p,a) = 5|pl]* - —

inducing the differential equations

x = BVH(x), B:[O _I], x = [p,ql.

I 0 Johannes Kepler
2 T
1 | Keplerian orbits:
AR v/ symplecticity

0r (' ° ‘,' . v/ angular momentum

1l e | v/ energy
v/ orientation (LRL)
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Consider the two-body Kepler problem with Hamiltonian
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Consider the two-body Kepler problem with Hamiltonian
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inducing the differential equations

Johannes Kepler
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Consider the two-body Kepler problem with Hamiltonian

inducing the differential equations

1
H = Z|p||2 = —
(p,q) JWH Tl

x = BVH(x),

1

2

1,

Johannes Kepler

Our discretisation:
X symplecticity
v/ angular momentum
v/ energy
v/ orientation (LRL)
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Can we do better? Can we have it all?

Jerrold Marsden
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Examples

Can we do better? Can we have it all?

Theorem (Ge-Marsden, 1988)

Let H be a Hamiltonian which has no other conserved quantities in a given
class, other than functions of H.

A symplectic integrator that conserves H exactly is the time advance map Jerrold Marsden
for the exact Hamiltonian system, up to a reparameterisation of time.
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Examples

Can we do better? Can we have it all?

Theorem (Ge-Marsden, 1988)

Let H be a Hamiltonian which has no other conserved quantities in a given
class, other than functions of H.

A symplectic integrator that conserves H exactly is the time advance map Jerrold Marsden
for the exact Hamiltonian system, up to a reparameterisation of time.

Bad news

Conservation or symplecticity, choose one.

Comment

Both properties are useful in different situations!

Ge Zhong 5/61



Examples

The Kovalevskaya top is described by
1
H(ln) = (13 + 13 + 213) + m,

inducing the differential equations

0 skew(n) x = [n,1]
SkeW(n) SkeW(].) ’ T Sofya Kovalevskaya

x = BVH(x), B=
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Examples

This approach extends to more complicated problems.
For the compressible Navier—Stokes equations, we can devise timestepping schemes that:

» conserve mass;
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Examples

This approach extends to more complicated problems.

For the compressible Navier—Stokes equations, we can devise timestepping schemes that:

P conserve mass; » conserve energy;
P> conserve momentum; » dissipate entropy.
10—1 s -
) PR
£ 0 :
g &l ——  our scheme
& - - - implicit midpoint
EpTn| ]
B Atk Ak 0 A Al AL
10 0 1 2 3 4
time ¢

Error in the entropy for implicit midpoint and our scheme.
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How it works

Section 3
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Our approach is to take a variational formulation in time.
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This does not require solving for all timesteps at once; we're still timestepping.
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How it works

Our approach is to take a variational formulation in time.

Potential confusion

This does not require solving for all timesteps at once; we're still timestepping.

To understand this variational viewpoint, let's first study general methods for solving

= f(u).
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We know u = u, at t =t,. We want to compute un,+1 at t = tp41.
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How it works

We know u = u, at t =t,. We want to compute un,+1 at t = tp41.

General idea of many (single-step) schemes

Find u € P*(t,, tn+1), the space of degree-s polynomials on [ty t,+1], satisfying

u(tn) = un,

and s other test conditions.

Set Uup+1 = u(tpt1).
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General idea of many (single-step) schemes

Find u € P*(t,, tn+1), the space of degree-s polynomials on [ty t,+1], satisfying
u(tn) = Un,

and s other test conditions.

Set wp 1 = u(tny1)-

Forward Euler

For s = 1, demand that

at the test point t = ¢,,.
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General idea of many (single-step) schemes

Find u € P*(t,, tn+1), the space of degree-s polynomials on [ty t,+1], satisfying
u(tn) = Un,

and s other test conditions.

Set wp 1 = u(tny1)-

Backward Euler

For s = 1, demand that

at the test point ¢t = t,,41.
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We know u = u, at t =t,. We want to compute un,+1 at t = tp41.

General idea of many (single-step) schemes

Find u € P*(t,, tn+1), the space of degree-s polynomials on [ty t,+1], satisfying
u(tn) = Un,

and s other test conditions.

Set wp 1 = u(tny1)-

Implicit midpoint

For s = 1, demand that
u = f(u)

at the s = 1 test point ¢ = %tn + %tnﬂ.
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Of course, not all schemes use s = 1:

Collocation Runge—Kutta, e.g. Gauss—Legendre/RadaullA/LobattollIC

Demand that
i = f(u)
at s test points t = t,, + c1 At, t, + AL, ... T, + cs AL
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Of course, not all schemes use s = 1:

Collocation Runge—Kutta, e.g. Gauss—Legendre/RadaullA/LobattollIC

Demand that
u = f(u)
at s test points t = t,, + c1 At, t, + AL, ... T, + cs AL

The natural finite element in time scheme instead chooses another test set:

Continuous Petrov—Galerkin (cPG) test conditions

tn+1 tn+1
/ v dt = / f(uw)v dt,
tn in

forallv € Pty th1) (= Ps).

Demand that
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Why is this variational viewpoint useful?
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0= J(unt1) — J(upn)
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Dissipation inequalities naturally arise from variational statements:
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Why is this variational viewpoint useful?

Dissipation inequalities

Dissipation inequalities naturally arise from variational statements:

0< J(UnJrl) - J(un)

tnt1 4
= < at
[, W

n

tn+1
:/ /() dt
tn

bt
:K () f(u) dt.

In other words, each dissipation inequality has an

associated test function.
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How it works

Good news!

If J'(u) is in our test set, the cPG scheme also conserves/dissipates .J.
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Good news!

If J'(u) is in our test set, the cPG scheme also conserves/dissipates .J.

Bad news!

J'(u) is rarely in our test set P5~ (¢, ty11).

Compute an approximation

— —~

J(u) ~ J'(u), J(u)€ Pty tny1).

and modify the differential equation to use it.

14/61
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C. Introduce corresponding auxiliary variables.
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Basic outline:

Choose a base timestepping scheme.
Identify the associated test functions for the structures to preserve.

Introduce corresponding auxiliary variables.

oCnw>»

Modify the right-hand side of the weak formulation to use them.
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Navier—Stokes equations

Section 4

Navier—Stokes equations
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Navier—Stokes equations Incompressible equations

To fix ideas, consider the incompressible Navier—Stokes equations in Lamb
form:

=ux (Vxu)—Vp+Re 1V,

0=V -u,

on a bounded Lipschitz domain  C R3 with « = 0 on 99.

Horace Lamb
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Horace Lamb

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u € X such that

tn+1 tn+1
/ (i, v) dt = / [(w x (V x w),v) — Re™} (Vai, V)] dlt
U tn
for all v € X.
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Navier—Stokes equations Incompressible equations

To fix ideas, consider the incompressible Navier—Stokes equations in Lamb
form:

=ux (Vxu)—Vp+Re 1V,

0=V -u,

on a bounded Lipschitz domain  C R3 with « = 0 on 99.

Horace Lamb

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u € X such that

tn+1 tn+1
/ (i, v) dt = / [(w x (V x w),v) — Re™} (Vai, V)] dlt
U tn

for all v € X.

Here X is continuous in time of degree s, while X is discontinuous in time of degree s — 1.
17/61



Navier—Stokes equations Incompressible equations

Our next task is to identify the structures we wish to preserve.
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Navier—Stokes equations Incompressible equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy
1

E(u) = i(u, w)
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Navier—Stokes equations Incompressible equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy

Bu) = 5 (1)

and the change in helicity, a topological measure of the knottedness of the flow,

H(u) = %(u,v X ).

Vladimir Arnold

From Arnold & Khesin (1998).
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Navier—Stokes equations Incompressible equations

The energy is given by
1

E(u) = §(U7U)7
so its associated test function is the L? Riesz representative of its Fréchet derivative
Ey(u; 2) = (u, 2),

i.e. the special test function is the velocity u itself:
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Navier—Stokes equations Incompressible equations

The energy is given by

B(a) = 5 (u,w)

so its associated test function is the L? Riesz representative of its Fréchet derivative
Ey(u; 2) = (u, 2),

i.e. the special test function is the velocity u itself:

Etns1) — E(un) /t ") at

— /t " [(ux (V xu),u) — Re " (Vu, Vu)] dt,
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Navier—Stokes equations Incompressible equations

The energy is given by

Bu) = 5(u,uw),

so its associated test function is the L? Riesz representative of its Fréchet derivative
Ey(u; 2) = (u, 2),

i.e. the special test function is the velocity u itself:

tn+1
Etnsr) — B(up) = / (i, ) dt
in
tn+1
= / [(ux (V xu),u) — Re " (Vu, Vu)] dt,
ln
tn+1
_ —Rel/ IVul]? dt < 0.
tn
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Navier—Stokes equations Incompressible equations

Similarly, we derive a law for the helicity

H(u) = é(u,V X u)

by testing our weak formulation with the L? Riesz representative of its Fréchet derivative
Hy(u;2) = (V X u, 2),

i.e. the special test function is the vorticity V X u:

20/61



Navier—Stokes equations Incompressible equations

Similarly, we derive a law for the helicity

H(u) = é(u,V X u)

by testing our weak formulation with the L? Riesz representative of its Fréchet derivative
Hy(u;2) = (V X u, 2),

i.e. the special test function is the vorticity V X u:

tn+1
H(upy1) — H(up) = / (4, V x u) dt
ln

20/61



Navier—Stokes equations Incompressible equations

Similarly, we derive a law for the helicity
1
H(u) = §(u,V X u)

by testing our weak formulation with the L? Riesz representative of its Fréchet derivative
Hy(u;2) = (V X u, 2),

i.e. the special test function is the vorticity V X u:

tn+1
H(upy1) — H(up) = / (4, V x u) dt
ln

tn+1
_ / [(ux (V x u),V x u) — Re"L(Va, VV x )] dt,
tn

20/61



Navier—Stokes equations Incompressible equations

Similarly, we derive a law for the helicity

H(u) = é(u,V X u)

by testing our weak formulation with the L? Riesz representative of its Fréchet derivative
Hy,(u;z) = (V X u,z),
i.e. the special test function is the vorticity V X u:
tn+1
H(upy1) — H(up) = / (4, V x u) dt
tn
tn+1
_ / [(ux (V x u),V x u) — Re"L(Va, VV x )] dt,
tn

tn+1
= —Re—l/ (Vu, VV x u) dt.
tn
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Navier—Stokes equations Incompressible equations

B. Identify test functions

To replicate these laws discretely, we need approximations of

uwand V X u

in our discrete test space X.
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Navier—Stokes equations Incompressible equations

Our next step is to introduce variables approximating these associated test functions.
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Navier—Stokes equations Incompressible equations

Our next step is to introduce variables approximating these associated test functions.

C. Introduce auxiliary variables

Find (u, w1, wz) € X x X x X such that
tn+1 tn+1
/ (i, v) dt = / [ x (V x u),v) — Re™} (Vat, V)] dt,
tn tn

tn41 tnt1
/ (wy,v1) dt =/ (u,vq) dt,
Bn tn
tnt1 tnt1
/ (we,vy) dt = / (V X u,vy) dt,
G tn

for all (v,v1,v2) € X x X x X.
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Navier—Stokes equations Incompressible equations

In order to derive a discrete version of the laws for energy and helicity, we must modify the
right-hand side of our problem to use w; and ws.

23/61



Navier—Stokes equations Incompressible equations

In order to derive a discrete version of the laws for energy and helicity, we must modify the
right-hand side of our problem to use w; and ws.

D. Final time discretisation

Find (u, w1, wz) € X x X x X such that

tn+1 tn+1
/ (a,v) dt = / [(w1 X wg,v) — Re™(Vwy, V)] dt,
tn

tn+1 tnt1
/ (wy,v1) dt :/ (u,vq) dt,
tn

tn+1 tn+l
/ (we,ve) dt = / (V X u,v9) dt,
tn tn

for all (v,v1,v2) € X x X x X.

23/61



Navier—Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!
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This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation
tnt1 tni41
/ (w,v) dt = / [(w1 x wg,v) — Re_l(le,Vv)] dt,
G tn

tn+1 tn+1
/ (wy,v1) dt = / (u,v1) dt.
tn tn
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This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation
tnt1 tni41
/ (w,v) dt = / [(w1 x wg,v) — Re_l(le,Vv)] dt,
G tn

tn+1 tn+1
/ (wy,v1) dt = / (u,v1) dt.
tn tn

E(up+1) — E(uy,) = /t n+1(1l,u) dt
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D. Final time discretisation
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/ (w,v) dt = / [(w1 x wg,v) — Re_l(le,Vv)] dt,
G tn

"tn41 tn1
/ (w1,v1) dt = / (u,v1) dt.
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n

tnt1 tnt1
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tn tn
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Navier—Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation
tn+1 tnt1
/ (a,v) dt = / [(w1 x wg,v) — Rc_l(le,Vv)] dt,
f’l t,l,

tn+1 tn+1
/ (wy,v1) dt = / (u,v1) dt.
tn tn

tn+1 tnt1 .
E(upt1) — / / (i, wy) dt
tn tn

tn+1
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tn
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D. Final time discretisation
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Navier—Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation
tnt1 tnt1
/ (w,v) dt = / [(w1 x wg,v) — Re_l(le,Vv)] dt,
G tn

tn+1 tn+1
/ (wy,v1) dt = / (u,v1) dt.
tn tn

tn+1 tnt1 .
E(upt1) — / / (i, wy) dt
tn tn

tn+1
= / 'U}]_ X w3, ’U)]_) - Re_l(vwla V'U)]_)] dt7
tn

tn+1
= — Re_l/ |[Vw: ||? dt < 0.
tn

We therefore recover a conservation law in the ideal limit. 2 /61
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D. Final time discretisation
tnt1 tni41
/ (w,v) dt = / [(w1 x wg,v) — Re_l(le,Vv)] dt,
G tn

"tn41 tn1
/ (we,v9) dt = / (V X u,v9) dt.
t7L

n

tnt1 tn+1
H(tns1) — Hup) = / (0, V x ) dt = / (11, w) dt
tn tn
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This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation

tn+1 tnt1
/ (a,v) dt = / [(w1 x wg,v) — Re }(Vuwy, V)| dt,
t t

“n

“n

tn+1 tn+1
/ (wa,va) dt = / (V X u,vy) dt.
o tn

tnt1 tn+1
H(tns1) — Hup) = / (0, V x ) dt = / (11, w) dt
tn tn

tn+1
= / [(wl X W, wa) — Re_l(le,ng)] dt,
tn
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D. Final time discretisation

tnt1 tnt1
/ (w,v) dt = / [(w1 x wg,v) — Re_l(le,Vv)] dt,
tn tn

tn+1 tn+1
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Navier—Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation

tnt1 tnt1
/ (w,v) dt = / [(w1 x wg,v) — Re_l(le,Vv)] dt,
tn tn

tn+1 tn+1
/ (wa,va) dt = / (V X u,vy) dt.
tn tn

tnt1 tnt1
H(tns1) — Hup) = / (0, V x ) dt = / (11, w) dt
tn tn
tn+1
= / [(wl X W, wa) — Re_l(le,ng)] dt,
tn
tn+1
= —Re! / (Vwy, Vws) dt.
tn

We again recover a conservation law in the ideal limit. 25 /61



Navier—Stokes equations Incompressible equations

Does helicity preservation matter?
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Does helicity preservation matter?
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Navier—Stokes equations Incompressible equations

Does helicity preservation matter?

preserving F preserving E, H

Streamlines of velocity at final time, coloured by ||u]|.
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Navier—Stokes equations Incompressible equations

Good news

The auxiliary velocity can be computed explicitly.
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Navier—Stokes equations Incompressible equations

Good news

The auxiliary velocity can be computed explicitly.

This analysis gives an arbitrary-order generalisation of

@

Leo Rebholz

[4 L. G. Rebholz. “An energy- and helicity-conserving finite element
scheme for the Navier—Stokes equations”. In: SIAM Journal on
Numerical Analysis 45.4 (2007), pp. 1622-1638. DOI:
10.1137/060651227.
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Navier—Stokes equations Connections to existing work

In fact, our scheme generalises . ..

French & Schaeffer (1990)

cPG sometimes conservative; proposes auxiliary variable for energy conservation in KdV.

Continuous Finite Element Methods Which
Preserve Energy Properties for Nonlinear Problems

Donald A. French* and Jack W. Schaeffer’

Department of Mathematics
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

Transmitted by Melvin R. Scott
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Navier—Stokes equations Connections to existing work

In fact, our scheme generalises . ..

Simo & Armero (1994)

Energy-dissipating timestepping schemes for Navier—Stokes.

Unconditional stability and long-term behavior of
transient algorithms for the incompressible
Navier-Stokes and Euler equations™

J.C. Simo and F. Armero

Division of Applied Mechanics, D Engineering, Stanford University, Stanford,

0f chanic
CA 94305, USA

Received 8 October 1992
Revised manuscript received 14 April 1993
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Connections to existing work

In fact, our scheme generalises . ..

McLachlan, Quispel & Robidoux (1999)

Lowest-order energy-conserving discrete gradient schemes.

Geometric integration using discrete gradients

By RoBERT I. McLAcHLAN!, G. R. W. QUISPEL?
AND NicoLas RoBipoux!
! Mathematics Department, Massey University, Palmerston North, New Zealand
2 Faculty of Science, LaTrobe University, Bundoora, Melbourne 3083, Australia

This paper discusses the discrete analogue of the gradient of a function and shows
how discrete gradients can be used in the numerical integration of ordinary differen-
tial equations (ODEs). Given an ODE and one or more first integrals (i.e. constants
of the motion) and/or Lyapunov functions, it is shown that the ODE can be rewrit-
ten as a ‘linear-gradient, system’. Discrete gradients are used to construct discrete
approximations to the ODE which preserve the first integrals and Lyapunov func-
tions exactly. The method applies to all ITamiltonian, Poisson and gradient systems,
and also to many dissipative systems (those with a known first integral or Lyapunov
function).
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Navier—Stokes equations Connections to existing work

In fact, our scheme generalises . ..

Betsch & Steinmann (2000)

cPG is energy-conservative for Hamiltonian ODEs in canonical coordinates.

Inherently Energy Conserving Time Finite
Elements for Classical Mechanics

P. Betsch* and P. Steinmannt

Department of Mechanical Engineering, University of Kaiserslautern, Postfach 3049,
67653 Kaiserslautern, Germany
E-mail: *pbetsch@rhrk.uni-kl.de and {ps@rhrk.uni-kl.de

Received October 27, 1998; revised November 24, 1999
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Navier—Stokes equations Connections to existing work

In fact, our scheme generalises . ..

Cohen & Hairer (2011)

Higher-order energy-conserving discrete gradient schemes.

Linear energy-preserving integrators for Poisson
systems

David Cohen - Ernst Hairer

Received: 25 April 2010 / Accepted: 6 January 2011 / Published online: 20 January 2011
© Springer Science + Business Media B.V. 2011
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Navier—Stokes equations Connections to existing work

In fact, our scheme generalises . ..

Egger, Habrich & Shashkov (2021)

cPG is energy-conservative for a particular formulation of Hamiltonian PDEs.

DE GRUYTER Comput. Methods Appl. Math. 2021; 21(2): 335-349

Research Article

Herbert Egger*, Oliver Habrich and Vsevolod Shashkov

On the Energy Stable Approximation of
Hamiltonian and Gradient Systems

https://doi.org/10.1515/cmam-2020-0025
Received February 29, 2020; revised August 27, 2020; accepted November 16, 2020
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Navier—Stokes equations Connections to existing work

In fact, our scheme generalises . ..

...and many more besides.
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Navier—Stokes equations Compressible equations

For the compressible Navier—Stokes equations,
p = —dIV[pU],

. 2 1 :
pi = —pu - Vu— V|[pb] + Re, div]pe[u]] + ReCV[pdlvu],

: 1 2 1
Cpl) = —Cpu - V9 — pdivu + 5-div[pVe] + R—%pus[u] 12 + R—egp(divu)%
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Navier—Stokes equations Compressible equations

For the compressible Navier—Stokes equations,
p = —dIV[pU],

. 2 1 .
pt = —pu - Vu — V[pb] + R—eudlv[ps[u]] + R—%V[pdlvu],

) 1 2 1
Cpl) = —Cpu - V9 — pdivu + 5-div[pVe] + R—%pus[u] 12 + R—egp(divu)%
we agreed to preserve four structures:

P mass conservation; > energy conservation;

> momentum conservation; » entropy dissipation.
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Navier—Stokes equations Compressible equations

The associated test function for mass conservation is

p=1, a=0, 6=0.
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Navier—Stokes equations Compressible equations

The associated test function for mass conservation is

p=1, a=0, 6=0.

0.6 i

mass

0.2 N
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Navier—Stokes equations Compressible equations

The associated test function for energy conservation is

p=0, a=u, 6=1.
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Navier—Stokes equations Compressible equations

The associated test function for energy conservation is

p=0, a=u, 06=1.

—— total energy
—— internal energy
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Navier—Stokes equations Compressible equations

The associated test function for entropy dissipation is

p=g, a=0, =071,

where —g is the Gibbs free energy per unit mass per unit temperature.
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Compressible equations

Navier—Stokes equations

The associated test function for entropy dissipation is

p=g, =0, 6=07"

where —g is the Gibbs free energy per unit mass per unit temperature.

entropy

0.1 0.2
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Navier—Stokes equations Compressible equations

velocity density temperature

Supersonic compressible Navier-Stokes simulation at Pr = 0.71, Re = 128
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The Kepler problem

Section 7

The Kepler problem
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The Kepler problem

The two-body Kepler problem has three invariants: the energy,

1

1
H = _|p||* - —
(p.a) = 5lIp| Tall’
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The Kepler problem

The two-body Kepler problem has three invariants: the energy,

1 1
the angular momentum,
L(p,q) =qxp
and the Laplace-Runge—Lenz vector,
q
A(p,q) =p xL— Tall

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.
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The Kepler problem

The equations of motion are

%x = BVH(x), B:[? —01] x = [p,ql.
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% = BVH(x), B:[? _OI] x = [p, .

The conservation of energy may be straightforwardly deduced by
tn+1 .
H(xpt+1) — H(xyp) = / H dt

tn
tn+1

= / VH % dt
tn
tnt1

= / VH'BVH dt
tn
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The Kepler problem

The equations of motion are

% = BVH(x), B:[O _I], x = [p, .

The conservation of energy may be straightforwardly deduced by
tn+1 .
H(xpt+1) — H(xyp) = / H dt
tn
tn+1
= / VH % dt
tn

tn+1

= / VH'BVH dt
tn

=0.

The other invariants Q(x) also have VQ "BV H = 0.
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The Kepler problem

First consider a standard cPG discretisation of the Kepler problem:

Base cPG discretisation
Find x € X == {y € P*([tn, tnr1], R?) : y(tn) = X} such that

tna1 tn+1
/ y xdt = / y  BVH(x) dt
tn tn

for ally € X := P~ Y([tp, tns1], RY).
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The Kepler problem

First consider a standard cPG discretisation of the Kepler problem:

Base cPG discretisation
Find x € X == {y € P*([tn, tnr1], R?) : y(tn) = X} such that

tna1 tn+1
/ y % dt = / y  BVH(x) dt
tn tn

for ally € X := P~ Y([tp, tns1], RY).

Setting s = 1 and approximating the integrals with a one-point Gauss—Legendre quadrature
rule yields the familiar implicit midpoint scheme.

37/61



The Kepler problem

T

T

Carl Friedrich Gauss

Implicit midpoint:
v/ symplecticity
v/ angular momentum
v/ energy
X orientation (LRL)
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The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We
» compute an approximate VH € X
» use it in the right-hand side of the ODE.
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The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We
» compute an approximate VH € X
» use it in the right-hand side of the ODE.

Energy-conserving discretisation (formal)

Find (x, VH) € X x X such that

tntl tnt1 —
/ y x dt = / y  BVH dt
tn tn
tnt1 . tnt1
/ y{ VH dt = / y{ VH dt
U tn

for all (y,y1) € X x X.

This is more expensive than necessary. The second equation states that VH is the projection

onto X of V H; in the discrete case, this can be evaluated exactly.
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The Kepler problem

Using the explicit projection P, we can write:

Energy-conserving discretisation (practical)

Find x € X such that
tn+1 tn+1
/ y ' x dt = / y ' BP[VH (x)] dt
b tn

for all y € X.
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The Kepler problem

Using the explicit projection P, we can write:

Energy-conserving discretisation (practical)

Find x € X such that
tn+1 tn+1
/ y ' x dt = / y ' BP[VH (x)] dt
tn tn
for all y € X.

This is an alternative derivation of the energy-preserving scheme of Cohen & Hairer (2011)
(when certain quadrature rules are used).
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The Kepler problem

David Cohen Ernst Hairer

Cohen & Hairer (2011):
X symplecticity
X angular momentum
v/ energy
X orientation (LRL)
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The Kepler problem

Now let us modify the scheme to also preserve A (and hence L):
> compute approximate VA;, VA, € X;
» modify the right-hand side.
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The Kepler problem

Now let us modify the scheme to also preserve A (and hence L):
> compute approximate VA;, VA, € X;
» modify the right-hand side.

How can we modify the right-hand side, though? It seems VA; and VA5 don't appear.
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The Kepler problem

It turns out we can rewrite the right-hand side to expose them:

Alternating form

There exists a scalar function A\(x) such that

y'BVH(z) = \(x)det (VH VA; VA y).
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The Kepler problem

It turns out we can rewrite the right-hand side to expose them:

Alternating form

There exists a scalar function A\(x) such that

y'BVH(z) = \(x)det (VH VA; VA y).

Theorem

For finite-dimensional Hamiltonian/Poisson systems, the right-hand side can be written as an
alternating form of the test function and gradients of conserved quantities.
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The Kepler problem

Energy- and orientation-conserving discretisation (formal)

Find (x, VH, (VA;, VA3)) € X x X x X2 such that

tn+1 tn+1 o o g,
/ y' x dt = / A(x) det (VH VA, VA, y) dt
tn tn
tn+1 o tn+1
/ y{ VH dt = / yi VH dt
tn tn
tn41 o tn41
/ ys VA dt = / yy VA dt
tn tn

tht1 o tn+1
/ ys VAy dt = / y3 VAy dt
tn tn

for all (Y7Y17 (yQay:3)) € X X X X Xz'
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The Kepler problem

Energy- and orientation-conserving discretisation (formal)

Find (x, VH, (VA;, VA3)) € X x X x X2 such that

tn+1 T tn+1 o e e
/ yTx dt = / A(x) det (VH VA, VA, y) dt
%o tn
tn+1 _ tn+1
/ y{ VH dt = / y{ VH dt
tn tn
tn+1 o tnt1
/ ys VA dt = / yy VA dt
Gn tn

tht1 o tn+1
/ ys VAy dt = / y3 VAy dt
G tn
for all (Y7Y17 (yQay:3)) € X X X X Xz'

Again, this can be rewritten purely as a problem in x.
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The Kepler problem

Our scheme:
X symplecticity
. v angular momentum
v/ energy
v/ orientation (LRL)
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The Kepler problem

100

error ||x(27) — x(0)||
=
&

10—12

timestep At
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Hamiltonian PDE

Section 8

Hamiltonian PDE

47 /61



Hamiltonian PDE

The Benjamin—Bona—Mahony equation
Up + Uy + Uy — Uggr = 0,  u(—50) = u(50),
has a Hamiltonian structure:
(id — 02) & = =0, H' (),
with Hamiltonian

1 1
H(u) = /Q §u2 + 6u3 dx.

John Joseph Mahony
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Hamiltonian PDE

The Benjamin—Bona—Mahony equation

Up + Uy + Uy — Uggr = 0,  u(—50) = u(50),

has a Hamiltonian structure:

T. Brooke Benjamin

(id — 92) i = —0, H'(u),
with Hamiltonian

1 1
H(u) = /Q §u2 + 6u3 dx.

The equation has exactly two other invariants:

Li(u) = / u dux,
Q

Ir(u) = / u? +u? dx.
Q

John Joseph Mahony
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Hamiltonian PDE

Our general formulation is
M{u] = B[H'(u)],

where M 1B is skew-symmetric.

William Rowan Hamilton
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Hamiltonian PDE

Our general formulation is
M{u] = B[H'(u)],

where M 1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

tp4+1 | William Rowan Hamilton
H(u(tpy1)) — H(u(ty)) = / H dt
tn

tn+1
= / H'(u)4 dt
tn

tn+1
- / H'(w)M ' BH'(u) dt
tn

=0.
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Hamiltonian PDE

Following a similar analysis, it turns out that the right auxiliary variable to use is
wy &~ M *[H'(u)],

which is not obvious (to me).
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Hamiltonian PDE

Following a similar analysis, it turns out that the right auxiliary variable to use is
wy &~ M [H'(u)],

which is not obvious (to me).

Energy-conserving discretisation
Find (u,w;) € X x X such that

tn+1 tn+1
/ oMI[i] dt = / wBM*[wy] dt
tn tn
tn41 tni1
/ wiMv] dt = H'[u]vy dt
tn tn

for all (v,v1) € X x X.
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Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed
with a fourth-order scheme (s = 2).

u H
05 6 Carl Friedrich Gauss
: Gauss method:
h P = % 00 v ww mee o v sym plecticity
Simulation near ¢t = 0. /' integral
v Hl-norm
v/ energy
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We simulate a soliton that travels rightwards at constant speed
with a fourth-order scheme (s = 2).

u H

05 6 Carl Friedrich Gauss

00 AMAAA A AANAAANAAAAAAAAAAAAANAAAA AL 4

: Gauss method:

o % @ % w5 s whoowsho0 20000 V4 sym p|ecticity
Simulation near ¢ = 10000. v/ integral

v H'-norm
v/ energy
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Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed

with a fourth-order scheme (s = 2).

Simulation near ¢ = 20000.

10000
t

AANMAANNAAAANANANANAAAANANARANAAAL AMAMA .
AAAAANAAAAAAAAAAAAAANRAAARARAAAA AR LA AR
2
0
0 20 ) 60 80 100 0 5000 15000

20000

Carl Friedrich Gauss

Gauss method:

v/ symplecticity
v integral

v/ H'-norm

v/ energy
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Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed
with a fourth-order scheme (s = 2).

oo MAMAAAAAAAAANAADNAANAAAAALSAAANALN AMAMA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY AAAAAY &

0
0 20 40 60 80 100 o 5000 10000 15000 20000
t

Simulation near ¢ = 20000.

Spurious oscillations

H! norm conserved but L? norm decreases — oscillation.

Carl Friedrich Gauss

Gauss method:

v/ symplecticity
v integral

v/ H'-norm

v/ energy
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Hamiltonian PDE

The same soliton, again:

u H
"
15
1
10
s
0s .
00 a Boris Andrews
05 2
0 .
: p £ = = W " s mie s an Our method:
¢

lectici
Simulation near ¢ = 0. X symplecticity
v/ integral

v/ H'-norm

v/ energy
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Hamiltonian PDE

The same soliton, again:

00 4 Boris Andrews

5 P " P P B 0 we mm mw me Our method:

X symplecticit

Simulation near ¢ = 10000. .y P Y
v/ integral
v/ Hl-norm

v/ energy
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Hamiltonian PDE

The same soliton, again:

u H
"
15
1
10
s
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Hamiltonian PDE

The same soliton, again:

o 20 0 60 80 100 o 5000 10000 15000 20000
t

Simulation near ¢ = 20000.

'S

Boris Andrews

Our method:
X symplecticity
v/ integral
v/ H'-norm

/ energy

Soliton character is preserved even over very long timescales.
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The Parker problem

Section 9

The Parker problem
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The Parker problem

Ideal magnetohydrodynamics

up — div(2ve(u)) + div(u ® u) + gradp+ SB x (E+u x B) = f in Q,
divu =0 in £,

Bi+curl E=0 in €,

E+uxB=0 in.
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The Parker problem

Ideal magnetohydrodynamics

up — div(2ve(u)) + div(u ® u) + gradp+ SB x (E+u x B) = f in Q,
divu =0 in £,

Bi+curl E=0 in €,

E+uxB=0 in.

Two structures to preserve:

> energy E = |ul|? + || BJ* is dissipated;
» helicity H = (A, B)2 is conserved, for any A s.t. curl A = B.
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The Parker problem

The Parker conjecture (1972)

For almost all initial conditions, the magnetic field develops tangential
discontinuities during ideal magnetic relaxation to a force-free equilibrium.

Eugene N. Parker
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Parker conjectured the existence of the solar wind. The shape of the
magnetic field in the outer solar system is now called a Parker spiral.
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The Parker problem

The Parker conjecture (1972)

For almost all initial conditions, the magnetic field develops tangential
discontinuities during ideal magnetic relaxation to a force-free equilibrium.

Parker conjectured the existence of the solar wind. The shape of the
magnetic field in the outer solar system is now called a Parker spiral.

Eugene N. Parker

This conjecture has many important consequences in solar physics,
including for the coronal heating problem (why is the corona millions of
degrees hotter than the surface?).
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The Parker problem

There is a crucal relationship between helicity H and energy E:

The Arnold inequality

|H| S [I1Bl[>-

Vladimir Arnold
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The Parker problem

There is a crucal relationship between helicity H and energy E:

The Arnold inequality

|H| S [I1Bl[>-

This means that, while the system is dissipative, initial data with nonzero
helicity cannot relax to the zero state.

Vladimir Arnold
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The Parker problem

There is a crucal relationship between helicity H and energy E:

The Arnold inequality

|H| S [I1Bl[>-

This means that, while the system is dissipative, initial data with nonzero
helicity cannot relax to the zero state.

Vladimir Arnold

The helicity provides a topological barrier that is crucial for the physics of
the problem.
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The Parker problem

The Parker conjecture can be investigated with the magneto-frictional equations:

8(37?+V><E:O,

E+uxB=0,
7] =V xB,
u=r1j X B,

div B = 0.
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The Parker problem

The Parker conjecture can be investigated with the magneto-frictional equations:

0B

E—I—VXE:O,

E+uxB=0,
7] =V xB,
u=r1j X B,

div B = 0.

This system also dissipates energy, conserves helicity, satisfies the Arnold inequality, and has
the same equilibria as the original MHD system.
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The Parker problem

We have devised a structure-preserving discretisation of these equations.

It requires both the ideas in this talk and finite element exterior calculus.
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Mingdong He
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The Parker problem

We have devised a structure-preserving discretisation of these equations.

It requires both the ideas in this talk and finite element exterior calculus.
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The Parker problem

1.2e-01
F 0.1

0.02

— 1.0e-02

t=0 t = 10000

Magnetic field lines for a large-scale simulation on ARCHER?2, coloured by magnetic field strength || B]].
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Conclusions
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Conclusions

Good news

We can now (with work) discretely replicate many conservation/dissipation laws.
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Conclusions

Good news

We can now (with work) discretely replicate many conservation/dissipation laws.

Potential applications

magnetohydrodynamics, multicomponent flows, viscoelastic fluids, geometric PDE,
Hamiltonian systems, the Lorentz system, hyperelasticity, gradient flows .. ..
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