
Enforcing conservation laws and dissipation inequalities numerically via auxiliary variables

Patrick E. Farrell1,2 Boris Andrews1

1University of Oxford

2Charles University

1 / 61

Introduction

Here are four properties an initial value problem might have:

symplecticity symmetry

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

2 / 61

Introduction

Here are four properties an initial value problem might have:

symplecticity symmetry

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

2 / 61

Introduction

Here are four properties an initial value problem might have:

symplecticity symmetry

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Symplecticity

The differential equation preserves the symplectic 2-form.

2 / 61

Introduction

Here are four properties an initial value problem might have:

symplecticity symmetry

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Symmetry

The system is invariant under e.g. translation, rotation, time reversal + momentum negation.

2 / 61

Introduction

Here are four properties an initial value problem might have:

symplecticity symmetry

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Conservation

The equation preserves invariants, like energy or angular momentum.

2 / 61

Introduction

Here are four properties an initial value problem might have:

symplecticity symmetry

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

Dissipation

The equation dissipates certain quantities like entropy at a known, definite rate.

2 / 61

Introduction

Here are four properties an initial value problem might have:

symplecticity symmetry

conservation dissipation

1 3

3131

Hairer

ubich

anner

1

Ernst Hairer

Christian Lubich

Gerhard Wanner

nd

dition

Geometric Numerical

Integration

Structure-Preserving

Algorithms for Ordinary

Diff erential Equations
Second Edition

G
eom

etric N
um

erical Integration

This talk

We aim to preserve conservation laws and dissipation inequalities on discretisation . . .

. . . in a symmetric way, without projections onto manifolds or Lagrange multipliers.

2 / 61

Examples

Section 2

Examples

3 / 61

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

4 / 61

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

−2 −1 0 1 2
−2

−1

0

1

2

Keplerian orbits:

✓ symplecticity

✓ angular momentum

✓ energy

✓ orientation (LRL)

4 / 61

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

−2 −1 0 1 2
−2

−1

0

1

2

Implicit midpoint:

✓ symplecticity

✓ angular momentum

✓ energy

✗ orientation (LRL)

4 / 61

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

−2 −1 0 1 2
−2

−1

0

1

2

LaBudde–Greenspan:

✗ symplecticity

✓ angular momentum

✓ energy

✗ orientation (LRL)

4 / 61

Examples

Consider the two-body Kepler problem with Hamiltonian

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

Johannes Kepler

−2 −1 0 1 2
−2

−1

0

1

2

Our discretisation:

✗ symplecticity

✓ angular momentum

✓ energy

✓ orientation (LRL)

4 / 61

Examples

Can we do better? Can we have it all?

Theorem (Ge–Marsden, 1988)

Let H be a Hamiltonian which has no other conserved quantities in a given
class, other than functions of H.

A symplectic integrator that conserves H exactly is the time advance map
for the exact Hamiltonian system, up to a reparameterisation of time.

Bad news

Conservation or symplecticity, choose one.

Comment

Both properties are useful in different situations!

Jerrold Marsden

Ge Zhong 5 / 61

Examples

Can we do better? Can we have it all?

Theorem (Ge–Marsden, 1988)

Let H be a Hamiltonian which has no other conserved quantities in a given
class, other than functions of H.

A symplectic integrator that conserves H exactly is the time advance map
for the exact Hamiltonian system, up to a reparameterisation of time.

Bad news

Conservation or symplecticity, choose one.

Comment

Both properties are useful in different situations!

Jerrold Marsden

Ge Zhong 5 / 61

Examples

Can we do better? Can we have it all?

Theorem (Ge–Marsden, 1988)

Let H be a Hamiltonian which has no other conserved quantities in a given
class, other than functions of H.

A symplectic integrator that conserves H exactly is the time advance map
for the exact Hamiltonian system, up to a reparameterisation of time.

Bad news

Conservation or symplecticity, choose one.

Comment

Both properties are useful in different situations!

Jerrold Marsden

Ge Zhong 5 / 61

Examples

Can we do better? Can we have it all?

Theorem (Ge–Marsden, 1988)

Let H be a Hamiltonian which has no other conserved quantities in a given
class, other than functions of H.

A symplectic integrator that conserves H exactly is the time advance map
for the exact Hamiltonian system, up to a reparameterisation of time.

Bad news

Conservation or symplecticity, choose one.

Comment

Both properties are useful in different situations!

Jerrold Marsden

Ge Zhong 5 / 61

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

6 / 61

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Kovalevskaya trajectories:

✓ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✓ Kovalevskaya invariant

6 / 61

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Kovalevskaya trajectories:

✓ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✓ Kovalevskaya invariant

6 / 61

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Implicit midpoint:

✓ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✗ Kovalevskaya invariant

6 / 61

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Implicit midpoint:

✓ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✗ Kovalevskaya invariant

6 / 61

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Our discretisation:

✗ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✓ Kovalevskaya invariant

6 / 61

Examples

The Kovalevskaya top is described by

H(l,n) =
1

2

(
l21 + l22 + 2l23

)
+ n1,

inducing the differential equations

ẋ = B∇H(x), B =

[
0 skew(n)

skew(n) skew(l)

]
, x = [n, l].

Sofya Kovalevskaya

Our discretisation:

✗ symplecticity

✓ angular momentum

✓ energy

✓ orientation

✓ Kovalevskaya invariant

6 / 61

Examples

This approach extends to more complicated problems.

For the compressible Navier–Stokes equations, we can devise timestepping schemes that:

▶ conserve mass;

▶ conserve momentum;

▶ conserve energy;

▶ dissipate entropy.

0 1 2 3 4
10−16

10−11

10−6

10−1

time t

en
tr
op

y
er
ro
r

our scheme
implicit midpoint

Error in the entropy for implicit midpoint and our scheme.

7 / 61

Examples

This approach extends to more complicated problems.

For the compressible Navier–Stokes equations, we can devise timestepping schemes that:

▶ conserve mass;

▶ conserve momentum;

▶ conserve energy;

▶ dissipate entropy.

0 1 2 3 4
10−16

10−11

10−6

10−1

time t

en
tr
op

y
er
ro
r

our scheme
implicit midpoint

Error in the entropy for implicit midpoint and our scheme.

7 / 61

Examples

This approach extends to more complicated problems.

For the compressible Navier–Stokes equations, we can devise timestepping schemes that:

▶ conserve mass;

▶ conserve momentum;

▶ conserve energy;

▶ dissipate entropy.

0 1 2 3 4
10−16

10−11

10−6

10−1

time t

en
tr
op

y
er
ro
r

our scheme
implicit midpoint

Error in the entropy for implicit midpoint and our scheme.

7 / 61

Examples

This approach extends to more complicated problems.

For the compressible Navier–Stokes equations, we can devise timestepping schemes that:

▶ conserve mass;

▶ conserve momentum;

▶ conserve energy;

▶ dissipate entropy.

0 1 2 3 4
10−16

10−11

10−6

10−1

time t

en
tr
op

y
er
ro
r

our scheme
implicit midpoint

Error in the entropy for implicit midpoint and our scheme.

7 / 61

Examples

This approach extends to more complicated problems.

For the compressible Navier–Stokes equations, we can devise timestepping schemes that:

▶ conserve mass;

▶ conserve momentum;

▶ conserve energy;

▶ dissipate entropy.

0 1 2 3 4
10−16

10−11

10−6

10−1

time t

en
tr
op

y
er
ro
r

our scheme
implicit midpoint

Error in the entropy for implicit midpoint and our scheme.

7 / 61

How it works

Section 3

How it works

8 / 61

How it works

Our approach is to take a variational formulation in time.

Potential confusion

This does not require solving for all timesteps at once; we’re still timestepping.

To understand this variational viewpoint, let’s first study general methods for solving

u̇ = f(u).

9 / 61

How it works

Our approach is to take a variational formulation in time.

Potential confusion

This does not require solving for all timesteps at once; we’re still timestepping.

To understand this variational viewpoint, let’s first study general methods for solving

u̇ = f(u).

9 / 61

How it works

Our approach is to take a variational formulation in time.

Potential confusion

This does not require solving for all timesteps at once; we’re still timestepping.

To understand this variational viewpoint, let’s first study general methods for solving

u̇ = f(u).

9 / 61

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea of many (single-step) schemes

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

10 / 61

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea of many (single-step) schemes

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

10 / 61

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea of many (single-step) schemes

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

Forward Euler

For s = 1, demand that
u̇ = f(u)

at the test point t = tn.

10 / 61

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea of many (single-step) schemes

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

Backward Euler

For s = 1, demand that
u̇ = f(u)

at the test point t = tn+1.

10 / 61

How it works

We know u = un at t = tn. We want to compute un+1 at t = tn+1.

General idea of many (single-step) schemes

Find u ∈ P s(tn, tn+1), the space of degree-s polynomials on [tn, tn+1], satisfying

u(tn) = un,

and s other test conditions.

Set un+1 = u(tn+1).

Implicit midpoint

For s = 1, demand that
u̇ = f(u)

at the s = 1 test point t = 1
2 tn + 1

2 tn+1.

10 / 61

How it works

Of course, not all schemes use s = 1:

Collocation Runge–Kutta, e.g. Gauss–Legendre/RadauIIA/LobattoIIIC

Demand that
u̇ = f(u)

at s test points t = tn + c1∆t, tn + c2∆t, . . . , tn + cs∆t.

The natural finite element in time scheme instead chooses another test set:

Continuous Petrov–Galerkin (cPG) test conditions

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ P s−1(tn, tn+1) (= Ṗs).

11 / 61

How it works

Of course, not all schemes use s = 1:

Collocation Runge–Kutta, e.g. Gauss–Legendre/RadauIIA/LobattoIIIC

Demand that
u̇ = f(u)

at s test points t = tn + c1∆t, tn + c2∆t, . . . , tn + cs∆t.

The natural finite element in time scheme instead chooses another test set:

Continuous Petrov–Galerkin (cPG) test conditions

Demand that ∫ tn+1

tn

u̇v dt =

∫ tn+1

tn

f(u)v dt,

for all v ∈ P s−1(tn, tn+1) (= Ṗs).

11 / 61

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 61

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 61

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 61

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 61

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 61

How it works

Why is this variational viewpoint useful?

Conservation laws

Conservation laws naturally arise from variational statements:

0 = J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each conservation law has an

associated test function.

12 / 61

How it works

Why is this variational viewpoint useful?

Dissipation inequalities

Dissipation inequalities naturally arise from variational statements:

0 ≤ J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each dissipation inequality has an

associated test function.

13 / 61

How it works

Why is this variational viewpoint useful?

Dissipation inequalities

Dissipation inequalities naturally arise from variational statements:

0 ≤ J(un+1)− J(un)

=

∫ tn+1

tn

dJ

dt
dt

=

∫ tn+1

tn

J ′(u)u̇ dt

=

∫ tn+1

tn

J ′(u)f(u) dt.

In other words, each dissipation inequality has an

associated test function.

13 / 61

How it works

Good news!

If J ′(u) is in our test set, the cPG scheme also conserves/dissipates J .

Bad news!

J ′(u) is rarely in our test set P s−1(tn, tn+1).

Idea!

Compute an approximation

J̃ ′(u) ≈ J ′(u), J̃ ′(u) ∈ P s−1(tn, tn+1).

and modify the differential equation to use it.

14 / 61

How it works

Good news!

If J ′(u) is in our test set, the cPG scheme also conserves/dissipates J .

Bad news!

J ′(u) is rarely in our test set P s−1(tn, tn+1).

Idea!

Compute an approximation

J̃ ′(u) ≈ J ′(u), J̃ ′(u) ∈ P s−1(tn, tn+1).

and modify the differential equation to use it.

14 / 61

How it works

Good news!

If J ′(u) is in our test set, the cPG scheme also conserves/dissipates J .

Bad news!

J ′(u) is rarely in our test set P s−1(tn, tn+1).

Idea!

Compute an approximation

J̃ ′(u) ≈ J ′(u), J̃ ′(u) ∈ P s−1(tn, tn+1).

and modify the differential equation to use it.

14 / 61

How it works

Basic outline:

A. Choose a base timestepping scheme.

B. Identify the associated test functions for the structures to preserve.

C. Introduce corresponding auxiliary variables.

D. Modify the right-hand side of the weak formulation to use them.

15 / 61

How it works

Basic outline:

A. Choose a base timestepping scheme.

B. Identify the associated test functions for the structures to preserve.

C. Introduce corresponding auxiliary variables.

D. Modify the right-hand side of the weak formulation to use them.

15 / 61

How it works

Basic outline:

A. Choose a base timestepping scheme.

B. Identify the associated test functions for the structures to preserve.

C. Introduce corresponding auxiliary variables.

D. Modify the right-hand side of the weak formulation to use them.

15 / 61

How it works

Basic outline:

A. Choose a base timestepping scheme.

B. Identify the associated test functions for the structures to preserve.

C. Introduce corresponding auxiliary variables.

D. Modify the right-hand side of the weak formulation to use them.

15 / 61

How it works

Basic outline:

A. Choose a base timestepping scheme.

B. Identify the associated test functions for the structures to preserve.

C. Introduce corresponding auxiliary variables.

D. Modify the right-hand side of the weak formulation to use them.

15 / 61

Navier–Stokes equations

Section 4

Navier–Stokes equations

16 / 61

Navier–Stokes equations Incompressible equations

To fix ideas, consider the incompressible Navier–Stokes equations in Lamb
form:

u̇ = u× (∇× u)−∇p+Re−1∇2u,

0 = ∇ · u,

on a bounded Lipschitz domain Ω ⊂ R3 with u = 0 on ∂Ω.
Horace Lamb

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u ∈ X such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt

for all v ∈ Ẋ.

Here X is continuous in time of degree s, while Ẋ is discontinuous in time of degree s− 1.

17 / 61

Navier–Stokes equations Incompressible equations

To fix ideas, consider the incompressible Navier–Stokes equations in Lamb
form:

u̇ = u× (∇× u)−∇p+Re−1∇2u,

0 = ∇ · u,

on a bounded Lipschitz domain Ω ⊂ R3 with u = 0 on ∂Ω.
Horace Lamb

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u ∈ X such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt

for all v ∈ Ẋ.

Here X is continuous in time of degree s, while Ẋ is discontinuous in time of degree s− 1.

17 / 61

Navier–Stokes equations Incompressible equations

To fix ideas, consider the incompressible Navier–Stokes equations in Lamb
form:

u̇ = u× (∇× u)−∇p+Re−1∇2u,

0 = ∇ · u,

on a bounded Lipschitz domain Ω ⊂ R3 with u = 0 on ∂Ω.
Horace Lamb

A. Define the cPG discretisation

For suitable space-time X, the cPG discretisation is to find u ∈ X such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt

for all v ∈ Ẋ.

Here X is continuous in time of degree s, while Ẋ is discontinuous in time of degree s− 1.
17 / 61

Navier–Stokes equations Incompressible equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy

E(u) =
1

2
(u, u)

and the change in helicity, a topological measure of the knottedness of the flow,

H(u) =
1

2
(u,∇× u).

From Arnold & Khesin (1998).
Vladimir Arnold

18 / 61

Navier–Stokes equations Incompressible equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy

E(u) =
1

2
(u, u)

and the change in helicity, a topological measure of the knottedness of the flow,

H(u) =
1

2
(u,∇× u).

From Arnold & Khesin (1998).
Vladimir Arnold

18 / 61

Navier–Stokes equations Incompressible equations

Our next task is to identify the structures we wish to preserve.

In this example, we care about the dissipation of energy

E(u) =
1

2
(u, u)

and the change in helicity, a topological measure of the knottedness of the flow,

H(u) =
1

2
(u,∇× u).

From Arnold & Khesin (1998).
Vladimir Arnold

18 / 61

Navier–Stokes equations Incompressible equations

The energy is given by

E(u) =
1

2
(u, u),

so its associated test function is the L2 Riesz representative of its Fréchet derivative

Eu(u; z) = (u, z),

i.e. the special test function is the velocity u itself:

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

[
(u× (∇× u), u)− Re−1(∇u,∇u)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇u∥2 dt ≤ 0.

19 / 61

Navier–Stokes equations Incompressible equations

The energy is given by

E(u) =
1

2
(u, u),

so its associated test function is the L2 Riesz representative of its Fréchet derivative

Eu(u; z) = (u, z),

i.e. the special test function is the velocity u itself:

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

[
(u× (∇× u), u)− Re−1(∇u,∇u)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇u∥2 dt ≤ 0.

19 / 61

Navier–Stokes equations Incompressible equations

The energy is given by

E(u) =
1

2
(u, u),

so its associated test function is the L2 Riesz representative of its Fréchet derivative

Eu(u; z) = (u, z),

i.e. the special test function is the velocity u itself:

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

[
(u× (∇× u), u)− Re−1(∇u,∇u)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇u∥2 dt ≤ 0.

19 / 61

Navier–Stokes equations Incompressible equations

The energy is given by

E(u) =
1

2
(u, u),

so its associated test function is the L2 Riesz representative of its Fréchet derivative

Eu(u; z) = (u, z),

i.e. the special test function is the velocity u itself:

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

[
(u× (∇× u), u)− Re−1(∇u,∇u)

]
dt,

= −Re−1

∫ tn+1

tn

∥∇u∥2 dt ≤ 0.

19 / 61

Navier–Stokes equations Incompressible equations

Similarly, we derive a law for the helicity

H(u) =
1

2
(u,∇× u)

by testing our weak formulation with the L2 Riesz representative of its Fréchet derivative

Hu(u; z) = (∇× u, z),

i.e. the special test function is the vorticity ∇× u:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

20 / 61

Navier–Stokes equations Incompressible equations

Similarly, we derive a law for the helicity

H(u) =
1

2
(u,∇× u)

by testing our weak formulation with the L2 Riesz representative of its Fréchet derivative

Hu(u; z) = (∇× u, z),

i.e. the special test function is the vorticity ∇× u:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

20 / 61

Navier–Stokes equations Incompressible equations

Similarly, we derive a law for the helicity

H(u) =
1

2
(u,∇× u)

by testing our weak formulation with the L2 Riesz representative of its Fréchet derivative

Hu(u; z) = (∇× u, z),

i.e. the special test function is the vorticity ∇× u:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

20 / 61

Navier–Stokes equations Incompressible equations

Similarly, we derive a law for the helicity

H(u) =
1

2
(u,∇× u)

by testing our weak formulation with the L2 Riesz representative of its Fréchet derivative

Hu(u; z) = (∇× u, z),

i.e. the special test function is the vorticity ∇× u:

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

[
(u× (∇× u),∇× u)− Re−1(∇u,∇∇× u)

]
dt,

= −Re−1

∫ tn+1

tn

(∇u,∇∇× u) dt.

20 / 61

Navier–Stokes equations Incompressible equations

B. Identify test functions

To replicate these laws discretely, we need approximations of

u and ∇× u

in our discrete test space Ẋ.

21 / 61

Navier–Stokes equations Incompressible equations

Our next step is to introduce variables approximating these associated test functions.

C. Introduce auxiliary variables

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

22 / 61

Navier–Stokes equations Incompressible equations

Our next step is to introduce variables approximating these associated test functions.

C. Introduce auxiliary variables

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(u× (∇× u), v)− Re−1(∇u,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

22 / 61

Navier–Stokes equations Incompressible equations

In order to derive a discrete version of the laws for energy and helicity, we must modify the
right-hand side of our problem to use w1 and w2.

D. Final time discretisation

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

23 / 61

Navier–Stokes equations Incompressible equations

In order to derive a discrete version of the laws for energy and helicity, we must modify the
right-hand side of our problem to use w1 and w2.

D. Final time discretisation

Find (u,w1, w2) ∈ X× Ẋ× Ẋ such that∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt,

for all (v, v1, v2) ∈ Ẋ× Ẋ× Ẋ.

23 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt.

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt =

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= − Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

24 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt.

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt =

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= − Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

24 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt.

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt

=

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= − Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

24 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt.

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt =

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= − Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

24 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt.

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt =

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= − Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

24 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt.

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt =

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= − Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit.

24 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w1, v1) dt =

∫ tn+1

tn

(u, v1) dt.

E(un+1)− E(un) =

∫ tn+1

tn

(u̇, u) dt =

∫ tn+1

tn

(u̇, w1) dt

=

∫ tn+1

tn

[
(w1 × w2, w1)− Re−1(∇w1,∇w1)

]
dt,

= − Re−1

∫ tn+1

tn

∥∇w1∥2 dt ≤ 0.

We therefore recover a conservation law in the ideal limit. 24 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt.

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt =

∫ tn+1

tn

(u̇, w2) dt

=

∫ tn+1

tn

[
(w1 × w2, w2)− Re−1(∇w1,∇w2)

]
dt

,

= − Re−1

∫ tn+1

tn

(∇w1,∇w2) dt.

We again recover a conservation law in the ideal limit.

25 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt.

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt =

∫ tn+1

tn

(u̇, w2) dt

=

∫ tn+1

tn

[
(w1 × w2, w2)− Re−1(∇w1,∇w2)

]
dt

,

= − Re−1

∫ tn+1

tn

(∇w1,∇w2) dt.

We again recover a conservation law in the ideal limit.

25 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt.

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt

=

∫ tn+1

tn

(u̇, w2) dt

=

∫ tn+1

tn

[
(w1 × w2, w2)− Re−1(∇w1,∇w2)

]
dt

,

= − Re−1

∫ tn+1

tn

(∇w1,∇w2) dt.

We again recover a conservation law in the ideal limit.

25 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt.

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt =

∫ tn+1

tn

(u̇, w2) dt

=

∫ tn+1

tn

[
(w1 × w2, w2)− Re−1(∇w1,∇w2)

]
dt

,

= − Re−1

∫ tn+1

tn

(∇w1,∇w2) dt.

We again recover a conservation law in the ideal limit.

25 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt.

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt =

∫ tn+1

tn

(u̇, w2) dt

=

∫ tn+1

tn

[
(w1 × w2, w2)− Re−1(∇w1,∇w2)

]
dt,

= − Re−1

∫ tn+1

tn

(∇w1,∇w2) dt.

We again recover a conservation law in the ideal limit.

25 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt.

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt =

∫ tn+1

tn

(u̇, w2) dt

=

∫ tn+1

tn

[
(w1 × w2, w2)− Re−1(∇w1,∇w2)

]
dt,

= − Re−1

∫ tn+1

tn

(∇w1,∇w2) dt.

We again recover a conservation law in the ideal limit.

25 / 61

Navier–Stokes equations Incompressible equations

This allows us to replicate the energy and helicity laws discretely!

D. Final time discretisation∫ tn+1

tn

(u̇, v) dt =

∫ tn+1

tn

[
(w1 × w2, v)− Re−1(∇w1,∇v)

]
dt,∫ tn+1

tn

(w2, v2) dt =

∫ tn+1

tn

(∇× u, v2) dt.

H(un+1)−H(un) =

∫ tn+1

tn

(u̇,∇× u) dt =

∫ tn+1

tn

(u̇, w2) dt

=

∫ tn+1

tn

[
(w1 × w2, w2)− Re−1(∇w1,∇w2)

]
dt,

= − Re−1

∫ tn+1

tn

(∇w1,∇w2) dt.

We again recover a conservation law in the ideal limit. 25 / 61

Navier–Stokes equations Incompressible equations

Does helicity preservation matter?

26 / 61

Navier–Stokes equations Incompressible equations

Does helicity preservation matter?

0 0.02 0.04
0

9.9

19.8

t

H

Re = 216

Re = 28

Re = 20

preserving E

0 0.02 0.04

t

preserving E,H

26 / 61

Navier–Stokes equations Incompressible equations

Does helicity preservation matter?

preserving E preserving E,H

Streamlines of velocity at final time, coloured by ∥u∥.
26 / 61

Navier–Stokes equations Incompressible equations

Good news

The auxiliary velocity can be computed explicitly.

This analysis gives an arbitrary-order generalisation of

L. G. Rebholz. “An energy- and helicity-conserving finite element
scheme for the Navier–Stokes equations”. In: SIAM Journal on
Numerical Analysis 45.4 (2007), pp. 1622–1638. doi:
10.1137/060651227.

Leo Rebholz

27 / 61

https://doi.org/10.1137/060651227

Navier–Stokes equations Incompressible equations

Good news

The auxiliary velocity can be computed explicitly.

This analysis gives an arbitrary-order generalisation of

L. G. Rebholz. “An energy- and helicity-conserving finite element
scheme for the Navier–Stokes equations”. In: SIAM Journal on
Numerical Analysis 45.4 (2007), pp. 1622–1638. doi:
10.1137/060651227.

Leo Rebholz

27 / 61

https://doi.org/10.1137/060651227

Navier–Stokes equations Connections to existing work

In fact, our scheme generalises . . .

French & Schaeffer (1990)

cPG sometimes conservative; proposes auxiliary variable for energy conservation in KdV.

28 / 61

Navier–Stokes equations Connections to existing work

In fact, our scheme generalises . . .

Simo & Armero (1994)

Energy-dissipating timestepping schemes for Navier–Stokes.

28 / 61

Navier–Stokes equations Connections to existing work

In fact, our scheme generalises . . .

McLachlan, Quispel & Robidoux (1999)

Lowest-order energy-conserving discrete gradient schemes.

28 / 61

Navier–Stokes equations Connections to existing work

In fact, our scheme generalises . . .

Betsch & Steinmann (2000)

cPG is energy-conservative for Hamiltonian ODEs in canonical coordinates.

28 / 61

Navier–Stokes equations Connections to existing work

In fact, our scheme generalises . . .

Cohen & Hairer (2011)

Higher-order energy-conserving discrete gradient schemes.

28 / 61

Navier–Stokes equations Connections to existing work

In fact, our scheme generalises . . .

Egger, Habrich & Shashkov (2021)

cPG is energy-conservative for a particular formulation of Hamiltonian PDEs.

28 / 61

Navier–Stokes equations Connections to existing work

In fact, our scheme generalises . . .

Egger, Habrich & Shashkov (2021)

cPG is energy-conservative for a particular formulation of Hamiltonian PDEs.

. . . and many more besides.

28 / 61

Navier–Stokes equations Compressible equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

we agreed to preserve four structures:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

29 / 61

Navier–Stokes equations Compressible equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

we agreed to preserve four structures:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

29 / 61

Navier–Stokes equations Compressible equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

we agreed to preserve four structures:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

29 / 61

Navier–Stokes equations Compressible equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

we agreed to preserve four structures:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

29 / 61

Navier–Stokes equations Compressible equations

For the compressible Navier–Stokes equations,

ρ̇ = −div[ρu],

ρu̇ = −ρu · ∇u−∇[ρθ] +
2

Reµ
div[ρε[u]] +

1

Reζ
∇[ρdivu],

Cρθ̇ = −Cρu · ∇θ − ρθdivu+
1

Pe
div[ρ∇θ] +

2

Reµ
ρ∥ε[u]∥2 + 1

Reζ
ρ(divu)2,

we agreed to preserve four structures:

▶ mass conservation;

▶ momentum conservation;

▶ energy conservation;

▶ entropy dissipation.

29 / 61

Navier–Stokes equations Compressible equations

The associated test function for mass conservation is

ρ̃ = 1, ũ = 0, θ̃ = 0.

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

t

m
as
s

30 / 61

Navier–Stokes equations Compressible equations

The associated test function for mass conservation is

ρ̃ = 1, ũ = 0, θ̃ = 0.

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

t

m
as
s

30 / 61

Navier–Stokes equations Compressible equations

The associated test function for energy conservation is

ρ̃ = 0, ũ = u, θ̃ = 1.

0 0.1 0.2
0

1

2

3

4

t

en
er
gy

total energy
internal energy

31 / 61

Navier–Stokes equations Compressible equations

The associated test function for energy conservation is

ρ̃ = 0, ũ = u, θ̃ = 1.

0 0.1 0.2
0

1

2

3

4

t

en
er
gy

total energy
internal energy

31 / 61

Navier–Stokes equations Compressible equations

The associated test function for entropy dissipation is

ρ̃ = g, ũ = 0, θ̃ = θ−1,

where −g is the Gibbs free energy per unit mass per unit temperature.

0 0.1 0.2

−2.5

−2

−1.5

−1

t

en
tr
op

y

32 / 61

Navier–Stokes equations Compressible equations

The associated test function for entropy dissipation is

ρ̃ = g, ũ = 0, θ̃ = θ−1,

where −g is the Gibbs free energy per unit mass per unit temperature.

0 0.1 0.2

−2.5

−2

−1.5

−1

t

en
tr
o
p
y

32 / 61

Navier–Stokes equations Compressible equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation at Pr = 0.71,Re = 128

33 / 61

Navier–Stokes equations Compressible equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation at Pr = 0.71,Re = 128

33 / 61

Navier–Stokes equations Compressible equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation at Pr = 0.71,Re = 128

33 / 61

Navier–Stokes equations Compressible equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation at Pr = 0.71,Re = 128

33 / 61

Navier–Stokes equations Compressible equations

velocity density temperature

Supersonic compressible Navier–Stokes simulation at Pr = 0.71,Re = 128

33 / 61

The Kepler problem

Section 7

The Kepler problem

34 / 61

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

35 / 61

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

35 / 61

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

35 / 61

The Kepler problem

The two-body Kepler problem has three invariants: the energy,

H(p,q) =
1

2
∥p∥2 − 1

∥q∥ ,

the angular momentum,
L(p,q) = q× p

and the Laplace–Runge–Lenz vector,

A(p,q) = p× L− q

∥q∥ .

These invariants are related to each other, so in two dimensions it is enough to conserve H
and A to conserve all three.

35 / 61

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

36 / 61

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

36 / 61

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

36 / 61

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

36 / 61

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.

36 / 61

The Kepler problem

The equations of motion are

ẋ = B∇H(x), B =

[
0 −I
I 0

]
, x = [p,q].

The conservation of energy may be straightforwardly deduced by

H(xn+1)−H(xn) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

∇H⊤ẋ dt

=

∫ tn+1

tn

∇H⊤B∇H dt

= 0.

The other invariants Q(x) also have ∇Q⊤B∇H = 0.
36 / 61

The Kepler problem

First consider a standard cPG discretisation of the Kepler problem:

Base cPG discretisation

Find x ∈ X := {y ∈ P s([tn, tn+1],R4) : y(tn) = xn} such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇H(x) dt

for all y ∈ Ẋ := P s−1([tn, tn+1],R4).

Setting s = 1 and approximating the integrals with a one-point Gauss–Legendre quadrature
rule yields the familiar implicit midpoint scheme.

37 / 61

The Kepler problem

First consider a standard cPG discretisation of the Kepler problem:

Base cPG discretisation

Find x ∈ X := {y ∈ P s([tn, tn+1],R4) : y(tn) = xn} such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇H(x) dt

for all y ∈ Ẋ := P s−1([tn, tn+1],R4).

Setting s = 1 and approximating the integrals with a one-point Gauss–Legendre quadrature
rule yields the familiar implicit midpoint scheme.

37 / 61

The Kepler problem

−2 −1 0 1 2
−2

−1

0

1

2

Carl Friedrich Gauss

Implicit midpoint:

✓ symplecticity

✓ angular momentum

✓ energy

✗ orientation (LRL)

38 / 61

The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We

▶ compute an approximate ∇̃H ∈ Ẋ;
▶ use it in the right-hand side of the ODE.

Energy-conserving discretisation (formal)

Find (x, ∇̃H) ∈ X× Ẋ such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt

for all (y,y1) ∈ Ẋ× Ẋ.

This is more expensive than necessary. The second equation states that ∇̃H is the projection
onto Ẋ of ∇H; in the discrete case, this can be evaluated exactly.

39 / 61

The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We

▶ compute an approximate ∇̃H ∈ Ẋ;
▶ use it in the right-hand side of the ODE.

Energy-conserving discretisation (formal)

Find (x, ∇̃H) ∈ X× Ẋ such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt

for all (y,y1) ∈ Ẋ× Ẋ.

This is more expensive than necessary. The second equation states that ∇̃H is the projection
onto Ẋ of ∇H; in the discrete case, this can be evaluated exactly.

39 / 61

The Kepler problem

Let us first consider how to modify the scheme to conserve energy. We

▶ compute an approximate ∇̃H ∈ Ẋ;
▶ use it in the right-hand side of the ODE.

Energy-conserving discretisation (formal)

Find (x, ∇̃H) ∈ X× Ẋ such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤B∇̃H dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt

for all (y,y1) ∈ Ẋ× Ẋ.

This is more expensive than necessary. The second equation states that ∇̃H is the projection
onto Ẋ of ∇H; in the discrete case, this can be evaluated exactly.

39 / 61

The Kepler problem

Using the explicit projection P, we can write:

Energy-conserving discretisation (practical)

Find x ∈ X such that ∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤BP[∇H(x)] dt

for all y ∈ Ẋ.

This is an alternative derivation of the energy-preserving scheme of Cohen & Hairer (2011)
(when certain quadrature rules are used).

40 / 61

The Kepler problem

Using the explicit projection P, we can write:

Energy-conserving discretisation (practical)

Find x ∈ X such that ∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

y⊤BP[∇H(x)] dt

for all y ∈ Ẋ.

This is an alternative derivation of the energy-preserving scheme of Cohen & Hairer (2011)
(when certain quadrature rules are used).

40 / 61

The Kepler problem

−2 −1 0 1 2
−2

−1

0

1

2

David Cohen Ernst Hairer

Cohen & Hairer (2011):

✗ symplecticity

✗ angular momentum

✓ energy

✗ orientation (LRL)

41 / 61

The Kepler problem

Now let us modify the scheme to also preserve A (and hence L):

▶ compute approximate ∇̃A1, ∇̃A2 ∈ Ẋ;
▶ modify the right-hand side.

How can we modify the right-hand side, though? It seems ∇A1 and ∇A2 don’t appear.

42 / 61

The Kepler problem

Now let us modify the scheme to also preserve A (and hence L):

▶ compute approximate ∇̃A1, ∇̃A2 ∈ Ẋ;
▶ modify the right-hand side.

How can we modify the right-hand side, though? It seems ∇A1 and ∇A2 don’t appear.

42 / 61

The Kepler problem

It turns out we can rewrite the right-hand side to expose them:

Alternating form

There exists a scalar function λ(x) such that

y⊤B∇H(x) = λ(x) det
(
∇H ∇A1 ∇A2 y

)
.

Theorem

For finite-dimensional Hamiltonian/Poisson systems, the right-hand side can be written as an
alternating form of the test function and gradients of conserved quantities.

43 / 61

The Kepler problem

It turns out we can rewrite the right-hand side to expose them:

Alternating form

There exists a scalar function λ(x) such that

y⊤B∇H(x) = λ(x) det
(
∇H ∇A1 ∇A2 y

)
.

Theorem

For finite-dimensional Hamiltonian/Poisson systems, the right-hand side can be written as an
alternating form of the test function and gradients of conserved quantities.

43 / 61

The Kepler problem

Energy- and orientation-conserving discretisation (formal)

Find (x, ∇̃H, (∇̃A1, ∇̃A2)) ∈ X× Ẋ× Ẋ2 such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

λ(x) det
(
∇̃H ∇̃A1 ∇̃A2 y

)
dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt∫ tn+1

tn

y⊤
2 ∇̃A1 dt =

∫ tn+1

tn

y⊤
2 ∇A1 dt∫ tn+1

tn

y⊤
3 ∇̃A2 dt =

∫ tn+1

tn

y⊤
3 ∇A2 dt

for all (y,y1, (y2,y3)) ∈ Ẋ× Ẋ× Ẋ2.

Again, this can be rewritten purely as a problem in x.

44 / 61

The Kepler problem

Energy- and orientation-conserving discretisation (formal)

Find (x, ∇̃H, (∇̃A1, ∇̃A2)) ∈ X× Ẋ× Ẋ2 such that∫ tn+1

tn

y⊤ẋ dt =

∫ tn+1

tn

λ(x) det
(
∇̃H ∇̃A1 ∇̃A2 y

)
dt∫ tn+1

tn

y⊤
1 ∇̃H dt =

∫ tn+1

tn

y⊤
1 ∇H dt∫ tn+1

tn

y⊤
2 ∇̃A1 dt =

∫ tn+1

tn

y⊤
2 ∇A1 dt∫ tn+1

tn

y⊤
3 ∇̃A2 dt =

∫ tn+1

tn

y⊤
3 ∇A2 dt

for all (y,y1, (y2,y3)) ∈ Ẋ× Ẋ× Ẋ2.

Again, this can be rewritten purely as a problem in x.
44 / 61

The Kepler problem

−2 −1 0 1 2
−2

−1

0

1

2

Our scheme:

✗ symplecticity

✓ angular momentum

✓ energy

✓ orientation (LRL)

45 / 61

The Kepler problem

1
2

1

4

6

1

8

1

10−2 10−1
10−12

10−9

10−6

10−3

100

timestep ∆t

er
ro
r
∥x

(2
π
)
−

x
(0
)∥

s = 1
s = 2
s = 3
s = 4

46 / 61

Hamiltonian PDE

Section 8

Hamiltonian PDE

47 / 61

Hamiltonian PDE

The Benjamin–Bona–Mahony equation

ut + ux + uux − uxxt = 0, u(−50) = u(50),

has a Hamiltonian structure:(
id− ∂2

x

)
u̇ = −∂xH

′(u),

with Hamiltonian

H(u) =

∫
Ω

1

2
u2 +

1

6
u3 dx.

The equation has exactly two other invariants:

I1(u) =

∫
Ω
u dx,

I2(u) =

∫
Ω
u2 + u2x dx.

T. Brooke Benjamin

Jerry Bona

John Joseph Mahony

48 / 61

Hamiltonian PDE

The Benjamin–Bona–Mahony equation

ut + ux + uux − uxxt = 0, u(−50) = u(50),

has a Hamiltonian structure:(
id− ∂2

x

)
u̇ = −∂xH

′(u),

with Hamiltonian

H(u) =

∫
Ω

1

2
u2 +

1

6
u3 dx.

The equation has exactly two other invariants:

I1(u) =

∫
Ω
u dx,

I2(u) =

∫
Ω
u2 + u2x dx.

T. Brooke Benjamin

Jerry Bona

John Joseph Mahony

48 / 61

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

49 / 61

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

49 / 61

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

49 / 61

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

49 / 61

Hamiltonian PDE

Our general formulation is

M [u̇] = B[H ′(u)],

where M−1B is skew-symmetric.

This conserves the Hamiltonian, by the usual argument:

H(u(tn+1))−H(u(tn)) =

∫ tn+1

tn

Ḣ dt

=

∫ tn+1

tn

H ′(u)u̇ dt

=

∫ tn+1

tn

H ′(u)M−1BH ′(u) dt

= 0.

William Rowan Hamilton

49 / 61

Hamiltonian PDE

Following a similar analysis, it turns out that the right auxiliary variable to use is

w1 ≈ M−∗[H ′(u)],

which is not obvious (to me).

Energy-conserving discretisation

Find (u,w1) ∈ X× Ẋ such that∫ tn+1

tn

vM [u̇] dt =

∫ tn+1

tn

vBM∗[w1] dt∫ tn+1

tn

w1M [v1] dt =

∫ tn+1

tn

H ′[u]v1 dt

for all (v, v1) ∈ Ẋ× Ẋ.

50 / 61

Hamiltonian PDE

Following a similar analysis, it turns out that the right auxiliary variable to use is

w1 ≈ M−∗[H ′(u)],

which is not obvious (to me).

Energy-conserving discretisation

Find (u,w1) ∈ X× Ẋ such that∫ tn+1

tn

vM [u̇] dt =

∫ tn+1

tn

vBM∗[w1] dt∫ tn+1

tn

w1M [v1] dt =

∫ tn+1

tn

H ′[u]v1 dt

for all (v, v1) ∈ Ẋ× Ẋ.

50 / 61

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed
with a fourth-order scheme (s = 2).

Simulation near t = 0.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

51 / 61

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed
with a fourth-order scheme (s = 2).

Simulation near t = 10000.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

51 / 61

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed
with a fourth-order scheme (s = 2).

Simulation near t = 20000.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

51 / 61

Hamiltonian PDE

We simulate a soliton that travels rightwards at constant speed
with a fourth-order scheme (s = 2).

Simulation near t = 20000.

Spurious oscillations

H1 norm conserved but L2 norm decreases → oscillation.

Carl Friedrich Gauss

Gauss method:

✓ symplecticity

✓ integral

✓ H1-norm

✓ energy

51 / 61

Hamiltonian PDE

The same soliton, again:

Simulation near t = 0.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

Our method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

52 / 61

Hamiltonian PDE

The same soliton, again:

Simulation near t = 10000.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

Our method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

52 / 61

Hamiltonian PDE

The same soliton, again:

Simulation near t = 20000.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

Our method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

52 / 61

Hamiltonian PDE

The same soliton, again:

Simulation near t = 20000.

Good news

Soliton character is preserved even over very long timescales.

Boris Andrews

Our method:

✗ symplecticity

✓ integral

✓ H1-norm

✓ energy

52 / 61

The Parker problem

Section 9

The Parker problem

53 / 61

The Parker problem

Ideal magnetohydrodynamics

ut − div(2νε(u)) + div (u⊗ u) + grad p+ SB × (E + u×B) = f in Ω,

div u = 0 in Ω,

Bt + curlE = 0 in Ω,

E + u×B = 0 in Ω.

Two structures to preserve:

▶ energy E = ∥u∥2 + ∥B∥2 is dissipated;

▶ helicity H = (A,B)L2 is conserved, for any A s.t. curlA = B.

54 / 61

The Parker problem

Ideal magnetohydrodynamics

ut − div(2νε(u)) + div (u⊗ u) + grad p+ SB × (E + u×B) = f in Ω,

div u = 0 in Ω,

Bt + curlE = 0 in Ω,

E + u×B = 0 in Ω.

Two structures to preserve:

▶ energy E = ∥u∥2 + ∥B∥2 is dissipated;

▶ helicity H = (A,B)L2 is conserved, for any A s.t. curlA = B.

54 / 61

The Parker problem

The Parker conjecture (1972)

For almost all initial conditions, the magnetic field develops tangential
discontinuities during ideal magnetic relaxation to a force-free equilibrium.

Parker conjectured the existence of the solar wind. The shape of the
magnetic field in the outer solar system is now called a Parker spiral.

This conjecture has many important consequences in solar physics,
including for the coronal heating problem (why is the corona millions of
degrees hotter than the surface?).

Eugene N. Parker

55 / 61

The Parker problem

The Parker conjecture (1972)

For almost all initial conditions, the magnetic field develops tangential
discontinuities during ideal magnetic relaxation to a force-free equilibrium.

Parker conjectured the existence of the solar wind. The shape of the
magnetic field in the outer solar system is now called a Parker spiral.

This conjecture has many important consequences in solar physics,
including for the coronal heating problem (why is the corona millions of
degrees hotter than the surface?).

Eugene N. Parker

55 / 61

The Parker problem

The Parker conjecture (1972)

For almost all initial conditions, the magnetic field develops tangential
discontinuities during ideal magnetic relaxation to a force-free equilibrium.

Parker conjectured the existence of the solar wind. The shape of the
magnetic field in the outer solar system is now called a Parker spiral.

This conjecture has many important consequences in solar physics,
including for the coronal heating problem (why is the corona millions of
degrees hotter than the surface?).

Eugene N. Parker

55 / 61

The Parker problem

There is a crucal relationship between helicity H and energy E:

The Arnold inequality

|H| ≲ ∥B∥L2 .

This means that, while the system is dissipative, initial data with nonzero
helicity cannot relax to the zero state.

The helicity provides a topological barrier that is crucial for the physics of
the problem.

Vladimir Arnold

56 / 61

The Parker problem

There is a crucal relationship between helicity H and energy E:

The Arnold inequality

|H| ≲ ∥B∥L2 .

This means that, while the system is dissipative, initial data with nonzero
helicity cannot relax to the zero state.

The helicity provides a topological barrier that is crucial for the physics of
the problem.

Vladimir Arnold

56 / 61

The Parker problem

There is a crucal relationship between helicity H and energy E:

The Arnold inequality

|H| ≲ ∥B∥L2 .

This means that, while the system is dissipative, initial data with nonzero
helicity cannot relax to the zero state.

The helicity provides a topological barrier that is crucial for the physics of
the problem.

Vladimir Arnold

56 / 61

The Parker problem

The Parker conjecture can be investigated with the magneto-frictional equations:

∂B

∂t
+∇×E = 0,

E + u×B = 0,

j = ∇×B,

u = τj ×B,

divB = 0.

This system also dissipates energy, conserves helicity, satisfies the Arnold inequality, and has
the same equilibria as the original MHD system.

57 / 61

The Parker problem

The Parker conjecture can be investigated with the magneto-frictional equations:

∂B

∂t
+∇×E = 0,

E + u×B = 0,

j = ∇×B,

u = τj ×B,

divB = 0.

This system also dissipates energy, conserves helicity, satisfies the Arnold inequality, and has
the same equilibria as the original MHD system.

57 / 61

The Parker problem

We have devised a structure-preserving discretisation of these equations.

It requires both the ideas in this talk and finite element exterior calculus.

0 0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

0.6

t

Energy E
Helicity H

Kaibo Hu

Mingdong He
58 / 61

The Parker problem

We have devised a structure-preserving discretisation of these equations.

It requires both the ideas in this talk and finite element exterior calculus.

0 0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

0.6

t

Energy E
Helicity H

Kaibo Hu

Mingdong He
58 / 61

The Parker problem

t = 0 t = 10 t = 10000

Magnetic field lines for a large-scale simulation on ARCHER2, coloured by magnetic field strength ∥B∥.

59 / 61

Conclusions

Section 10

Conclusions

60 / 61

Conclusions

Good news

We can now (with work) discretely replicate many conservation/dissipation laws.

Potential applications

magnetohydrodynamics, multicomponent flows, viscoelastic fluids, geometric PDE,
Hamiltonian systems, the Lorentz system, hyperelasticity, gradient flows

61 / 61

Conclusions

Good news

We can now (with work) discretely replicate many conservation/dissipation laws.

Potential applications

magnetohydrodynamics, multicomponent flows, viscoelastic fluids, geometric PDE,
Hamiltonian systems, the Lorentz system, hyperelasticity, gradient flows

61 / 61

	Introduction
	Examples
	How it works
	Navier–Stokes equations
	Incompressible equations

	References
	References
	Connections to existing work
	Compressible equations

	The Kepler problem
	Hamiltonian PDE
	The Parker problem
	Conclusions

