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Abstract

This thesis lays the foundation for the computation of transport of mass,

momentum and heat in multicomponent flows, systems which involve the

transport of two or more chemical species in a common thermodynamic

phase. Although commonplace in nature, problems of this type remain

relatively unstudied in the numerical literature.

The transport problems considered in this thesis are formulated in terms

of the Onsager–Stefan–Maxwell equations, which describe multi-species

molecular diffusion in fluids, and the Navier–Stokes equations, which ac-

count for convection. Under some mild assumptions, we prove existence

and uniqueness for some linearized systems. Effective numerical methods

using finite elements are then obtained and analyzed to provide a general

methodology for simulation.

The scope of the thesis is broader than numerical analysis. It also makes

original contributions to formulations of transport problems within the

framework of linear irreversible thermodynamics. The theory of fluid ther-

modiffusion is consolidated and cast into a new form, which allows for

straightforward simulation of heat transfer alongside molecular diffusion.

In addition we provide original and substantial detail on how to extend

the framework to encompass transport in electrolytic materials under the

assumption of electroneutrality, which generalizes some of the equations

arising in porous electrode theory.

The power of the framework developed is illustrated throughout the thesis.

We employ it to simulate a diverse range of examples, such as oxygen

diffusion in the lungs, the mixing of flowing hydrocarbons streams, thermal

separation of gases and transport in electrolytes.
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Chapter 1

Introduction

1.1 Overview

Many fluids consist of mixtures; for example, air is a mixture of nitrogen, oxygen,

carbon dioxide, and other species. In many situations, it is not necessary to resolve

the motions of the individual species, such as when modelling the flow of air over an

aircraft. However, in other contexts, detailed knowledge of the transport of individual

species is required. We describe this situation as a multicomponent flow, where a fluid

is composed of 2 ≤ n ∈ N+ distinct chemical species in a common thermodynamic

phase. Examples include biological applications, where one may be interested in the

transport of oxygen and carbon dioxide in blood, in chemical engineering, where one

may be interested in separating or combining the constituents of petroleum, or in

electrochemistry, where the performance of a battery is often limited by the transport

of ions within an electrolyte.

Modelling transport in multicomponent flow necessitates effective numerical meth-

ods to solve the governing equations. These equations consider two distinct types of

variables. The first are thermodynamic state variables, which are quantities that de-

scribe the macroscopic state of a system, such as its pressure, temperature or chemical

composition. The other types of variables are velocities or fluxes, which describe the

magnitude and direction of flow of a substance or property.

The equations arising in transport theory may also be placed into two distinct

categories: balance equations, which derive from conservation laws; and constitutive

equations, which postulate material-specific relationships between the gradients of ther-

modynamic state variables and the fluxes. The transport phenomena studied in this
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thesis are restricted to mass, heat and momentum transfer, occurring via diffusion

and convection. The common three constitutive laws to describe these transport phe-

nomena are Fick’s law of molecular diffusion, Fourier’s law of heat conduction, and

Newton’s law of viscosity.

A general constitutive relationship for transport phenomena was proposed by On-

sager [120, 121]. Given a system whose state is described by the independent thermody-

namic state variables {xi}mi=1, with associated velocities or fluxes, denoted by {Ji}mi=1,

it was postulated that in situations not too far from thermodynamic equilibrium1

Fi =
m∑

j=1

ΛijJi. (1.1)

The terms Fi are known as the thermodynamic forces, which depend primarily on

the gradients of state variables xi. The terms Λij are transport or phenomenological

coefficients.

The law (1.1) places the constitutive laws of Newton, Fourier and Fick under a com-

mon framework. If one identifies the thermodynamic driving forces as the infinitesimal

strain, the temperature gradient, and the concentration gradient, the transport matrix

as the inverse of viscosity, thermal conductivity and diffusivity, and the flux as the

viscous stress, heat flux, and molar flux, the elementary constitutive laws of Newton,

Fourier and Fick.

There exists a substantial body of literature for each law considered separately,

including the development of effective finite element methods for each of the corre-

sponding partial differential equations. However, a rigorous unified numerical method

coupling these transport phenomena in multicomponent systems is lacking. The need

for such a method arises naturally in many applications.

The objective of this thesis is twofold. First, we aim to develop rigorous finite

element methods to solve these transport phenomena simultaneously, thus assisting

in rendering a broad and fertile area of engineering tractable to numerical simulation.

Second, we set out to make original reformulations of the constitutive laws for both

thermodiffusion and electrochemical transport, and demonstrate the utility of such

reformulations. This works hand in hand with the first objective, as the primary

benefit of these reformulations is to allow for an extension of the finite element methods

developed in Chapter 2 and Chapter 3 to anisothermal, charged fluids. It also carries

1In this thesis, we understand ‘not too far from equilibrium’ to mean that the forces Fi are suffi-
ciently small so that any non-linear relation between the forces Fi and fluxes Ji, can be neglected.
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a distinct motivation that exceeds numerical analysis, in that a general consolidation

of the underlying theory of the constitutive laws is achieved.

1.2 Thermodynamic fundamentals

When modelling transport equations, one must take into account thermodynamic prin-

ciples. We detail these in this section as they pertain to mass, heat and momentum

transport.

1.2.1 Summary of thermodynamics

State variables are extensive if they are proportional to the size of the system, such

as the number of moles of each species {ni}ni=1 and the volume of the system V .

Conversely, state variables are intensive if they are independent of the size of the

system. Examples include the pressure, denoted by p > 0 and the temperature T > 0.

The free energy of the system is expressed by the Gibbs free energy function

G({ni}ni=1, p, T ), measured in joules. G has the fundamental property of extensivity;

for any λ ≥ 0

G({λni}ni=1, p, T ) = λG({ni}ni=1, p, T ). (1.2)

The first law of thermodynamics may be formulated as

dG = −SdT + V dp+
n∑

i=1

µidni, (1.3)

where S is the entropy. The term dG is common notation in thermodynamics used to

denote a differential, infinitesimal or otherwise. For our purposes, the practical value

of this differential is that it can be replaced with a differential operator. For a more

mathematically rigorous treatment of thermodynamics, we refer the reader to [66]. The

chemical potential of the ith species is defined as

µi :=
(∂G
∂ni

)
nj ̸=i,p,T

. (1.4)

The volume V and entropy S are additional properties of the system, which satisfy

V :=
(∂G
∂p

)
{ni}ni=1,T

and S := −
(∂G
∂T

)
{ni}ni=1,p

. (1.5)
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Because of how they appear in (1.5), V and S are referred to as being conjugate to p

and T respectively, and each µi conjugate to the corresponding molar content ni. Note

that various alternative parameterisations of energy are possible in thermodynamics;

for example, one could exchange the Gibbs energy G({ni}ni=1, p, T ) for the Helmholtz

energy A({ni}ni=1, V, T ). Since various parameterisations that exchange extensive (in-

tensive) variables for their intensive (extensive) conjugate variables are possible, it is

conventional in thermodynamics to notate the intended parameterisation with sub-

scripts when taking partial derivatives.

It can be shown that the Gibbs free energy satisfies

G =
n∑

i=1

µini (1.6)

as a direct consequence of the definition of the chemical potential and Euler’s theorem

for homogeneous functions. Combining equations (1.3) and (1.6) we can derive

n∑

i=1

nidµi = −SdT + V dp (1.7)

which is known as the Gibbs–Duhem equation. It will be convenient to use concentra-

tions within the system rather than molar contents. Dividing through (1.7) by V and

replacing the differential with a gradient, we deduce that

n∑

i=1

ci∇⃗µi = −S∇⃗T + ∇⃗p (1.8)

where ci = ni/V is the concentration of species i and S = S/V the molar entropy. The

total molar concentration of the phase, will be denoted as cT and is defined by

cT =
n∑

i=1

ci. (1.9)

Similarly, we may use nT =
∑n

i=1 ni to indicate the total number of moles in the

system. In terms of concentrations, (1.3) may be written as

∇⃗G̃ = −S∇⃗T + ∇⃗p+
n∑

i=1

µi∇⃗ci, (1.10)

4



where G̃ = G/V is the Gibbs free energy per volume.

Further useful properties are the partial molar volumes, {V i}ni=1 and partial molar

entropies {Si}ni=1, which may be defined as

V i =

(
∂µi
∂p

)

{nj}j ̸=i,T
and Si = −

(
∂µi
∂T

)

{nj}j ̸=i,p
. (1.11)

Differentiation of equation (1.6) with respect to pressure or temperature and the use

of the relations (1.5) yields the respective equations

V =
n∑

i=1

V ini (1.12a)

S =
n∑

i=1

Sini. (1.12b)

Dividing equation (1.12a) through by V , we can alternatively express this as

1 =
n∑

i=1

V ici (1.13)

which will lead us to the equation of state in the next subsection.

There are two further properties of liquids and gases that will be useful when

analyzing the transport problem. The first of these properties is the isothermal bulk

modulus K, defined by
1

K
= − 1

V

(∂V
∂p

)
{ni}ni=1,T

. (1.14)

This measures the resistance of a change in volume of the phase to a change in pressure.

The incompressible limit occurs when K → ∞. By the relation (1.12a) we can derive

that incompressiblity occurs whenever the partial molar volumes are assumed constant

with pressure.

The second property is the volumetric coefficient of thermal expansion, αV

αV =
1

V

(∂V
∂T

)
{ni}ni=1,p

. (1.15)

This measures the change in volume of the phase given a change in the temperature,

an important material property to utilize when we consider the anisothermal case.

5



1.2.1.1 Setting and notation

Having now introduced the thermodynamic quantities, we may cast the setting for

all equations as a bounded Lipschitz domain Ω. The intensive variables we have

introduced, {µi}ni=1, p, {ci}ni=1, T , and which are used throughout this thesis, are

functions Ω :→ R. Indeed, with the important exception of the extensive variables,

such as V , S, ni, each quantity in this thesis henceforth will be a function Ω → Rk

where k = 1, d, depending on if the vector is scalar-valued or vector-valued respectively,

or Ω → Rd×d
sym if the variable is symmetric-tensor-valued. Vector-valued functions will

be distinguished by ·⃗ and symmetric-tensor-valued functions by
⇒· .

1.2.1.2 The chemical potential and equation of state

Generally each species concentration ci can be inferred from {µi}ni=1 and p given con-

stitutive laws for the chemical potential and an equation of state which relates cT to

temperature, pressure and composition. Within an isothermal ideal gas, this relation

is simply

ci =
p⊖

RT
exp

(
µi − µ⊖

i

RT

)
, (1.16)

for some known reference pressure p⊖ and a set of reference chemical potentials {µ⊖
i }ni=1.

Here R is the gas constant. In non-ideal solutions, the reference potentials µ⊖
i generally

depend on the temperature and pressure [8, 76]; they determine the value of the molar

Gibbs free energy of pure species i at the T and p values of interest. A general relation

for non-ideal systems is

µi = µ⊖
i +RT ln(γiyi), (1.17)

where yi := ci/cT is the mole fraction, and γi the activity coefficient, of species i.

(Within a system made up of n species, specifying n− 1 mole fractions determines the

composition referred to earlier.) Activity coefficients generally depend on temperature,

pressure, and composition; the definition of the reference state further requires that

they approach unity at infinite dilution, i.e. limyi→0 γi = 1. Constitutive laws like (1.17)

suffice to determine the mole fractions (but not concentrations) within non-ideal solu-

tions. To obtain the concentrations, an additional equation of state for the system as

a whole is required. A straightforward rearrangement of (1.13) leads us to

cT =
1∑
i V iyi

. (1.18)
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The importance of these relations will be apparent in Chapter 3, where our algo-

rithm is designed so that calculation of the concentrations occurs only as a postpro-

cessing step. Consequently our analysis of the linearized system may be completely

separated from the calculation of the concentrations. The advantage of this will be

borne out in Chapter 3 where our analysis may cover all systems, regardless of non-

ideality.

1.2.2 Example: ideal gas

The equation of state for an ideal gas mixture may be written as

p = cTRT. (1.19)

The chemical potential of an ideal gas mixture, with constant molar heat capacities of

the pure components, {Cp,i}ni=1, is known to be (for example see, [80, pp. 77])

µi = µ⊖ +
(
RT ln

p

p⊖
+RT ln

ni
nT

+ Cp,i

[
T − T ln

T

T⊖

])
(1.20)

for a chosen reference pressure p⊖ and reference temperature T⊖.

For an ideal gas, we may invert (1.21) use (1.19) to generalize the relation (1.16) to

ci =
p⊖

RT
exp

(
µi − µ⊖

i

RT
+ Cp,i

[
T − T ln

T

T⊖

])
. (1.21)

For an ideal gas, the bulk modulus is K = p = cTRT and the thermal expansion

coefficient is αV = T . The partial molar volume is

V i =
RT

p
(1.22)

for each i. With this definition we can recover (1.18) from (1.19) after some rearrange-

ment.
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1.3 Convection-diffusion and balance equations

Transport phenomena are not described by constitutive equations or thermodynamics

alone, but must be augmented with balance equations. In this section we detail the bal-

ance equations arising for mass and momentum transport and discuss their differences

in the dilute and concentrated regimes. In Chapter 4 we will extend this to include

the thermal balance equation. It is possible to derive other balance equations, such as

one for internal energy or pressure [69], but they will not be utilized here. Fluid flow

is governed by a momentum balance, typically expressed in the form of the Cauchy

equation
∂(ρv⃗)

∂t
= −∇⃗p+ div

(
⇒
τ
)
+ div (ρv⃗ ⊗ v⃗) + ρf⃗, (1.23)

where ρ is the fluid density, v⃗ is the flow velocity (the velocity of the medium as

a bulk),
⇒
τ is the dissipative (viscous) stress tensor, and f⃗ is the body acceleration

induced within Ω by the action of external fields. In a fluid comprising two or more

distinct chemical species, mass transport within Ω is governed by a set of material

balances, usually expressed as the species continuity equations

∂ci
∂t

= − div (civ⃗i) + ri, i = 1, . . . , n. (1.24)

For each species i, v⃗i denotes the species velocity. The given function ri quantifies the

volumetric rate at which species i is generated or depleted by homogeneous chemical

reactions.

In fluid mechanics, Cauchy’s equation (1.23) is usually closed by stating a second

governing equation to describe mass continuity and adopting a material-specific consti-

tutive law that relates viscous stress with velocity gradients. Incorporating Newton’s

law of viscosity leads to the well-known Navier–Stokes equations, a governing system

that generally determines the distribution of the flow velocity v⃗. In the mass transport

literature, material balance equations (1.24) are closed by postulating constitutive laws

that relate the species fluxes (and hence gradients) to concentration gradients and the

flow velocity, leading to a governing system that determines the distributions of all the

concentrations ci.

The portion of species flux civ⃗i driven by the flow velocity, civ⃗, is called convection,

and the excess flux J⃗i = ci(v⃗i− v⃗) is said to arise from mass diffusion. Many elementary

examples in physical chemistry and engineering consider simple diffusion, in which the

flow is taken to be stationary, such that v⃗ = 0 uniformly. The convective diffusion

problem describes diffusion within a generally nonzero flow field [93].
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Despite the fact that models for fluid flow and simple diffusion are well established,

it is not always clear how the standard modelling approaches should be combined to

simulate convective diffusion. An issue stems from the fact that species concentrations

determine a fluid’s density, through the definition

ρ =
n∑

i=1

mici, (1.25)

in which mi represents the molar mass of species i. This linkage between density

and composition affects mass continuity, because even within a stationary fluid, a

transient composition change will generally induce a density change. Moreover, the

connection affects momentum continuity, because even when a fluid moves at constant

velocity, a transient composition change will generally change the momentum density

ρv⃗ associated with the bulk flow.

1.3.1 The dilute and concentrated regimes

When applicable, a dilute-solution approximation decouples the flow problem from the

mass transport problem. This approximation is nearly universally used throughout the

convective diffusion literature. In a dilute solution, a single species called the solvent

(conventionally assigned index i = n) is taken to have a concentration very far in excess

of the remaining species (i < n), which are called solutes. Thus the fluid density varies

negligibly with solute content in a dilute solution and approximately coincides with

the mass density of the pure solvent. At moderate pressure this density is relatively

constant in the same way that it would be for a single-component fluid, so that the

incompressibility condition

div v⃗ = 0 (dilute solution) (1.26)

expresses mass continuity. Also, on the statistical grounds that each solute in a dilute

solution interacts at a molecular level almost solely with solvent molecules, the excess

solute fluxes can each be modelled by Fick’s law [61],

J⃗i = −Di∇⃗ci (dilute solution) (1.27)

for i = 1, . . . , n − 1, in which Di > 0 is the Fickian diffusivity of solute i in the

solvent. To model convective diffusion under the dilute-solution approximation, one
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solves the incompressible Navier–Stokes equations for the distributions of flow velocity

and pressure without any reference to the composition of solutes. Given the flow

velocity, one then uses Fick’s law within material balance equations (1.24) to solve for

the solute concentrations. This strategy provides a theory of convective diffusion with

a vast array of applications [16, 41, 93].

While the dilute-solution approximation has been applied to great effect, it fails

starkly when no single species is present in great excess—the so-called concentrated

solution regime. Several problems arise when attempting to relax the dilute-solution

approximation and formulate models for concentrated solutions.

In concentrated solutions, the very notion of the ‘flow velocity’ appearing in the mo-

mentum equation (1.23) becomes ambiguous, because it is no longer coincident with a

particular species velocity. One can still identify a natural composition-dependent def-

inition of v⃗ in the concentrated case, however. Time differentiation of (1.25), followed

by elimination of the concentration derivatives with species-continuity equations (1.24),

yields

∂ρ

∂t
=

n∑

i=1

mi [ri − div (civ⃗i)] =
n∑

i=1

miri − div

(
n∑

i=1

miciv⃗i

)
. (1.28)

Equation (1.28) is consistent with the common understanding of mass continuity if the

flow velocity v⃗ within a multicomponent fluid is identified as the so-called mass-average

velocity, defined as [83, p. 454]

v⃗ =
n∑

i=1

ωiv⃗i, (1.29)

where

ωi =
mici
ρ

(1.30)

defines the mass fraction of species i. Indeed, bringing in the mass-average velocity

reduces (1.28) to
∂ρ

∂t
= − div(ρv⃗), (1.31)

thereby recovering the mass continuity equation familiar from fluid mechanics.

When concentrated solutions comprise more than two species, the constitutive laws

for mass transport become incomplete because Fick’s law (1.27) fails to take into ac-

count all possible species–species interactions. Even in the case of simple diffusion,

excess flux of a given species can generally be driven by a concentration gradient of

any other species in the solution — a phenomenon known as cross diffusion. One can

include cross diffusion with a generalized Fickian model [16, 20, 92]. This extends
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(1.27) as

J⃗i = −
n∑

j=1

Dij∇⃗cj, i = 1, . . . , n, (1.32)

a form that includes double-indexed Fickian diffusivitiesDij to account for the diffusion

of species i through species j. The generalized form of Fick’s law can account for most

phenomena observed in isothermal simple diffusion systems. A particular feature it

captures is ‘uphill diffusion’ [92], where the excess flux of species i aligns with its

concentration gradient, contradicting the Fickian ansatz (1.27).

Although the generalized Fick’s law (1.32) allows for cross diffusion, the formulation

lacks practical utility because no clearly defined structure underpins the set of double-

indexed Fickian diffusivities. Little can be said about their spectral characteristics,

or the minimal number of independently specifiable coefficients Dij. It is not clear

whether constitutive laws (1.32) preserve fundamental thermodynamic relations such as

the volumetric equation of state (1.18) or the Gibbs–Duhem equation (1.8), or how the

formulation maintains the distinction between diffusion and convection. The theory of

irreversible thermodynamics, pioneered by Onsager [120–122], may be applied to relax

the assumptions of dilute solution theory. Onsager’s principles enable the statement

of thermodynamically consistent, stable constitutive relations for species excess fluxes

and stress. Importantly, the framework yields transport-coefficient matrices with clear

spectral structure, providing a useful tool for developing numerical methods.

1.4 Linear irreversible thermodynamics and the Onsager–

Stefan–Maxwell equations

1.4.1 Irreversible thermodynamics

Transport laws based on irreversible thermodynamics derive from the local entropy bal-

ance. Following the derivation of Jaumann [87], one begins with the entropy continuity

equation
∂ρŜ

∂t
= −∇⃗ · N⃗S + ṡ, (1.33)

where Ŝ is the specific entropy, N⃗S the total entropy flux, and ṡ the volumetric rate

of entropy production. Through a lengthy thermodynamic analysis involving the first

law (1.3), the volumetric equation of state (1.18), Euler’s extensivity theorem, and the

Gibbs–Duhem equation (1.7), as well as various Legendre transformations and Maxwell
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relations2 [69, 83], entropy continuity transforms into an expression that describes the

instantaneous energy dissipation. Within an isothermal fluid, the dissipation function

quantifying entropy generation due to diffusion and viscous dissipation is given as

[69, 83]

T ṡ =
n∑

i=1

d⃗i · v⃗i +
⇒
τ :

⇒̇
ε. (1.34)

Here d⃗i and
⇒̇
ε are the thermodynamic force driving diffusion of species i and the

linearized strain rate, respectively. They are identified as3

d⃗i = −ci∇⃗µi + ωi∇⃗p (1.35a)

⇒̇
ε =

1

2

(
∇⃗v⃗ + ∇⃗v⃗

)
. (1.35b)

In general, other phenomena such as chemical reactions [20, 47] or heat transport

may contribute to the dissipation, but these will be neglected to simplify the present

discussion4.

The second law of thermodynamics demands that for any change that occurs in a

closed system, the entropy either increases or remains constant. Equilibrium thermo-

dynamics only concerns stationary states, and makes no reference to time. Irreversible

thermodynamics associates the second law with the passage of time by demanding that

the energy dissipation is non-negative, T ṡ ≥ 0 everywhere, with equality holding only

in an equilibrium state.

Onsager leveraged the dissipation function (1.34) to bring thermodynamic rigour to

cross-diffusion modelling. He first postulated that the constitutive laws for transport

can be expressed in the form of a linear operator, which maps the set of all fluxes

that contribute to the dissipation into all of their conjugate forces [120, 121]. Further

physical considerations impose additional structure on this constitutive operator, such

as Curie’s principle, which disallows coupling between quantities whose tensor order

differs by one [126], and the principle that convection is non-dissipative, which imposes

a null space within the constitutive laws for mass transport [122]. Thus, Onsager’s

framework asserts the existence of two distinct constitutive relationships applicable to

2Maxwell relations in thermodynamics refers to a set of equalities derived from the symmetry of
the Hessian of a (sufficiently smooth) thermodynamic potential, such as the Gibbs free energy.

3The term ωi∇⃗p in (1.35a) gives rise to the pressure diffusion phenomenon, where pressure gradients
drive species diffusion according to their mass fraction.

4The inclusion of heat transport is extensively detailed in Chapter 4.
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isothermal convective diffusion systems, with force-explicit forms

d⃗i =
n∑

j=1

Mij v⃗j, i = 1, . . . , n, (1.36a)

⇒̇
ε = A⇒

τ . (1.36b)

In these relationships M is a matrix of Onsager drag coefficients, second-order tensors

that quantify how diffusion driving forces transform into excess fluxes, and A is the

fourth-order compliance tensor, which quantifies how the linearized rate-of-strain tensor

(the ‘force’) that drives dissipative flow relates to viscous stress (the conjugate ‘flux’).

Over a Cartesian basis, the vector–tensor products Mij v⃗ are defined component wise

as

(Mij v⃗)
k =

d∑

l=1

Mijklv
l (1.37)

for any i and j between 1 and n, where scalars vi refer to individual spatial components

of vector v⃗ (a superscript is used for spatial components of v⃗ to avoid confusion with

the species index subscript). It should be borne in mind that the first two indices of

scalar component Mijkl refer to the n-dimensional space of species, whereas the second

two refer to spatial directions.

The tensor contraction operations A⇒
σ are defined componentwise as

(A⇒
τ )ij =

d∑

k,l=1

Aijklτkl (1.38)

in which all four indices of the scalar component Aijkl refer to directions in space.

Substituting constitutive laws (1.36) into entropy-generation equation (1.34) yields

T ṡ =
n∑

i,j=1

v⃗i ·Mij v⃗j +
⇒
τ : A⇒

τ , (1.39)

revealing that the dissipation is a quadratic form in the fluxes. Since the second

law requires that energy dissipation is positive in every nonequilibrium situation, the

transport-coefficient tensors A and M both must also be positive semidefinite, in the

sense that the two individual terms appearing on the right hand side of equation (1.39)

must be non-negative for any choice of {v⃗i}ni=1 and
⇒
τ .

Onsager used microscopic arguments to identify further structure within trans-
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port constitutive laws. Using statistical mechanics, he demonstrated fundamental re-

lationships among the time correlations between fluctuations within systems at equi-

librium, and observed that similar relationships could be derived from macroscopic

transport models in which the constitutive operators are self-adjoint [120, 121]. This

self-adjointness of the positive semidefinite constitutive tensors expresses what is known

as the Onsager reciprocal relation among transport coefficients.

Onsager reciprocity requires M to be self-adjoint in the sense that

n∑

l=1

[(
n∑

k=1

Mlku⃗k

)
· v⃗l
]
=

n∑

l=1

[
u⃗l ·
(

n∑

k=1

Mlkv⃗k

)]
(1.40)

for all n-tuples of species velocities u⃗i and v⃗i. This implies symmetry of the second-

order tensors that make up M, such that Mij = M⊤
ij for all i, j = 1, ..., n [120], but also

symmetry in the indices of M corresponding to species, such that Mij = Mji [121].

Since the Frobenius operation ‘:’ is an inner product on the space of symmetric

tensors, A is self-adjoint in the sense that [31, 90]

(
A⇒
τ
)
:

⇒
σ =

⇒
τ :
(
A⇒
σ
)

∀ σ, ⇒
τ ∈ Rd×d

sym. (1.41)

In this way the commonly assumed major symmetry of the compliance tensor, writ-

ten in terms of its Cartesian components as Aijkl = Aklij, is seen to be an Onsager

reciprocal relation [83].

Some additional structure of the transport matrix is specific to multicomponent

mass diffusion. Importantly, the theory must guarantee that diffusional motion, driven

by thermodynamic property gradients, remains distinct from species convection, a non-

dissipative process driven by bulk flow. This distinction is made by requiring that M

be invariant to a shift of every species velocity by a vector field u⃗, i.e. the equation

(1.36a) remains unchanged when each vi is replaced by (vi− u⃗). The essential physical

distinction between diffusion and convection consequently requires that

n∑

j=1

Mij = 0, (1.42)

as noted by Onsager [122] and Helfand [79]. Hence M has a null eigenvalue correspond-

ing to the eigenvector 1⊤ = (1, 1, . . . , 1)⊤. From (1.36a), one can use the symmetry of
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M combined with the nullspace (1.42) to show that

n∑

i=1

d⃗i =
n∑

i=1

(
−ci∇⃗µi + ωi∇⃗p

)
= 0, (1.43)

an expression of the (isothermal) Gibbs–Duhem equation (1.8). A further consequence

of the nullspace (1.42) is the velocities of every species, and hence a complete description

of the transport problem, cannot be ascertained from the diffusion driving forces alone;

one must also solve the Cauchy momentum equation (1.23) in the compressible regime

to determine the flow velocity. This in turn requires use of the Newtonian constitutive

law (1.36b), so the coupling between the flow and mass-transport problems is strong.

A final simplification of the transport-coefficient tensors is achieved by asserting

that the material being modelled is isotropic, which will be assumed henceforth. For

mass transport, isotropy requires rotational invariance of Mij, namely that given any

orthonormal tensor
⇒

Q ,
⇒

Q ·Mij ·
⇒

Q⊤ = Mij for all i, j = 1, ..., n, implying that the tensor

entries that make up matrix M must all be proportional to the identity tensor I. Hence
M can be considered as a matrix of scalar quantities, for which the reciprocal relation

is a simple symmetry, M = M⊤. Taken together, the physical arguments require that

M is symmetric positive semidefinite n×n matrix, and that its eigenvalues, {λMi=1}ni=1,

may be ordered as

0 = λM1 < λM2 ≤ · · · ≤ λMn , (1.44)

a spectral structure that will be used throughout this thesis. This implies that at

positive concentrations, energy dissipation T ṡ > 0 occurs whenever there is relative

species motion.

One must take care to note that M may afford additional nullspaces beyond (1.42)

if any of the species concentrations vanishes. Consequently, in order to phrase the

Stefan–Maxwell equations in terms of Onsager’s transport laws (1.36) with a transport

matrix M that possesses the spectral structure (1.44), it will be necessary to assume

that ci > 0 almost everywhere for each i = 1, 2, . . . n. We make this assumption

henceforth.

In the case of the viscous constitutive law, isotropy is ensured by demanding that

the deformation stress and rate-of-strain tensors commute (as a matrix product) [3].

The number of free parameters in (1.36b) reduces to just two, leaving Newton’s law of

viscosity,

⇒
τ = 2η

(
⇒̇
ε− tr(

⇒̇
ε)

d
I

)
+ ζ tr(

⇒̇
ε)I, (1.45)
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in which η > 0 represents the (Newtonian shear) viscosity and ζ > 0 the bulk viscosity.

Equivalently, inverted to the force-explicit form (1.36b), this becomes

ε(v) =
1

2η
τ +

(
1

d2ζ
− 1

2ηd

)
(tr τ)I =: Aτ, (1.46)

which will be used in Chapter 3.

1.4.2 Navier–Stokes–Onsager–Stefan–Maxwell equations

Historically, flux laws (1.36a) were preceded by the Stefan–Maxwell theory of diffusion

in gas mixtures. In an isobaric isothermal ideal gas, the driving forces (1.35a) simplify

to

d⃗i = −RT ∇⃗ci, i = 1, . . . , n. (1.47)

Maxwell [103] and Stefan [135] related these concentration gradients to the product of

a matrix of binary diffusivities and species velocities. The resulting equations are

−RT ∇⃗ci =
n∑

j=1
i ̸=j

RTcicj
DijcT

(v⃗i − v⃗j), i = 1, . . . , n. (1.48)

Here Dij ∈ R represents the Stefan–Maxwell diffusivity of species i through species j.

The Stefan–Maxwell diffusivities are symmetric in the species indices, Dij = Dji, and

coefficients Dii are not defined.

Lightfoot et al. [94] noted that the Stefan–Maxwell equations can be reconciled

with the isotropic Onsager equations (1.36a) by identifying the entries of the isotropic

transport matrix M as

Mij =





−RTcicj
DijcT

if i ̸= j,

∑n
k=1,k ̸=i

RTcick
DikcT

if i = j.

(1.49)

Observe that symmetry of Onsager’s M is equivalent to the Stefan–Maxwell hypothesis

Dij = Dji. Moreover, the nullspace of M demanded by (1.42) is naturally built in into

the Stefan–Maxwell system because v⃗i− v⃗j = (v⃗i− u⃗)− (v⃗j− u⃗) for any choice of vector

field u⃗.

The Onsager–Stefan–Maxwell (OSM) framework embodied by the identification of
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M as (1.49) extends readily to isothermal but nonisobaric simple diffusion, and can also

be applied to non-gaseous isotropic phases [83, 92]. In this case the nonisobaric diffusion

driving forces extend to expression (1.35a). Both Darken [43] and Lightfoot et al. [94]

used the isobaric version of the driving forces in equation (1.35a) to describe simple

diffusion within condensed phases—the former for solids and the latter for viscous

liquids.

One may derive a more explicit and illuminating form for entropy production. Using

the equation (1.34) combined with the constitutive laws (1.45), (1.36), (1.49), allows

us to derive

T ṡ =
1

2

∑

i ̸=j

RTcicj
DijcT

|v⃗i − v⃗j|2 + 2η

∣∣∣∣
⇒̇
ε− 1

d
(∇⃗ · v⃗)I

∣∣∣∣
2

+ ζ
(
∇⃗ · v⃗

)2
. (1.50)

These are known formulas for entropy generation due to diffusion and viscous dis-

sipation, which can be found for example in references [83, equation (11.2-44)], [134,

equation (34)] or [68, Lemma 7.7.1].

Equation (1.50) shows that that if coefficients Dij are positive, then M is sym-

metric positive semidefinite. In the case of ideal-gas mixtures, it can be assumed that

the Stefan–Maxwell diffusion coefficients Dij are given constants, which places even

stronger restrictions on their values. Whenever the concentrations satisfy ci ≥ κ > 0

for each i = 1, 2, . . . , n and any positive constant κ, then λκ ≤ λM2 for a positive

constant λκ which depends only on κ, a fact that will be used throughout this the-

sis. From the expression (1.50), one can show that the positivity of Dij is also a

necessary condition for (1.44) to be true for all positive concentrations [134]. It must

be stressed, however, that the Stefan–Maxwell diffusion coefficients in many physical

systems depend strongly on the concentrations of the species, in which case negative

Stefan–Maxwell diffusion coefficients are not only possible, but are observed and of

practical interest [91, 148]. Therefore in order to present a general framework for mul-

tispecies diffusion, the results in this thesis only use the spectral structure (1.44), not

the positivity of the Stefan–Maxwell diffusion coefficients.

On the other hand, one can see from the formula (1.50) that both the shear and

bulk viscosities must be nonnegative to ensure consistency with the second law.

We reserve the term Stefan–Maxwell equations for the equations (1.48), which are

restricted to an isothermal isobaric ideal gas with a prescribed convection component.

The general non-ideal fluids coupled with the momentum equation (1.23) and the

constitutive law (1.46) via the mass-average velocity constraint (1.29) we will call the

Navier–Stokes–Onsager–Stefan–Maxwell (NSOSM) equations. A regime that will be
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of particular interest to us will be a creeping flow appropriate for low Reynolds number

flow, for which the momentum balance equation reduces to the Stokes equation

div
⇒
τ − ∇⃗p = ρf⃗. (1.51)

With this simplification, we call the corresponding equations the Stokes–Onsager–

Stefan–Maxwell (SOSM) equations.

1.5 Literature summary

1.5.1 Historical overview of constitutive laws

The earliest constitutive law was proposed by Robert Hooke [84] in 1678, who stated

that the extension of a spring was proportional to the force through a material-

dependent constant. Shortly thereafter Newton postulated in 1687 that the stress

in a fluid was proportional to the gradient of the fluid velocity [117], stated in modern

notation as (1.45).

In addition to the constitutive law relating stress and strain, Newton also derived

a law stating that the transfer of heat between two systems was proportional to the

difference in temperature between them, the so-called Newton law of cooling. In 1822

Fourier [64] greatly extended this for continuum materials and derived a law for heat

conduction relating the heat flux q⃗ to the temperature gradient ∇⃗T , via the thermal

conductivity k > 0:

q⃗ = −k∇⃗T. (1.52)

In 1855 Fick [61] proposed the law (1.27) for diffusive mass transport, by analogy

Fourier’s law. Maxwell [103] applied kinetic theory to deduce Fick’s law for binary

isothermal ideal gas diffusion, showing that D relates to a material property. Stefan

[135] extended Maxwell’s analysis to multicomponent gases, expressing the gradient of

each species concentration in terms of a matrix of binary diffusivities (1.48).

Around a similar time the coupling of mass diffusion with thermal diffusion were

discovered, at first by Ludwig in 1856 [97]. Primarily this coupling refers to the process

by which a temperature gradient drives diffusion, known as the Soret effect [133], and

the converse process, by which a concentration gradient drives an irreversible heat

flux, called the Dufour effect [52]. We use the term thermodiffusion to indicate coupled

thermal and mass diffusion.
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Nernst [112] and later Planck [124] posed an extension of the Fickian model (1.27)

to account for the effect of an electric field on charged particles

J⃗i = −Di∇⃗ci + Fzici∇⃗Φ. (1.53)

Here F is Faraday’s constant and zi is the charge of the ith species and Φ is taken to

be the electric potential.

A seminal theoretical breakthrough was laid by the kinetic theory [35] developed

independently by Chapman and Enskog in the years 1916-1917. The Chapman–Enskog

theory gave a framework for which transport equations could be derived from the kinetic

theory of gases, and was used by Chapman and Enskog to derive Fourier’s law of heat

conduction, Fick’s law of diffusion and Newton’s law of viscosity. Importantly the

kinetic theory provided a method to calculate the relevant transport properties from

intermolecular potentials. Development of this theory also allowed for the prediction of

the thermodiffusion effect in gases, and the constitutive laws that couple heat transfer

with diffusion. The extension to thermodiffusion was developed later by Hirschfelder et

al. [83], who derive what are sometimes called the generalized Stefan–Maxwell equations

for an ideal gas:

−cTRT ∇⃗yi + (ωi − yi)∇⃗p−
n∑

j=1

RTcicj
DijcT

(
DT
i

ρi
− DT

j

ρj

)
∇⃗ lnT =

n∑

j=1

RTcicj
DijcT

(v⃗i − v⃗j) .

(1.54)

Independently, another far reaching breakthrough was achieved by Onsager in a

series of papers [120–122], which laid the foundations of linear irreversible thermo-

dynamics — a primary topic of this thesis. The structure of this linear irreversible

thermodynamics as it pertains to convection and thermodiffusion has been detailed

in the preceding section. Lightfoot, Cussler and Rettig’s observation that Onsager’s

transport matrix, which applied to condensed phases as well as gases, can be cast

in terms of Stefan–Maxwell diffusivities extended the Stefan–Maxwell theory to cover

molecular diffusion processes in fluids [94]. Newman et al. [114] brought the generaliza-

tion further, accounting for materials containing charged solutes, thereby completing

the development of the contemporary theory. Modern expositions of the theory can be

found in [68, 92, 134] and [44].

Finally it is worth recalling that the Onsager ansatz (1.1) rests on an assumption

of the system being close to equilibrium. This is not always adequate to describe sit-

uations of interest. For example chemical reactions often occur far from equilibrium
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and many fluids are non-Newtonian, in the sense that they are not described by equa-

tions of the form (1.45). Extending constitutive laws beyond the purview of linear

relationships in a thermodynamically consistent way, has been a topic of extensive

research over the past few decades. Some notable works in this direction include the

GENERIC framework of Öttinger [123], the work of Rajagopal et al. on implicitly

constituted fluids and solids [127, 128] and the recent wealth of research extending

multicomponent flow models [20, 26]. This thesis emphatically only deals with linear

irreversible thermodynamics, which is adequate to describe a vast array of practical

problems and for which many numerical issues remain. Doubtless, numerical analysis

of linear irreversible thermodynamics will be a useful guide for further extensions far

from equilibrium.

1.5.2 Survey on numerical literature

Although to our knowledge there is no general numerical technique developed for trans-

port theory in the broad regime we have detailed above, there is a vast literature,

numerical and otherwise, analysing certain subcomponents of the equations we have

presented. In this section we attempt to provide the reader with an overview of the

existing literature on transport and detail its connection with the Onsager–Stefan–

Maxwell equations we have presented.

1.5.2.1 Thermodiffusion

For a dilute solution in a stationary medium (that is v⃗ = 0), one can use Fick’s law for

mass diffusion and the continuity equation to derive a parabolic equation

∂c

∂t
= −∇⃗ · (D∇⃗c). (1.55)

Similarly in an isobaric medium where one does not need to take into account mass

transfer (v⃗i = 0), but wishes to compute heat transfer, Fourier’s law may be applied

with the thermal balance equation to derive

ρĈp
∂T

∂t
= −∇⃗ · (k∇⃗T ) (1.56)

where Ĉp is the specific heat capacity. Numerical methods for such parabolic equations

is a mature field. For both transient and the steady-state simulations there is a wealth
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of choices utilising finite difference, finite volume and finite element methods. A com-

prehensive survey of such methods is beyond the scope of the thesis, however we direct

the reader to [85, 142] and the references contained therein for further details.

Less widely spread yet of specific interest to us are numerical methods for solving the

Stefan–Maxwell equations. For ideal gases with no pressure gradients or momentum,

i.e. the purely diffusional aspect of the problem — considerable recent attention has

been has been given to numerical methods, such as the finite element method proposed

by McLeod and Bourgault [105], the finite volume method of Cancès et al. [28] and a

finite difference scheme by Bondesan et al. [19].

Traditionally such techniques rely on specifying a reference velocity, such as the

mass-average velocity, and using this to invert the Stefan–Maxwell equations into a

flux explicit form,

N⃗i =
n∑

j=1

ciLij d⃗j, (1.57)

where N⃗i = civ⃗i is the molar flux and L is also a singular matrix. The details of

this process are explained in depth in Chapter 4. Expanding the d⃗i first in terms of

chemical potential (neglecting the pressure diffusion term in equation (4.6)), and then

in terms of concentration gradients, one can derive a generalized Fickian law. Further

details of the inversion process and its expansion in terms of composition gradients are

contained in [92] and Chapter 4 and the appendix in the present work.

1.5.2.2 Convection

Many effective numerical methods have been developed to solve the Navier–Stokes

equations. We do not attempt any systematic review of this field but cite the work

of [56] as a general reference in the area. Effective numerical methods for the Navier–

Stokes equations remains an active topic of research, particularly in the regimes of high

Reynolds or Mach numbers.

A key point of divergence between this work and other work in the literature is the

treatment of compressibility. The typical assumption for incompressiblity in fluid me-

chanics takes the form of (1.26). For a single component system, this is equivalent to

our definition that 1/K = 0, or K → ∞. However for a multicomponent system under-

going mass transfer, there is little reason why density should be constant, regardless of

the value of the bulk modulus K. Indeed by the definition of ρ (1.25) one can see that

whenever there are significant concentration gradients, there should be corresponding

density gradients. For example, consider a chamber of carbon dioxide diffusing into a

chamber of hydrogen. As a consequence of the sharp difference in molar masses, in the
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transient there will be a significant difference in density between the two chambers,

despite the fact that there is no forced convection. Hence there is no reason why one

should expect (1.26) to hold. Rather than (1.26), we will be applying the surrogate

equation

∇⃗ · v⃗ = ∇⃗ ·
( n∑

j=1

ωj v⃗j

)
. (1.58)

The fact that density may not be considered constant in the concentrated solution

regime is arguably is greatest challenge confronted in this thesis as it means that the

vast arsenal of numerical methods available to incompressible fluid mechanics, cannot

readily be applied.

Although significantly more challenging, extensive literature on the compressible

Navier–Stokes equations also exists and the practitioner may select from various care-

fully engineered finite difference, finite element or finite volume schemes. For a his-

torical overview of numerical solvers for the compressible Navier-Stokes equations, we

may refer the reader to reference [33]. Mostly this literature is confined to ideal gases.

In principle our equations encompass fluid dynamics in the compressible and in-

compressible cases. In the case n = 1, the transport matrix (1.36) disappears and we

are left only with the Gibbs–Duhem equation

c∇⃗µ = ∇⃗p. (1.59)

The equation of state (1.18) also reduces to

V c = 1. (1.60)

With these two reductions, the assumption of constant density may be recovered when

the volume is assumed independent of composition, pressure and temperature. On the

other hand, gas laws relating pressure to density, as used in compressible fluid dynamics

may also be derived when the volume is allowed to vary with these terms: one way of

phrasing the ideal gas equation of state is to assert that V i = RT/p for each species i.

Although nominally our equations include the compressible Navier–Stokes equa-

tions, our solvers are not yet designed to work at high Reynolds, Péclet or Mach

numbers. We hope that in the future, sophisticated methods may be built on the foun-

dation we lay in this thesis to effectively include turbulence, shock waves and other

hydrodynamic instabilities for multicomponent transport. For example, effective nu-

merical methods based on finite difference schemes for multicomponent transport were
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successfully applied to model shock waves in a hydrogen air mixture [15].

The most significant numerical works on the full NSOSM equations are those by

Ern, Giovangigli, and coauthors, which include a monograph [58] and a series of other

papers [15, 27, 57, 59, 68] that apply multicomponent transport to combustion mod-

elling for an ideal gas. These schemes use sophisticated finite difference methods, with

the important exception of [27] which uses a finite element method with additional

least squares terms to stabilize the formulation.

1.5.2.3 Dilute solution theory and convection–diffusion equations

In the dilute solution regime, equations (1.23) and (1.46) reduce to the incompress-

ible Navier–Stokes equations, diffusion described by Fick’s law (1.27), and a set of

convection-diffusion equations. Each of these equations has been studied for many

decades, with many effective numerical techniques available. We do not attempt any

systematic review of these fields, but mention the works of [56, 85, 137, 142] as general

references in these areas. In this regime, the momentum solve and the equation for the

transport of concentration are decoupled using incompressibility.

Analogously, if one is interested in coupling thermal transport to convection, then

a common technique is to use the approximation due to Oberbeck and Boussinesq

[24, 119]. This approximation assumes that density varies linearly with temperature

and thus in lieu of the equation of state (1.18), we have

ρ = ρ0 − α(T − T0) (1.61)

where α is a coefficient of thermal expansion, and ρ0 and T0 denote the reference density

and temperature states. In the single component case, or the dilute regime, one may

use the thermal balance equation

ρĈp

(∂T
∂t

+ v · ∇⃗T
)
= −∇⃗ · q⃗ ′ +

⇒
τ :

⇒̇
ε. (1.62)

The equations (1.61), (1.62) coupled with Fourier’s law and the Navier–Stokes equa-

tions, are generally referred to as the Boussinesq equations, again a well understood

problem for which effective numerical methods have been constructed [56]. We note

that equation (1.62) has a similar form to the convection-diffusion equations.

Analysis of the Nernst–Planck equation (1.53) may also be found in abundance,

[23, 82, 95, 132]. In part this is on account of its tractability and it part due to it being

the most canonical model used for electrolyte transport. As with Fick’s law (1.27),
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often it is supplemented with a constant density assumption and extrapolated beyond

the dilute solution regime.

These convection–diffusion equations can be challenging to solve, particularly at

high Péclet numbers where diffusive transport is dominated by convective transport.

There is, however, a large body of literature dedicated to precisely solving such equa-

tions [137]. We therefore see that solving the transport equations we have laid out

in the dilute solution regime is a well developed field. For our problems of interest,

the concentrated solution regime where the solvents and solutes are in comparable

proportions, the importation of these techniques is not straightforward.

1.6 Scope and contributions of this Thesis

Chapters 2 and 3 are concerned with the first objective, the development of finite ele-

ment methods for coupled multicomponent transport phenomena in the concentrated

solution regime. Chapter 2 analyzes the Stefan–Maxwell equations, where the con-

vective velocity is regarded as a prescribed quantity. Although limited in its scope of

realistic applications, this provides a useful pedagogical stepping stone. This chapter

presents a variational formulation and proves well-posedness of the linearized system.

A finite element method arising from this formulation is then analyzed and error es-

timates obtained. The error estimates are then numerically verified and a simulation

modeling diffusion in the lungs is performed. The research in this chapter has been

published in the IMA journal of Numerical Analysis [146].

Chapter 3 extends the analysis of the second chapter, with some modifications,

to study the system of momentum coupled to diffusion, solving the Onsager–Stefan–

Maxwell system for non-ideal fluids. Using the structure of irreversible thermody-

namics, we analyze and illustrate a family of finite element solvers for the associated

equations. We prove well-posedness and error estimates of the discrete and continu-

ous system under an isothermal and vanishing Reynolds number assumption. A key

construction is a novel function space representing the space of thermodynamic forces.

A finite element method arising from this formulation is then analyzed and error esti-

mates obtained. As in Chapter 2, our error estimates are numerically verified, and are

applied to simulate the mixing of hydrocarbons. This research was done in collabora-

tion with another DPhil student, Francis R. Aznaran and formed a paper currently in

submission.

Chapters 4 and 5 address the second objective of this thesis, original reformula-

tions of the constitutive laws for both thermodiffusion and electrochemical transport.
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In Chapter 4 the equations of multicomponent diffusion are novelly extended to cover

the anisothermal case. The main contribution of this chapter is the generalization of

the isothermal transport matrix M to include the Soret and Dufour effects in mul-

ticomponent fluids. The equations are presented in novel force explicit form and the

spectral structure of the resulting anisothermal transport matrix, which we label as M̃,

is studied. The framework is then deployed to perform numerical simulations of steady

three-dimensional thermodiffusion in a ternary gas. The research in this chapter has

been published in the AIChE journal [145].

In Chapter 5 the important case of transport in liquid electrolytes is analyzed.

The fundamental question of how to incorporate electroneutrality, voltage, and cur-

rent whilst preserving the structure of linear irreversible thermodynamics is resolved.

This allows one to essentially port the numerical techniques developed in the previous

chapters over with minimal alteration to model transport of charged species. A fur-

ther pleasant consequence is that it allows one to recover and generalize some of the

equations that arise in the widely used porous electrode theory.
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Chapter 2

The Stefan–Maxwell equations

The basis of this chapter is the original paper [146].

As a first step to discretizing the general problem, we will analyze in detail the

diffusional aspect of a isothermal, isobaric ideal gas mixture. To do this, we effectively

decouple the problem from its convection component. This will be done by assuming

that the mass-flux, J⃗ = ρv⃗, is given data, and we are to enforce the constraint

J⃗ =
n∑

i=1

miciv⃗i (2.1)

whilst solving the equations

−RT ∇⃗ci =
n∑

j=1
i ̸=j

RTcicj
DijcT

(v⃗i − v⃗j), i = 1, . . . , n. (2.2)

∇⃗ · (civ⃗i) = ri (2.3)

which we label the steady-state Stefan–Maxwell equations.

This chapter is similar in scope to the work of [105], but with several key differences

and extensions some of which will also be carried forth in future chapters.

First, our approach does not need any rearrangement of (2.1) to eliminate one

species, but rather incorporates the constraint via an augmented formulation. The

choice of species to eliminate in [105] is somewhat arbitrary, and with the augmentation

we propose, is no longer necessary. Augmentation also exploits the symmetric positive

semidefinite structure of the transport matrix and preserves permutational symmetry
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of the system. This will be particularly pertinent for future chapters where we study

more complex driving forces, e.g. of the form (1.35a).

Second, the symmetric positive definite structure of the augmented transport matrix

yields straightforward proofs of the coercivity of bilinear forms on appropriate function

spaces. As a consequence, we will prove that the linearized system is well-posed in the

continuous and discrete setting and derive error bounds for its discretization in the

general case of n species. An aspect of our formulation different from [105] is that

we formulate ci ∈ H1(Ω) and v⃗i ∈ L2(Ω)d, whereas they formulate ci ∈ L2(Ω) and

N⃗i ∈ H(div,Ω). This has its consequent advantages and disadvantages. In addition

we also solve for the velocity v⃗i instead of the molar flux N⃗i = civ⃗i.

Finally we are able to design the discrete formulation in a structure-preserving way

so that the Gibbs–Duhem equation is satisfied up to machine precision, independent

of mesh size.

2.0.1 Augmentation of the transport matrix

An initial obstacle is that in systems with more than one spatial dimension, the ex-

istence of the nullspace (1.42) on M means that the one cannot recover the species

velocities given only the driving forces, but must find a tractable way to incorporate

the additional information provided by the mass-average velocity constraint (2.1).

A central idea of this thesis is to incorporate the mass-average velocity constraint

(2.1) by augmenting (2.2), in a manner inspired by the augmented Lagrangian approach

[17, 63]. Given γ > 0, for each i we multiply both sides of (2.1) by γRTωi and add the

resulting term to the ith equation of (2.2) to deduce that

d⃗i +
γRTmici

ρ
J⃗ =

n∑

j ̸=i

RTcicj
DijcT

(
v⃗i − v⃗j

)
+
γRTmici

ρ

n∑

j=1

micj v⃗j =
n∑

j=1

Mγ
ij v⃗j (2.4)

for i = 1, 2, . . . , n, where Mγ
ij is the augmented transport matrix

Mγ
ij = Mij + γLij, (2.5)

in which

Lij := RTmimicicj/ρ. (2.6)
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Our particular choice of the entries of L allows us to compute

n∑

i,j=1

v⃗i ·Mγ
ij v⃗j =

1

2

n∑

i=1

n∑

j ̸=i

cicjRT

DijcT
∥v⃗j − v⃗i∥2 +

γRT

ρ

∥∥∥
n∑

j=1

micj v⃗j

∥∥∥
2

(2.7)

to show that the augmented transport matrix is symmetric positive definite.

The first appearance of this augmentation seems to be from Helfand [79] and was

subsequently remarked upon by Giovangigli [67]. Its utility is greatly extended in this

work. Specifically, we show that the positive-definiteness achieved by this augmentation

will cause the associated bilinear forms in the variational formulation to be coercive,

greatly facilitating the analysis.

The chapter is organized as follows. Section 2 3 we derives a suitable weak formu-

lation for the problem. In section 3 we prove well-posedness of a linearized system of

(2.2)-(2.3). In section 4 we show stability of a discretization of this linearized system

and prove error estimates for the linearisation. Finally, in section 5 we verify our error

estimates with a manufactured solution and illustrate our method by simulating the

interdiffusion of oxygen, carbon dioxide, water vapour, and nitrogen in the lungs.

2.1 Problem formulation

We proceed to cast the problem (2.2)-(2.3) into variational form. Note that both sides

of equation (2.4) are proportional to RT and hence without loss of generality we assume

that RT = 1. Our idealized assumption on the driving forces then becomes

d⃗i := −∇⃗ci, i = 1, 2, . . . n. (2.8)

In this case the Gibbs–Duhem equation (1.43) reduces to

∇⃗cT = 0, (2.9)

i.e. that total concentration is constant. This is also important as the constancy of cT

is required to be consistent with the ideal gas equation of state (1.19), which is distinct

from the Gibbs–Duhem equation. We assume that J⃗ ∈ H1(Ω)d and ri ∈ L2(Ω), i =
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1, 2, . . . , n, and consider the boundary conditions

Ni · n̂ = civ⃗i · n̂ = gi ∈ H−1/2(ΓN) on ΓN , i = 1, 2, . . . , n, (2.10)

ci = fi > 0 ∈ H1/2(ΓD) on ΓD, i = 1, 2, . . . , n, (2.11)

where n̂ is the outward facing unit normal vector and ΓN ,ΓD partition ∂Ω. The

equalities in (2.10)-(2.11) are to be understood in the sense of traces [60]. It is necessary

to assume that fi is positive for each i = 1, 2, . . . , n to avoid M acquiring another

nullspace at the boundary. Either one of ΓN and ΓD may be empty. This boundary

data is assumed to satisfy

n∑

i=1

gimi = J⃗ · n̂ on ΓN , (2.12)

n∑

i=1

fi = CT on ΓD, (2.13)

where CT > 0 is a constant that we will show is equal to the total concentration (1.9).

These assumptions are necessary to be consistent with the Gibbs–Duhem equation (2.9)

and the mass-flux constraint (2.1). In the steady state, the mass continuity equation

(1.31) implies that
n∑

i=1

rimi = ∇⃗ · J⃗ in Ω (2.14)

which imposes a further constraint on the reaction rates ri. We assume (2.14) hence-

forth1.

We define the function space

H1
ΓD

(Ω) = {wi ∈ H1(Ω) : wi|ΓD = 0}, (2.15)

and the affine function space

H1
fi
(Ω) = {wi ∈ H1(Ω) : wi|ΓD = fi}. (2.16)

We can now derive the weak formulation for (2.2)-(2.3). We test (2.4) with u⃗i ∈
1According to mass conservation, physically this term should be zero for a single phase. However

we relax this condition in this chapter to allow for full generality.
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L2(Ω)d and integrate over Ω to derive for all i = 1, 2, . . . , n,

∫

Ω

(
− ∇⃗ci +

γmici
ρ

J⃗
)
· u⃗i =

∫

Ω

( n∑

j ̸=i

cicj
DijcT

(
v⃗i − v⃗j

)
+
γmici
ρ

n∑

j=1

micj v⃗j

)
· u⃗i (2.17)

for all u⃗i ∈ L2(Ω)d.

For a given wi ∈ H1
ΓD

(Ω) we multiply both sides of (2.3) by −wi and integrate by

parts to yield that for all i = 1, 2, . . . , n,

∫

Ω

civ⃗i · ∇⃗wi −
∫

ΓN

giwi = −
∫

Ω

riwi (2.18)

for all wi ∈ H1
ΓD

(Ω). We therefore seek v⃗i ∈ L2(Ω)d and ci ∈ H1
fi
(Ω) such that (2.17)

and (2.18) hold for every u⃗i ∈ L2(Q)d and wi ∈ H1
ΓD

(Ω), for each i = 1, 2, . . . , n.

Remark 1. In the case of one dimension, (2.3) and the boundary data (2.10)-(2.11)

allow us to recover civ⃗i completely. Consequently no augmentation is necessary. In

higher dimensions we require γ > 0.

We will now show that such a weak solution satisfies both the Gibbs–Duhem equa-

tion (2.9) and the mass-flux constraint (2.1). Choosing u⃗i = u⃗ ∈ L2(Ω)d for every

i = 1, 2, . . . , n and summing over i in (2.17) yields

n∑

i=1

∫

Ω

(
− ∇⃗ci +

γmici
ρ

J⃗
)
· u⃗i =

n∑

i=1

∫

Ω

( n∑

j ̸=i

cicj
DijcT

(
v⃗i − v⃗j

)
+
γmici
ρ

n∑

j=1

micj v⃗j

)
· u⃗.

(2.19)

Here we can use the nullspace (1.42) and symmetry of M to deduce

n∑

i=1

n∑

j ̸=i

cicj
DijcT

(
v⃗i − v⃗j

)
=

n∑

i,j=1

Mij v⃗j = 0, (2.20)

and further exploiting the definition of density (5.85), we obtain that

n∑

j=1

∫

Ω

γmicj v⃗j · u⃗i −
∫

Ω

γJ⃗ · u⃗+
∫

Ω

∇⃗cT · u⃗ = 0 (2.21)

for all u⃗ ∈ L2(Ω)d. Considering the first and second terms with the choice u⃗ = ∇⃗w for
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some w ∈ H1
ΓD

(Ω), and using (2.18),

n∑

j=1

∫

Ω

γmicj v⃗j · ∇⃗w −
∫

Ω

γJ⃗ · ∇⃗w =
n∑

j=1

γ
(
−
∫

Ω

mirjw +

∫

ΓN

migjw
)
−
∫

Ω

γJ⃗ · ∇⃗w

(2.22)

= −
∫

Ω

γw∇⃗ · J⃗+

∫

ΓN

γwJ⃗ · n̂−
∫

Ω

γJ⃗ · ∇⃗w (by (2.12) and (2.14))

= 0,

the final equality following from integration by parts. In light of this, (2.21) becomes

∫

Ω

∇⃗cT · ∇⃗w = 0 (2.23)

for every w ∈ H1
ΓD

(Ω). In particular, as cT is constant on ΓD by (2.13), there exists a

w ∈ H1
ΓD

(Ω) such that ∇⃗w = ∇⃗cT. For this choice of w, (2.23) becomes

∫

Ω

∥∥∇⃗cT
∥∥2 = 0. (2.24)

Hence ∇⃗cT = 0 almost everywhere, which equivalent to the Gibbs–Duhem equation

(2.9). The constraint on the Dirichlet data (2.13) ensures that cT = CT. Equation

(2.21) then simplifies to

∫

Ω

( n∑

j=1

micj v⃗j

)
· u⃗ =

∫

Ω

J⃗ · u⃗ ∀ u⃗ ∈ L2(Ω)d, (2.25)

a variational statement of the mass-flux constraint (2.1).

Remark 2. With pure Neumann boundary data (ΓD = ∅), the system (2.17)-(2.18)

is not in general well-posed. For example, consider the case where a solution is given

by v⃗i = v ∈ L2(Ω)d for each i and ci = C for a constant C > 0. This is possible for

ri = R and gi = G with R ∈ L2(Ω) and G ∈ H−1/2(ΓN) independent of i. Observe that

the variables ĉi = αci = αC and v̂i = α−1v⃗i = α−1v are also solutions for any α > 0.
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In particular, due to (1.42), the weak form of the Stefan–Maxwell equations reduces to

γ

α

∫

Ω

mici
ρ

J⃗ · u⃗i =
γ

α

∫

Ω

(mici
ρ

n∑

j=1

micj v⃗j

)
· u⃗i, (2.26)

which holds for each u⃗i ∈ L2(Ω) in light of (2.25).

In order to make the problem well-posed we introduce the auxiliary conditions

∫

Ω

ci = C̄i, i = 1, 2, . . . , n, (2.27)

for known constants C̄i. The physical interpretation of this constraint is clear. In the

transient dynamics we have the continuity equations

∂ci
∂t

= −∇⃗ · (civ⃗i) + ri. (2.28)

Integrating over Ω and using the divergence theorem, we deduce that

d

dt

∫

Ω

ci = −
∫

Ω

gi +

∫

Ω

ri. (2.29)

For a steady-state solution to exist, it is necessary that the right hand side of this

equation vanishes. Therefore, for all time t,

d

dt

∫

Ω

ci = 0. (2.30)

Hence (2.27) must hold. This will lead to our linearization, considered in the next

section, to be well-posed in the case of pure Neumann data. In the case of mixed

Dirichlet–Neumann data this assumption is not needed and the linearized system will

be well posed.

2.2 Linearization and well-posedness

We consider a linearization of Picard type. The general approach is that whenever a

velocity is multiplied by a concentration, we replace the concentration with our current

guess. An exception to this is explained in Remark 3 below. Let us define the function
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spaces X = H1(Ω)n, XΓD = H1
ΓD

(Ω)n, Q = (L2(Ω)d)n as well as the affine function

space Xf̃ = (H1
f1
(Ω), . . . , H1

fn
(Ω)). We endow XΓD with the norm ∥ · ∥XΓD

= | · |1,Ω.
Throughout the rest of this chapter we will frequently use the notation q̃ = (q1, . . . , qn)

to denote an n-tuple in one of these linear/affine function spaces as well as their discrete

subspaces.

Given a previous guess for the concentration c̃k = (ck1, . . . , c
k
n), we define a bilinear

form ac̃k(·, ·) : Q×Q→ R given by

ac̃k(ṽ, ũ) =
n∑

i=1

∫

Ω

( n∑

j ̸=i

cki c
k
j

DijcT

(
v⃗i − v⃗j

)
+
γmic

k
i

ρk

n∑

j=1

mic
k
j v⃗j

)
· u⃗i =

n∑

i,j

∫

Ω

Mγ,k
ij v⃗j · u⃗i

(2.31)

for ũ, ṽ ∈ Q. Here Mγ,k denotes the augmented transport matrix, the i, j entries being

defined by using the current guess for the concentration c̃k in equations (5.2) and (2.5).

Similarly, ρk is the density evaluated using c̃k in (5.85).

For the current guess c̃k we also define the bilinear form bc̃k : Q×X → R,

bc̃k(ũ, w̃) =
n∑

i=1

∫

Ω

cki u⃗i · ∇⃗wi (2.32)

for (ũ, w̃) ∈ Q×X and the bilinear form b : Q×X → R,

b(ũ, w̃) =
n∑

i=1

∫

Ω

u⃗i · ∇⃗wi. (2.33)

For ũ ∈ Q the linear functional lc̃k(·) : Q→ R is defined as

lc̃k(ũ) = γ

n∑

i=1

∫

Ω

ckimi

ρk
u⃗i · J⃗. (2.34)

The non-linear iteration scheme is as follows. We take an initial guess (ṽ0, c̃0) ∈
Q×Xf̃ , which satisfies the Dirichlet boundary data (2.11) and

n∑

i=1

c0i = cT (2.35)

almost everywhere for a given constant cT, determined by either (2.13) or (2.27). For

k = 0, 1, 2, . . . the next iterate of the sequence is computed as the solution to the

33



following generalized saddle point problem: find (ṽk+1, c̃k+1) ∈ Q×Xf̃ such that

ac̃k(ṽ
k+1, ũ) + b(ũ, c̃k+1) = lc̃k(ũ), ∀ ũ ∈ Q, (2.36)

bc̃k(ṽ
k+1, w̃) = −(r̃, w̃)L2(Ω)n + (g̃, w̃)L2(ΓN )n , ∀ w̃ ∈ XΓD , (2.37)

subject to the Dirichlet conditions (2.11). This is repeated until

∥c̃k+1 − c̃k∥X + ∥ṽk+1 − ṽk∥Q ≤ ε, (2.38)

for a set tolerance ε > 0.

Note that (ṽk, c̃k) is a weak solution to the non-linear problem (2.17)-(2.18) if and

only if it is a fixed point of this iteration scheme. Indeed if (ṽk, c̃k) is a weak solution

to the non-linear problem (2.17)-(2.18) then the solution (ṽk+1, c̃k+1) to the equations

(2.36)-(2.37) remains (ṽk, c̃k). Conversely if (ṽk+1, c̃k+1) = (ṽk, c̃k) then, converting

(2.36)-(2.37) to a non-linear system by replacing c̃k with c̃k+1, we recover the non-

linear problem (2.17)-(2.18) and observe it is solved with (ṽk+1, c̃k+1).

We proceed to prove well-posedness of the variational problem (2.36)-(2.37) by

applying either Theorem 2.1 in [36] or Theorem 3.1 in [118]. To invoke these theorems

we shall prove the following conditions.

Condition 1 : There exists a constant α > 0 such that

ac̃k(ṽ, ṽ) ≥ α∥ṽ∥2Q (2.39)

for all ṽ ∈ Q.

Condition 2 : There exist constants βi > 0, i = 1, 2 such that for all w̃ ∈ X,

sup
ũ∈Q

b(ũ, w̃)

∥ũ∥Q
≥ β1∥w̃∥X ,

sup
ũ∈Q

bc̃k(ũ, w̃)

∥ũ∥Q
≥ β2∥w̃∥X .

(2.40)

Remark 3. An alternative to our definition of the linear functional (2.34) would be

to replace c̃k with c̃k+1 and therefore include the term as part of the bilinear functional

b(·, ·) instead. However, the current formulation (2.36)-(2.37) ensures that we can
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derive the equivalent of (2.21) for the linearized system

n∑

i=1

∫

Ω

γmic
k
i v⃗i · u⃗−

∫

Ω

γJ⃗ · u⃗+
∫

Ω

n∑

i=1

∇⃗ck+1
i · u⃗ = 0. (2.41)

Then, following an argument identical to that presented in section 3, we deduce that

for each k, the iterates satisfy
n∑

i=1

ck+1
i = cT (2.42)

almost everywhere. When combined with the assumption that the concentrations are

positive almost everywhere, this implies that ac̃k(·, ·), b(·, ·), bc̃k(·, ·) are all bounded bi-

linear functionals on their respective function spaces.

In order to prove (2.39) it will be useful to write the bilinear form, ac̃k(·, ·) as the
integral of a quadratic form. Denoting the Kronecker product by ⊗, we define the

matrix

Mγ,k = Mγ,k ⊗ I (2.43)

where I is the d× d identity matrix. We can then write the bilinear form as

ac̃k(ṽ, ũ) =

∫

Ω

ũ · Mγ,kṽ. (2.44)

To show the coercivity condition (2.39) we must show for some α > 0

ac̃k(ṽ, ṽ) =

∫

Ω

ṽ · Mγ,kṽ ≥
∫

Ω

α∥ṽ∥2. (2.45)

Hence (2.39) will be satisfied if and only if Mγ,k is uniformly positive definite over Ω

almost everywhere. Either by direct calculation, or by using a standard property of the

Kronecker product, one can verify that Mγ,k will have the same eigenvalues as Mγ,k,

each with geometric multiplicity of d. Therefore coercivity of the bilinear form ac̃k(·, ·)
is equivalent to showing that Mγ,k is symmetric positive definite almost everywhere in

Ω. We prove this in the following lemma, which will be used throughout the thesis.

Lemma 1. If cki ≥ κ > 0 a.e. for each i = 1, 2, . . . , n and a positive constant κ, then

for any γ > 0, the matrix Mγ,k is symmetric positive definite almost everywhere.

Proof. For almost every x ∈ Ω, Mk is symmetric positive semidefinite. We proceed

with the following argument pointwise. The normalized eigenvectors {ϑM
1 , . . . , ϑ

M
n }
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form an orthonormal basis. By hypothesis the associated eigenvalues {λM1 , . . . , λMn }
can be ordered such that

0 = λM1 < λM2 ≤ · · · ≤ λMn . (2.46)

The nullspace ofMk then consists of the space spanned by the vector ϑM
1 = n−1/2(1, 1, . . . , 1) ∈

Rn. Furthermore,

λM2 ≥ λκ > 0 (2.47)

for a λκ that depends only on κ.

The matrix Lk defined in (2.6) is also symmetric positive semidefinite, explicitly

for ϑ̃ = (ϑ1, . . . , ϑn) ∈ Rn

ϑ̃ · Lkϑ̃ =
1

ρk

∥∥∥
n∑

j=1

mic
k
jϑj

∥∥∥
2

. (2.48)

In particular for the vector ϑM
1 we have that

ϑM
1 · LkϑM

1 =
1

nρk

( n∑

j=1

mic
k
j

)2
=
ρk

n
. (2.49)

Given any ϑ̃ ∈ Rn we can expand it in terms of the basis {ϑM
1 , . . . , ϑ

M
n } as

ϑ̃ =
n∑

i=1

αiϑ
M
i (2.50)

for basis coefficients {αi}ni=1. Furthermore, by orthonormality,

ϑ̃ ·Mkϑ̃ =
n∑

i=1

λMi |αi|2. (2.51)

We combine this to get a bound on Mγ,k

ϑ̃ ·Mγ,kϑ̃ = ϑ̃ ·Mkϑ̃+ γϑ̃ · Lkϑ̃ ≥ γ
ρk

n
|α1|2 +

n∑

i=2

λMi |αi|2. (2.52)

Therefore Mγ,k is positive definite at x. This argument can be repeated for every x ∈ Ω

except perhaps on a set of measure zero. Therefore Mγ,k is symmetric positive definite

almost everywhere.
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Remark 4. It is useful to understand how λκ scales with κ. This can be achieved by

the following scaling argument. Suppose that whenever cki ≥ 1 for each i = 1, 2, . . . , n

we have the lower bound on the eigenvalues, as in (2.47), of λκ=1. Now suppose that

for any κ > 0 we have cki ≥ κ for each i = 1, 2, . . . , n. We can then define the new

variables κi = cki /κ. We then see that κi ≥ 1 for each i. Define the Mκ as the transport

matrix with these new variables κi replacing ci. By direct calculation we can check that

Mκ =
1

κ
M. (2.53)

By construction we have that λMκ
2 ≥ λκ=1. It follows from (2.53) that λM2 = κλMκ

2 ≥
κλκ=1. Hence we see that λκ = O(κ).

Lemma 2. Assume that cki ≥ κ > 0 a.e. for each i = 1, 2, . . . , n and γ > 0. Then

the bilinear forms a(·, ·), b(·, ·) and bc̃k(·, ·) satisfy the conditions (2.39) and (2.40) for

some constants α, β1, β2 respectively, which depend only on κ, Ω.

Proof. From Lemma (1) we have that

ac̃k(ṽ, ṽ) =

∫

Ω

ũ · Mγ,kṽ =
∑

i,j

∫

Ω

v⃗j ·Mγ,k
ij v⃗i ≥ α∥ṽ∥2Q, (2.54)

where

α = min{n−1γρk, λκ}, (2.55)

and λκ is as in equation (2.47). This proves condition (2.39).

For conditions (2.40), given a w̃ ∈ X, we can choose ũ = ∇⃗w̃ which then yields

b(∇⃗w̃, w̃) =
n∑

i=1

∫

Ω

∥∇⃗wi∥2 = ∥w̃∥2XΓD
. (2.56)

Similarly for bc̃k we have

bc̃k(∇⃗w̃, w̃) ≥ κ∥w̃∥2XΓD
. (2.57)

The final step is that we use either ΓD ̸= ∅ or the condition (2.27) to deduce a

Poincaré inequality of the form

Cp∥w̃∥XΓD
≥ ∥w̃∥X for all w̃ ∈ X (2.58)
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for some constant Cp > 0 depending only on Ω. Hence

b(∇⃗w̃, w̃) ≥ C−1
p ∥w̃∥2X (2.59)

bc̃k(∇⃗w̃, w̃) ≥ κC−1
p ∥w̃∥2X . (2.60)

Theorem 1. Assume γ > 0 and the current guess c̃k satisfies cki ≥ κ > 0 a.e. for each

i = 1, 2, . . . , n and a positive constant κ. Then, under the condition ΓD ̸= ∅ or (2.27),

there exists a unique (ṽk+1, c̃k+1) ∈ Q×Xf̃ that solves the system (2.36)-(2.37).

Proof. Our remaining obstacle for the proof is that Xf̃ is not a Hilbert space. If we use

the ansatz c̃k+1 = ĉk+1
0 + c̃0, where ĉk+1

0 ∈ XΓD and c̃0 ∈ Xf̃ was our initial guess, then

we can recast the saddle point problem (2.36)-(2.37) as: find (ṽk+1, ĉk+1
0 ) ∈ Q × XΓD

such that

ac̃k(ṽ
k+1, ũ) + b(ũ, ĉk+1

0 ) = lc̃k(ũ)− b(ũ, c̃0) ∀ ũ ∈ Q, (2.61)

bc̃k(ṽ
k+1, w̃) = −(r̃, w̃)L2(Ω)n + (g̃, w̃)L2(ΓN )n ∀ w̃ ∈ XΓD . (2.62)

By [36, Theorem 2.1] or [118, Theorem 3.1] there exists a unique (ṽk+1, ĉk+1
0 ) ∈ Q×XΓD

solution to this system. The proof concludes by observing that if c̃k+1 = ĉk+1
0 + c̃0 then

c̃k+1 ∈ Xf̃ and satisfies the system (2.36)-(2.37).

2.3 Discretization and error estimates

Here we discretize the generalized saddle point problem (2.36)-(2.37) and prove error

estimates. Let Th be a regular simplicial triangulation of Ω with maximum diameter

h. For m ≥ 1 we define the finite dimensional subspaces,

Qh = {ũh ∈ Q | u⃗h,i|K ∈ [Pm−1(K)]d ∀K ∈ Th, i = 1, 2, . . . , n}, (2.63)

Xh = {w̃h ∈ X | wh,i|K ∈ Pm(K) ∀K ∈ Th, i = 1, 2, . . . , n}, (2.64)

XΓD,h = {w̃h ∈ XΓD | wh,i|K ∈ Pm(K) ∀K ∈ Th, i = 1, 2, . . . , n}. (2.65)

Here Pm(K) denotes the set of mth order polynomials on the cell K ∈ Th.
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We will require linear interpolation operators on the spacesX and Q, see [18, pp 72].

Proposition 1. There exist linear interpolation operators Πh : X → Xh and Λh : Q→
Qh and constants C1, C2 such that, for any c̃ ∈ X, ṽ ∈ Q sufficiently regular,

∥c̃− Πhc̃∥XΓD
≤∥c̃− Πhc̃∥X ≤ C1h

m|c̃|m+1,Ω,

∥ṽ − Λhṽ∥Q ≤ C2h
m|ṽ|m,Ω.

Our non-linear iteration scheme in the discrete case is as follows; we take an initial

guess c̃0 ∈ Xf̃ that satisfies (2.35) and then construct c̃0h := Πhc̃
0 ∈ Xh. The Dirichlet

boundary conditions (2.11) are typically only satisfied approximately; however we note

that, due to the linearity of the interpolation operator and equation (2.35),

n∑

i=1

c0h,i =
n∑

i=1

Πhc
0
i = ΠhcT = cT, (2.66)

and therefore condition (2.13) remains enforced.

For k = 0, 1, 2, . . . the next iterate of the sequence (ṽk+1
h , c̃k+1

h ) is computed by

solving the following linear system: find (ṽk+1
h , ĉk+1

0,h ) ∈ Qh ×XΓD,h such that

ac̃kh(ṽ
k+1
h , ũh) + b(ũh, ĉ

k+1
0,h ) = lc̃kh(ũh)− b(ũh, c̃

0
h) ∀ ũh ∈ Qh, (2.67)

bc̃kh(ṽ
k+1
h , w̃h) = −(r̃, w̃h)L2(Ω)n + (g̃, w̃h)L2(ΓN )n ∀ w̃h ∈ XΓD,h. (2.68)

We then set c̃k+1
h = ĉk+1

0,h + c̃0h and repeat this until ∥c̃k+1
h − c̃kh∥X + ∥ṽk+1

h − ṽkh∥Q ≤ ε

for our tolerance ε > 0.

A distinct advantage of our formulation is that the coercivity condition (2.39)

and the inf-sup conditions (2.40) are automatically satisfied with the same (state-

dependent) constants α, β1, β2. This follows from the fact that the choice of discrete

function spaces preserves a crucial structure:

for any w̃h ∈ Xh, ∇⃗w̃h ∈ Qh, (2.69)

which in particular allows us to repeat the proofs of (2.39) and (2.40) in the discrete

setting in exactly the same manner. We thus have the following.
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Theorem 2. Assume γ > 0 and that c̃kh satisfies ckh,i ≥ κ > 0 a.e. for each i =

1, 2, . . . , n and a positive constant κ. Then, under the condition ΓD ̸= ∅ or (2.27),

there exists a unique (ṽk+1
h , ĉk+1

0,h ) ∈ Qh ×XΓD,h which solves the system (2.67)-(2.68).

Given the well-posedness of the discretized system, we proceed to obtain error

estimates. The proof strategy is to invoke Theorem 4.1 of [118], which we restate here

for convenience.

Theorem 3 ([118]). For Vh ⊂ V and Xh ⊂ X let (ṽ, c̃) ∈ Q×X and (ṽh, c̃h) ∈ Qh×Xh

be solutions to the respective continuous and discrete generalized saddle point systems

a(ṽ, ũ) + b1(ũ, c̃) = l(ũ) ∀ ũ ∈ Q (2.70)

b2(ũ, w̃) = R(w̃) ∀ w̃ ∈ X (2.71)

and

a(ṽh, ũh) + b1(ũh, c̃h) = l(ũh) ∀ ũh ∈ Qh (2.72)

b2(ũh, w̃h) = R(w̃h) ∀ w̃h ∈ Xh. (2.73)

Here a, b1, b2 are continuous bilinear forms and l, R are continuous linear functionals.

Further assume that each of the bilinear forms satisfy the respective conditions (2.39)

and (2.40) for coefficients α, β1 and β2. Then there exists constants L1, L2, depending

on α, β1 and β2 such that

∥c̃− c̃h∥X ≤ L1

(
inf

w̃h∈Xh
∥c̃− w̃h∥X + inf

ũh∈Qh
∥ṽ − ũh∥Q

)
, (2.74)

∥ṽ − ṽh∥Q ≤ L2

(
inf

w̃h∈Xh
∥c̃− w̃h∥X + inf

ũh∈Qh
∥ṽ − ũh∥Q

)
. (2.75)

We now deduce the main result of this section.

Theorem 4. There exist constants C̄1,k and C̄2,k such that

∥c̃k+1 − c̃k+1
h ∥X ≤ C̄1,kh

m
(
|c̃0|m+1,Ω + |ĉk+1

0 |m+1,Ω + |ṽk+1|m,Ω + ∥ṽk+1
h ∥L∞(Ω) + ∥J⃗∥L∞(Ω)d

)
,

(2.76)

∥ṽk+1 − ṽk+1
h ∥Q ≤ C̄2,kh

m
(
|ĉk+1

0 |m+1,Ω + |ṽk+1|m,Ω + ∥ṽk+1
h ∥L∞(Ω) + ∥J⃗∥L∞(Ω)d

)
.

(2.77)

40



Proof. Given that the conditions (2.39)-(2.40) are satisfied for the spaces Qh and Xh,

we can almost use Theorem 3 to deduce an error estimate. An obstacle to this is that

we are committing a variational crime: the continuous and discrete bilinear forms are

in general different, that is ac̃k(·, ·) ̸= ac̃kh(·, ·) etc.
Hence to apply Theorem 3, we must consider a new pair (̊vk+1

h , c̊k+1
0,h ) ∈ Qh ×XΓD,h

as the unique solution to the following ‘intermediate’ saddle point system

ac̃k (̊v
k+1
h , ũh) + b(ũh, c̊

k+1
0,h ) = lc̃k(ũh)− b(ũh, c̃

0
h) ∀ ũh ∈ Qh, (2.78)

bc̃k (̊v
k+1
h , w̃h) = −(r̃, w̃h)L2(Ω)n + (g̃, w̃h)L2(ΓN )n ∀ w̃h ∈ XΓD,h, (2.79)

where the forms are evaluated at the infinite-dimensional iterate c̃k rather than its

discrete approximation c̃kh.

We then estimate

∥c̃k+1 − c̃k+1
h ∥X ≤ ∥ĉk+1

0 − c̊k+1
0,h ∥X + ∥c̃0 − c̃0h∥X + ∥ĉk+1

0,h − c̊k+1
0,h ∥X (2.80)

∥ṽk+1 − ṽk+1
h ∥Q ≤ ∥ṽk+1 − v̊k+1

h ∥Q + ∥ṽk+1
h − v̊k+1

h ∥Q. (2.81)

Our strategy will be to show that each of the terms on the right-hand side of the

inequalities (2.80)-(2.81) satisfy the estimates (2.76)-(2.77). For the first terms on the

right-hand side in (2.80) and (2.81) we can directly apply Theorem 3 and deduce that

there exist constants L1, L2 depending on α, β1, β2 such that

∥ĉk+1
0 − c̊k+1

0,h ∥XΓD
≤ L1

(
inf

w̃h∈XΓD,h

∥ĉk+1
0 − w̃h∥XΓD

+ inf
ũh∈Qh

∥ṽk+1 − ũh∥Q
)
, (2.82)

∥ṽk+1 − v̊k+1
h ∥Q ≤ L2

(
inf

w̃h∈XΓD,h

∥ĉk+1
0 − w̃h∥XΓD

+ inf
ũh∈Qh

∥ṽk+1 − ũh∥Q
)
. (2.83)

The Poincaré inequality (2.58) allows us to replace the ∥ · ∥XΓD
norm with ∥ · ∥X :

∥ĉk+1
0 − ĉk+1

0,h ∥X ≤ C−1
p ∥ĉk+1

0 − ĉk+1
0,h ∥XΓD

. (2.84)
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Proposition (1) yields that for some constants C1, C2

∥ĉk+1
0 − c̊k+1

0,h ∥X ≤ L1C1h
m
(
|ĉk+1

0 |m+1,Ω + |ṽk+1|m,Ω
)
, (2.85)

∥ṽk+1 − v̊k+1
h ∥Q ≤ L2C2h

m
(
|ĉk+1

0 |m+1,Ω + |ṽk+1|m,Ω
)
. (2.86)

This concludes the estimate on the first term on the right-hand side of (2.80)-(2.81).

The second term of (2.80) satisfies (2.76)-(2.77) directly by the definition of c̃0h and

Proposition 1. It remains to obtain an estimate for the final term of (2.80)-(2.81).

The difference δĉk+1
0,h := ĉk+1

0,h − c̊k+1
0,h and δṽk+1

h := ṽk+1
h − v̊k+1

h , which belong in XΓD,h

and Qh respectively, satisfy the system

ac̃k(δṽ
k+1
h , ũh) + b(ũh, δĉ

k+1
0,h ) = lc̃kh(ũh)− lc̃k(ũh) + ac̃k(ṽ

k+1
h , ũh)− ac̃kh(ṽ

k+1
h , ũh) ∀ ũh ∈ Qh,

(2.87)

bc̃k(δṽ
k+1
h , w̃h) = bc̃k(ṽ

k+1
h , w̃h)− bc̃kh(ṽ

k+1
h , w̃h) ∀ w̃h ∈ XΓD,h. (2.88)

Note that, in this system, the bilinear forms on the right hand side have one argument

fixed and therefore become linear functionals. Intuitively we expect that the right hand

side of (2.87)-(2.88) is small, and consequently so is the solution. This is verified by,

for example, using [36, Theorem 2.1] to deduce for some constant C

∥δc̃k+1
h ∥XΓD

+ ∥δṽk+1
h ∥Q ≤ (2.89)

C
(
∥bc̃k(ṽk+1

h , ·)− bc̃kh(ṽ
k+1
h , ·)∥+ ∥ac̃k(ṽk+1

h , ·)− ac̃kh(ṽ
k+1
h , ·)∥+ ∥lc̃k − lc̃kh∥

)
. (2.90)

Hence the proof will be complete upon obtaining a bound for the difference of each

of these linear functionals of the form (2.76)-(2.77). First, applying Hölder’s inequality
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yields

|ac̃k(ṽk+1
h , ũ)− ac̃kh(ṽ

k+1
h , ũ)| ≤

n∑

i,j=1

∣∣∣
∫

Ω

v⃗k+1
h,i

(
Mγ,c̃k

ij −M
γ,c̃kh
ij

)
· u⃗j
∣∣∣ (2.91)

≤
n∑

i,j=1

(∫

Ω

(
Mγ,c̃k

ij −M
γ,c̃kh
ij

)2∥v⃗k+1
h,i ∥2

) 1
2
(∫

Ω

∥u⃗j∥2
) 1

2

(2.92)

≤
n∑

i,j=1

(∫

Ω

(
Mγ,c̃k

ij −M
γ,c̃kh
ij

)2)1/2∥ṽk+1
h ∥(L∞(Ω)d)n∥ũ∥Q.

(2.93)

The values of the matrix Mγ are smooth (C∞) functions with respect to the concen-

trations. Such functions are locally Lipschitz. Since the concentrations lie within the

compact domain 0 ≤ cki , c
k
h,i ≤ cT for each 1 ≤ i ≤ n, we can find a global Lipschitz

constant CM:

|ac̃k(ṽk+1
h , ũ)− ac̃kh(ṽ

k+1
h , ũ)| ≤ CM∥c̃k − c̃kh∥L2(Ω)n∥ṽk+1

h ∥(L∞(Ω)d)n∥ũ∥Q. (2.94)

For example, explicitly we can take the constant CM as

CM =
4n

mini,j Dij

+ 4γnmax
i
mi + 2γn2maxi(mi)

2

minimi

. (2.95)

Note that the density ρ is uniformly bounded below by (minimi)cT .

As ũh was arbitrary, we have thus shown that

∥ac̃k(ṽk+1
h , ·)− ac̃kh(ṽ

k+1
h , ·)∥ ≤ CM∥c̃k − c̃kh∥L2(Ω)n∥ṽk+1

h ∥(L∞(Ω)d)n . (2.96)

The estimates on the remaining linear functionals are deduced in a similar manner and

we obtain

∥lc̃k − lc̃kh∥ ≤ Cl∥c̃k − c̃kh∥L2(Ω)n∥J⃗∥L∞(Ω)d (2.97)

∥bc̃k(ṽk+1
h , ·)− bc̃kh(ṽ

k+1
h , ·)∥ ≤ ∥c̃k − c̃kh∥L2(Ω)n∥ṽk+1

h ∥(L∞(Ω)d)n . (2.98)
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Using these estimates we then deduce from (2.89)

∥δc̃k+1
h ∥XΓD

+ ∥δṽk+1
h ∥Q ≤ C∥c̃k − c̃kh∥L2(Ω)n

(
(CM + 1)∥ṽk+1

h ∥(L∞(Ω)d)n + Cl∥J⃗∥L∞(Ω)d

)
.

(2.99)

Therefore, the consistency error is bounded in terms of ∥c̃k− c̃kh∥L2(Ω)n . In particular

suppose that ∥c̃k − c̃kh∥L2(Ω)n ≤ Ckh
m for some constant Ck. This holds if Theorem 4

holds for the kth iterate. Then we have that

∥δc̃k+1
h ∥XΓD

+ ∥δṽk+1
h ∥Q ≤ CCkh

m
(
(CM + 1)∥ṽk+1

h ∥(L∞(Ω)d)n + Cl∥J⃗∥L∞(Ω)d

)
. (2.100)

Using (2.85)-(2.86), the definition of c̃0h, and (2.100) respectively on the terms in (2.80)-

(2.81) this implies (after a regrouping of constants)

∥c̃k+1 − c̃k+1
h ∥X ≤ C̄1,kh

m
(
|c̃0|m+1,Ω + |ĉk+1

0 |m+1,Ω + |ṽk+1|m,Ω + ∥ṽk+1
h ∥L∞(Ω) + ∥J⃗∥L∞(Ω)d

)
,

(2.101)

∥ṽk+1 − ṽk+1
h ∥Q ≤ C̄2,kh

m
(
|ĉk+1

0 |m+1,Ω + |ṽk+1|m,Ω + ∥ṽk+1
h ∥L∞(Ω) + ∥J⃗∥L∞(Ω)d

)
.

(2.102)

Consequently we have verified Theorem 4 is valid for the (k + 1)th iterate, provided

we can suitably estimate ∥c̃k − c̃kh∥L2(Ω)n . The argument concludes by induction as

we note that the base case, k = 1, satisfies the required error estimate as we have

∥c̃0 − c̃0h∥L2(Ω)n ≤ C1h
m|c̃0|m+1,Ω by Proposition 1.

For example, our analysis implies if we choose m = 1 then we have

∥ṽk+1 − ṽk+1
h ∥Q + ∥c̃k+1 − c̃k+1

h ∥X = O(h). (2.103)

Remark 5. One apparent drawback of Theorem 4 is that the constants C̄1,k and C̄2,k

may compound in size as k → ∞. Indeed, iterating (2.99) over k we may in general
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deduce an estimate of the following form:

∥δc̃k+1
h ∥XΓD

+ ∥δṽk+1
h ∥Q ≤ hm

k∏

s=1

C̃s (2.104)

where the constants C̃s involve products of the term (CM+1)∥ṽs+1
h ∥(L∞(Ω)d)n+Cl∥J⃗∥L∞(Ω)d.

A natural concern is that the consistency errors will degrade as k → ∞, except in the

cases where the right-hand side data is small. Before addressing this in further detail,

we emphasize that this possible degradation on the control in the consistency errors

should not be confused with degradation of the stability of the discretized system (2.67)-

(2.68), whose stability is guaranteed by the continuous dependence on the data as stated

in [36, Theorem 2.1] or [118, Theorem 3.1].

In practice, the degradation of the consistency errors is not observed, for which

there is a natural explanation. Let us now suppose that c̃ is a fixed point of the discrete

system (2.67)-(2.68). Then we remove the k dependence in (2.99) to write

∥δc̃h∥XΓD
+ ∥δṽh∥Q ≤ C∥c̃− c̃h∥L2(Ω)n

(
(CM + 1)∥ṽh∥(L∞(Ω)d)n + Cl∥J⃗∥L∞(Ω)d

)
.

(2.105)

Using (2.80), the estimates (2.85) and our bound on ∥c̃0 − c̃0h∥X , we may write this as

(redefining constants as necessary)

∥δc̃h∥XΓD
+ ∥δṽh∥Q ≤ C

(
hm + ∥δc̃h∥XΓD

)(
(CM + 1)∥ṽh∥(L∞(Ω)d)n + Cl∥J⃗∥L∞(Ω)d

)

(2.106)

It can be immediately observed that if the data on the right hand side is sufficiently

small, then ∥δc̃h∥XΓD
= O(hm). However, rather than relying on this, let us conjecture

that an estimate of the following form holds:

∥c̃− c̃h∥L2(Ω)n ≤ Ch∥c̃− c̃h∥X , (2.107)

where C is independent of h. Such estimates are obtained in the theory of saddle point

approximation using the Aubin–Nitsche duality technique (for example see [18, Theorem

5.5.6]), but have not yet been developed for the generalized saddle point problem (2.36)–

(2.37). For our system we will experimentally observe in the following section that

∥c̃− c̃h∥L2(Ω)n = O(hm+1). This is consistent with the duality estimate (2.107) combined

with Theorem 4.
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With the conjecture (2.107) we may instead derive the alternate bound

∥δc̃h∥XΓD
+ ∥δṽh∥Q ≤ Ch

(
Chm + ∥δc̃h∥XΓD

)(
(CM + 1)∥ṽh∥(L∞(Ω)d)n + Cl∥J⃗∥L∞(Ω)d

)
.

(2.108)

Provided that h is taken small enough, we will immediately have a bound on ∥δc̃h∥ of

order O(hm+1). Hence this analysis implies in practice that if we compute a fixed point

of our iteration scheme on a sufficiently fine mesh, then the consistency errors will be

well controlled.

This argument is very similar to existing analyzes of quasilinear elliptic systems

such as by [48], and especially [7], in which duality techniques are leveraged to obtain

error estimates subject to the condition that h be of a sufficiently small size. An impor-

tant future goal is the development of Aubin–Nitsche duality estimates for generalized

saddle point systems, to provide a rigorous foundation to the argument above.

Remark 6. The Gibbs–Duhem equation is preserved up to machine-precision as can

observed by the following argument. Replacing cT with cT,h we can reproduce the argu-

ment of section 3 and derive the equivalent of equation (2.24);

∫

Ω

∥∇⃗cT,h∥2 = 0. (2.109)

Combining this with (2.66) we see that cT,h = CT, where CT is determined by either

(2.13) or (2.27). This calculation does not use any approximation based on the mesh

size.

2.4 Numerical results

Several numerical simulations were implemented with our method. The discretization

was implemented using the Firedrake software [129] and PETSc [12, 13, 42, 81]. The

arising linear systems were solved using MUMPS [1, 2].

2.4.1 Numerical example one: Manufactured solution

For n = 4 we first consider a test case on Ω = (0, 1)2 for which the solution is analyti-

cally known in order to validate the error estimates of section 5.

The family of manufactured solutions is constructed as follows. For j = 1, 2 let

kj(·) : Ω → R be a differentiable function with a strict bound ∥kj∥L∞(Ω) < K for a
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positive constant K. We set

c1 = k1 +K, c2 = −k1 +K,

c3 = k2 +K, c4 = −k2 +K.

We further assume that

D13 = D31 = D14 = D41 = D24 = D42 = D23 = D32, (2.110)

and that RT = 1.

Then for any given mass-flux J⃗ ∈ L2(Ω)d an exact solution is given when

v⃗1 = − 2

RT

( K

D12

+
K

D13

)−1

∇⃗ ln c1 +
J⃗

cT
, v⃗2 = − 2

RT

( K

D12

+
K

D13

)−1

∇⃗ ln c2 +
J⃗

cT
,

v⃗3 = − 2

RT

( K

D34

+
K

D31

)−1

∇⃗ ln c3 +
J⃗

cT
, v⃗4 = − 2

RT

( K

D34

+
K

D31

)−1

∇⃗ ln c4 +
J⃗

cT
,

and, for i = 1, 2, 3, 4,

ri = div
(
civ⃗i
)
. (2.111)

We then choose mi = 1 for i = 1, 2, 3, 4 so that the mass-flux constraint (2.1) is

satisfied.

For this numerical experiment we take

k1(x, y) =
1

2
exp(8xy(1− y)(1− x)), k2(x, y) =

1

2
sin(πx) sin(πy); (2.112)

we can then take K = 1. We then have cT = 4. For i = 1, 2, 3, 4 we pose the Dirichlet

boundary conditions

c1 =
3

2
, c2 =

1

2
, c3 = c4 = 1, on ∂Ω, (2.113)

and set the mass-flux J⃗ = (0, 1)⊤.

The diffusion coefficients are chosen as D12 = D21 = 2, D34 = D43 = 3 and all

other diffusion coefficients set to 1. For our initial guess we choose c0i = c0h,i = 1 for

i = 1, 2, 3, 4. We then proceed with the iteration detailed in section 5 and compute the
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sequence (ṽk+1
h , c̃k+1

h ) until

∥c̃k+1
h − c̃kh∥X + ∥ṽk+1

h − ṽkh∥Q ≤ ε, (2.114)

and for this k we set (ṽ, c̃) = (ṽk+1, c̃k+1). In this experiment we set ε = 10−13.

The parameter γ was set to 1, with the rationale being that we want to choose γ

sufficiently large so that the coercivity parameter α appearing in (2.55) depends only

on λκ. Although in practice λk cannot be calculated, our argument from Remark 4

ensures that λk = O(κ). For this example, κ = 1 and consequently γ = 1 is a reasonable

choice. The effect of varying γ is explored in the discussion below.

To analyze the rate of convergence we define the three errors

E1 =
( n∑

j=1

∥cj − cj,h∥2L2(Ω)

) 1
2
, (2.115)

E2 =
( n∑

j=1

∥∇⃗cj − ∇⃗cj,h∥2L2(Ω)d

) 1
2
, (2.116)

E3 =
( n∑

j=1

∥v⃗j − v⃗j,h∥2L2(Ω)d

) 1
2
, (2.117)

and the error in the mass-flux

E4 =
∥∥∥

n∑

j=1

micj v⃗j − J⃗
∥∥∥
L2(Ω)d

. (2.118)

According to Proposition 1, Ej = O(hm) for j = 1, 2, 3. These estimates are verified

for m = 1, 2 on the log-log error plot displayed in Figure 2.1. We also observe that

E4 = O(hm). Note that E1 = O(hm+1), supporting our duality-based error estimate

hypothesis (2.107) for the system (2.67)-(2.68).

Other important solver characteristics are tabulated for the case m = 1 in Table

2.1. In particular we observe that the number of fixed point iterations is independent

of the mesh size. It was also confirmed that our discretization preserves the Gibbs–

Duhem equation up to machine precision — in each of our simulations we observed

that ∥∇⃗cT∥ ≤ 10−14.

We also consider the effect of varying the parameter γ in Table 2.2. We plot solver

characteristics varying γ for the case m = 1 on the 64 × 64 mesh. Across four orders

of magnitude for γ, the iteration converges with only a minor change in the number of
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Figure 2.1: Log-Log error plots with m = 1 (left) and m = 2 (right).

Mesh size Non-linear iterations dof Average linear solve time (s)
8× 8 11 1348 0.22
16× 16 11 5252 0.30
32× 32 11 20740 0.63
64× 64 11 82436 1.99

Table 2.1: Table showing the dependence of the solver characteristics on the mesh size
for m = 1.

non-linear iterations. Taking γ = 103, the non-linear solver diverged; taking γ = 10−3,

the tolerance threshold of ε = 10−13 was not reached. This indicates that, although

γ Non-linear iterations Average linear solve time (s)
10−2 11 2.59
1 11 1.88
102 12 1.89

Table 2.2: Table showing the dependence of the solver characteristics as γ is varied.

the solver is generally robust for different values of γ, the solver does break down at

extremes. It also suggests that γ should be chosen large enough such that the bound

(2.55) depends only on λκ, but not larger, as it may cause the non-linear iteration

scheme to fail to converge.

Much of the analysis we performed rested on the assumption that cki ≥ κ. It is then

of interest to analyze the performance of the solver at extremely low concentrations.

49



For this purpose we define the function

f(x, y;α) = xα+yα+(1−x)α+(1−y)α−xαyα−(1−x)α(1−y)α−xα(1−y)α−yα(1−x)α
(2.119)

for some α ≥ 1. Observe that this function is 1 on ∂Ω for every α but rapidly approaches

0 in the interior for large α. Furthermore at α = 1, we have that f(x, y;α) = 1.

We then take the following initial guesses for the concentrations as

c01 = f(x, y;α), c02 = 2− f(x, y;α) (2.120)

and c03 = c04 = 1. These initial guesses satisfy cT = 4. We solve the system with the

interpolants of these initial guesses on a 64× 64 uniform mesh for various values of α.

The results are tabulated in Table 2.3.

α Non-linear iterations Average linear solve time (s)
α = 2 12 1.97
α = 16 12 1.87
α = 64 14 1.93

Table 2.3: Table showing the dependence of the solver characteristics on α.
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Figure 2.2: Contour plot of log10(c1) = log10(f(x, y;α)) for α = 64.

The initial guess for c1 for α = 64 is plotted on a logarithmic scale in figure (2.2).

Note that within the innermost contour, corresponding to the region 2/5 ≤ x, y ≤ 3/5,
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we have that c3 ≈ 10−14. This is of the order of machine precision. This suggests that,

although our analysis relies on the concentrations being uniformly bounded away from

zero, in practice this is less of a restriction, as we can achieve convergence at extremely

low concentrations for a similar number of non-linear iterations. The solver finally fails

when α ≥ 80, due to the matrix becoming singular.

2.4.2 Numerical example two: Diffusion of oxygen and effu-

sion of carbon dioxide in the lungs

If treated as a steady diffusion process, mass transport in the bronchi within the lungs

involves simultaneous ingress of oxygen and egress of carbon dioxide. Moreover, the air

through which these species diffuse also contains nitrogen and water vapour. For most

modelling purposes, it is not necessary to distinguish among the various constituents

of air, but in lung modelling we are interested in the distributions of both the oxygen

consumed and carbon dioxide produced by the body, as well as the relative humidity

along their diffusion paths. The concentrations of these compounds throughout the

lungs has been modelled using the Stefan–Maxwell equations in [22] and [34]. For

this example we solve for the mole fraction yi = ci/cT. Mathematically this is the

same as normalising the total concentration to 1. As cT is a constant in this setting,

this does not change the weak formulation or the algorithm. We take the mass-flux,

J⃗, as zero, and thus consider purely diffusional forces. For a realistic lung model it

would be necessary to model the transient dynamics as well as the convective forces

and pressure-driven elastic expansion, but this example suffices to illustrate the time-

averaged multispecies transport physics.

This simulation was computed on the mesh shown in Figure 2.3. The surface mesh

was provided by C. Geuzaine and J. F. Remacle [100, 130], and from this the 3D

mesh was constructed using the software MeshMixer [131] and Gmsh [65]. The mesh

consisted of 115609 vertices and 404174 elements.
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Figure 2.3: Mesh of the void space within the lungs at ambient pressure. The surface
Γ1 denotes the inlet at the trachea; the surface Γ2 is a grouping of all the surfaces at
the end of the tertiary bronchi.

Following the two-dimensional numerical experiments performed in [22], we take

mixed Neumann-Dirichlet boundary conditions. At the inlet of the trachea, Γ1, and at

the end of the tertiary bronchi, Γ2, we set the Dirichlet boundary data to the composi-

tions of humidified air and alveolar air respectively. For the remaining boundary region

we set homogeneous Neumann (no-flux) conditions. The Stefan–Maxwell coefficients

and the boundary data for this experiment, both taken from [22], are tabulated in

Tables 2.4 and 2.5.

Table 2.4: Values of the Stefan–Maxwell diffusion coefficients Dij between species
(mm2 s−1)

Species N2 O2 CO2 H2O
N2 21.87 16.63 23.15
O2 21.87 16.40 22.85
CO2 16.63 16.40 16.02
H2O 23.15 22.85 16.02

As there are no reactions among the species in the lung, we have ri = 0 for each

i = 1, 2, 3, 4. The solving parameters were set as ε = 10−11 and γ = 0.0004. As

discussed in the previous example, we wish to take γ such that γn−1ρ = O(λκ) = O(κ).

Here ρ ≈ 28 and hence this suggests a reasonable choice is γ = κ = 0.0004. (Strictly

speaking, ρ in this case is not the density as we are using mole fractions, but this does

not affect the mathematical argument regarding the choice of γ.)
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Table 2.5: Dirichlet boundary data at the entrance of the trachea (Γ1) and the end
of the tertiary bronchi (Γ2). These values can be found in [77]. Note that the air is
humidified such that the water vapour mole fraction is equal at both Γ1 and Γ2.

N2 O2 CO2 H2O
Mole fraction at Γ1 0.7409 0.1967 0.0004 0.0620
Mole fraction at Γ2 0.7490 0.1360 0.0530 0.0620

Following our algorithm from section 5, convergence was achieved in 9 non-linear

iterations. Each linear system had 5, 312, 524 degrees of freedom and was solved on

12 cores. We remark that despite the very low concentration of carbon dioxide at Γ1,

convergence was achieved in few iterations, and the mole fraction remained positive

across all iterations.

Figure 2.4: A plot of the distribution of oxygen in the lungs with its velocity vector
field (mm s−1).

Interesting physical effects are revealed by the diffusional drag forces in the water

vapour. Since the mole fractions for water vapour on the boundaries Γ1 and Γ2 are
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the same, any concentration gradient of water vapour is a consequence of diffusional

interactions with the other species.

Figure 2.5 shows modest uphill diffusion of water vapour at the trachea, where

the velocity points in the same direction as the mole-fraction gradient. This can be

explained as follows. The difference in the mole fractions of oxygen and carbon dioxide

between the trachea and the tertiary bronchi creates a strong mole-fraction gradient,

which in turn drives the velocity fields of the respective species in opposing directions.

These velocity fields interact with the water vapour and attempt to drag the water

vapour along with them, but the diffusional drag force exerted by CO2 on H2O exceeds

the drag by O2 on H2O. Consequently, the water vapour tends to be dragged along

with the carbon dioxide — the H2O velocity flows up the trachea.

Figure 2.5: A plot of the distribution of water vapour in the lungs with its velocity
vector field (mm s−1).

2.4.3 Code availability

For reproducibility, the exact software versions used to produce the results in this

chaper, along with instructions for installation, has been archived on Zenodo [157].
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The exact scripts used to produce each numerical experiment can be found at https://

bitbucket.org/AlexanderVanBrunt/maxwell-stefan-diffusion-equations-repository

along with the mesh used for the lungs.

2.5 Conclusion

In this chapter we derived a structure-preserving discretization of the steady-state

Stefan–Maxwell diffusion problem based on an augmented saddle point formulation.

The inf-sup conditions for the linearized continuous and discrete systems fundamentally

rely on the symmetric positive definite structure of an augmented transport matrix,

which follows from thermodynamical principles and the construction of the augmen-

tation involving the mass-flux. Error estimates for the general case of n species were

then deduced, which were confirmed with numerical experiments.

This work has been limited to an ideal setting and does not consider the full cou-

pling between momentum and diffusion — a dubious assumption. Despite this, the

work presented here lays an important cornerstone for considering the full Navier–

Stokes–Onsager–Stefan–Maxwell framework. In particular the analysis of the aug-

mented transport matrix (yielding coercive bilinear forms) is general in scope and will

be applied to fully couple momentum and diffusion in the next chapter. We will also

apply this idea to non-ideal fluids.

Given that our analysis depended highly on positivity of the concentrations, it

would be highly desirable to prove that, at each non-linear iteration, the concentrations

remain positive in both the continuous setting and its discrete approximation. A

strategy pursued in the next chapter is to reformulate the problem using the chemical

potential µi, in which non-negative concentrations emerge as a post-processing step.

Similarly one can formulate the problem in terms of molar fluxes rather than ve-

locities, which has the advantage that the continuity equations do not need to be

linearized. However, a disadvantage is that the resulting bilinear form a(·, ·) is no

longer symmetric or coercive, which would add significant difficulty to the analysis.

One way to circumvent this is to divide both sides of (2.2) by ci, which would ensure

symmetry and coercivity. The drawback of this approach is that it would introduce

additional non-linearity in the diffusion driving forces, unless one uses the chemical

potential, as pursued in the next chapter.

Regardless, although this chapter solved for the concentrations and velocities, this

is not the only viable choice. This choice will be changed throughout the thesis as the

context evolves. For example, in Chapter (3) we use chemical potentials, in Chapter 4
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we use mole fractions (which essentially correspond to the concentrations in this chap-

ter, as cT was constant), in Chapter 5, the advantageous choice is found to be chemical

potentials and fluxes. Rather than advocate for one particular choice, this chapter is

meant to demonstrate how the structure of thermodynamics and the augmentation can

be used to derive robust numerical algorithms.
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Chapter 3

The

Stokes–Onsager–Stefan–Maxwell

equations

3.1 Introduction

The basis of this chapter formed an original paper, currently in submission. The

preprint is available on ArXiv. This work was done in collaboration with another

DPhil student, Francis Aznaran.

Although the previous chapter developed an effective solver, its scope of physical

applicability is limited. This chapter extends this scope greatly by incorporating mo-

mentum, pressure and non-ideality into our formulation. We pose the problem at low

Reynolds number and prove well-posedness and error estimates for a class of finite

elements.

This imposes some key differences which require a shift in thinking. Firstly we must

solve for both mass-average velocity, and pressure. This done by solving the Stokes

equation,

div
⇒
τ − ∇⃗p = −ρf⃗, (3.1)

which derives from the momentum balance (1.23) at low Reynolds number.
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To solve (3.1) we write the Newtonian constitutive equation in the form (1.46)

which expresses the thermodynamic force (the linearized strain rate) in terms of the

corresponding flux (the viscous stress) [83]. Consequently, we do not eliminate the

viscous stress, but include it as an implicit variable to be solved for. This is at odds

with most works in computational fluid dynamics, in which a flux-explicit formulation

such as (1.46) is used to eliminate the viscous stress in the first instance.

While including the viscous stress as an unknown variable increases the computa-

tional cost, it has substantial benefits; the viscous stress plays a fundamental role in the

calculation of local entropy production, but more significantly, it is key to developing a

symmetric perturbed saddle point-like system, which is conducive to both theoretical

analysis and (we anticipate) efficient linear solvers.

On the other hand, in solid mechanics, mixed methods which include
⇒
τ as a variable

to be solved for have become well-founded. The seminal paper of Arnold and Winther

[6] introduced a new family of symmetric stress finite elements which could be used to

model linear elasticity in a stress-displacement formulation. More particular to us is

the recent paper by Carstensen et al. [30], which applied these families of finite elements

to discretize the incompressible Stokes equations. A key quantity in their formulation

was the Cauchy stress, or total stress,

⇒
σ :=

⇒
τ − pI. (3.2)

Similarly the Cauchy stress,
⇒
σ , will also be central to the analysis of this chapter.

Second the incorporation of the mass-average velocity must be rethought — indeed

as v⃗ is now one of the variables we are solving for, it cannot be hoped that the mass-

average velocity constraint (1.29) will be achieved only through consistency conditions

on the boundary data such as (2.12), (2.13) which were posed in the previous chapter.

The augmentation introduced in the previous chapter modified the OSM equations,

which induced coercivity of a bilinear form. Much of the results of the analysis of

this chapter will be based on a similar deployment of this augmentation, albeit with

a different scaling and now with more complex driving forces of the form (1.35a) on

account of non-ideality and pressure diffusion. However it will be seen that augmenting

only the OSM equations as before will come at the cost of symmetry. To enforce

symmetry, we add a ‘dual’ augmentation to the Stokes equation (3.1)

div
⇒
τ − ∇⃗p = −ρf⃗ + γ

∑

j

ωj(v⃗ − v⃗j). (3.3)
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With these two augmentations, an important bilinear form defined later in (3.31a)

will be both symmetric and coercive on an appropriate kernel. The two augmenta-

tions (2.4) and (3.3) greatly aid the proofs of well-posedness for the continuous and

discrete problems, as we demonstrate in (3.3.2) and (3.4.1).

Perhaps the biggest shift from the last chapter though is that we will now be solving

for the chemical potential. This will carry several advantages. After the introduction

of pressure, the OSM equations take the form

−ci∇⃗µi + ωi∇⃗p =
n∑

i=1

Mij v⃗i. (3.4)

From (3.4), we see using the chemical potential allows for a general statement of the

OSM equations (specifically the diffusion driving forces) independent of the materials

considered. If we were to make the (perhaps more obvious) choice of solving for con-

centrations or mole fraction as the primary variables instead, the form of the diffusion

driving forces would change in a material-dependent manner. Second, our choice allows

for a decoupling in the linearization we employ: the primary mixed system to solve

only depends on the material via the diffusion coefficients and viscosities, with any

non-ideality confined to the computation of concentrations and density postprocessed

at every iteration the using material-dependent thermodynamic constitutive relations

discussed in subsection 1.2.1.2. This decoupling is another key ingredient to formu-

late the equations with a symmetric perturbed saddle point-like structure, which will

considerably simplify the analysis.

The price one has to pay for this, is that it cannot be said to be structure preserving

— the Gibbs–Duhem equation will not hold up to machine precision and the transient

balance equations are more intricate.

3.1.1 Coupled problem statement

The goal of this chapter is to find and analyze a variational formulation and finite

element discretization of the following problem: given data f and {ri}ni=1, find chemical

potentials {µi}ni=1, viscous stress
⇒
τ , pressure p, species velocities {v⃗i}ni=1, and convective
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velocity v⃗ satisfying

−ci∇⃗µi + ωi∇⃗p+ γωiv⃗ =
∑

j

Mγ
ij v⃗j ∀i, (augmented OSM equations)

(3.5a)

⇒

ε(v) = A⇒
τ , (stress constitutive law) (3.5b)

div
⇒
τ − ∇⃗p− γ

∑

j

ωj(v⃗ − v⃗j) = −ρf⃗, (augmented Stokes equation)

(3.5c)

− div(civ⃗i) = ri ∀i, (species continuity equation)

(3.5d)

div(v⃗) = div

(∑

j

ωj v⃗j

)
, (mass-average velocity constraint)

(3.5e)

for an augmentation parameter γ ≥ 0, where {ci, ωi}ni=1, ρ are functions of the un-

knowns via chemical potential constitutive laws such as (1.17) and (1.18), and algebraic

relations (1.25), (1.30). Furthermore in this chapter we understand the augmented

transport matrix Mγ to mean

Mγ
ij = M+ γωiωj (3.6)

which is a mildly different scaling than Chapter 2. Principally this done as it is more

commensurate with the mass-average constraint (3.5e) enforced in this section. We

call the system (3.5) the (augmented) Stokes–Onsager–Stefan–Maxwell (SOSM) sys-

tem. When the convection term div (ρv⃗ ⊗ v⃗) is incorporated into (3.5c), we call this

the Navier–Stokes–Onsager–Stefan–Maxwell (NSOSM) system. Appropriate boundary

conditions will be introduced in (3.2.2).

Note in the system we only directly enforce the divergence of the mass-average

velocity constraint (3.5e), which may be interpreted as the compressible generalization

of the standard divergence constraint (1.26); this choice gives rise to a saddle point-like

structure, as we show in the next section. Nevertheless, the full constraint (1.29) is

incorporated via the augmentations (3.5a) and (3.5c), as discussed further in Remark 8.
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Remark 7. Many cross-diffusion systems, such as those describing multiagent systems

in mathematical biology [29], arise from a gradient flow of an associated entropy func-

tional. Unfortunately, although the OSM system admits an associated thermodynamic

energy—the Gibbs free energy—we are not able to show equivalence of the (S)OSM

system to the Euler–Lagrange stationarity condition of any energy or Lagrangian func-

tional, and hence cannot exploit any gradient flow structure. Instead, our mathematical

line of attack will be to exploit the positive definiteness of the augmented transport ma-

trix Mγ. With our augmentations of the equations, the Picard scheme we propose below

in Section 3.3 nevertheless gives rise to symmetric linearized problems to solve at each

nonlinear iteration.

The remainder of this chapter is organized as follows. In Section 3.2, derives a novel

variational formulation of the fully coupled nonlinear SOSM problem, incorporating

boundary conditions and augmentation terms, as a nonlinear perturbed saddle point-

like system, using a novel solution-dependent test space relating to the thermodynamic

driving force; our principal discovery is the duality between the diffusion driving forces,

and the combination of species continuity equations with the divergence of the mass-

average velocity constraint. Section 3.3 proposes a Picard-like linearization, which is

proven to be well-posed under physically reasonable assumptions. Section 3.4 identi-

fies appropriate finite element spaces, and the structural relations which should hold

between them, for a well-posed and convergent discretization of this linearization. We

then validate our convergence results numerically. Finally, we illustrate our method by

simulating the steady mixing of liquid benzene and cyclohexane in a two-dimensional

microfluidic laminar-flow device.

3.2 Variational formulation

In this chapter, we employ standard notation for the Sobolev space Hk(Ω;X) (or

L2(Ω;X) when k = 0) with domain Ω ⊂ Rd and codomain X, and associated norm ∥·∥k
and seminorm | · |k. We denote by S = Rd×d

sym the space of d× d symmetric tensors. The

symbol ≲ denotes inequality up to a constant which may depend on mesh regularity

but not mesh spacing h. Let L2
0(Ω) := {z ∈ L2(Ω) | −

∫
Ω
z dx = 0}. As in Chapter 2, we

use the notation q̃ = (q1, . . . , qn) to denote an n-tuple of functions. Let Γ = ∂Ω and

let ⟨·, ·⟩Γ denote the (H−1/2 ×H1/2)(Γ;R or Rd) dual pairing.
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3.2.1 Integrability of pressure gradients

In a variational formulation of the nonisobaric case, one would like to integrate the pres-

sure gradient term in our diffusion driving forces (1.35a) by parts, to reduce the regular-

ity requirement on p. However, it is not obvious how to do so, since the mass fractions

ωi are spatially varying. In order to rigorously incorporate the effect of pressure-driven

diffusion, we are therefore led to consider the somewhat unorthodox possibility of for-

mulating the Stokes subproblem with pressure lying in H1(Ω). Typically, the condition

that p ∈ H1(Ω) may be provided by elliptic regularity results for the pressure field,

but to the author’s knowledge, the a priori square-integrability of pressure gradients

(i.e. for which, we emphasize, pressure is defined to lie in H1(Ω)) has not been con-

sidered for the Stokes system, except at the discrete level for the incompressible case

in [136]. This condition is also suggested by the case of pure Stefan–Maxwell diffusion

for nonisobaric ideal gases. Here the driving forces are

d⃗i = −RT ∇⃗ci + ωi∇⃗p, (3.7)

which suggests considering each ci (and hence cT) to lie in H1(Ω), which forces the

pressure to lie in the same space due to the ideal equation of state p = cTRT .

In general, one must distinguish between the thermodynamic pressure p, which we

use throughout this thesis, and themechanical pressure pm := −trσ/d. The mechanical

pressure is related to the spherical Cauchy stress by sphσ := trσ
d
I = −pmI, and to p by

p = pm + ζ div v⃗. (3.8)

In the context of multicomponent flow, this decomposition is discussed in further detail

by Bothe & Dreyer [20]. Even in the simpler incompressible limit where div v⃗ = 0 so

that p = pm, we cannot expect extra regularity of ∇⃗p = − div(sphσ) becauseH(div; S),
the natural space for σ, is not closed under taking spherical parts.1 Consequently, we

do not take p ∈ H1(Ω), but as a compromise consider a weaker condition defined by

the combined viscous stress-pressure space

T = {(⇒
τ , p) ∈ L2(Ω;S)× L2(Ω) | div

⇒
τ − ∇⃗p ∈ L2(Ω;Rd)}

(
⊋ H(div;S)×H1(Ω)

)
,

(3.9)

1We also remark that, viewing the pressure as a component of the full Cauchy stress, appealing
to the Hodge decomposition of the stress space H(div;S) [4, Theorem 4.5] does not endow that
component with any extra regularity.
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and assign to it the weaker norm ∥⇒
τ ∥20 + ∥p∥20 + ∥ div ⇒

τ − ∇⃗p∥20. This space and norm

were previously employed by Manouzi & Farhloul in an analysis of a non-Newtonian

incompressible Stokes flow [99] where
⇒
τ was taken to be the deviatoric shear stress.

Membership of the space T is naturally interpretable as the square-integrability of

the divergence of the full Cauchy stress, i.e. that σ =
⇒
τ − pI ∈ H(div;S). Together

with an analogous condition for the chemical potential gradient to be detailed in the

next section (3.2.2), this weaker condition will account for the pressure gradient in the

driving forces.

3.2.2 Fully coupled variational formulation

In this subsection, we derive a variational formulation for the stationary problem as a

nonlinear perturbed saddle point-like system. We have found the following statement

of the problem to be a feasible tradeoff between the (competing) goals of: physical

relevance of variables and boundary data, regularity assumptions, numerical imple-

mentability and effectiveness, analytic tractability, enforcement of fundamental ther-

modynamic relations, and extensibility to the transient, anisothermal, and non-ideal

settings.

For boundary data, we prescribe mass flux and molar fluxes:

ρv⃗ = gv ∈ H1/2(Γ;Rd) on Γ, (3.10a)

civ⃗i · n = gi ∈ H−1/2(Γ) on Γ, i = 1, . . . , n. (3.10b)

For consistency with the mass-average velocity constraint (1.29), we require

∑

i

migi = gv · n, (3.11)

with equality in H−1/2(Γ). We further impose conditions

∫

Ω

p dx =

∫

Ω

µi dx = 0, i = 1, . . . , n, (3.12)

on the pressure and chemical potentials. Typically, the equation of state will require

or imply strict positivity of p everywhere, in which case this condition should be un-

derstood as −
∫
Ω
p dx = p⊖ > 0 and that p be shifted by the known value p⊖ as a

postprocessing step.
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Let Q = L2(Ω;Rd)n×L2(Ω;Rd). For formal derivation of the weak form, we assume

the solution tuple (µ̃,
⇒
τ , p, ṽ, v⃗) to be smooth on Ω, and consider choosing (w̃,

⇒
s , q) from

the solution-dependent potential-stress-pressure test space

Θ :=





(
w̃,

⇒
s , q
)
∈ L2

0(Ω)
n × L2(Ω;S)× L2

0(Ω)

∣∣∣∣∣∣∣

div
⇒
s − ∇⃗q ∈ L2(Ω;Rd),

−ci∇⃗wi + ωi∇⃗q ∈ L2(Ω;Rd) ∀i




.

(3.13)

Here it is understood that the {ci, ωi}i are computed from the solution tuple. Mul-

tiplying the ith continuity equation (3.5d) by wi, the divergence of the mass-average

velocity constraint (3.5e) by q, and contracting the stress constitutive law (3.5b) with
⇒
s , we obtain

∑

i

(div(civ⃗i)− ri)wi + div

(
v⃗ −

∑

i

ωiv⃗i

)
q + (A⇒

τ − ε(v)) :
⇒
s = 0, (3.14)

and hence

∫

Ω

∑

i

(div(civ⃗i)wi − div(ωiv⃗i)q) +A⇒
τ :

⇒
s − (

⇒
s − qI) : ε(v) dx =

∫

Ω

∑

i

riwi dx.

(3.15)

Integrating by parts yields

∫

Ω

A⇒
τ :

⇒
s +

∑

i

(−ci∇⃗wi + ωi∇⃗q) · v⃗i + (div
⇒
s − ∇⃗q) · v dx

=
〈
(
⇒
s − qI)n, v⃗

〉
Γ
+
∑

i

〈
civ⃗i · n,−wi +

ωi
ci
q

〉

Γ

+

∫

Ω

r̃ · w̃ dx

=

〈
(
⇒
s − qI)n,

gv
ρ

〉

Γ

+
∑

i

〈
gi,−wi +

Mi

ρ
q

〉

Γ

+

∫

Ω

r̃ · w̃ dx.

(3.16)

Now for each i = 1, . . . , n, we take the scalar product of ui ∈ L2(Ω;Rd) with the

augmented OSM equation (3.5a) and integrate over Ω to obtain

∫

Ω

(
−ci∇⃗µi + ωi∇⃗p

)
· u⃗i − u⃗i ·

∑

j

Mij v⃗j − γωi
∑

j

ωj(v⃗j − v⃗) · u⃗i dx = 0. (3.17)

Taking the inner product of the augmented Cauchy momentum balance (3.5c) with
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u ∈ L2(Ω;Rd) yields

∫

Ω

(div
⇒
τ − ∇⃗p) · u⃗− γ

(∑

j

ωj(v⃗ − v⃗j)

)
· u⃗ dx = −

∫

Ω

ρf⃗ · u⃗ dx. (3.18)

We sum (3.17) over i and add (3.18) to derive

∫

Ω

∑

i

(
−ci∇⃗µi + ωi∇⃗p

)
· u⃗i +

(
div

⇒
τ − ∇⃗p

)
· u⃗

−
∑

i,j

u⃗i ·Mij v⃗j − γ

(∑

i

ωi(v⃗i − v⃗)

)
·
(∑

j

ωj(u⃗j − u⃗)

)
dx =

∫

Ω

−ρf⃗ · u⃗ dx.

(3.19)

Note that both augmentations (3.5a) and (3.5c) were involved in deriving this expres-

sion.

Finally, we observe that by definition, we have ωi ∈ L∞(Ω) with ∥ωi∥L∞(Ω) ≤
1. Moreover, we make the physically reasonable assumptions that the concentrations

associated with the solution are uniformly bounded, ci ∈ L∞(Ω), with ci ≥ κ > 0

a.e. (almost everywhere), as in [146] (which in turn implies Mγ
ij, ρ ∈ L∞(Ω), and

ρ ≥ κ
∑

iMi > 0 a.e.), and that the density gradient is uniformly bounded, ∇⃗ρ ∈
L∞(Ω;Rd).2

Definition 1. We define a weak solution to the augmented Stokes–Onsager–Stefan–

Maxwell system to be a (2n+ 3)-tuple

({µi}ni=1,
⇒
τ , p, {v⃗i}ni=1, v⃗) ∈ L2

0(Ω)
n×L2(Ω;S)×L2

0(Ω)×L2(Ω;Rd)n × L2(Ω;Rd)︸ ︷︷ ︸
Q

(3.20)

inducing concentrations {ci}ni=1 through a constitutive law (such as (1.16)) implicitly

2A comparable condition, that ρ ∈ (H1 ∩W 1,∞)(Ω) is bounded below with ∇⃗ρ
ρ ∈ L∞(Ω;Rd), was

used to analyze a compressible Stokes flow in [32].
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defining ci = ci({µi}ni=1, p) ≥ κ > 0 a.e. for i = 1, . . . , n, such that

∥ci∥L∞(Ω) <∞, i = 1, . . . , n, (3.21a)

∥∇⃗ρ∥L∞(Ω;Rd) <∞, (3.21b)

∥ div ⇒
τ − ∇⃗p∥20 <∞, (3.21c)

∥ − ci∇⃗µi + ωi∇⃗p∥20 <∞, i = 1, . . . , n, (3.21d)

and satisfying (3.16), (3.19) for all test tuples ({wi}ni=1,
⇒
s , q, {u⃗i}ni=1, u⃗) ∈ Θ×Q, where

Θ is defined in (3.13).

Observe that the solution tuple does not reside in any standard Sobolev space, but

that the regularity assumptions placed on the solution tuple and test spaces ensure

that the surface terms in (3.16) are well-defined. Recall that condition (3.21c) is the

square-integrability of the Cauchy stress σ (as in [99]). The nonlinear integrability

condition (3.21d) is to our knowledge a novel requirement, but also has a natural

interpretation, namely the square-integrability of the diffusion driving forces:3

d⃗i ∈ L2(Ω;Rd). (3.22)

Moreover, we emphasize that this unorthodox formulation allows the rigorous incorpo-

ration of pressure diffusion via the pressure gradient on the left side of (3.5a), despite

the fact that the pressure field is not a priori H1-regular in the Stokes subsystem.

Later in (3.4.4) we observe convergence of the diffusion driving forces in L2 and of the

pressure in H1, but otherwise leave this consideration, and further investigation into

the optimal nonlinear formulation of the SOSM system, as intriguing open questions.

Remark 8. In the derivation of (3.14), we used (3.5e) which ignores the curl compo-

nent in the Helmholtz decomposition of the mass-average velocity relationship (1.29).

The full constraint is weakly incorporated, however, via the augmentations (3.5a)

and (3.3). A proof that this is sufficient to preserve in the Gibbs-Duhem equation

was given in the case of an ideal isobaric isothermal gas in Section 2.1. Here we show

that this is true in general, providing that the constitutive laws for the chemical poten-

tial are such that they derive from a Gibbs free energy. Choosing u⃗i = u⃗ for every u⃗

3We conjecture that one could alternatively derive a formulation of the SOSM system dual to
ours which takes d⃗i as a primary unknown in a space to be identified. We also conjecture that the
integrability assumptions in Definition 1 could potentially be relaxed.
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and summing over i we have

∫ n∑

i=1

(
− ci∇⃗µi + ωi∇⃗p

)
· u⃗+ γv⃗ · u⃗ = γ

n∑

i=1

ωiv⃗i · u⃗. (3.23)

Choosing u⃗ = ∇⃗q ∈ H1(Ω) and noting (3.5e) we derive that

∫ n∑

i=1

(
− ci∇⃗µi + ωi∇⃗p

)
· ∇⃗q = 0 (3.24)

for each q ∈ H1(Ω). Further rearrangement of the integrand yields

n∑

j=1

(
−ci∇⃗µi + ωi∇⃗p

)
=

n∑

i=1

−∇⃗ (ciµi) + ∇⃗p+
n∑

i=1

µi∇⃗ci (3.25)

= ∇⃗ (ciµi) + ∇⃗G̃ (3.26)

where we have used the first law as in form (1.10). However then we see that the

integrand (3.24), is it fact itself a gradient so (3.24) implies it is zero. That is, choosing

∇⃗q = ∇⃗(ciµi) + ∇⃗G̃ we derive

∫ ( n∑

i=1

−ci∇⃗µi + ωi∇⃗p
)2

= 0. (3.27)

Then (3.23) reduces to

v⃗ · u⃗ =
n∑

i=1

ωiv⃗i · u⃗ (3.28)

showing the enforcement of the mass-average velocity. Although this shows the preser-

vation of the Gibbs–Duhem and mass-average velocity in the nonlinear infinite dimen-

sional case, it is significantly harder in the non-ideal case to enforce this exactly in the

linearized discretization as was achieved for an ideal gas in Chapter 2. This is a price

we pay for solving for the chemical potential.
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3.3 Linearization and well-posedness

3.3.1 Variational formulation of a generalized Picard scheme

In this section we derive a variational formulation of a generalized Picard linearization.

Given a previous estimate for the potentials µ̃k and pressure pk for k ≥ 0, we regard

these as fixed quantities which determine the concentrations c̃k via chemical potential

constitutive laws and an appropriate equation of state such as (1.16). This in turn

determines the density ρk, mass fractions ω̃k, total concentration ckT, and transport

matrix Mk defined via (1.25), (1.30), (1.9), and (1.49), respectively. We then construct

a linear system to solve for the next iterate ((µ̃k+1,
⇒
τ k+1, pk+1), (ũk+1, u⃗k+1)). This

update strategy is expected to be effective because the gradients of chemical potential,

pressure, and mass-average velocity primarily drive the dynamics of multicomponent

flow; the role of the species concentrations is mostly confined to the effect of altering the

drag coefficients in the transport matrix. We make the following physically reasonable

assumptions about each iterate, in analogy to Definition 1.

Assumption 1. For each k ≥ 0, we assume cki ∈ L∞(Ω), ρk ∈ W 1,∞(Ω), and that

cki ≥ κ > 0 a.e. for each i.

This again implies ρk ≥ κ
∑

iMi > 0 a.e. We also assume henceforth that γ > 0.

Given c̃k and the corresponding ω̃k, we define the iteration-dependent weighted

function space

Θk :=




(w̃,

⇒
s , q) ∈ L2

0(Ω)
n × L2(Ω;S)× L2

0(Ω)

∣∣∣∣∣∣∣

div
⇒
s − ∇⃗q ∈ L2(Ω;Rd),

−cki ∇⃗wi + ωki ∇⃗q ∈ L2(Ω;Rd) ∀i




,

(3.29)

whose defining conditions linearize those in (3.13). This mixed space is Hilbertian with

graph norm

∥(w̃, ⇒
s , q)∥2Θk := ∥⇒

s∥20 + ∥q∥20 + ∥ div ⇒
s − ∇⃗q∥20 +

∑

i

(
∥wi∥20 + ∥ − cki ∇⃗wi + ωki ∇⃗q∥20

)
.

(3.30)

We now formulate our linearized problem as a symmetric perturbed saddle point prob-
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lem. Define Ak : Q→ Q∗,Λ : Θk → (Θk)∗, Bk : Θ
k → Q∗ by

Ak(ṽ, v⃗; ũ, u⃗) :=

∫

Ω

∑

i,j

v⃗i ·Mk
iju⃗jdx+ γ

∫

Ω

(∑

i

ωki (v⃗i − v⃗)

)
·
(∑

j

ωkj (u⃗j − u⃗)

)
dx,

(3.31a)

Λ(µ̃,
⇒
τ , p; w̃,

⇒
s , q) :=

∫

Ω

A⇒
τ :

⇒
s dx, (3.31b)

Bk(µ̃,
⇒
τ , p; ũ, u⃗) :=

∫

Ω

∑

i

(−cki ∇⃗µi + ωki ∇⃗p) · u⃗i + (div
⇒
τ − ∇⃗p) · u⃗ dx, (3.31c)

and the functionals

ℓ1k(w̃,
⇒
s , q) :=

〈
(s− qI)n,

gv
ρk

〉

Γ

+
∑

i

〈
gi,−wi +

Mi

ρk
q

〉

Γ

+

∫

Ω

r̃ · w̃ dx,

ℓ2k(ũ, u⃗) := −
∫

Ω

ρkf · u⃗ dx.

(3.32)

Note that under Assumption 1, each of the bilinear functionals is continuous; we will

denote their norms as ∥Ak∥, ∥Λ∥, and ∥Bk∥, respectively. Our linearized problem is

posed as follows: find ((µ̃k+1,
⇒
τ k+1, pk+1), (ṽk+1, vk+1)) ∈ Θk ×Q such that

Λ(µ̃k+1,
⇒
τ k+1, pk+1; w̃,

⇒
s , q) +Bk(w̃,

⇒
s , q; ṽk+1, v⃗k+1) = ℓ1k(w̃,

⇒
s , q) ∀ (w̃,

⇒
s , q) ∈ Θk,

Bk(µ̃
k+1,

⇒
τ k+1, pk+1; ũ, u⃗)− Ak(ṽ

k+1, v⃗k+1; ũ, u⃗) = ℓ2k(ũ, u⃗) ∀ (ũ, u⃗) ∈ Q,

.

(3.33)

We note that the variational terms involving chemical potential and pressure gradi-

ents are precisely of the same variational form as the species continuity equations and

the divergence of the mass-average velocity constraint, which can be seen by inspect-

ing (3.16) and (3.19). This key insight is what leads to a symmetric system.

Our nonlinear iteration scheme is as follows: for an initial estimate of

the concentrations c̃0, we solve the system (3.33) for the updated variables

((µ̃k+1,
⇒
τ k+1, pk+1), (ṽk+1, vk+1)) ∈ Θk × Q, for k = 0, 1, 2, . . .. By the relations de-

tailed in (1.2.1.2), these variables are used to calculate the updated concentrations

c̃k+1. This is iterated until for some set tolerance ε > 0,

(
∥(µ̃k+1,

⇒
τ k+1, pk+1)− (µ̃k,

⇒
τ k, pk)∥2Θk + ∥(ṽk+1, v⃗k+1)− (ṽk, v⃗k)∥2Q

)1/2
≤ ε. (3.34)
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3.3.2 Well-posedness of the linearized system

We will now prove that the saddle point system (3.33) is well-posed under Assumption

1. This will require a Poincaré-type inequality for the following seminorm on Θk:

|(w̃, ⇒
s , q)|2Θk := ∥⇒

s∥20 + ∥ div ⇒
s − ∇⃗q∥20 +

∑

i

∥ − cki ∇⃗wi + ωki ∇⃗q∥20. (3.35)

Lemma 3. Let Ω be a Lipschitz domain. Under Assumption 1, there exists K > 0

such that for each (µ̃,
⇒
τ , p) ∈ Θk,

∥(µ̃, ⇒
τ , p)∥Θk ≤ K|(µ̃, ⇒

τ , p)|Θk . (3.36)

This lemma will allow us to control the chemical potential and pressure in terms

of the (linearized) driving forces, divergence of total stress, and the viscous stress. It

should be thought of as the generalization to the OSM framework of [99, Lemma 4].

Proof of Lemma 3. The first stage of the proof is to show that

∥p∥0 ≲ ∥⇒
τ ∥0 + ∥ div ⇒

τ − ∇⃗p∥0, (3.37)

following and mildly generalizing [99, Lemma 4]. Set θ =
⇒
τ − pI − rI where r =

1
d|Ω|

∫
Ω
tr

⇒
τ dx. Then

∥⇒
τ − pI∥0 ≤ ∥θ∥0 + ∥rI∥0. (3.38)

As
∫
Ω
tr θ dx = 0, we can use [18, Proposition 9.1.1] to derive

∥⇒
τ − pI∥0 ≲ ∥ dev θ∥0 + ∥ div θ∥0 + ∥rI∥0

≲ ∥⇒
τ ∥0 + ∥ div ⇒

τ − ∇⃗p∥0,
(3.39)

where the deviator is defined as dev θ := θ − tr θ
d
I = dev

⇒
τ . Now using

√
d∥p∥0 ≤ ∥⇒

τ − pI∥0 + ∥⇒
τ ∥0, (3.40)

the result (3.37) follows. For the second stage of the proof, we will show that

∥µi∥0 ≲ ∥p∥0 + ∥ − cki ∇⃗µi + ωki ∇⃗p∥0. (3.41)
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This combined with (3.37) gives (3.36). To prove this second inequality, for each i we

take the unique z⃗i ∈ H1
0 (Ω;Rd)/ ker(div) such that div z⃗i = µi. Then u⃗i := z⃗i/c

k
i ∈

L2(Ω;Rd) with div(cki u⃗i) = µi. With integration by parts we deduce

∫

Ω

(−cki ∇⃗µi + ωki ∇⃗p) · u⃗i dx =

∫

Ω

|µi|2 −Mip

(
µi
ρk

− ∇⃗ρk
(ρk)2

· cki u⃗i
)
dx. (3.42)

Upon rearrangement, we can derive the inequality

∥µi∥20 ≤Mi∥p∥0


 ∥µi∥0
κ
∑

jMj

+ ∥u⃗i∥0∥cki ∥0
∥∥∥∥∥
∇⃗ρk
(ρk)2

∥∥∥∥∥
L∞(Ω;Rd)


+ ∥ − cki ∇⃗µi + ωi∇⃗p∥0∥u⃗i∥0

≤ κ−1∥p∥0
(
∥µi∥0 + ∥u⃗i∥0∥cki ∥L∞(Ω)∥∇⃗ ln ρk∥L∞(Ω;Rd)

)
+ ∥ − cki ∇⃗µi + ωi∇⃗p∥0∥u⃗i∥0.

(3.43)

By the bounded inverse theorem, div admits a bounded left inverse, so ∥z⃗i∥1 ≲ ∥µi∥0
and thus

∥u⃗i∥0 ≤ κ−1∥zi∥0 ≲ κ−1∥µi∥0. (3.44)

Combining this with (3.43), we can divide through by ∥µi∥0 to derive

∥µi∥0 ≲ κ−1∥p∥0
(
1 + κ−1∥cki ∥L∞(Ω)∥∇⃗ ln ρk∥L∞(Ω)

)
+κ−1∥− cki ∇⃗µi+ωki ∇⃗p∥0. (3.45)

This concludes our proof.

Remark 9. The constants appearing in (3.36) depend on two factors; the relative

variation of the density and κ. Provided these two quantities are well-behaved across

iterations, so will be the resulting constants.

A further intermediate lemma we need to prove well-posedness is the following. Let

∥(ṽ, v⃗)∥2Q := ∥ṽ∥20 + ∥v⃗∥20.

Lemma 4. Under Assumption 1 there exists λγκ > 0 depending on κ and γ such that

for all (ṽ, v⃗) ∈ Q,

(
n+ 1

2

)
λγκ∥v⃗∥20 + Ak(ṽ, v⃗; ṽ, v⃗) ≥

λγκ
2
∥(ṽ, v⃗)∥2Q. (3.46)
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Proof. Let us define δ⃗i = v⃗i − v⃗ for each i. Then we can explicitly compute

Ak(ṽ, v⃗; ṽ, v⃗) =

∫

Ω

∑

i,j

δ⃗i ·Mk,γ
ij δ⃗j dx, (3.47)

where Mk,γ is defined using c̃k via (2.5). It follows from Lemma 1 that this is a coercive

bilinear form in δ̃: for some λγκ,

Ak(ṽ, v⃗; ṽ, v⃗) ≥
λγκ
2

∑

i

∥δ⃗i∥20 =
λγκ
2

∑

i

∥v⃗i − v⃗∥20, (3.48)

hence

(
n+ 1

2

)
λγκ∥v⃗∥20 + Ak(ṽ, v⃗; ṽ, v⃗) ≥

λγκ
2

∑

i

(∥v⃗i − v⃗∥20 + ∥v⃗∥20) +
λγκ
2
∥v⃗∥20

≥ λγκ
2

∑

i

∥v⃗i∥20 +
λγκ
2
∥v⃗∥20 =

λγκ
2
∥(ṽ, v⃗)∥2Q.

(3.49)

We now invoke standard Babuška theory for well-posedness [10].

Theorem 5. Under Assumption 1, there exists a unique solution to the perturbed

saddle point system (3.33).

Proof. For a given (p, q) :=
(
(µ̃, p,

⇒
τ ), (ṽ, v⃗)

)
∈ Θk × Q and (s, u) :=

(
(w̃,

⇒
s , q), (ũ, u⃗)

)
∈ Θk × Q we will define the bounded bilinear form G : (Θk × Q) ×

(Θk ×Q) → R as

G (p, q; s, u) := Λ(p; s) +Bk(s; q) +Bk(p; u)− Ak(q; u). (3.50)

We will prove Babuška’s inf-sup condition, namely that there exists a constant c > 0

such that for each (p, q) ∈ Θk ×Q there is (s, u) ∈ Θk ×Q such that

G (p, q; s, u)

∥(s, u)∥Θk×Q
≥ c∥(p, q)∥Θk×Q, (3.51)

with product norm ∥(p, q)∥2
Θk×Q := ∥p∥2

Θk
+∥q∥2Q. Note that G is defined on the product

of a space with itself and is symmetric, and so only the one inf-sup condition (3.51)
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needs to be verified. Proving (3.51) will be accomplished by showing that for a constant

c > 0, for each (p, q) ∈ Θk × Q there is (s, u) ∈ Θk × Q such that G (p, q; s, u) ≥
c∥(p, q)∥2

Θk×Q, and for a C > 0 independent of (p, q),

C∥(p, q)∥Θk×Q ≥ ∥(s, u)∥Θk×Q. (3.52)

This combined with our Poincaré-type inequality will imply well-posedness. We do

this by fixing (s, u) as the ansatz

wi = C1µi, s = C1
⇒
τ + C2

⇒
s v, q = C1p,

u⃗i = C3(−cki ∇⃗µi + ωki ∇⃗p)− C1v⃗i, u⃗ = −C1v⃗ + C4(div
⇒
τ − ∇⃗p).

(3.53)

Here C1, . . . > 0 are constants to be set later and sv ∈ H(div;S) is chosen to satisfy

div
⇒
s v = v⃗ and ∥⇒

s v∥H(div;S) ≤ CΣ∥v⃗∥0 for a constant CΣ independent of v (its existence

is guaranteed by [4, Theorem 8.1]). It is clear that (3.52) holds. With these choices of

test functions we may compute

G (p, q; s, u) =

∫

Ω

A⇒
τ : (C1

⇒
τ + C2

⇒
s v) dx+ C3

∑

i

∥ − cki ∇⃗µi + ωki ∇⃗p∥20

+ C4∥ div
⇒
τ − ∇⃗p∥20 + C2∥v⃗∥20 − Ak (ṽ, v⃗; ũ, u⃗) ,

(3.54)

and observe that the final term on the right may be written equivalently as

C1Ak (ṽ, v⃗; ṽ, v⃗)− Ak

(
ṽ, v⃗; {C3(−cki ∇⃗µi + ωki ∇⃗p)}i, C4(div

⇒
τ − ∇⃗p)

)
. (3.55)

With λγκ given by (4) we now choose C2 = ∥Ak∥2(n + 1)λγκ and assume that C1 ≥
2∥Ak∥2. Then

C2∥v⃗∥20 + C1Ak (ṽ, v; ṽ, v⃗) ≥ ∥Ak∥2λγκ∥(ṽ, v⃗)∥2Q. (3.56)

Using uniform positive definiteness of the compliance tensor, the bound on
⇒
s v, and
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boundedness of the operators Λ, Ak, we can proceed to bound (3.54) from below as

G (p, q; s, u) ≥ αC1∥
⇒
τ ∥20 + ∥Ak∥2λγκ∥(ṽ, v⃗)∥2Q + C3

∑

i

∥ − cki ∇⃗µi + ωki ∇⃗p∥20

+ C4∥ div
⇒
τ − ∇⃗p∥20 − λγκ(n+ 1)CΣ∥Ak∥2∥Λ∥∥v∥0∥

⇒
τ ∥0

− ∥Ak∥∥(ṽ, v⃗)∥Q
(
C2

3

∑

i

∥ − cki ∇⃗µi + ωki ∇⃗p∥20 + C2
4∥ div

⇒
τ − ∇⃗p∥20

)1/2

.

(3.57)

Here α > 0 is such that
∫
Ω
A⇒
τ :

⇒
τ dx ≥ α∥⇒

τ ∥20 for all
⇒
τ ∈ L2(Ω;S). The desired

inequality may now be derived by judiciously selecting the constants C1, C3, C4 (typi-

cally by choosing C1 ≫ C2 ≫ max(C3, C4)) and using the weighted Young inequality.

For concreteness, constants we might pick are

C1 =

(
λγκC

2
Σ∥Λ∥2(n+ 1)2

α
+ 2

)
∥Ak∥2, C3 = C4 = λγκ. (3.58)

With this choice and our Poincaré-type inequality from Lemma 3, combined with the

inequality (3.52) we may derive

G (p, q; s, u) ≥ 2α∥Ak∥2∥
⇒
τ ∥20 +

λγκ
6
∥Ak∥2∥(ṽ, v⃗)∥2Q

+
λγκ
4

(∑

i

∥ − cki ∇⃗µi + ωki ∇⃗p∥20 + ∥ div ⇒
τ − ∇⃗p∥20

)

≳ |p|2Θk + ∥q∥2Q ≳ ∥(p, q)∥2Θk×Q ≳ ∥(p, q)∥Θk×Q∥(s, u)∥Θk×Q,

(3.59)

which is the statement of the Babuška condition (3.51).

3.4 Discretization and numerical experiments

We now assume that Ω is polytopal, and admits a quasi-uniform triangulation Th with

simplicial elements of maximal diameter h. Denote conforming finite element spaces
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for the discrete solution tuple by

(Xn
h × Σh × Ph)︸ ︷︷ ︸

=: Θkh

× (W n
h × Vh)︸ ︷︷ ︸
=: Qh

⊂ (L2
0(Ω)

n × L2(Ω;S)× L2
0(Ω))︸ ︷︷ ︸

⊃ Θk

× (L2(Ω;Rd)n × L2(Ω;Rd))︸ ︷︷ ︸
= Q

.

(3.60)

Here Θk
h is independent of k as a set, but inherits an iteration-dependent norm described

below; Qh inherits the norm of Q. Our discretized linear problem after k ≥ 0 nonlinear

iterations therefore reads: seek ((µ̃h,
⇒
τ h, ph), (ṽh, v⃗h)) ∈ Θk

h ×Qh such that

Λ(µ̃h,
⇒
τ h, ph; w̃h,

⇒
sh, qh) +Bk,h(w̃h,

⇒
sh, qh; ṽh, v⃗h) = ℓ1k,h(w̃h,

⇒
sh, qh)∀(w̃h,

⇒
sh, qh) ∈ Θk

h,

Bk,h(µ̃h,
⇒
τ h, ph; ũh, u⃗h)− Ak,h(ṽh, v⃗h; ũh, u⃗h) = ℓ2k,h(ũh, u⃗h) ∀(ũh, u⃗h) ∈ Qh,

(3.61)

where Ak,h, Bk,h are obtained from Ak, Bk, and ℓ1k,h, ℓ
2
k,h from ℓ1k, ℓ

2
k, respectively, by

replacing the discretely computed concentrations cki and inverse density (ρk)−1 with

discrete approximations; we use these to define a norm ∥ · ∥Θkh for Θk
h in analogy

to (3.30).

3.4.1 Structure-preservation and well-posedness

We have already argued the need for pressure regularity greater than L2. We therefore

employ the continuous Lagrange element of degree t ≥ 1, Ph = CGt(Th), for the

pressure. From the diffusion driving forces (1.35a), it appears natural to take the

chemical potential space Xh to be CG elements of at least the same degree r ≥ t,

Xh = CGr(Th).
The mass-average velocity constraint (1.29) suggests that the species velocity space

be contained in the space used for convective velocity, Wh ⊂ Vh. For the Stokes

subsystem, it is desirable that the pair (Σh × Ph, Vh) be inf-sup compatible, for which

it is sufficient to have that the full divergence (
⇒
τ , p) 7→ div

⇒
τ −∇⃗p is surjective onto Vh.

By the regularity choice (3.9) for the pressure, it is thus natural to apply div-conforming

tensor elements to discretize the viscous stress. By the decomposition (3.2), symmetry

of the viscous stress is equivalent to the conservation of angular momentum; for now,

we consider exactly symmetric stress elements (such as the Arnold–Winther [6] and

Arnold–Awanou–Winther elements [5]) since this obviates the need for a symmetry-
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enforcing Lagrange multiplier which would add a further field to our (2n + 3)-field

formulation.

However, if one would like to repeat at the discrete level the proof of Theorem 5,

it is necessary for div : Σh → Vh to be surjective, allowing us to construct the discrete

analogue of the tensor field sv in the ansatz (3.53). This is stronger than surjectivity

of (τ, p) 7→ div τ − ∇⃗p,Σh × Ph → Vh, but in practice is equivalent because many

appropriate choices of Σh are designed to discretize the full Cauchy stress. Furthermore,

the discrete analogue of the constant CΣ (and hence the resulting inf-sup constant) will

a priori depend on h; it is therefore necessary to assume that such sv can be constructed

stably.

Assumption 2. There exists CΣ independent of h such that for each uh ∈ Vh and for

the unique sh ∈ Σh/ ker(div) with div sh = uh, there holds ∥sh∥H(div;S) ≤ CΣ∥uh∥0.

This is true for (for example) stress elements discretizing an elasticity complex

which admits bounded commuting projections to the subcomplex, as is for example

the case for the Arnold–Winther [6] and Arnold–Awanou–Winther elements [5]. The

other relations are summarised below,4

Xh
chemical
potential

Wh
species
velocity

Σh × Ph
stress×pressure

Vh
convective
velocity

⊂π2

(τ,p)7→div τ

(3.62)

where ↠ indicates surjectivity. The bottom row corresponds to the final segment of a

discrete stress elasticity complex, with stress space refined for Stokes flow due to the

decomposition (3.2). We will need the conditions of Lemma 3 to hold exactly in the

discretization. This will in general require that we approximate the concentrations, cki ,

and density reciprocal, (ρk)−1, in specific discrete function spaces. The interpolation of

these terms will be denoted by cki,h and ρk,−1
h , respectively.

Finally, to show well-posedness of the discrete problem, we require two additional

conditions which do not fit neatly onto (3.62).

Assumption 3. The operator given by

di,kh (wh, qh) := −cki,h∇⃗wh + ωki,h∇⃗qh, (3.63)

4Here πi denotes projection onto the ith component, i.e. we require Ph ⊂ Xh.
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where ωki,h := mic
k
i,hρ

k,−1
h , is well-defined as a map di,kh : Xh × Ph → Wh, i.e., it takes

values in Wh.

Assumption 4. We have PhI ⊂ Σh, i.e. phI ∈ Σh ∀ ph ∈ Ph.

Remark 10. Note that Lemma 3 required taking the gradient of ρ−1, and so ρk,−1
h

should at least be a continuous piecewise linear function. In order to minimize the

polynomial degree for Wh arising from Assumption 3, it is advantageous to interpolate

cki,h onto the space DG0. These coefficients do not affect the accuracy of the discretiza-

tion, only the quality of the linearization, and nonlinear convergence appears robust

regardless of this approximation.

Remark 11. Assumption 4 implies that div : Σh → Vh is surjective, allowing us to

construct the discrete analogue of the tensor field
⇒
s v in the ansatz (3.53). This is

stronger than surjectivity of (
⇒
τ , p) 7→ div

⇒
τ − ∇⃗p,Σh × Ph → Vh, as in (3.62), but in

practice is equivalent.

Theorem 6. Under Assumptions 3 and 4 and the relations specified in (3.62), there

exists a unique solution ((µ̃h,
⇒
τ h, ph), (ṽh, v⃗h)) ∈ Θk

h ×Qh to the system (3.61).

Proof. Due to the structural conditions demanded in the Assumptions, by inspection

the choices of test functions (3.53) are valid. As a consequence we may completely repli-

cate the argument presented in the infinite-dimensional case and derive the analogue

of condition (3.51), which is sufficient to show the problem is well-posed.

3.4.2 Error estimates

Following [155, Theorem 2], for fixed k we infer the abstract error estimate

∥(µ̃k+1,
⇒
τ
k+1

, pk+1)− (µ̃h,
⇒
τ h, ph)∥Θkh + ∥(ṽk+1, v⃗k+1)− (ṽh, v⃗h)∥Q ≲ EΘkh

+EQh , (3.64)

where

EΘkh
:= inf

(w̃h,
⇒
sh,qh)∈Θkh

∥(µ̃k+1,
⇒
τ
k+1

, pk+1)− (w̃h,
⇒
sh, qh)∥Θkh ,

EQh := inf
(ũh,u⃗h)∈Qh

∥(ṽk+1, v⃗k+1)− (ũh, u⃗h)∥Q.
(3.65)

Here the tuple ((µ̃k+1,
⇒
τ
k+1

, pk+1), (ṽk+1, v⃗k+1)) is defined as the exact solution to (3.33)

but with Bk, Ak, ℓ
1
k, ℓ

2
k replaced with Bk,h, Ak,h, ℓ

1
k,h, ℓ

2
k,h, respectively—that is, the solu-

tion of the system (3.33) with the estimates of the concentrations and inverse density

replaced by cki,h and ρk,−1
h , respectively.
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To derive a practical error estimate, we will need to bound the quantities EΘkh

and EQh by interpolation estimates specific to the choice of finite element spaces, by

estimating ∥·∥Θkh , ∥·∥Q in terms of standard Sobolev norms. To this end we can readily

check that

EΘkh
≲ max

(
1,
∑

i

∥cki,h∥L∞(Ω)

)
inf

w̃h∈Xn
h

∥µ̃k+1 − w̃h∥1

+max

(
1,
∑

i

∥ωki,h∥L∞(Ω)

)
inf
qh∈Ph

∥pk+1 − qh∥1 + inf
⇒
sh∈Σh

∥⇒
τ
k+1 − ⇒

sh∥H(div;S),

EQh ≤ inf
ṽh∈Wn

h

∥ṽk+1 − ũh∥0 + inf
u⃗h∈Vh

∥v⃗k+1 − u⃗h∥0.
(3.66)

3.4.3 Examples of suitable finite elements

Having derived abstract error estimates, we now consider two simple combinations of

finite elements satisfying the structural conditions (3.62) and Assumptions 3 and 4.

The design and implementation of stress elements which exactly enforce symmetry

and div-conformity is notoriously difficult; in 2D, one choice of such elements is the

conforming Arnold–Winther element [6], recently incorporated into the Firedrake finite

element library [9, 129]. In the lowest-order case we denote this element by AWc
3.

Specifying

Xh = Ph = CG1(Th) ∩ L2
0(Ω), (3.67a)

Σh = AWc
3(Th), (3.67b)

Wh = Vh = DG1(Th;Rd), (3.67c)

and further assuming that the discretely computed cki and (ρk)−1 have been interpo-

lated into DG0 and CG1, respectively, then this discretization satisfies the structural

properties (3.62) and Assumptions 3 and 4, hence we deduce the error estimate (3.64).

Let ΠCG1
h : H2(Ω) → CG1(Th),ΠAWc

3
h : H1(Ω;S) → AWc

3(Th), and Π
DGd1
h :

H1(Ω;Rd) → DG1(Th;Rd) be the associated interpolation operators. We then have

the following estimates under sufficient regularity assumptions (for details we refer
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to [6][18, p. 72][96, Ch. 3]):

∥µ̃− ΠCG1
h µ̃∥1 ≲ h|µ̃|2, (3.68a)

∥p− ΠCG1
h p∥1 ≲ h|p|2, (3.68b)

∥⇒
τ − Π

AWc
3

h

⇒
τ ∥0 + h∥ div(⇒

τ − Π
AWc

3
h

⇒
τ )∥0 ≲ h2|⇒τ |2, (3.68c)

∥(ṽ, v⃗)− Π
DGd1
h (ṽ, v⃗)∥Q ≲ h2|(ṽ, v⃗)|1, (3.68d)

where ΠCG1
h ,Π

DGd1
h have been applied component-wise. Using these estimates for the

interpolation operators and the error estimate (3.64), we can derive the error bound

∥(µ̃k+1,
⇒
τ
k+1

, pk+1)− (µ̃h,
⇒
τ h, ph)∥Θkh + ∥(ṽk+1, v⃗k+1)− (ṽh, v⃗h)∥Q ≲ h. (3.69)

We will see in practice that the order of convergence for several fields is actually higher,

but the error of the species velocities and the driving forces is O(h).

A second class of finite elements may be found by replacing (3.67a) with

Xh = CG2(Th) ∩ L2
0(Ω), Ph = CG1(Th) ∩ L2

0(Ω), (3.70)

and leaving the others unchanged. Again the structural conditions are validated if cki

and (ρk)−1 are interpolated into DG0 and CG1, respectively. A similar error analysis

again confers an error bound of O(h), though shortly we will see that this is actually

higher in practice.

Remark 12. These estimates bound the error between the discrete solutions at itera-

tion k + 1, ((µ̃h,
⇒
τ h, ph), (ṽh, v⃗h)) and the continuous solution of the nonlinear scheme

((µ̃k+1,
⇒
τ
k+1

, pk+1), (ṽk+1, v⃗k+1)) with the same (discrete) coefficients. In principle this

is incomplete, as ideally we would derive error estimates against the continuous so-

lution ((µ̃k+1,
⇒
τ k+1, pk+1), (ṽk+1, v⃗k+1)) at iteration k + 1 with the exact (continuous)

coefficients. Estimates on such consistency errors were analyzed for a simpler system

in Chapter 2 and some rationale was provided as to why in practice this is not an

issue, based on the formal order of the consistency error being strictly less than the dis-

cretization error. We expect a similar (if laborious) analysis could be performed here.

In general the consistency errors are expected to be O(h2), which will be borne out in

the numerical examples.
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Remark 13. We emphasize that we have aimed to identify appropriate structural con-

ditions between finite element spaces in order to preserve desirable properties of the

SOSM system—in particular, conditions which allow mimicry of well-posedness proofs

from the infinite-dimensional problem—rather than to advocate specifically for the ele-

ments used here. We expect it is possible to use Lagrange multipliers to weakly enforce

the symmetry of the viscous stress, which would allow for the choice of higher polyno-

mial degrees.

The system matrix of our discrete linearized system (3.61) has symmetric perturbed

saddle point structure, and although indefinite, is such that both the blocks Λ, Ak,h are

symmetric positive semidefinite. These matrix properties hold independently of the

particular material considered. We expect that this structure should be conducive to

the development of fast preconditioners.

3.4.4 Validation with manufactured solutions

We now verify our scheme, implemented in Firedrake [129]. Firedrake currently only

supports symmetry-enforcing stress elements in 2D, and we thus restrict ourselves to

the case d = 2. Throughout these experiments we chose the penalty parameter γ = 0.1,

and the linear systems were solved using the sparse LU factorization of MUMPS [1]

via PETSc [12].

To validate our error estimates, we construct a manufactured solution for an ideal

gas on the unit square Ω = (0, 1)2. If RT = 1, the diffusion coefficients are given

by Dij = DiDj for Dj > 0, and g : R2 → R is smooth, then one can check that an

analytical solution to the OSM subsystem (3.4) is given by

ci = exp

(
g

Di

)
, v⃗i = Di∇⃗g, (3.71)

which together implicitly define every other quantity (for given shear and bulk viscosi-

ties) apart from the chemical potentials. We compute the latter by inverting the ideal

gas relation (1.16) with p⊖ = −
∫
Ω
p dx, µ⊖

i = −
∫
Ω
ci dx ∀i. The molar mass of each species

was set to 1, and ζ, η to 0.1. The initial guesses for the concentrations c̃0 were set as

c0i = −
∫
Ω
ci dx, i.e. as the average of the exact concentrations.

We used Di =
1
2
+ i

4
, i = 1, 2, 3, and g(x, y) = xy

5
(1−x)(1−y) to generate Figure 3.1,

the log-log error plot for the overall algorithm, which demonstrates the negligible effect

of the consistency error induced by the discrete interpolations cki,h, ρ
k,−1
h , and verifies

the error estimate (3.69).
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Figure 3.1: Error plots for two finite element families: (3.67) (left), and (3.70) (right).
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Figure 3.2: Higher-order convergence in L2 of the divergence of the full Cauchy stress,
and driving forces for two finite element families: (3.67) (left), and (3.70) (right).

The tolerance in the outer solver was 10−7 in the ℓ2 norm, and took 7 nonlinear itera-

tions on the coarsest mesh of 4× 4, to 9 iterations on finest mesh of 32× 32. We have

denoted in fig. 3.1 di,h as the discrete driving force defined by eq. (3.63) at the final

iteration, and σh := τh−phI. Note that we observe O(h2) convergence in the L2 norms

of the chemical potential, stress, and pressure, similar to [146]; this suggests that the

error estimates could be improved, for example by duality arguments.

Due to our construction of the ‘linearized’ function spaces (3.29), it is the norm

∥ · ∥Θkh with respect to which we have proved convergence of the solution tuple. It is

natural to wonder whether this is an artefact of our constructed function spaces. To

answer this, we measure convergence of the chemical potential gradients ∇⃗µi, pressure
gradient ∇⃗p, and divergence div

⇒
τ of the non-equilibrium stress to their true values,

compared to the convergence of the nonlinear diffusion driving forces and the divergence

of the full Cauchy stress. For the former quantities, there is a priori no reason to expect

any convergence.
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Remarkably, we observe in Figure 3.2 that not only do the components ∇⃗µi, ∇⃗p, div
⇒
τ

converge, but in fact there is convergence of the nonlinear diffusion driving forces and

of the divergence of the full Cauchy stress, and at a rate one order higher than these

individual components; this suggests that, rather than being a mathematical artefact

of our formulation, the conditions defining the Θk space capture the underlying ther-

modynamic quantities of interest. This also provides circumstantial evidence towards

the physical relevance of our nonlinear formulation in Definition 1.

3.4.5 Benzene-cyclohexane mixture

Cyclohexane (C6H6) is important in the petrochemical industry as it is used to syn-

thesize a variety of products, such as nylon. It is primarily produced through the

dehydrogenation of benzene (C6H12), resulting in a benzene-cyclohexane mixture. Sep-

aration of cyclohexane from this mixture is difficult due to their similar vaporization

temperatures [149]. Since liquid mixtures of these components are important in the

chemical industry, most of the required thermodynamic and dynamical property data

are readily available in the literature. Because it provides a tractable non-ideal ex-

ample for which a complete set of material properties is known, we consider here a

microfluidic chamber in which Stokes flows of benzene and cyclohexane mix.

The required transport parameters (measured at 298.15 K) may be found

in Guevara-Carrion et al. [74]. We can observe from these data that the Stefan–

Maxwell diffusivity and the shear viscosity are both approximately constant with re-

spect to composition and pressure, and will be approximated as D12 = 2.1×10−9 m2/s

and 6×10−4 Pa · s, respectively. Lacking accurate data for the bulk viscosities of either

benzene or cyclohexane, we set them to be essentially zero, choosing ζ = 10−7 Pa · s.
(Numerical experiments confirmed that a value of this order has no discernible im-

pact on the output of the simulation.) The molar masses used in the simulation are

0.078 kg·mol−1 for benzene and 0.084 kg ·mol−1 for cyclohexane. The ambient pressure

was taken as p⊖ = 105 Pa.

Although benzene and cyclohexane are fully miscible, they form a non-ideal solu-

tion. Information relating the chemical potentials to the mole fractions is therefore

required. This is accomplished using a Margules model [71] for activity coefficients,

the parameters of which were reported by Tasić et al. [139]. This well-known model pa-

rameterizes activity coefficients in terms of a minimal set of functions which maintain

thermodynamic rigour.

To aid convergence, we use an under-relaxation scheme with respect to the concen-

trations in our nonlinear solver, with a relaxation parameter of 0.1. That is, we update
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the concentration as c∗,k+1
i where

c∗,k+1
i = 0.9cki + 0.1ck+1

i . (3.72)

This is necessary due to stiffness of the problem, which owes to the fact that the

mixtures are essentially fully separated at the inlets to the apparatus.

To calculate the total concentration of the mixture we use

cT =
crefC6H6

crefC6H12

yC6H6
crefC6H12

+ yC6H12
crefC6H6

, (3.73)

where cref− denotes the concentration (inverse molar volume) of the pure species at

105 Pa and 298.15 K, approximately 9.20 mol L−1 and 11.23 mol L−1 for benzene and

cyclohexane, respectively. Equation (3.73) is derived from (1.18) under the assumption

that the partial molar volumes of the two components are independent of the solution’s

composition.

We consider a two-dimensional pipe configuration where two inlets converge into a

single outlet. At the top inlet, pure benzene enters and at the bottom pure cyclohexane,

at speeds vrefC6H12
and vrefC6H6

, respectively. Rather than symmetrize these speeds, superior

mixing results are obtained by symmetrizing the molar fluxes at the inlets. In other

words, we impose the condition

crefC6H6
vrefC6H6

= crefC6H12
vrefC6H12

. (3.74)

We will specify that vC6H12
enters at a speed of 4µms−1. This prescribes an inlet speed

for benzene of approximately 3.28µm s−1. A parabolic profile across each inlet and

outlet is imposed, as this is consistent with the no-slip condition and the characteristics

of a plane Poiseuille flow.

Results for the fields computed by the simulation are visualized in Figures 3.3 and 3.4.

We observe that the pressure profile is smooth, despite the nonconvex domain. We

also note that, although the mass-average velocity exhibits rather simple predictable

behaviour, the flow fields of the individual species are significantly more complex, and

that these three flow profiles are cleanly distinguished. We see that both species develop

convective rolls—behaviour markedly different from the convective velocity.

83



Benzene inlet

Cyclohexane inlet

Outlet

Figure 3.3: Plot of change in pressure in the mixing chamber, with streamlines com-
puted from the mass-average velocity.

Figure 3.4: Concentrations of benzene (left) and cyclohexane (right), with streamlines
computed from their velocities.
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3.4.6 Code availability

For reproducibility, the exact software versions used to generate the numerical results in

this paper are archived in https://zenodo.org/record/7017917 [159]; the code, and

scripts for the associated plots, are available at https://bitbucket.org/FAznaran/

sosm-numerics/. Our implementation employs a nondimensionalization of the SOSM

system.

3.5 Conclusion

We have successfully extended the framework of Chapter 2, to include pressure and

convection. Similar to the results of Chapter we have cast the problem into variational

form and proposed a linearization. Well-posedness of the linearized system was then

shown. A discretization of this system, relying on specified structural conditions of

the finite element families, was proved to satisfy convergence estimates. This was then

validated numerically through a manufactured solution and the simulation of benzene

and cyclohexane mixing.

A key piece analysis laid on the construction of the novel function space Θk. The

necessity of this rather unorthodox space is reflective of the difficultly of the problem,

in no small part due to varying density. The relevance of this space was demonstrated

in Figure 3.2.

Standard Galerkin approximations are known become unstable in the regime of

high Péclet numbers [137], and our proposed method is no exception. Therefore, in

contrast to the previous chapter where we were able to develop a highly effective solver

for the pure diffusion problem, further techniques are undoubtedly needed to make

the solver presented here viable for problems in which convection dominates diffusion.

However we anticipate this to augment the formulation and discretization proposed

here.
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Chapter 4

Thermodiffusion

The basis of this chapter is the original paper [145].

In the previous chapters we have analyzed the Onsager–Stefan–Maxwell equations

in the non-ideal case with convection. Our finite element methods were then illus-

trated with a variety of numerical examples. However, heat transfer is ubiquitous and

naturally we wish to extend our framework to the anisothermal case.

This is not straightforward however as the transport equations for thermodiffusion

in force-explicit form have not been constructed in the literature. In this chapter we

consolidate the theory of thermodiffusion by constructing the anisothermal transport

matrix in terms of known quantities.

This chapter then faces a considerably different task than the previous ones; rather

than focus on a variational formulation and its consequences, our objective is to unify

the major continuum-scale theories of thermodiffusion, and to deploy the elementary

principles of irreversible thermodynamics to produce accurate and robust numerical

methods. As a practical matter, the unification effort reveals how to interconvert

property sets measured under different paradigms.

The new proposed constitutive scheme — the Onsager–Stefan–Maxwell thermod-

iffusion equations — simplifies analysis and numerics by essentially treating heat as a

pseudo-species. Our new anisothermal Onsager–Stefan–Maxwell transport-coefficient

matrix is symmetric, and the second law of thermodynamics imbues it with simple

spectral characteristics. The noteworthy consequence of phrasing the equations in this

form, is that we may import our finite element methods previously developed to model

heat transfer.

In addition this provides a natural route by which binary-system properties can be

extrapolated to simulate multicomponent systems. For 10 noble-gas pairs, we tabu-
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late the properties needed to simulate binary thermodiffusion with any of the popular

theories and in addition detail how to extrapolate these properties to simulate n-ary

systems. We demonstrate the applicability of the Onsager–Stefan–Maxwell framework

by simulating steady, three dimensional thermodiffusion in a ternary noble-gas mixture

(without convection).

Moreover in this chapter we also consider the general inversion process which facil-

itates the unique formulation of flux-explicit transport equations relative to any choice

of convective reference velocity.

4.1 Approaches to thermodiffusion

The typical routes taken when creating thermodiffusion models are: derivation by

methods of irreversible thermodynamics; derivation from kinetic theory; and intuitive

formulation by extending Fick’s law and Fourier’s law. Each of these choices may

have particular benefits and disadvantages with regard to physical rigour, ease of pa-

rameterization, and computational simplicity. Our task of reconciling these different

perspectives begins with summarizing the available theories.

Considering first the framework of linear irreversible thermodynamics, we have the

general anisothermal entropy production [83] (without viscous dissipation)

T ṡ = −∇⃗ lnT · q⃗ ′ +
n∑

i=1

d⃗i · v⃗i. (4.1)

Here q⃗ ′ denotes the irreversible heat flux, with units Jm−2 s−1.

To ensure consistency of units among the fluxes in the dissipation functional, we

define the thermal velocity v⃗0 as

v⃗0 =
q⃗ ′

ρĈpT
, (4.2)

where Ĉp is the phase’s specific constant-pressure heat capacity, in J kg−1K−1 (or

m2 s−2K−1). This necessitates that the conjugate thermal driving force d⃗0 be

d⃗0 = −ρĈp∇⃗T, (4.3)

simplified with the identity T ∇⃗ lnT = ∇⃗T . By construction, v⃗0 and d⃗0 have units

that match the quantities v⃗i and d⃗i defined earlier. Henceforth we call members of the

collection {d⃗i}ni=0 thermodiffusion driving forces, and those of {v⃗i}ni=0 thermodiffusive
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velocities ; we reserve the terms diffusion driving forces and species velocities to refer to

the smaller collections {d⃗i}ni=1 and {v⃗i}ni=1, respectively. A phase containing n species

affords n+ 1 thermodiffusive driving forces and n+ 1 thermodiffusive velocities.

Noting that v⃗0 and v⃗i are each of the same tensor order, the laws of linear irre-

versible thermodynamics discussed in the introduction imply an anisothermal extension

of (1.36a) of the following form

d⃗0 = M̃00v⃗0 +
n∑

j=1

M̃0j v⃗j (4.4)

d⃗i = M̃ i0v⃗0 +
n∑

j=1

M̃ ij v⃗j, (4.5)

where the second equation holds for each i ∈ {1, ..., n}.1 These relationships, which we

name the Onsager–Stefan–Maxwell thermodiffusion equations, introduce the Onsager

drag coefficients M̃ ij, a set of material properties with units J sm−5 (i.e., force per

volume per velocity) that parameterizes how the thermodiffusive velocities map into

the thermodiffusive driving forces. Note that equations (4.4) and (4.5) have not been

written as compactly as possible because in later discussion it will sometimes be con-

venient to consider the equation for the thermal force d⃗0 separately, and to keep the

coefficients whose second index equals 0 out of the sums.

It is often useful to think of the set of all Onsager drag coefficients as being arrayed

within an (n+ 1)× (n+ 1) matrix M̃ whose row and column indices range across the

integers from 0 to n, which we will call the anisothermal transport matrix. Onsager

asserts that with a proper choice of velocities and driving forces based in the energy

dissipation, such as equation (4.1), the reciprocal relation among the transport coeffi-

cients is expressed by symmetry of M̃ [121]. This symmetry has practical implications

for the spectral structure of the thermodiffusion problem.

The general diffusion driving forces within a non-isobaric, anisothermal, multicom-

ponent fluid are [69, 83]

d⃗i = −ci
(
∇⃗µi + Si∇⃗T − mi

ρ
∇⃗p
)

(4.6)

where the indices range from 1 to n. Thus practical implementation of laws (4.4) and

(4.5) is possible if the thermodynamic state variables are known functions of {ci}ni=1,

1We have continued the assumption that the material is isotropic and therefore the entries of M̃
can be represented as scalars.
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T , and p. Determining these state variables is sufficiently involved, however, that it

is uncommon for experimentalists to perform measurements sufficient to specify the

transport matrix M̃ for condensed phases.

4.1.1 The kinetic theory of gases

Chapman–Enskog theory [35] leads to a set of thermodiffusion transport laws whose

structure differs from laws (4.4)-(4.5). Through the Chapman–Enskog perturbation of

the Boltzmann equation for a multicomponent gas, Hirschfelder et al. [83] derived the

so-called generalized Stefan–Maxwell equations, which we recall from chapter 1 as

d⃗i −
n∑

j=1

RTcicj
DijcT

(
DT
i

ρi
− DT

j

ρj

)
∇⃗ lnT =

n∑

j=1

RTcicj
DijcT

(v⃗i − v⃗j) (4.7)

for i ∈ {1, ..., n}. Here ρi denotes the mass density of species i; ρi = cimi. Equation

(4.7) introduces another set of transport properties, namely, the coefficients of thermal

diffusion DT
i .

As pointed out by Newman [113], the parameters DT
i have units of viscosity (i.e.

Pa s, or J sm−3, or kgm−1 s−1), which is unconventional for a diffusion coefficient. To

retain dimensional consistency and simplify notation in the sequel, we therefore define

DT
i =

DT
i

ρi
, (4.8)

which we call the Soret diffusivity of species i. The Soret diffusivity DT
i has typical

units, m2 s−1. For isothermal multicomponent diffusion, we recall that the Stefan–

Maxwell equations can be understood in terms of Onsager’s transport equations by

identifying the entries Mij of the isothermal transport matrix M as

Mij =





−RTcicj
DijcT

if i ̸= j

∑n
k ̸=i

RTcick
DikcT

if i = j

(4.9)

and Onsager reciprocity therefore implies symmetry of the coefficients Dij.

This partially brings the constitutive formulation (4.7) into harmony with (4.4)-

(4.5). However identity (5.2) fails to carry over to the anisothermal case because the

generalized Stefan–Maxwell equations (4.7) mix driving forces and fluxes, which may
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also violate the conditions required to ensure a symmetric Onsager reciprocal relation

[37, 111]. Specifically, equation (4.7) contains no thermal velocity on the right; on the

left, it also mixes the thermal driving force with a diffusion driving force. Therefore

M̃ ̸= M, even if comparison is restricted to the submatrix with 1 ≤ i, j ≤ n, as we

shall see in section 4.2.

4.1.2 Multicomponent Fick’s law

Many transport analyses begin in a more ad hoc fashion, by postulating flux-explicit

forms of the transport laws with the structure of Fick’s law [16, 45, 140]. For a general

multicomponent mixture this results in expressions for the excess molar flux of species

i, J⃗i, of the form

J⃗i = −D̃i0∇⃗T −
n∑

j=1

D̃ij∇⃗cj (4.10)

for i ∈ {1, ..., n}. To close this thermodiffusion model, Fickian laws from equation

(4.10) must be augmented by a complementary extension of Fourier’s law of heat

conduction, written as

q⃗ ′ = −D̃00∇⃗T −
n∑

j=1

D̃0j∇⃗cj, (4.11)

which expresses the irreversible heat flux.

Clearly the entries of the (n+ 1)× (n+ 1) Fickian thermodiffusion matrix D̃ have

inconsistent units. In the multicomponent generalization of Fick’s law, equation (4.10),

the transport coefficients D̃ij that accompany concentration gradients can be seen as

traditional diffusivities, in m2 s−1; the coefficients of thermal diffusion D̃i0 have units

molm−2 s−1K−1. In the generalization of Fourier’s law from equation (4.11), D̃00 is an

effective thermal conductivity, in Jm−1 s−1K−1, but the other D̃0j are Dufour coeffi-

cients, in Jm2 s−1mol−1. These discrepancies emphasize that the reciprocal relation

here is obscure; it cannot simply be a symmetry of the D̃ matrix.

A few paths have been proposed to connect the Onsager–Stefan–Maxwell equations

(4.4)-(4.5) with relations in the Fickian forms of equations (4.10)-(4.11). Despite their

linearity, transformation between force-explicit and flux-explicit constitutive formula-

tions requires more than a simple inversion of the transport matrix. As pointed out by

Helfand [79], inversion is thwarted by the fact that a Gibbs–Duhem relation constrains

the diffusion driving forces. When d⃗i is defined with equation (4.6), the Gibbs–Duhem
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equation requires that
n∑

i=1

d⃗i = 0, (4.12)

which further implies singularity of the isothermal transport matrix M as discussed in

the introduction and Chapter 2. As we will see, however, a pseudo-inversion process

is enabled by considering kinematic constraints implied by the invariance of diffusion

phenomena with respect to the velocity that drives convection.

Flux-law inversions implicitly based on the mass-average velocity were addressed

by Curtiss and Bird [40] and Fong et al. [62]. Inversions with respect to other ref-

erence velocities have been implemented by Helfand [79] and Newman [116]. Even

when applied in isothermal cases, however, these derivation procedures are somewhat

impromptu. The Curtiss–Bird approach to inversion, which produces the most well

known flux-explicit model for thermodiffusion, was only taken up to quaternary mix-

tures.

4.2 Properties of the anisothermal transport ma-

trix

First we set out to reconcile the generalized Stefan–Maxwell equations (4.7) with the

Onsager–Stefan–Maxwell thermodiffusion equations (4.4)-(4.5). We then discuss how

the second law of thermodynamics and the principle of convection invariance impose

further structure beyond simple symmetry of the anisothermal transport matrix M̃.

4.2.1 Construction and connection to kinetic theory

One can move toward the form of the generalized Stefan–Maxwell equations (4.7)

by isolating v⃗0 from equation (4.4) and substituting the result into equation (4.5).

Regrouping terms and rearranging yields

d⃗i +
M̃0iρĈpT

M̃00

∇⃗ lnT =
n∑

j=1

(
M̃ ij −

M̃0iM̃0j

M̃00

)
v⃗j. (4.13)
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Agreement of the left side with (4.7) requires that

M̃0iρĈpT

M̃00

= −
n∑

j=1

RTcicj
cTDij

(
DT
i − DT

j

)
. (4.14)

Insertion of (5.2), followed by the simplification
∑n

j=1Mij = 0 implied by the Gibbs–

Duhem equation (4.12) and the Onsager reciprocal relation, produces

M̃0i = − M̃00

ρĈpT

n∑

j=1

MijD
T
j . (4.15)

Similarly, agreement of the right side of (4.13) with (4.7) demands for all 1 ≤ i, j ≤ n

that

M̃ ij =Mij +
M̃0iM̃0j

M̃00

, (4.16)

where Mij relates to Stefan–Maxwell diffusivities through (5.2). These conclusions can

be summarized by writing the anisothermal transport matrix in block form, as

M̃ =



M̃00 m̃⊤

0

m̃0 M+
m̃0m̃

⊤
0

M̃00


 , (4.17)

in which the column matrix m̃0 = [M̃0i]
i=1
n contains entries M̃0i defined by (4.15),

superscript ⊤ indicates the matrix transpose, and the first row’s entries follow from

the reciprocal relation M̃ = M̃⊤. This construction affirms that the generalized Stefan–

Maxwell equations (4.7) derived from kinetic theory are compatible with the Onsager–

Stefan–Maxwell thermodiffusion laws (4.4)-(4.5) from irreversible thermodynamics.

Despite the mixing of fluxes with driving forces in the generalized Stefan–Maxwell

equations, one can show that their structure is consistent with the reciprocal relation

M̃ = M̃⊤. Substituting matrix (4.14) into (4.17), using flux law (4.4), then returning

to the original thermal flux and driving force with (4.2)-(4.3), yields

q⃗ ′ = −ρ
2Ĉ2

ρT

M̃00

∇⃗T −
n∑

i,j=1

RTcicj
cTDij

(
DT
i − DT

j

)
v⃗j. (4.18)

This precisely matches the expression for irreversible heat flux provided by Hirschfelder,

Curtiss, and Bird [83], although they define the coefficient of −∇⃗T as the thermal
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conductivity. For now we retain the symbol M̃00, leaving a detailed discussion of heat

conduction to section 4.3.5.

4.2.2 Entropy generation and spectral structure

A benefit of casting the generalized Stefan–Maxwell equations into the Onsager–Stefan–

Maxwell form is the structure inherited by the transport matrix M̃. Given constitutive

laws (4.4) and (4.5), the entropy production due to thermodiffusion is equivalent to

T ṡ =
n∑

i,j=0

v⃗i · M̃ ij v⃗j. (4.19)

The second law of thermodynamics requires that ṡ ≥ 0 for every collection of thermod-

iffusive velocities, so the matrix M̃ must be positive semidefinite, as well as symmetric.

Direct calculation shows a connection between the spectral structures of the isother-

mal and anisothermal transport matrices, M and M̃, respectively. Insertion of (4.17)

into (4.19), algebraic rearrangement of terms involving the symmetry of M̃, and elim-

ination of v⃗0 with (4.4) show that

T ṡ =
1

M̃00

∥∥d⃗0
∥∥2 +

n∑

i,j=1

v⃗i ·Mij v⃗j, (4.20)

in which ∥u⃗∥2 = u⃗ · u⃗ for any vector u⃗. Positive semidefiniteness of the anisothermal

matrix M̃ is thus implied by positive semidefiniteness of isothermal matrix M, so long

as the Onsager drag coefficient M̃00 is positive.

It was discussed in the introduction how the isothermal transport matrix has a

single null eigenvalue corresponding to the eigenvector 1 = [1, 1, ..., 1]⊤ ∈ Rn, necessary

to enforce the Gibbs–Duhem equation and to distinguish diffusion from convection. A

similar conclusion about spectral structure can be drawn for the anisothermal transport

matrix. One can use (4.15) to show that the sum over rows 1 through n of the first

(j = 0) column of M̃ satisfies

n∑

i=1

M̃ i0 =
n∑

i,j=1

MijD
T
j = 0. (4.21)

Put another way, this says the column matrix 1 is orthogonal to the previously defined

column matrix m̃0, so that 1⊤m̃0 = 0. Consequently, the block matrix from (4.17)
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must satisfy the matrix equation



M̃00 m̃⊤

0

m̃0 M+
m̃0m̃

⊤
0

M̃00






0

1


 = 0 ·



0

1


 , (4.22)

demonstrating that the column matrix [ 0 1⊤ ]⊤ is a null eigenvector of the anisother-

mal transport matrix. Like the isothermal case, this spectral structure of M̃ ensures

the enforcement of Gibbs–Duhem relation (4.12).

4.3 Inverting the constitutive laws

Many practitioners find it desirable to implement a flux-explicit (or velocity-explicit)

transport formulation. As mentioned before, the transformation of force-explicit laws

to a flux-explicit form is not entirely straightforward: since the isothermal transport

matrix satisfies M1 = 01 = 0, where 0 indicates a column of zeroes, it is singular, and

consequently (1.36a) cannot be inverted directly. To resolve this issue it is necessary to

consider how the flux-explicit laws behave with regard to the reference velocity selected

to describe convection. Once the process of choosing a reference velocity is formalized,

a kinematic relation derived from that choice can be exploited to develop a unique

inverted formulation of the force-explicit transport laws.

4.3.1 Convective reference velocities

Convection is fundamentally anchored in species fluxes: a valid choice of convective

velocity must always be a linear combination of the species velocities. Newman made

the simplest choice, employing the kth species’ velocity v⃗k as a reference for convection

[116]. Other common reference velocities include the mole-average velocity v⃗ c employed

by Waldmann and Van Der Valk [147, 150],

v⃗ c =
1

cT

n∑

j=1

cj v⃗j, (4.23)
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and the mass-average velocity v⃗ ρ which we have used in previous chapters, defined as

v⃗ ρ =
1

ρ

n∑

j=1

ρj v⃗j. (4.24)

In previous chapters we have denoted the mass-average velocity as simply v⃗. In this

chapter add the superscript ρ to emphasize this choice over other options for convective

reference velocities.

In Newman’s inversion process [116], after species k is selected as the reference for

convection, it is shown that the isothermal transport matrix M can be truncated by

deleting its kth row and column without loss of information. This first minor matrix

is nonsingular and can be inverted directly. Helfand considered isothermal, isobaric

multicomponent diffusion [79]; when writing the Onsager–Stefan–Maxwell laws, he

transformed the driving forces and selected a convective velocity to ensure that the

null eigenvector of the flux-explicit transport-coefficient matrix coincided with that

of the force-explicit matrix, enabling a Moore–Penrose pseudo-inversion. Hirschfelder

et al. [83] and Curtiss and Bird [40] extensively manipulate the generalized Stefan–

Maxwell equations to derive velocity-explicit thermodiffusion laws; the rather convo-

luted process they lay out is summarized in Bird, Stewart, and Lightfoot’s book [16].

More recently Bothe et al. [21] compared the isothermal Stefan–Maxwell equations with

a generalized form of Fick’s law and showed equivalent properties such as positivity

preservation between the two approaches.

Depending on the context, different reference velocities may be desirable in flux-

explicit constitutive laws [16, 41]. Here we write a general reference velocity as v⃗ψ,

following Goyal and Monroe [69]. To create a convective velocity, one selects a collection

of thermodynamic extensive quantities per unit volume {ψi}ni=1, whose total volumetric

amount ψT is defined as

ψT =
n∑

i=1

ψi = 1⊤ψ, (4.25)

in which the rightmost expression introduces the column vector ψ = [ψi]
i=1
n . Note that

the quantities ψi are not limited to choices with these precise physical interpretations;

the only necessary restrictions on ψ are that it is real and that ψT ̸= 0 to avoid

degeneracy.
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The ψ-average velocity, v⃗ψ, is defined as

v⃗ψ =
1

ψT

n∑

j=1

ψj v⃗j. (4.26)

To further define the excess velocity of species i relative to the ψ-average velocity, v⃗ψi ,

take

v⃗ψi = v⃗i − v⃗ψ. (4.27)

By design, the collection of these excess velocities satisfies a kinematic relation

n∑

j=1

ψj v⃗
ψ
j = 0. (4.28)

In the language of linear algebra, this says that the space of excess species velocities is

orthogonal to ψ. Thus we may also refer to ψ itself as the kinematic relation associated

with convective velocity v⃗ψ, because it defines the orthogonal subspace of the species

velocities in which the set of excess species velocities must reside.

4.3.2 Inversion of the isothermal transport matrix

Invariance of the isothermal transport matrixM with respect to the choice of convective

velocity requires that

d⃗i =
n∑

j=1

Mij v⃗j =
n∑

j=1

Mij v⃗
ψ
j (4.29)

for any valid kinematic relation ψ. Bearing in mind (4.28), one can augment the

transport matrix and write (4.29) equivalently as

d⃗i =
n∑

j=1

Mij v⃗
ψ
j + γψi

n∑

j=1

ψj v⃗
ψ
j =

n∑

j=1

Mψ,γ
ij v⃗ψj (4.30)

for any γ > 0. Again on the right we have used the augmented transport matrix.

However this time it is with respect to a general kinematic relation ψ and is defined as

Mψ,γ
ij =Mij + γψiψj, or Mψ (γ) = M+ γψψ⊤. (4.31)

Significantly, the augmented transport matrix Mψ,γ is positive definite, as proved
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in Chapter 2. Upon inversion one finds that the excess velocity of i is

v⃗ψi =
n∑

j=1

[
Mψ,γ

]−1

ij
d⃗j, (4.32)

the desired flux-explicit form of the transport equations. In its present state this for-

mulation is not satisfactory, however. First, the ‘penalty term’ involving γ is artificial.

Second, and of deeper physical importance, the kinematic relation from (4.28) is not

obviously enforced for every collection of driving forces.

An unambiguous formulation of inverted transport laws is found by defining

Lψ = lim
γ→∞

[
Mψ,γ

]−1
. (4.33)

This limit exists for any valid choice of M and ψ. Indeed,

[
Mψ,γ

]−1
= Lψ + O(γ−1), (4.34)

and the unique matrix Lψ, which we call the Onsager diffusivity matrix relative to the

ψ-average velocity, is symmetric whenever M is. This argument is substantiated in

A.1, which also provides two algebraic formulas useful to compute Lψ from M without

resorting to a limit process.

Since (4.32) holds for any nonzero γ, one can derive the flux-explicit form of the

transport laws by calculating the limit of (4.32) as γ → ∞, giving

v⃗ψi =
n∑

j=1

Lψij d⃗j (4.35)

as a consequence of the asymptotic behavior in (4.34). The matrix Lψ so formed also

satisfies
n∑

j=1

Lψijψj = 0, (4.36)

that is to say, the kinematic relation ψ is a null eigenvector of Lψ. Analogous to the

spectral structure of M enforcing the Gibbs–Duhem equation, this spectral structure

of Lψ enforces the kinematic constraint (4.28).

The procedure outlined above encompasses all methods currently used to invert

isothermal Onsager–Stefan–Maxwell equations. Newman’s inverse, relative to v⃗k, is
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produced by choosing a kinematic relation such that ψi = δik, where δij is the Kronecker

delta. Given the diffusion driving forces in (4.6), which make 1 the null eigenvector

of M, Helfand’s inverse is formed by taking ψ = 1, an unorthodox choice where the

arithmetic mean of the species velocities drives convection. Curtiss and Bird’s inverse

derives from the kinematic relation for the mass-average velocity, ψi = ρi. Crucially, the

need for kinematic relations here indicates that one cannot consider a generic matrix

L in a flux-explicit thermodiffusion model. Instead there is a class of equally valid

Onsager diffusivity matrices, from which one is determined by specifying a convective

velocity.

Sometimes it may be of interest to calculateM given an Lψ, as discussed by Monroe

and Newman in a specific case [111]. This can be accomplished generally by augmenting

the singular matrix Lψ to make

Lψ,γ = Lψ + γ11⊤, (4.37)

again with γ > 0. Then, similar to the process given above, one can pass into a limit

to get

M = lim
γ→∞

[
Lψ,γ

]−1
. (4.38)

The M form may be preferable when reporting experimental measurements, since it is

independent of the convective velocity used for data processing; the Lψ form, however,

provides alternative routes for physical interpretation. Nevertheless, one should bear

in mind that although there exist many legitimate Lψ matrices, there is just one valid

choice of M for a proper set of diffusion driving forces.

4.3.3 Inversion of the anisothermal transport matrix

Problems posed by the convection invariance of M carry over into the anisothermal

transport matrix M̃: the null eigenvector [ 0 1⊤ ]⊤ induced by convection invariance

implies that M̃ cannot be directly inverted. It is, however, straightforward to adapt

the pseudo-inversion procedure developed earlier to the anisothermal case.

Thermal properties in the generalized Stefan–Maxwell equations merit some addi-

tional discussion here. Observe that only differences between Soret diffusivities appear

in equation (4.7). Since the physical content of that equation is invariant to a variable

change where the same scalar is added to every Soret diffusivity, it follows that the

collection
{
DT
i

}n
i=1

must be linearly dependent. To quantify Soret diffusivities in isola-

tion, one must adopt an additional constraint to close this degree of freedom. Newman
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circumvented the ambiguity by defining a new property,

Aij =
DT
i

ρi
− DT

j

ρj
= DT

i − DT
j , (4.39)

which we call the Newman–Soret diffusivity. As well as having units m2 s−1, the fact

that Aii = 0 ensures that the nontrivial Aij are linearly independent for a given j.

Newman further asserts that these diffusivities are more approximately constant with

respect to composition in binary systems [113]. Newman’s choice of symbol emphasizes

antisymmetry in the indices, that is, that Aji = −Aij.

It is standard to enforce a kinematic relation to close the degree of freedom when

specifying the coefficients of thermal diffusion. Here we impose the general constraint

n∑

j=1

ψjD
T
j = 0, (4.40)

which is agnostic to the choice of convective velocity. Given any complete set of Aij

with j fixed, the identities Akl = Akj − Alj and Alk = −Akl fill out the whole matrix

of Newman–Soret diffusivities. Thus, any particular Soret diffusivity can be computed

with the formula

DT
i =

1

ψT

n∑

k=1

ψkAik, (4.41)

so long as one row or column of the Newman–Soret matrix is known. Given the

kinematic relation ψ, (4.39) and (4.41) establish a bijective map between the Soret

diffusivities and the Newman–Soret matrix.

In their implementation of Chapman–Enskog theory, Hirschfelder et al. state [83]

that
n∑

i=1

DT
i = 0. (4.42)

This implies that the properties DT
i /ρi satisfy a kinematic relation ψi = ρi; the Soret

diffusivities stand relative to the mass-average velocity. Brenner argued that some con-

stitutive laws are more appropriately formulated with respect the volume-average ve-

locity, however [25]. Rather than advocating one view or the other, we adopt Newman–

Soret diffusivities here, which emphasizes that thermal diffusion can be fully parame-

terized without choosing a reference velocity for convection.

One can write a new equivalent of (4.15) in terms of the augmented transport
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matrix Mψ,γ from (4.31), as

M̃ψ,γ
0i = − M̃00

ρĈpT

n∑

j=1

Mψ,γ
ij DT

j . (4.43)

These coefficients can be assembled into an augmented column matrix m̃ψ,γ
0 =

[M̃ψ,γ
0i ]i=1

n . The constraint stated in (4.40) is natural because it implies that

m̃ψ,γ
0 = m̃0 (4.44)

for any γ > 0. Thus augmentation of the anisothermal transport matrix has no impact

on the thermal entries of M̃.

The anisothermal transport matrix augmented by kinematic relation ψ is defined

as

M̃ψ,γ =



M̃00 m̃⊤

0

m̃0 Mψ,γ + m̃0m̃
⊤
0

M̃00


 , (4.45)

in which only the lower-right block depends on the penalty factor γ. The inverse of this

augmented matrix is partially calculable through Schur’s complement In block form,

[
M̃ψ,γ

]−1
=




1
M̃00

+
m̃⊤

0 [Mψ,γ]
−1

m̃0

M̃2
00

−m̃⊤
0 [Mψ,γ]

−1

M̃00

− [Mψ,γ]
−1

m̃0

M̃00

[
Mψ,γ

]−1


 . (4.46)

Interestingly, the only matrix inversion needed to carry out this computation is that

of the augmented isothermal transport matrix.

It is straightforward to rephrase (4.43) in a form that computes Soret diffusivities

from the Onsager drag coefficients. The construction

[
DT
i

]i=1

n
= −ρĈpT

M̃00

[
Mψ,γ

]−1
m̃0 (4.47)

retrieves a column of Soret diffusivities constrained by (4.40). With (4.47), one can

define for i ∈ {1, ..., n} that

L̃ψ0i =
DT
i

ρĈpT
, (4.48)

and introduce a column l̃ψ0 = [L̃ψ0i]
i=1
n . (The superscript ψ on these quantities empha-
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sizes kinematic relationship (4.40), i.e. that ψ⊤l̃ψ0 = 0.) Then

l̃ψ0 = −
[
Mψ,γ

]−1
m̃0

M̃00

(4.49)

for any γ > 0 (indeed, l̃ψ0 is independent of γ), and the inverse augmented transport

matrix transforms to

[
M̃ψ,γ

]−1
=




1
M̃00

(
1− m̃⊤

0 l̃
ψ
0

) (
l̃ψ0

)⊤

l̃ψ0
[
Mψ,γ

]−1


 . (4.50)

Finally, the unique inverse of the anisothermal transport matrix M̃ with respect to

convective velocity v⃗ψ is found by taking the limit of equation (4.50) as γ → ∞. This

produces the Onsager thermodiffusivity matrix

L̃ψ =



M̃−1

00

(
1− m̃⊤

0 l̃
ψ
0

) (
l̃ψ0

)⊤

l̃ψ0 Lψ


 , (4.51)

a symmetric matrix with null eigenvector [ 0 ψ⊤ ]⊤.

4.3.4 Onsager–Fick–Fourier laws

Equation (4.51) gives rise to a velocity-explicit form of the anisothermal flux laws sim-

ilar to the isothermal (4.35). A thermodynamically consistent form of the generalized

Fick’s law is given by

v⃗ψi =
n∑

j=0

L̃ψij d⃗j. (4.52)

Here it should be understood that v⃗ψ0 = v⃗0, because the thermal velocity v⃗0 is not

included in the kinematic constraint from (4.28). Unlike the intuitive extension of

Fick’s law involving transport matrix D̃, the derivation of L̃ψ from the Onsager–

Stefan–Maxwell thermodiffusion equations ensures that the coefficient matrix in (4.52)

has consistent units, as well as being symmetric positive semidefinite and satisfying a

kinematic constraint.

Equation (4.52) substantiates a thermodynamically consistent set of generalized

Fourier–Fick thermodiffusion laws as follows. After inserting (4.2), (4.3), and (4.48)
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into (4.52), and defining the excess flux of species i relative to the ψ-average velocity

as

J⃗ ψi = civ⃗
ψ
i , (4.53)

one obtains flux-explicit constitutive equations

q⃗ ′ = −ρ2Ĉ2
pTL̃

ψ
00∇⃗T +

n∑

j=1

DT
j d⃗j, (4.54)

J⃗ ψi = −ciDT
i ∇⃗ lnT +

n∑

j=1

ciL̃
ψ
ij d⃗j, (4.55)

for i ∈ {1, ..., n}. Equation (4.54) is analogous to Fourier’s law, with extra terms de-

scribing the Dufour effect; (4.55) generalize Fick’s law, with an additional term for

the Soret effect. These equations satisfy Onsager’s principles of irreversible thermo-

dynamics, in that they involve all the proper fluxes and driving forces that appear in

the dissipation functional, as well as including a positive-semidefinite transport matrix

that satisfies a symmetric reciprocal relation and has a single null eigenvector to en-

force convection invariance. To emphasize their thermodynamic rigour, we henceforth

call (4.54) and (4.55) the Onsager–Fick–Fourier equations.

4.3.5 Perspectives on thermal conductivity

To elucidate simple heat conduction, it is worth returning to the dissipation functional

(4.1). Insertion of (4.2) and (4.3) produces the compact expression

T ṡ =
n∑

i=0

d⃗i · v⃗i. (4.56)

Putting the Onsager–Stefan–Maxwell thermodiffusion laws (4.4)-(4.5) into (4.56) pro-

duces (4.20), which shows that the dissipation associated with temperature gradients

when the species velocities vanish is proportional to 1/M̃00. Past analyzes have asserted

on this basis that M̃00 should be inversely proportional to the thermal conductivity

[45, 134]; in that case force-explicit equation (4.4) reduces to Fourier’s law of heat

conduction in the absence of relative species velocities.

Alternatively, inserting the Onsager–Fick–Fourier equations (4.52) into (4.56) and
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applying the Gibbs–Duhem relation (4.12) leads to

T ṡ =
n∑

i,j=0

d⃗i · L̃ψij d⃗j, (4.57)

showing that the dissipation associated with temperature gradients in the absence of

diffusion driving forces is proportional to L̃00. One could alternatively argue that

thermal conductivity should be the coefficient of −∇⃗T in equation (4.54), so that it

reduces to Fourier’s law in the absence of diffusion driving forces.

Newman pointed out that these two perspectives on thermal conductivity are mu-

tually exclusive [113]. Indeed, after inserting the definitions of m̃0 and l̃ψ0 into (4.54)

and applying an identity similar to the one presented in (1.50), one finds that

L̃ψ
00 =

1

M̃00

+
R

2ρ2Ĉ2
pT

n∑

i,j=1

cicjA 2
ij

cTDij

, (4.58)

so the thermal conductivity cannot be proportional to both 1/M̃00 and L̃00 simulta-

neously. Note that we have included Newman–Soret diffusivities to emphasize that

this relationship is independent of the convective velocity, addressing another concern

raised by Newman [113].

The appropriate definition of thermal conductivity is decided by adopting a stan-

dard approach to its experimental measurement. Thermal conductivity in fluids is

typically measured by inducing a temperature gradient across a one-dimensional cell

with closed ends, enforcing no-molar-flux boundary conditions. When such an appa-

ratus reaches a steady state, the differential material balances demand that species

velocities vanish throughout the cell, as well as at its ends. For this experiment, (4.4)

is appropriate, and it reduces to Fourier’s law if

k =
ρ2Ĉ2

pT

M̃00

(4.59)

defines the thermal conductivity k. The dissipation functional from equation (4.20)

requires that k ≥ 0.

One consequence of this definition of k is that the generalized Fourier’s law contains

temperature-gradient-driven heat flux in addition to −k∇⃗T . The extra contribution,

which Bird, Stewart, and Lightfoot call the Dufour flux [16], can be quantified by in-

serting (4.58) and (4.59) into (4.54). One practical problem the experimental definition
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of k raises is that thermodynamic consistency demands a priori knowledge of the Soret

diffusivities when applying the Onsager–Fick–Fourier laws.

Our choice of thermal conductivity also has implications for thermodynamic stabil-

ity. Since the second law of thermodynamics requires that k ≥ 0, the condition that

dissipation must be positive in (4.58) without diffusion driving forces places a lower

bound on L̃ψ
00, namely

L̃ψ
00 ≥

R

2ρ2Ĉ2
pT

n∑

i,j=1

cicjA 2
ij

cTDij

. (4.60)

Here inclusion of the Newman–Soret diffusivity emphasizes this condition’s convection

invariance.

4.4 Properties and balances for viscous fluids

Thermodiffusion is simulated by solving a system of differential balance equations that

govern the transient spatial distributions of temperature and composition. As well

as necessitating a parameterization of the transport coefficients that make up M̃ or

L̃ψ, closure of this system requires various equilibrium material properties. Gener-

ally these parameters are not constants, but rather state functions dependent on local

temperature, pressure, and composition. A key advantage of the irreversible thermo-

dynamics methodology is that every equilibrium state function ultimately derives from

the system’s free energy.

4.4.1 Diffusion driving forces

Since molar Gibbs energy depends on temperature, pressure, and composition, all of the

material properties depend locally on these basis variables, as well. Thus, elementary

thermodynamic dependences imply that each diffusion driving force in a viscous fluid

depends on the natural basis variables T , p, and {yi}ni=1 as

d⃗i = −RTcT
n∑

j=1

χij∇⃗yi + ci

(
mi

ρ
− V i

)
∇⃗p, (4.61)

where V i is the partial molar volume of species i and χij quantifies how the change

in chemical activity of species i varies with the mole fraction of species j (i.e., cj/cT)

at fixed T and p. Notably, the temperature-gradient term in the original definition of

d⃗i, (4.6), cancels out when chemical-potential gradients are expanded over the natural
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basis. Terms involving composition gradients in (4.61) express the forces that drive

mass diffusion; the remaining term drives pressure diffusion.

Entries within the n×n activity-gradient matrix χmust adhere to many constraints.

When mixing is thermodynamically ideal, χ = I, where I is the identity matrix.

Therefore, one conventionally lets χ = I+ Γ, such that the n× n matrix Γ represents

deviations from ideal mixing behaviour under isothermal, isobaric conditions; Gibbs–

Duhem relationships suggest that 1⊤Γ = 0⊤. A constraint that Γ1 = 0 ensures that

nonphysical composition changes lie in the nullspace of Γ. Finally, although Γ is not

generally symmetric, Maxwell relations still reduce its number of independent entries

to n (n− 1) /2, one for each distinct pair of species.

4.4.2 Balance equations

Every multicomponent mass-transport process is governed by a set of species material

balances,2

Dci
Dt

= −∇⃗ · (civ⃗ ρi )− ci∇⃗ · v⃗ ρ (4.62)

for i ∈ {1, ..., n}. Here the operator

D

Dt
=

∂

∂t
+ v⃗ ρ · ∇⃗ (4.63)

represents the substantial derivative with respect to the mass-average velocity.

Thermodynamic considerations reveal that the material balances imply a connec-

tion between changes of temperature and pressure. A state equation for the volume

derives directly from the Euler equation for the Gibbs energy, by differentiation with

respect to pressure. The molar volume, 1/cT, is an intensive equilibrium property and

consequently depends generally on T , p, and at most n− 1 species fractions [69]. Thus

the local concentrations satisfy
n∑

i=1

V ici = 1, (4.64)

in which the partial molar volumes depend on the same basis variables as cT. Since

ϕi = V ici represents the volume fraction occupied by species i within a phase, this can

2Generally, the material balances can be augmented by generation terms, for example, to account
for the formation or consumption of species by homogeneous chemical reactions. Such phenomena,
which produce commensurate generation terms in the thermal energy balance as well, are neglected
here for simplicity.
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be seen as a rather trivial statement, that species volume fractions sum to unity. But

it also establishes the Gibbs phase rule, a more substantive physical conclusion.

Equation (4.64) leads to the Gibbs phase rule as follows. A substantial derivative of

(4.64) combines with the Gibbs–Duhem relation derived from the extensivity of volume

[69] to give

Dp

Dt
= KαV

DT

Dt
+K

n∑

i=1

V i
Dci
Dt

, (4.65)

where K is the bulk modulus (inverse isothermal compressibility) and αV is the vol-

umetric coefficient of thermal expansion, introduced in equations (1.14) and (1.15).

Therefore, in an n-ary single phase, one of the intensive natural variables T , p, {ci}ni=1

necessarily depends on the others.

To close the governing system’s degree of freedom associated with temperature, a

balance of thermal energy is added alongside the material balances. In any nonreactive

single-phase viscous fluid, this heat balance is [69]

ρĈp
DT

Dt
= −∇⃗ · q⃗ ′ −

n∑

i=1

civ⃗
ρ
i · ∇⃗H i + TαV

Dp

Dt

+

(
⇒
τ −

n∑

i=1

cimiv⃗
ρ
i v⃗

ρ
i

)
: ∇⃗v⃗ ρ, (4.66)

in which H i is the partial molar enthalpy of species i and
⇒
τ is deformation stress, the

latter following Bird, Stewart, and Lightfoot’s sign convention [16]. The terms on the

right of equation (4.66) respectively quantify local heat accumulation from: net influx

of irreversible heat; excess enthalpy convection due to diffusion; externally imposed

compressive power; and viscous friction.

4.4.3 Species enthalpies

The heat balance apparently introduces a new set of properties — the partial molar

enthalpies — but much of the information they contain is embedded in quantities

that have already been defined. In light of the standard Legendre transformation

µi = H i − TSi, the definition of the diffusion driving force and (4.61) give

∇⃗H i = V i∇⃗p+
RTcT
ci

n∑

j=1

χij∇⃗yj + T ∇⃗Si. (4.67)
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Also, Si connects to the chemical potential through a Maxwell relation, so the last

term depends on existing parameters. One ultimately finds [145]

∇⃗H i = Cp,i∇⃗T +

[
1−

(
∂ lnV i

∂ lnT

)

p

]
V i∇⃗p (4.68)

−RTcT
ci

n∑

j=1

(
∂χij
∂ lnT

)

p

∇⃗
(
cj
cT

)
, (4.69)

in which Cp,i represents the partial molar constant-pressure heat capacity of species i.

Substituting material balances (4.62) into (4.65) shows that the time derivative

of pressure in (4.66) depends only on spatial derivatives and the time derivative of

temperature. Insertion of (4.69) then yields an explicit equation for the time evolution

of temperature as a function of the instantaneous spatial distributions of temperature,

pressure, composition, the set of excess species velocities {v⃗ ρi }ni=1, and the mass-average

velocity v⃗ ρ. Since the Euler equation for entropy implies that

ρĈp =
n∑

i=1

ciCp,i, (4.70)

this heat balance is fully parameterized by specifying the temperature, pressure, and

composition dependences of αV , K,
{
Cp,i

}n
i=1

,
{
V i

}n
i=1

, the molar masses {mi}ni=1, and

the n(n− 1)/2 independent state functions that underpin χ.

4.5 Thermodiffusion in monatomic-gas mixtures

Numerous measurements have been made to quantify thermodiffusion in binary noble-

gas mixtures. To put this body of experimental data in context, we first lay out equi-

librium properties and the thermal balance equation for multicomponent gas mixtures.

We subsequently discuss the physical assumptions that underpin experimental data

processing, and tabulate the measured thermodiffusion properties for various noble-

gas pairs.

4.5.1 Equilibrium properties

Here we restrict the development to ideal mixtures of monatomic gases, for which a

substantial amount of experimental data is available. The equilibrium material prop-
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erties take simpler forms in this case, greatly simplifying both the diffusion driving

forces and the energy balance.

As well as satisfying χ = I, an ideal gas is defined in part by the condition that

V i = RT/p for all i. Thus (4.64) yields

cT =
p

RT
, (4.71)

a relationship which can be used to demonstrate that K = p and αV = 1/T , both

independent of composition. Also, this form of the partial molar volumes reduces

(4.69) to

∇⃗H i = Cp,i∇⃗T. (4.72)

Generally the ideal-gas state is also defined by a condition that each species’ partial

molar heat capacity Cp,i in a gas mixture equals the molar heat capacity of the pure

species in isolation.

In an ideal gas, the driving diffusion force of species i reduces (4.61) to

d⃗i = −p∇⃗yi + (ωi − yi) ∇⃗p, (4.73)

where we have eliminated cT with state equation (4.71). Thus the driving force for

pressure diffusion is proportional to the difference between the molar mass of species

i and the number-average molar mass of the mixture, ρ/cT =
∑n

i=1miyi. For isobaric

gas thermodiffusion, the condition that ∇⃗p = 0⃗ simplifies diffusion driving forces (4.73)

to

d⃗i = −p∇⃗yi. (4.74)

The equilibrium thermal properties simplify even more if all the species comprising

an ideal gas are assumed to be monatomic. In a monatomic ideal gas, Cp,i =
5
2
R for

each i. Through (4.70), the volumetric heat capacity of a monatomic ideal-gas mixture

is therefore ρĈp =
5
2
cTR, independent of composition.

4.5.2 Thermodiffusion property measurements

Experiments to parameterize thermodiffusion typically employ binary gas mixtures.

The measurement is performed in an apparatus designed to be one-dimensional spa-

tially, which is subjected to a temperature difference across its ends. Designating one
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end of the apparatus by a and the other by b, experimentalists record the steady-state

value of the parameter

α12 =
ln
(
yb2/y

b
1

)
− ln (ya2/y

a
1)

lnT b/T a
, (4.75)

known as the thermal diffusion factor [73]. Conventionally, index 1 is assigned to the

heavier of the two species.

An expression relating α12 to transport properties derives naturally from the

Onsager–Stefan–Maxwell laws. In a steady state, the condition v⃗ρ = 0 simplifies ma-

terial balances (4.62) dramatically, to

0 = −∇⃗ · (civ⃗ ρi ) (4.76)

for each species i. In a one-dimensional apparatus with closed ends, these balances

imply that v⃗i = 0⃗ for every species i. Thus the force-explicit flux law (4.4) can be used

to eliminate v⃗0 from (4.5), showing that

d⃗i =
M̃ i0

M̃00

d⃗0 (4.77)

for each species i = 1, . . . , n. Substitution of driving forces (4.3) and (4.74) into (4.77),

followed by simplification with equation of state (4.71) and rearrangement based on

the fact that y2 = 1− y1, gives

∇⃗ ln

(
y2
y1

)
=

A12

D12

∇⃗ lnT (4.78)

for an isobaric binary mixture of monatomic gases in a closed, one-dimensional appa-

ratus subjected to a steady temperature polarization. Integration from end a to end b

yields

α12 =
A12

D12

, (4.79)

assuming that the ratio A12/D12 is constant with respect to temperature and composi-

tion. Thus the thermal diffusion factor relates directly to the Newman–Soret coefficient

and the Stefan–Maxwell diffusivity.

Table 4.1 presents the binary diffusion coefficients and thermal diffusion factors

for various pairs of noble gases. In the first-order approximation of the Chapman–

Enskog expansion, the terms pD12 and α12 are independent of pressure [83]. Hence the

reported values are nominally valid for a range of pressures. Binary diffusion coeffi-
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Gas
pair

pD12

(atm cm2s−1)
α12 (unit-
less)

Ne - He 1.1079 0.3432
Ar - He 0.7560 0.3984
Kr - He 0.6553 0.4279
Xe - He 0.5611 0.4250
Ar - Ne 0.3250 0.1741
Kr - Ne 0.2647 0.2710
Xe - Ne 0.2231 0.2951
Kr - Ar 0.1398 0.0705
Kr - Ar 0.1144 0.0803
Xe - Kr 0.0745 0.0262

Table 4.1: Thermodiffusion transport coefficients measured for noble-gas pairs at T =
300 K as reported by Mason and Marrero [101] and Taylor [141]. In all cases data were
gathered from experimental systems which comprise uniform equimolar mixtures when
relaxed to isothermal equilibrium.

Gas k
(W cm−1K−1)

He 15.66
Ne 4.98
Ar 1.78
Kr 0.95
Xe 0.55

Table 4.2: Thermal conductivities k for pure noble gases at 300 K at atmospheric
pressure and average isotopic composition [89].

cients were computed with the least-squares equations compiled in the comprehensive

review by Mason and Marrero [101]. The thermal separation factors were taken from

temperature-dependent least-squares correlations reported by Taylor [141].

Many additional measurements of thermal gas-mixture separation exist in the liter-

ature. The reported data cover hydrogen/noble-gas mixtures [54], mixtures of hydro-

gen isotopes [72], halogen/noble-gas mixtures [55, 104], and gas mixtures that include

methane [53].

Complete specification of the thermodiffusion transport matrix requires a value for

the thermal conductivity. Thermal conductivities of pure noble gases are reported in

Table 4.2, taken from the survey of Kestin et al. [89]. Note that Helium is understood

to be at its average isotopic composition. Even simulating binary systems leads to
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complications because the thermal conductivity is a strong function of composition;

for example, the thermal conductivities of xenon and helium differ by well over an

order of magnitude. Thus it is necessary to incorporate a mixing rule for thermal

conductivities, a topic for which there is a significant body of literature. Options

include the Wassijewa model [153] based on the kinetic theory of gases, the empirical

Kennard mixing rule [88], and the Mason–Saxena mixing rule [102]. Recently, an

accurate and easily-implemented mixing rule based on equivalent-circuit analysis was

proposed by Udoetok [143].

4.6 Numerical computation

Practical modelling of thermodiffusion has been impeded by the difficulty of numerical

implementation. On one hand, deriving Onsager–Fick–Fourier laws for multicompo-

nent mixtures is a complex procedure, and, as we have illustrated, the parameterization

of the Onsager thermodiffusivity matrix L̃ψ depends strongly on the choice of reference

velocity. On the other hand, in the generalized Stefan–Maxwell equations (4.7), the

mixture of fluxes and driving forces apparently yields no useful mathematical structure

to facilitate numerical algorithms.

In Chapter 2 we formulated a finite element method effect for the Stefan–Maxwell

equations, that is the isobaric, isothermal diffusion equations for an ideal gas mixture.

Having now formulated the equations for thermodiffusion in a force explicit form, we

can see that heat may be treated as a pseudospecies and it is straightforward to transfer

the algorithm in chapter 2 to the anisothermal case as the structure is almost entirely

inherited. In particular we use the augmented anisothermal matrix (4.43) instead of

the augmented transport matrix, we include the thermal driving force and velocity,

and add the thermal balance equation (4.66).

In general the complication when extending to the anisothermal case is the bal-

ance equation, which possesses addition terms describing heat generation within the

medium. For a steady-state isobaric monatomic gas mixture with no mass-average

velocity this simplifies to

−∇⃗q′ =
n∑

j=1

5

2
Rcivi · ∇⃗T. (4.80)

It is anticipated that the framework developed in Chapter 3 may also be transferred

over to include convection. Specifically there is little difficultly in transferring the

discretization detailed in Chapter (3) on the premise that heat acts as another species.

However it should be noted that when we add convection, prudent consideration of the
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choice of linearisation remains as future work. Indeed the general form of the driving

forces, which now include a temperature gradient, make the analysis considerably more

involved, and it is not immediately obvious how to extend the theorems from Chapter

(3).

4.6.1 Extension of binary data

The Onsager–Stefan–Maxwell equations allow a natural extrapolation of isothermal

property data from binary systems to multicomponent systems. Reasoning physically

that species/species drag is dominated by pairwise interactions to a first approxima-

tion, one can use diffusion coefficients Dij measured from binary systems directly in

simulations with more than two species. A similar process cannot be used to infer

the set of Newman–Soret diffusivities Aij from binary measurements, however, as a

consequence of the structure required by (4.39). Producing a consistent form of the

multicomponent Newman–Soret matrix requires that the binary data be regularized

to ensure kinematic consistency. A.2 presents a regularization process underpinned by

the method of least squares.

4.6.2 Steady thermodiffusion in a ternary noble-gas mixture

Here we consider steady, three-dimensional thermodiffusion in an isobaric ternary mix-

ture of noble gases. In this situation, flux laws (4.4)-(4.5) for species i ∈ {0, 1, 2, 3} are

written in compact form as

d⃗i =
3∑

j=0

M̃ ij v⃗j, (4.81)

where it is understood that d⃗0 = −5
2
cTR∇⃗T and v⃗0 = q⃗ ′/(5

2
cTRT ). To close the model

we adopt the condition v⃗ρ = 0, which simplifies the material balances to the form

of (4.76) for each i ∈ {1, 2, 3}. For a monatomic-gas mixture, the steady-state heat

balance simplifies to

0 = −5

2
∇⃗ · (cTRT v⃗0), (4.82)

and (4.73) describes the diffusion driving forces.

4.6.3 Example

We adapt the numerical method from Chapter 2 by simulating the separation of an

equimolar ternary gas mixture of helium, argon and krypton in a three dimensional
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Figure 4.1: Schematic diagram of the separation chamber. The figure shows a cross
section of the axially symmetric device.

separation chamber. The conceptual schematic for this numerical experiment is shown

in Figure 4.1.

Values of binary Stefan–Maxwell coefficients Dij were taken from Table 4.1.

Newman–Soret coefficients Aij computed using binary data for α12 are tabulated in

Table 4.3, and the regularized Newman–Soret matrix used for simulations is presented

in Table 4.4. Thermal conductivities for each pure component were taken from Table

4.2; to evaluate the thermal conductivity of the mixture, the mixing rule proposed by

Udoetok [143] was employed. This mixing rule was chosen due to its good balance be-

tween accuracy and simplicity, the latter of which is key because conductivity must be

computed dynamically from the local composition and temperature at each quadrature

point in the domain. The exact molar masses used for the simulation were 4.00gmol−1,

39.95 gmol−1, and 83.80 gmol−1 for helium, argon, and krypton, respectively.

The simulation was performed with Firedrake software [129], using the MUMPS di-

rect linear solver [1, 2] via PETSc [12, 13]. The mesh of the geometry was constructed

using the Gmsh software [65]. Each linear system had 3,895,568 degrees of freedom and

convergence was achieved in 11 non-linear iterations. The exact scripts used to pro-

duce each numerical experiment can be found at https://bitbucket.org/vanbrunt/

consolidated-thermodiffusion-repository along with the mesh used for the sepa-

ration chamber. The exact software versions used to produce the results in this chapter,

along with instructions for installation, have been archived on Zenodo [158].

For the experiment, the cooling bath was maintained at 300 K, a condition reflected

in the simulation by imposing Dirichlet boundary conditions specifying the wall tem-

peratures of the left chamber. To drive the temperature gradient, an evenly-distributed

fixed heat flux was fed normally into the rightmost face of the device. The remain-

ing boundary conditions were set as homogeneous Neumann conditions to reflect the
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Aij from binary measurements

He Ar Kr

He 0 −0.3012 −0.2804
Ar 0.3012 0 −0.0099
Kr 0.2804 0.0099 0

Table 4.3: Newman–Soret diffusivities computed using the experimental data from
binary systems summarized in Table 4.1 and (4.79).

Inferred Aij entries

He Ar Kr

He 0 −0.2910 −0.2906
Ar 0.2910 0 0.004
Kr 0.2906 −0.004 0

Table 4.4: Table of regularized Newman–Soret diffusivities for a He–Ar–Kr mixture,
determined from the data in Table 4.3 with the procedure detailed in A.2.

presence of insulation and gas-impermeable walls. Last, it was assumed that the total

molar amounts of each gas are constants of the closed system. The constant total

amount of material in the separation chamber, nT, necessarily satisfies

∫

V

cTdV = nT, (4.83)

where V indicates the chamber volume. Through equation of state (4.71), this implies

that

p =
RnT∫

V
1/TdV

, (4.84)

which was used to determine a self-consistent steady-state pressure from the temper-

ature distribution. For simulations, nT was chosen to be consistent with an average

total concentration given by equation (4.71) with p = 1atm and T = 300K.

A heat input of 135W induces a temperature difference of approximately 100K

across the separation chamber, as can be seen from Figure 4.2 alongside arrows that

indicate the direction and magnitude of local irreversible heat flux. The separation

of helium effected by the temperature gradient is plotted in Figure 4.3. As expected,

helium, the lightest component, tends to build up towards the hotter end [78]; a 7.5%

separation of helium is induced by the heat flux. The steady-state separation of krypton
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Figure 4.2: Temperature profile within the separation chamber. Arrows indicate the
irreversible-heat-flux (W cm−2) vector field.

Figure 4.3: Mole fraction profile of helium.
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Figure 4.4: Mole fraction profile of krypton.

induced by the heat flux is shown in Figure 4.4. Krypton tends to move towards the

cooler end, but the separation is only about 4.5%.

This numerical example demonstrates the potential of the Onsager–Stefan–Maxwell

framework for modelling thermodiffusion in multispecies phases with three-dimensional

geometries. From this perspective, one can investigate a rich variety of phenomena for

a number of practical applications. To the best of the author’s knowledge, no other

multidimensional simulations of thermodiffusion have been performed using the linear

irreversible thermodynamics approach.

4.7 Conclusion

A unified framework for modelling fluid thermodiffusion was presented. The new

force-explicit Onsager–Stefan–Maxwell formulation was shown to be compatible with

the generalized Stefan–Maxwell equations implied by kinetic theory, as well as the

commonly employed flux-explicit Onsager–Fick–Fourier constitutive laws. A general

method for inverting isothermal transport laws to obtain velocity-explicit forms from

force-explicit forms, and vice versa, was proposed, and shown to encompass the dis-

parate prior approaches to flux-law inversion proposed by Newman, Helfand, and Cur-

tiss and Bird. The general inversion process was further extended to cover anisothermal

situations, proving equivalence of the various constitutive formulations.

The Onsager–Stefan–Maxwell thermodiffusion equations involve an anisothermal

transport matrix that proves to have a simple spectral structure. It was shown how to

infer entries of multicomponent transport matrices given binary measurements, allow-

ing for straightforward practical implementation of the theory. Further mathematical
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relationships necessary to implement a thermodiffusion model, such as balance equa-

tions and expressions of the driving forces in terms of natural thermodynamic basis

variables, were provided for thermodynamically non-ideal viscous fluids and ideal gases.

Finally, an effective and novel numerical method to simulate thermodiffusion was de-

ployed, in which heat was treated as a pseudospecies. Multidimensional simulations of

steady thermodiffusion in a ternary noble-gas mixture demonstrated the effectiveness

of the proposed approach.

Although the numerical methodology was shown to be sound, the absence of con-

vection (i.e., a zero mass-average velocity) is generally not a valid physical assumption.

Addressing this issue requires consideration of a local momentum balance alongside

the balances of material and heat. Future work is needed to confront the full dynamics

of convective thermodiffusion from the irreversible-thermodynamics perspective, and

to appropriately analyze the resulting set of partial differential equations in variational

form as was done in Chapters 2 and 3.
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Chapter 5

Structural electroneutrality in the

Onsager–Stefan–Maxwell models

with charged species

5.1 Introduction

The growing impetus for improved electrochemical energy storage makes it vital to

understand ion transport. The term concentrated solution theory [114, 116] refers

to multicomponent transport (as described in the previous chapters) applied to model

electrolytic materials on the continuum scale. One of the most popular implementations

of concentrated solution theory is Doyle, Fuller and Newman’s landmark physics-based

model of the dual-insertion lithium-ion battery. This relies on a model of a binary

liquid solution, comprising a simple salt dissolved in a neutral solvent, typically LiPF6

in ethyl methyl carbonate (EMC) or propylene carbonate (PC) [49, 51]. It derives

from the Onsager–Stefan–Maxwell transport laws [83, 116], written for n species in an

isothermal, isobaric common phase as 1

−∇⃗µi =
n∑

j=1

Mc
ijN⃗j, (5.1)

1Throughout this chapter we will express the Onsager–Stefan–Maxwell equations in terms of fluxes
Ni = civi and chemical potentials rather than driving forces. Primarily this is due to these being the
more natural variables for identifying voltage and current.
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Here we have written a transport matrix Mc, closely related to M from previous

sections, whose entries are

Mc
ij =





− RT

cTDij

if i ̸= j

RT

cT

n∑

k ̸=i

ck
Dikcj

if i = j.

(5.2)

This matrix is also symmetric positive semidefinite with a null eigenvalue corresponding

to the vector c = [c1, c2, ..., cn]
⊤.

An important practicality emerges when considering transport in liquids such as

electrolytic solutions, which conduct electricity via the motion of ions. If mobile species

in a fluid carry charge, their thermal motion will screen any local charge imbalances

on a length scale comparable to the Debye length (typically of the order of 1 nm) [46].

Thus, if volume elements in a simulation have characteristic size much larger than the

Debye length, the local excess charge density ρe can be assumed to vanish locally, that

is,

ρe = F
n∑

j=1

zjcj = 0, (5.3)

where F is Faraday’s constant and zi is the equivalent charge of species i. Local

electroneutrality is foundational to concentrated solution theory and has been assumed

nearly ubiquitously in its applications.

Adopting the local electroneutrality approximation simplifies transport models by

allowing one charged-species concentration to be eliminated from the governing equa-

tions, both reducing the complexity of thermodynamic parametrization and streamlin-

ing calculations. Electroneutrality makes concentrated-solution theory hard to recon-

cile with the Onsager–Stefan–Maxwell theory for nonelectrolytes, however, because the

additional algebraic constraint imposed by equation (5.3) appears to induce an overde-

termination within equations (5.1). Indeed for fluids wholly made up of uncharged

species, the Onsager–Stefan–Maxwell equations, when combined with an equation that

establishes a convective velocity, have been shown in Chapters 2-3 to constitute a closed

model.

Newman and colleagues carefully circumvented the issues raised by electroneutral-

ity when formulating their models of binary electrolytes and ternary salt mixtures

[114, 115, 125]. The importance of separating terms into neutral and non-neutral

contributions was emphasized in their analyses. In particular, individual ion concen-
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trations were lumped into salt concentrations; species fluxes were expressed in terms of

salt chemical potentials and current density; and terms associated with charge density

and charge convection were explicitly neglected.

Possible applications of electroneutral Onsager–Stefan–Maxwell theory readily ex-

ceed the scope of the few cases that have been considered to date. For example, aqueous

vanadium flow batteries—a system comprising at least eight distinct species—have re-

cently been modelled [38, 39], but it is not immediately clear how that framework can

be extended to account for side reactions, additives, or contaminants. At the same

time, the increased demand for electrochemical transport simulations raises the need

for a general, numerically robust model formulation.

This chapter generalizes Newman’s particular implementations of electroneutral

concentrated-solution theory for binary solutions and salt melts. We introduce a

structure-preserving transformation that maps the free energies of individual charged

species into those of uncharged combinations of species, assembling species electrochem-

ical potentials into a basis set of component chemical potentials and a single quantity

interpretable as an electric potential. The same transformation regroups charged-

species fluxes into component fluxes and current density. As well as reconciling the

electroneutrality approximation with the fundamental equations of linear irreversible

thermodynamics in a structure-preserving way, the theory produces a general set of

transference numbers and an ionic conductivity that match definitions given by New-

man, as well as leading to a naturally symmetric set of component diffusivities. The

transformation preserves the spectral structure of M, making the equations amenable

to numerical methods developed in previous chapters.

5.2 Construction of a salt–charge basis

Our key mathematical concepts are linear transformations and inner products, typ-

ically represented by matrix operations. These tools are used to develop a change

of composition basis from one that lists charged-species molarities into one that lists

neutral-salt molarities alongside charge density. Instead of beginning with species

concentrations, however, the new composition basis is identified by grouping species

electrochemical potentials into new quantities that represent electrically neutral com-

binations of species. For any given electrolytic material, one can establish a minimal

set of such combinations by positing a set of independent hypothetical chemical reac-

tions that we call fundamental equilibria, which leave uncharged species alone or bring
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charged species together to form neutral salts. We refer to products of the fundamental

equilibria as components, rather than species.

Every electrochemical system is globally electroneutral at equilibrium and every

electrochemical reaction necessarily balances both charge and atoms between its re-

actants and products. Moreover, any physically realizable electrolytic solution must

contain at least two countercharged species. It follows that the n species comprising

any electrolyte combine to form at most n − 1 distinct uncharged components. We

call the elementary structure that establishes the species charges and a minimal set of

hypothetical reactions that neutralize them a salt–charge basis.

It is helpful to illustrate with an example. Consider a solution of Na+, Cl–, Mg2+ and

SO 2–
4 in water (H2O). Among these five species, one can write 5− 1 = 4 independent

reactions to form electrically neutral entities. First write a trivial equilibrium between

the naturally uncharged water molecule and itself, and then write three equilibria

among distinct countercharged pairs of ions:

H2O ⇋ H2O (5.4)

Na+ + Cl– ⇋ NaCl (5.5)

Mg2+ + 2Cl– ⇋ MgCl2 (5.6)

2Na+ + SO 2–
4 ⇋ Na2SO4. (5.7)

Along with the list of species charges {0, 1,−1, 2,−2}, these fundamental equilibria

define a salt–charge basis for this five-species aqueous solution.

The choice of reactions to form a salt–charge basis is not generally unique, but any

neutral component not defined can always be recovered by writing additional reactions

involving products formed by the selected fundamental equilibria. In the example

system, observe that one can create the fourth possible simple binary salt, MgSO4, via

the recombination reaction

MgCl2 +Na2SO4 ⇋ 2NaCl +MgSO4. (5.8)

Thus any thermodynamic property of MgSO4 in this system — such as its chemical

potential, partial molar volume, or partial molar entropy — is determined by properties

of dissolved NaCl, Na2SO4, and MgCl2. The energetics of any multi-ion salt with higher
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formula-unit stoichiometry also follows from the fundamental equilibria. Consider

MgCl2 +Na2SO4 ⇋ NaCl +MgNaClSO4,

which forms the more complex salt MgNaClSO4 from all four available ions.

The formal procedure for creating a salt–charge basis generalizes the preceding ex-

ample. Start by placing the species in an ordered list, wherein each species’ position

assigns its numerical index. List all uncharged species first, and charged species af-

terward. For consistency with prior approaches, ensure that the nth and (n − 1)th

species have opposite charges [70, 108]. Then let z = [z1, ..., zn]
⊤ be a column matrix

comprising the species equivalent charges in their assigned order and suppose there are

nc < n − 1 charged species. The ordering ensures that entries z1, ..., zn−nc of z equal

zero, entries zn−nc+1, ..., zn of z are nonzero, and zn/zn−1 < 0. In the example above,

we have z⊤ = [0, 1,−1, 2,−2]⊤.

Next, write a set of n − 1 fundamental equilibria involving the species, beginning

with n − nc trivial equilibria for the naturally uncharged species, and following with

nc − 1 linearly independent association equilibria, within which countercharged pairs

of charged species react to form simple binary salts. Here ‘simple’ means that the

reactant stoichiometric coefficients are coprime positive integers. Let column matrix

νi = [νi1, νi2, ..., νin]
⊤ contain the stoichiometric coefficients νij of reactant species j

in the ith fundamental equilibrium. For example in the equilibria (5.7), which is the

dissociation of Na2SO4, these are 2 for Na+ and 1 for SO4
2−. For uncharged species

i = 1, ..., n−nc, stoichiometric column νi will be the ith column of the identity matrix,

notated henceforth as ii. For i = n − nc + 1, ..., n − 1, νi has two positive-integer

entries, corresponding to the stoichiometric coefficients of species in a formula unit of

the simple binary salt they form. The restriction to simple salts ensures that the total

number of ions in each formula unit is minimal.

The Guggenheim condition requires that ion stoichiometry within a formula unit

of salt always balances charge [76]. In terms of reactant stoichiometry in the ith

fundamental equilibrium, the condition is expressed as

ν⊤
i z = 0, (5.9)

where superscript ⊤ indicates the matrix transpose. Note that this condition also holds

for every trivial fundamental equilibrium based on an uncharged reactant.
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It is useful to view equation (5.9) as a statement about a matrix inner product,

namely: the Guggenheim condition requires that each column νi is orthogonal to

z. Since the set of stoichiometric columns is also linearly independent by construc-

tion, the reactant stoichiometries from the n − 1 fundamental equilibria establish an

(n − 1)-dimensional linear space orthogonal to the span of z. Moreover, the n-tuple

{ν1, ...,νn−1, z} is linearly independent, and consequently forms a basis for the entire

n-dimensional composition space. This set of column vectors formally represents the

chosen salt–charge basis.

5.3 The chemical potential in a salt–charge basis

The selection of a salt–charge basis enables the construction of a linear transforma-

tion that maps the nc charged-species electrochemical potentials into nc − 1 chemical

potentials of neutral salts, leaving a single additional combination of electrochemical

potentials to describe charge. The transformation is represented by an n × n matrix

Z,

Z =




ν⊤
1

...

ν⊤
n−1

z⊤/∥z∥



, (5.10)

in which ∥v∥ =
√
v⊤v for any column v. Its rows are linearly independent, so Z is

invertible. Each of the first n − 1 rows is orthogonal to the last (nth) row, and each

of the first n− nc rows, which correspond to uncharged species, is orthogonal to every

other row. Internal rows corresponding to salts, that is, rows i = n− nc + 1, ..., n− 1

of Z, are not mutually orthogonal in general.

The transformation Z combines species electrochemical potentials into component

chemical potentials as follows. Let the column matrix µ = [µ1, ..., µn]
⊤ contain the

species electrochemical potentials in order. Then multiplication by Z maps µ into new

coordinates µZ that stand over the chosen salt–charge basis. In the form of a matrix

equation, µZ is defined as

µZ = Zµ. (5.11)

The first n − 1 rows of µZ so formed comprise the chemical potentials of a minimal

number of neutral components, with the ith row representing the chemical potential

of the product formed by the ith fundamental equilibrium used to define a salt–charge
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basis. In our running example, the chemical potential of the salt Na2SO4 would be

µNa2SO4
= 2µNa + µSO4

, which reflects the equilibrium in (5.7). The last row of (5.11)

quantifies all of the information in the set of species electrochemical potentials associ-

ated with reversible processes that do not conserve charge. It is convenient to subdivide

µZ , as

µZ =



µν

µz


 , (5.12)

where the (n − 1)-dimensional column µν contains the n − 1 component chemical

potentials. More explicitly, if νi has a single nonzero entry, µν,i = (µν)i = ν⊤
i µ

reproduces the chemical potential expected for a naturally uncharged species; otherwise

µν,i forms a salt chemical potential by the same process outlined by Newman and

Thomas–Alyea [116]. As we shall see later, the remaining quantity, µz, leads naturally

to a definition of solution voltage.

5.4 Concentration and flux in a salt–charge basis

The transformation to a salt–charge basis embodied by Z can be exploited to form

quantities which describe the amounts and motion of uncharged components. Natural

definitions of component concentrations and component fluxes arise heuristically from

an invariance argument.

We assert as a physical principle that the elementary laws from thermodynamics

and irreversible thermodynamics must retain their structures when expressed in terms

of components, rather than species. In equilibrium thermodynamics, this is asserting

that the change of basis does not change the energy of the system. Here the essential

thermodynamic relation is the Euler equation,

G̃ =
n∑

i=1

µici, (5.13)

for which G̃ is the volumetric Gibbs free energy in terms of species molarities. The

essential relation from irreversible thermodynamics is the dissipation function, written

at a point within an isothermal, isobaric single phase as

T ṡ =
n∑

i=1

N⃗i ·
(
−∇⃗µi

)
, (5.14)

124



which relates local energy loss T ṡ to the species fluxes.

Natural composition variables over a salt–charge basis are identified by requiring

G̃ to retain its structure whether written in terms of species or components. In that

case, the matrix relationship

G̃ = µ⊤c = µ⊤
ZcZ (5.15)

defines the column matrix cZ that lists component concentrations in the chosen salt–

charge basis. Since Z is nonsingular, it follows from definition (5.11) that

cZ = Z−⊤c, (5.16)

where superscript −⊤ indicates the inverse transpose.

It is illuminating to introduce Faraday’s law. Faraday’s law for charge combines

with equation (5.16) to show that excess charge density can be expressed in two ways,

ρe = F
n∑

i=1

zici = Fz⊤c = F (Zz)⊤ cZ , (5.17)

in which the distributive property of the matrix transpose was used to rearrange the

last equality. Since the first n − 1 rows of Z are orthogonal to z⊤, Zz = ∥z∥ in by

equation (5.10), and consequently equation (5.17) implies that

(cZ)n =
ρe

F ∥z∥ , (5.18)

i.e., the last entry of cZ quantifies excess charge density. Thus cZ naturally partitions

into a column that represents an ordered set of n−1 neutral component concentrations,

written as cν , followed by an entry expressing the excess charge in molar units,

cZ =




cν
ρe

F ∥z∥


 . (5.19)

Entry cν,i = (cν)i of the component concentrations cν represents the molarity of the

product formed by the ith fundamental equilibrium.

Flux descriptors over a salt–charge basis are created by demanding that the struc-

ture of the energy dissipation T ṡ is preserved. Assemble the species fluxes into a
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column n⃗ = [N⃗1, ..., N⃗n]
⊤. Structure preservation requires that

T ṡ = n⃗⊤ ·
(
−∇⃗µ

)
= n⃗⊤

Z ·
(
−∇⃗µZ

)
, (5.20)

where the column n⃗Z lists fluxes in salt–charge basis Z. (The notation ∇⃗u indicates a

column matrix whose ith entry is the vector ∇⃗ui, where ui is the ith entry of u.) The

transformation from n⃗ into n⃗Z therefore must be

n⃗Z = Z−⊤n⃗, (5.21)

identical to the mapping that sends species concentrations into component concentra-

tions.

Faraday’s law — this time, for current — also provides detail about the new fluxes

n⃗Z . In matrix form, Faraday’s law casts current density i⃗ in terms of species fluxes as

i⃗ = Fz⊤n⃗ = F (Zz)⊤ n⃗Z . (5.22)

Again, the fact that Zz = ∥z∥ in comes into play, yielding

(n⃗Z)n =
i⃗

F ∥z∥ . (5.23)

Thus the last entry of n⃗Z represents a renormalized current density. It is again natural

to partition n⃗Z , as

n⃗Z =




n⃗ν

i⃗

F ∥z∥


 , (5.24)

in which n⃗ν is an (n − 1)-dimensional column matrix representing the set of total

component fluxes.

Other fundamental thermodynamic laws also readily transform. For example, prior

definitions imply
n∑

i=1

ci∇⃗µi = c⊤∇⃗µ = c⊤Z∇⃗µZ = 0⃗, (5.25)

so the change to a salt–charge basis retains a structurally identical isothermal, isobaric

Gibbs–Duhem equation.

One can also cast the total species concentration cT in terms of the component
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concentrations. Letting 1 stand for a column matrix whose entries are all ‘1’, one has

that

cT =
n∑

i=1

ci = 1⊤c = ν⊤
Z cZ , (5.26)

in which the column matrix νZ , defined as

νZ = Z1 =




ν

z⊤1

∥z∥


 , (5.27)

summarizes information about net reactant stoichiometry in the fundamental equi-

libria. The second equality here indicates that the stoichiometric column νZ also

partitions into (n− 1) entries ν that describe components and a final entry associated

with charge. When component i < n derives from a naturally uncharged species, the

corresponding entry of ν, that is, νi, is 1; when component i < n is a salt, νi is the

total number of ions in its formula unit.

Molar concentrations are convenient for stating the thermodynamic laws, but they

make characterization efforts error-prone because molarity varies with temperature and

pressure at fixed composition. It is useful to introduce two alternative composition

descriptors, called the species fractions y and component fractions yZ , and defined as

y =
1

cT
c and yZ =

1

cT
cZ , (5.28)

respectively. These afford the fundamental properties that

1⊤y = 1 and ν⊤
Z yZ = 1, (5.29)

and are independent of temperature or pressure.

5.5 Governing equations in a salt–charge basis

Since the component concentrations and component fluxes in a salt–charge basis come

from c and n⃗ through the same linear transformation, the move to a salt–charge basis

preserves the structure of material balances. In the absence of homogenous reactions,
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all the species continuity equations are summarized in matrix form as

∂c

∂t
= −∇⃗ · n⃗. (5.30)

(Given any column v⃗, the operation ∇⃗ · v⃗ forms a column matrix whose ith entry is

the scalar ∇⃗ · v⃗i.) Multiplication by Z−⊤ and use of equations (5.16) and (5.21) yields

∂cZ
∂t

= −∇⃗ · n⃗Z , (5.31)

confirming structure preservation. Bringing in the decompositions from equations

(5.19) and (5.24), one can alternatively express equation (5.31) as a set of n− 1 com-

ponent mole balances,
∂cν
∂t

= −∇⃗ · n⃗ν , (5.32)

along with the single equation
∂ρe
∂t

= −∇⃗ · i⃗, (5.33)

which establishes charge continuity. Note that any model governed by species ma-

terial balances which also incorporates Faraday’s law is compatible with Maxwellian

electrodynamics, because Maxwell’s equations imply a charge-continuity relationship

identical to equation (5.33) [86].

Because the transformations that form cZ and n⃗Z preserve the structure of the

dissipation function, they also preserve the structure of the Onsager–Stefan–Maxwell

constitutive laws. Equation (5.1) takes the matrix form

−∇⃗µ = Mcn⃗. (5.34)

Equations (5.11) and (5.21) show that this transforms to

−∇⃗µZ = MZn⃗Z (5.35)

over a salt–charge basis. The transport matrix MZ in the salt–charge representation of

the Onsager–Stefan–Maxwell laws relates to the matrix M from equation (5.2) through

MZ = ZMcZ⊤, (5.36)
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a congruence transformation. It follows from this congruence that Mc is symmetric

if and only if MZ is symmetric, so that the Onsager–Stefan–Maxwell transport coef-

ficients retain symmetry when expressed over a salt–charge basis. Sylvester’s law of

inertia implies further that the signatures and ranks of Mc and MZ equate. As men-

tioned before, the non-dissipative nature of convection implies that Mc affords c as

its sole null eigenvector; in light of congruence relation (5.36) and Sylvester’s law, this

implies that cZ is the sole null eigenvector of MZ .

Thus, transformation to a salt–charge basis preserves the structure of the differential

balance equations as well as all spectral properties of the Onsager–Stefan–Maxwell

equations. Both Mc and MZ are symmetric matrices, and each affords a single null

eigenvector. Although the null spaces of Mc and MZ generally differ, each matrix

affords just one null eigenvector (c and cZ , respectively). The nonzero eigenvalues of

Mc generally differ in magnitude from those of MZ , but both sets are all positive.

5.6 The salt–charge potential

It is prudent to introduce a thermodynamic potential with units of voltage to quantify

electrical energy and power. To put electricity in a thermodynamic context, however,

one must acknowledge an essential limitation on how electrochemical equilibria are

parametrized.

When proposing the electrochemical potential concept, Guggenheim introduced

constitutive laws

µi = RT ln ai + FziΦ, (5.37)

in which ai represents the chemical activity of species i and Φ is an electric poten-

tial in the solution phase [75, 76, 116]. Observing that the equilibrium compositions

of practical macroscopic systems cannot be adjusted along paths that violate global

electroneutrality, Guggenheim noted that the partitioning of electrochemical potentials

into chemical and electrical parts is necessarily ambiguous. Therefore a model of elec-

trolyte energetics must never depend on the chemical activity of a single charged species

in isolation [76]. To cast this notion formally, define a non-neutral free-energy contri-

bution µz, written in terms of Guggenheim’s species activities and solution potential

as

µz =
1

∥z∥
n∑

i=1

ziµi =
RT

∥z∥
n∑

i=1

zi ln ai + F ∥z∥Φ. (5.38)
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Guggenheim’s principle states that no macroscopic experiment can discern the term

that involves the solution potential Φ in this expression from those involving the species

activities ai [75].

Rather than using the solution potential Φ, we instead employ a quantity we call

the salt–charge potential Φz, defined as

Φz =
µz

F ∥z∥ . (5.39)

Guggenheim’s principle requires that no experiment can distinguish chemical and elec-

trical contributions to Φz. Despite this ambiguity, one can still understand the salt–

charge potential Φz as a type of electrical potential. Inserting decompositions (5.12)

and (5.19), then introducing definition (5.39) recasts the Euler equation for G̃ as

G̃ = µ⊤
ν cν + Φzρe. (5.40)

Here, the Φzρe term apparently quantifies excess coulomb energy, that is, the available

energy associated with imbalanced charge. Similarly, inserting decompositions (5.12)

and (5.24) restates the dissipation as

T ṡ = n⃗⊤
ν ·
(
−∇⃗µν

)
+ i⃗ ·

(
−∇⃗Φz

)
. (5.41)

The −⃗i · ∇⃗Φz term is the local ohmic loss — the rate of energy dissipation associated

with electrical current flow. Observe that local electroneutrality makes the coulomb

term disappear from G̃, but leaves the ohmic term in T ṡ.

Although the species material balances summarized in equation (5.30) imply charge-

continuity equation (5.33), and are therefore compatible with Maxwell’s equations,

equilibrium thermodynamics cannot provide insight into the Maxwellian electric field,

because Guggenheim’s principle mandates that it is impossible to determine experi-

mentally whether or not −∇⃗Φz is a purely electrical quantity.

Still, the energy density and dissipative power associated with salt–charge potential

(and its gradient) have unambiguous meanings, because the coulomb term in G̃ and

ohmic term in T ṡ do not vary with the choice of components. Whereas one can only

speak of ‘a’ salt–charge basis since Z is not always unique, one may refer to ‘the’

salt–charge potential, which is unique for a given set of equivalent charges z.
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5.7 Thermodynamic factors in a salt–charge basis

To implement a simulation of any transport system, one requires constitutive rela-

tionships that express how thermodynamic potentials depend on the concentrations of

extensive properties. The particular mapping that sends composition gradients into

electrochemical-potential gradients in isothermal, isobaric situations is expressed by

a matrix of equilibrium properties commonly referred to as thermodynamic factors,

introduced in the last chapter as χ.

For an isothermal, isobaric, n-species mass-transport system, the thermodynamic

factors depend parametrically on 1
2
n (n− 1) composition-dependent state functions —

one state function for every pair of species [70, 110, 145]. In their discussion of Onsager

reciprocal relations for multicomponent diffusion, Monroe and Newman introduced an

(n− 1)× (n− 1) matrix of dimensionless Darken factors Q [109], defined such that

diag (y) ∇⃗µ = RTχ∇⃗y = RT




In−1

−1⊤


Q

[
In−1 o

]⊤
∇⃗y, (5.42)

where In−1 indicates the (n− 1) × (n− 1) identity matrix, o represents a column

of zeroes, and the linear operator diag (v) forms column matrix v into a diagonal

square matrix whose ith diagonal entry is vi.
2 Each entry Qij of Q represents the

thermodynamic derivative of the (log) activity of species i with respect to the particle

fraction of species j < n, leaving temperature, pressure, and all particle fractions save

those of species j and n fixed. In terms of Guggenheim’s species activities,

Qij = yi

(
∂ ln ai
∂yj

)

T,p,yk ̸=j,n

= δij + yi

(
∂ lnλi
∂yj

)

T,p,yk ̸=j,n

, (5.43)

in which δij represents the Kronecker delta. Species nmust generally be left free to vary

when differentiating with composition because the sum of particle fractions is always

constrained such that 1⊤y = 1. The expression in terms of the activity coefficient of

species i, λi, emphasizes that Q = In−1 for an ideal solution.

Although the simplicity of Q in the ideal case is useful, Maxwell relations among

these Darken factors in non-ideal situations are obscure. It is sometimes convenient to

2Generally diag (a)b = diag (b)a; both products form a column c with entries ci = aibi. Also

1⊤ diag(a) = a⊤ and diag(a)1 = a. The notation diag (a)
−1

indicates the diagonal matrix whose ith

entry is 1/ai, such that diag (a)
−1

a = 1.
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work instead with the (n− 1)× (n− 1) Hessian matrix K,

Kij =
∂2

∂yi∂yj

(
G̃

RTcT

)

T,p,yk ̸=i,j,n

, (5.44)

for which Maxwell relations imply that K = K⊤ [110]. Thermodynamic stability

demands that K is positive semidefinite [70]. The Darken factors Q depend on K

through

Q = Y−1K, (5.45)

where the definition

Y−1 =

[
In−1 o

] (
diag (y)− yy⊤)




In−1

o⊤


 (5.46)

puts in matrix form the (n − 1) × (n − 1) inverse composition matrix Y−1 employed

by Monroe and Newman [111]. Substituting equations (5.45) and (5.46) into equation

(5.42) and algebraically simplifying the result gives

∇⃗µ = RT
(
I− 1y⊤)




K o

o⊤ 0


 ∇⃗y, (5.47)

which shows how the isothermal, isobaric composition dependence of ∇⃗µ is

parametrized by the 1
2
n (n− 1) independent entries of K. Observe that the block

matrix here has a nullspace spanned by the null eigenvector in, which reflects the fact

that gradients ∇⃗yn have no independent effect on species electrochemical potentials.

Some of the benefits of the Darken matrix Q can be brought into the analysis of

equations expressed in terms of K. The composition Hessian separates into two parts,

K = Y+∆K, (5.48)

such that Y accounts for derivatives of ideal mixing free energy and ∆K expresses the
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Hessian of excess free energy. The composition matrix Y here is written explicitly as

Y =

[
In−1 o

](
diag (y)−1 +

11⊤

i⊤ny

)



In−1

o⊤


 . (5.49)

Upon substitution into equation (5.47), algebraic simplification yields an equivalent

alternative form,

∇⃗µ =RT diag (y)−1 ∇⃗y

+RT
(
I− 1y⊤)




∆K o

o⊤ 0


 ∇⃗y, (5.50)

in which the (n− 1)× (n− 1) matrix ∆K is symmetric, and vanishes when mixing is

ideal.

The nonideal term in equation (5.50) translates readily into a salt–charge basis.

Use the congruence relationship

∆KZ = Z




∆K o

o⊤ 0


Z⊤ (5.51)

to define a transformed excess Hessian ∆KZ . All n2 entries of this symmetric matrix

are generally nonzero. The nullspace of ∆KZ has a minimum dimension of 1, because

Z−⊤in is always a null eigenvector. Multiplying equation (5.50) through by Z and

inserting ∆KZ , one finds

∇⃗µZ =RTZ diag (y)−1 ∇⃗y

+RT
(
I− νZy⊤

Z

)
∆KZ∇⃗yZ (5.52)

after using equations (5.11), (5.16), and (5.29) to simplify. The assertion that species

potentials depend on independent particle fractions necessitates that component chem-

ical potentials have this structure.

It is noteworthy that the ideal part of the component chemical-potential gradients

in equation (5.52) involves entries of the salt–charge transformation Z as prefactors: the
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ideal mixing free energy associated with a salt scales linearly with its ion stoichiometry,

rather than logarithmically. Also, multiplication of equation (5.52) from the left by

c⊤Z = cTy
⊤
Z verifies that the Gibbs–Duhem equation is satisfied by constitutive laws

(5.52) for any choice of the symmetric excess Hessian matrix ∆KZ .

Although equation (5.52) is formally correct, the parameters within ∆KZ are not

all measurable. In particular, as discussed after equation (5.38), adherence to Guggen-

heim’s principle demands that the coefficients of ∇⃗yZ on the right side of the equation

for ∇⃗µz should remain ambiguous because they cannot be disentangled with equi-

librium experiments. Therefore it is appropriate to discard this component of the

expansion in equation (5.52).

Notation is simplified by defining an n×(n−1) matrix N, whose columns represent

the reactant stoichiometry in the fundamental equilibria:

N =

[
ν1 . . . νn−1

]
, so Z =




N⊤

z⊤

∥z∥


 . (5.53)

Bringing this quantity in, and noting that ν = N⊤1, the general expression

∇⃗µν =RTN⊤ diag (y)−1 ∇⃗y

+RT

([
In−1 o

]
− νy⊤

Z

)
∆KZ∇⃗yZ (5.54)

expresses the portion of the expansion that remains after striking the last row of matrix

equation (5.52). In the next section, this form of the component chemical-potential

gradients will facilitate analyzing how properties are constrained under the electroneu-

trality approximation.

5.8 Structural implications of electroneutrality

Imposing local electroneutrality on the Onsager–Stefan–Maxwell transport model im-

pacts both the variables involved and the parameters that quantify material properties.

The constraint separately impacts the thermodynamic and dynamical aspects of the

general theory.
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5.8.1 Electroneutral composition

The simplest consequence of electroneutrality is that it limits the available composition

space, because one charged-species concentration becomes linearly dependent on the

others. It is useful to establish some relationships that demonstrate the effect of this

constraint.

When excess charge density vanishes everywhere, the n-dimensional column of

species concentrations c becomes limited to a set of locally electroneutral species con-

centrations, which we notate as c0. Necessarily, any solution compositions in the space

that c0 occupies must be instantiable by assembling neutral components and dissoci-

ating them into their constituent species. This idea can be put in mathematical terms

by leveraging a salt–charge basis. Over such a basis c0 is determined by the mapping

c0 = Z⊤




cν

0


 = Ncν , (5.55)

which results from equations (5.16) and (5.19) when ρe = 0. Thus the first (n − 1)

columns of Z⊤ (that is, the columns of N) serve as a basis for the subspace occupied by

c0, and the (n− 1)-dimensional column of electroneutral component concentrations cν

expresses the coordinates of a given c0 over this basis. Electroneutrality constrains the

total concentration’s domain in a similar way. The electroneutral total concentration,

c0T, depends on cν as

c0T = 1⊤c0 = ν⊤
Z




cν

0


 = ν⊤cν , (5.56)

simplified with the definition of ν from equation (5.27).

Some additional physical principles outside thermodynamics restrict the range of

neutral compositions. Since negative species molarities are meaningless, every entry of

c0 must be non-negative. Because mass transport has no meaning in the absence of

species, c0T is strictly positive. These inequalities place bounds on the entries of the

component-composition column cν .

The restrictions on c0 and c0T also imply that every entry of the electroneutral

species fractions, y0, defined as

y0 =
1

c0T
c0 = Z⊤




yν

0


 = Nyν , (5.57)
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must be strictly non-negative. Under electroneutrality this object retains the property

that 1⊤y0 = 1, established by equation (5.29). Furthermore, the condition

ν⊤yν = 1 (electroneutral) (5.58)

constrains component fractions under electroneutrality.

Note that requiring c0 or y0 to have non-negative entries does not ensure that

every component concentration within cν (or yν) is non-negative. Over a salt–charge

basis, negative component concentrations can occur when the choice of products in

the fundamental equilibria is not unique. Consider the solution of Na+, Cl–, Mg2+ and

SO 2–
4 in H2O from section 5.2 by way of example. The electroneutral composition space

for this solution reaches extremes corresponding to four distinct binary electrolytes:

aqueous NaCl with a trace amount of MgSO4; aqueous MgCl2 with trace Na2SO4;

aqueous Na2SO4 with trace MgCl2; and aqueous MgSO4 with trace NaCl. Suppose the

neutral salts for a salt–charge basis are chosen to be NaCl, MgCl2, and Na2SO4, as in

section 5.2. In the laboratory, these salts cannot be mixed with water to produce, say,

1 M aqueous MgSO4. To formulate 1 M MgSO4 with the given precursor salts, one

would have to add Na2SO4 to supply the sulfate, add MgCl2 to introduce magnesium,

and then utilize a separation process (e.g., precipitation, heterogeneous extraction,

etc.) to remove NaCl. Thus, aqueous 1 M MgSO4 is represented by a cν column with

entries for 1 M Na2SO4, 1 M MgCl2, and −2 M NaCl. Although the NaCl molarity

is negative, that of every ion remains non-negative. Since MgSO4 can be formed by

recombination reaction (5.8), its chemical potential depends unambiguously on those

of Na2SO4, MgCl2, and NaCl. The negative concentration just indicates that NaCl is

a product of a recombination reaction, rather than a reactant.

5.8.2 Component activity coefficients

Electroneutrality has ramifications for Guggenheim’s constitutive framework. Defini-

tion (5.37) can be rewritten in terms of species activity coefficients λ0i as

µ0
i = µ⊖

i +RT ln
(
λ0i y

0
i

)
+ ziFΦ, or

µ0 = µ⊖ +RT ln
(
y0
)
+RT ln

(
λ0
)
+ FΦz, (5.59)

where the composition-independent parameters µ⊖
i that make up the n-dimensional

column µ⊖ quantify species electrochemical potentials in a secondary reference state,
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and ln (v) represents a column matrix wherein each entry is the natural logarithm of the

corresponding entry of v. Thermodynamic consistency mandates that every activity

coefficient comprising λ0 is positive. Since (c0)⊤z = 0 by design, these constitutive

laws meet the requirement that

G̃ =
(
c0
)⊤
µ0 = c⊤ν µ

0
ν (5.60)

as a consequence of equations (5.11) and (5.55).

Constitutive laws for component chemical potentials that are consistent with

Guggenheim’s formulation are identified by using the second equality in equation (5.60),

which implies (
c0
)⊤

Z−1
(
Zµ0 − µ0

Z

)
= 0. (5.61)

Insertion of equations (5.53) and (5.59) into equation (5.61), followed by partitioning

of µ0
Z with equation (5.12), application of the relation Zz = ∥z∥ in, and substitution of

Φ in favor of Φ0
z with equations (5.38) and (5.39), reveals that Guggenheim’s laws are

consistent with component chemical potentials constituted by equations of the form

µ0
ν,k = µ⊖

ν,k +RT
n∑

m=1

νkm ln y0m +RTνk lnλ
0
ν,k, (5.62)

wherein µ⊖
ν,k (T, p) is the chemical potential of component k in the reference state and

νk is the kth entry of the column ν that quantifies total component stoichiometry. The

parameter λ0ν,k is called the mean molar activity coefficient of component k.

All of the component chemical-potential constitutive laws can therefore be summa-

rized by a matrix equation,

µ0
ν = µ

⊖
ν + µ0,ideal

ν +RT diag (ν) lnλ0
ν , (5.63)

wherein the term

µ0,ideal
ν = RTN⊤ lny0 (5.64)

accounts for the part of a component’s chemical potential attributable to ideal mixing,

and the reference chemical potentials and mean molar activity coefficients of each

component make up the (n − 1)-dimensional columns µ⊖
ν and λ0

ν , respectively: the
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expression

µ⊖
ν = N⊤µ⊖, or µ⊖

ν,k =
n∑

m=1

νkmµ
⊖
m, (5.65)

where k ∈ {1, ..., n− 1}, shows how reactant stoichiometries in the fundamental equi-

libria relate the reference potentials of components and species, and

lnλ0
ν = diag (ν)−1N⊤ lnλ0, or

lnλ0ν,k =
n∑

m=1

νkm
νk

lnλ0m, (5.66)

puts the mean molar component activity coefficients in terms of species activity co-

efficients. Note that the versions of equations (5.65) and (5.66) written in terms of

summations identify with definitions stated by Guggenheim [76] and Newman [116].

5.8.3 Electroneutral thermodynamic factors

Applying electroneutrality to equations (5.25) and (5.40) reveals equilibrium energetics

to be independent of Φ0
z. The electroneutral Euler and Gibbs–Duhem equations,

G̃ =
(
µ0
ν

)⊤
cν (5.67)

and

c⊤ν ∇⃗µ0
ν = 0⃗, (5.68)

respectively, imply that isothermal, isobaric component chemical potentials have the

functionality µ0
ν = µ0

ν (cν), or, equivalently, µ
0
ν (yν).

3 The mean molar activity coef-

ficients in electroneutral constitutive laws (5.63) thus depend only on yν at constant

temperature and pressure.

These facts come together with the discussion of Darken factors from section 5.7 to

establish Maxwell relations and component thermodynamic factors for the electroneu-

3The implication µ0
ν (cν) =⇒ µ0

ν (yν) relies on the fact that total concentration depends only on
the species particle fractions at fixed temperature and pressure. This is justified by Euler equation
(5.13) because the molar Gibbs energy G = G̃/cT must produce the molar volume 1/cT through the
derivative (∂G/∂p)T,yi

= 1/cT.
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tral Onsager–Stefan–Maxwell diffusion driving forces. Let

Λ0
ν,ij = νi

(
∂ lnλ0ν,i
∂yν,j

)

T,p,yν,k ̸=j,n−1

(5.69)

represent the partial derivative of the mean molar activity coefficient of component

i with respect to the fraction of component j, leaving all of the n − 1 component

fractions save the jth and (n − 1)th fixed. In light of Gibbs–Duhem equation (5.68),

the component chemical-potential gradients can be expanded as

∇⃗µ0
ν =∇⃗µ0,ideal

ν

+RT
(
In−1 − νy⊤

ν

)



Λ0
ν o

o⊤ 0


 ∇⃗yν , (5.70)

in which Λ0
ν is an (n− 2)× (n− 2) matrix of electroneutral component Darken factors,

and

∇⃗µ0,ideal
ν = RTN⊤ diag

(
y0
)−1 ∇⃗y0

= RTN⊤ diag (Nyν)
−1N∇⃗yν (5.71)

expresses the gradient of the ideal contribution to every component chemical potential.

Equation (5.70) contains (n− 2)2 excess component Darken factors Λ0
ν,ij, but these

are not all independent because of Maxwell relations, whose structure can be un-

derstood by revisiting the electroneutral form of equation (5.54). After insertion of

equation (5.71) and simplification with equation (5.57), equation (5.54) becomes

∇⃗µ0
ν = ∇⃗µ0,ideal

ν +RT
(
In−1 − νy⊤

ν

)
∆K0

ν∇⃗yν , (5.72)

in which the (n− 1)× (n− 1) matrix ∆K0
ν is formed by striking the nth row and nth

column of ∆K0
Z ,

∆K0
ν =

[
In−1 o

]
∆K0

Z




In−1

o⊤


 , (5.73)

and is consequently symmetric. Equating the right sides of equations (5.70) and (5.72)
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shows that

(
In−1 − νy⊤

ν

)



Λ0
ν o

o⊤ 0


 =

(
In−1 − νy⊤

ν

)
∆K0

ν , (5.74)

which relates the thermodynamic factors that make up Λ0
ν to the truncated excess

Hessian ∆K0
ν . Compatibility of the species and component perspectives thus demands

that the last column of ∆K0
ν lies in the nullspace of

(
In−1 − νy⊤

ν

)
, that is, it must be

proportional to ν. (Guggenheim’s principle demands that the constant of proportion-

ality cannot be determined, however.) The last row of ∆K0
ν is therefore proportional to

ν⊤, as required by the Hessian’s symmetry. Multiplication through by y⊤
ν additionally

verifies that the last row of equation (5.74) is linearly dependent, since Gibbs–Duhem

relations constrain both sides of the equality in the same way.

In short, the last row of equation (5.74) is redundant, and the last column, triv-

ial. Discarding these, isolating the truncated Hessian that remains by exploiting a

Sherman–Morrison formula, and further rearranging demonstrates that for all i ̸= j,

the Maxwell relations

νi

(
∂ lnλ0ν,i
∂yν,j

)

T,p,yν,k ̸=j,n−1

= νj

(
∂ lnλ0ν,j
∂yν,i

)

T,p,yν,k ̸=i,n−1

(5.75)

hold; the matrix Λ0
ν is symmetric. This substantiates the claim that 1

2
(n− 1) (n− 2)

properties, which quantify isothermal, isobaric gradients of n− 1 component chemical

potentials, parametrize the mixing free energy of any n-ary electroneutral electrolyte.

Henceforth, we will write the electroneutral gradients of component chemical po-

tentials in the more compact form

∇⃗µ0
ν = RTX0

ν∇⃗yν , (5.76)

where the (n−1)×(n−1) matrix of electroneutral thermodynamic factorsX0
ν is defined

as

X0
ν =N⊤ diag (Nyν)

−1N

+
(
In−1 − νy⊤

ν

)



Λ0
ν o

o⊤ 0


 , (5.77)
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wherein Λ0
ν = (Λ0

ν)
⊤
, and equation (5.69) establishes how independent entries in Λ0

ν

can be measured experimentally.

5.8.4 Electroneutrality and dynamics

Applying electroneutrality to the dynamical governing equations (that is the OSM

equations and the continuity equations) is simpler than electroneutral thermodynamics.

When excess charge density vanishes, there is no change to the (n − 1)-dimensional

component material balance equation (5.32) that was produced by moving to a salt–

charge basis. Charge continuity, embodied by equation (5.33), does simplify slightly,

to

∇⃗ · i⃗ = 0, (electroneutral) (5.78)

which expresses Kirchhoff’s law of the node.

Entries in the Onsager transport matrix from equation (5.2) change their structure

under electroneutrality. The transport matrix Mc0 that relates species fluxes to species

driving forces in the electroneutral case has entries

Mc0

ij =





− RT

c0TDij

if i ̸= j

RT

c0T

n∑

k ̸=i

c0k
Dikc0j

if i = j,

(5.79)

in which the neutral composition descriptors c0 and c0T are given in terms of the com-

ponent concentrations cν by equations (5.55) and (5.56), respectively. Although the

n species concentrations here depend only on n− 1 component concentrations from a

salt–charge basis, the effect is relatively minor because the constraint does not affect

the rank of Mc0 .

When the whole set of Onsager–Stefan–Maxwell equations is sent into a salt–charge

basis, the transport coefficients that appear after applying electroneutrality follow from

congruence relation (5.36):

M0
Z = ZMc0Z⊤ =




Mν mz

m⊤
z Mzz


 . (5.80)

The second equality here defines sub-blocks that will be useful for expressing other
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macroscopic transport properties in terms of the electroneutral Onsager drag coeffi-

cients over a salt–charge basis, M0
Z . Sub-block Mν is an (n− 1) × (n− 1) square

matrix, mz, an (n− 1)-dimensional column matrix, and Mzz, a scalar.

Recall from section 5.5 that the change to a salt–charge basis implies cZ is the sole

null eigenvector of MZ . After electroneutrality is adopted, the column c0Z , defined as

c0Z =




cν

0


 , (5.81)

is a null eigenvector of M0
Z . This in turn implies that

Mνcν = o, (5.82)

which is to say, the column of component concentrations is a null eigenvector of the

symmetric sub-block Mν , and also that

m⊤
z cν = 0, (5.83)

so that the column mz is orthogonal to the component concentrations.

Once the transport matrix from equation (5.80) has been incorporated, the

Onsager–Stefan–Maxwell equations over a salt–charge basis from equation (5.35) be-

come

−




∇⃗µ0
ν

F ∥z∥ ∇⃗Φ0
z


 =




Mν mz

m⊤
z Mzz







n⃗ν

i⃗

F ∥z∥


 (5.84)

after local electroneutrality is assumed. The transport matrix here is symmetric pos-

itive semidefinite and affords the single null eigenvector c0Z , preserving the spectral

structure of the species flux laws. Bear in mind that the component chemical potential

gradients ∇⃗µ0
ν are parametrized by a set of thermodynamic factorsX0

ν dependent on yν

and a matrix of material parameters through equations (5.77), in turn constrained by

the symmetry of the excess property matrix Λ0
ν . Henceforth we call equation (5.84),

with ∇⃗µ0
ν parametrized by equations (5.76) and (5.77), the electroneutral Onsager–

Stefan–Maxwell equations.
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5.9 Flux-explicit formulation

Typical constitutive frameworks for electrolytic transport, including the standard

concentrated-solution theory and the Nernst–Planck equations, are written in flux-

explicit forms. Laws giving component flux and current density in terms of the gra-

dients of composition and voltage can be derived from force-explicit Onsager–Stefan–

Maxwell equations with the inversion process of detailed in Chapter 4. Flux-explicit

constitutive laws for diffusion must generally be expressed in terms of excess species

fluxes, so the inversion necessitates choosing a bulk velocity to associate with the rate

of convection.

Compatibility with the familiar mass continuity equation is ensured by adopting

the mass-average (barycentric) velocity as the reference for convection, as implemented

in Chapter 3. To incorporate mass into the governing framework, let mi represent the

molar mass of species i, and assemble the set of these masses into an n-dimensional

column m. The mass density ρ of a multi-species solution is generally given by

ρ =
n∑

i=1

mici = m⊤c. (5.85)

Further let ψi represent a weighting factor with units of inverse molarity (or, equiva-

lently, molar volume),

ψi =
mi

ρ
, or ψ =

m

ρ
, (5.86)

where the second relationship summarizes the definition for all i by introducing an

n-dimensional column matrix ψ with entries ψi. Note that equation (5.85) implies a

general constraint among the weighting factors,

ψ⊤c = 1, (5.87)

that is, the species mass fractions ψici sum to unity. The mass-average velocity v⃗, and

excess molar fluxes j⃗ are then given by

v⃗ = ψ⊤n⃗ j⃗ = n⃗− v⃗ c. (5.88)

where the latter equation introduces the n-dimensional column j⃗ whose entries are each

of the J⃗i = N⃗i−civ⃗ in sequence. In light of equations (5.87), multiplication of equation
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(5.88) through by ψ⊤ reveals

ψ⊤⃗j = 0⃗, (5.89)

the kinematic relation among the excess species fluxes (4.28).

Electroneutrality affects density and the kinematic relation in different ways. Ap-

plication of electroneutrality to equation (5.85) and insertion of equation (5.55) show

that density is a function of n− 1 component concentrations,

ρ0 = m⊤c0 = m⊤
ν cν , (5.90)

in which mν = N⊤m is an (n − 1)-dimensional column comprising the component

molar masses. Excess species fluxes then transform into the salt–charge basis as

j⃗Z = Z−⊤⃗j =




j⃗ν

i⃗− ρev⃗

F ∥z∥


 (5.91)

because ρe = Fz⊤c. Imposing local electroneutrality on j⃗Z here reveals that the current

density is independent of convection. Under electroneutrality the last entry of j⃗ 0Z does

not vanish, however, and consequently the dimensionality of the domain of excess fluxes

does not reduce in the same way that the domain of ρ0 reduced.

Defining ψZ = Zψ, one can change basis to write the kinematic relation as

ψ⊤
Z j⃗Z = 0⃗, (5.92)

showing that the column of component fluxes is orthogonal to ψ⊤
Z . Electroneutral

species fluxes j⃗ 0 depend on the component excess fluxes over a salt–charge basis, j⃗ν , as

j⃗ 0 = Z⊤⃗j 0Z = N⃗jν +
i⃗

F ∥z∥ · z

∥z∥ , (5.93)

a form that necessarily includes the current, as well as the excess component fluxes.

Through equation (5.91), the electroneutral Onsager–Stefan–Maxwell equations

(5.84) become

−




∇⃗µ0
ν

F ∥z∥ ∇⃗Φ0
z


 =




Mν mz

m⊤
z Mzz







j⃗ν

i⃗

F ∥z∥


 (5.94)
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in terms of the excess component fluxes j⃗ν . The inversion process developed in Chapter

4 is implemented by forming a matrix L0
Z with null eigenvector ψZ from M0

Z , either

through the limit process

L0
Z = lim

γ→0

(
M0

Z +
ψZψ

⊤
Z

γ

)−1

(5.95)

or from the algebraic equation

L0
Z =

(
M0

Z + γψZψ
⊤
Z

)−1 − c0Z (c
0
Z)

⊤

γ
, (5.96)

which yields the same result for any nonzero value of the augmentation parameter γ.

After partitioning L0
Z into the block form

L0
Z =




Lν lz

l⊤z Lzz


 , (5.97)

one can immediately write




j⃗ν

i⃗

F ∥z∥


 = −




Lν lz

l⊤z Lzz







∇⃗µ0
ν

F ∥z∥ ∇⃗Φ0
z


 , (5.98)

the flux-explicit form of the electroneutral Onsager transport laws with respect to a

salt–charge basis.

5.10 Conductivity, diffusion, and migration

Transport properties that arise in concentrated-solution theory can be expressed for

general multicomponent systems by leveraging the electroneutral Onsager transport

laws. First and foremost, the last row of equation (5.98) establishes the MacInnes

equation, a current–voltage relation that can be viewed as a modified form of Ohm’s

law accounting for concentration overpotential. First, identifying the ionic conductivity
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κ0 as4

κ0 = F 2 ∥z∥2 Lzz. (5.99)

Then further letting an (n − 1)-entry column ξ represent a set of what we will call

component migration coefficients, defined by

ξ =
1

Lzz
lz, (5.100)

the MacInnes equation can be written as

i⃗ = −κ0∇⃗Φ0
z −

κ0ξ⊤∇⃗µ0
ν

F ∥z∥ (5.101)

in terms of the salt–charge potential and the component chemical potentials.

Values of the migration coefficients must be constrained to ensure that ψZ is a null

eigenvector of L0
Z . By partitioning ψZ into two parts ψν and ψz such that

ψZ =




N⊤ψ

z⊤ψ

∥z∥


 =



ψν

ψz


 , (5.102)

one can write

ψ⊤
ν ξ = −ψz (5.103)

to phrase the constraint on migration coefficients entirely in terms of the species charges

and molar masses.

Newman writes transport laws in a partially inverted form, where the gradient

of electric potential is replaced with current density [116]. Parameters that express

information about component diffusivities can be identified through this form as fol-

lows. Eliminate ∇⃗Φ0
z from the electroneutral Onsager transport laws for the excess

component fluxes j⃗ν given by equation (5.97). Let the symmetric matrix

Lν =
RT

c0T

(
Lν −

κ0ξξ⊤

F 2 ∥z∥2
)

(5.104)

define the set of thermodynamic component diffusivities relative to the mass-average

4A definition which can be shown to match Newman’s [116, equation (12.42)]. As Newman notes
further, this is independent of convective velocity.
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velocity, Lν . Then the laws for excess component fluxes become

j⃗ν = −c
0
TLν
RT

∇⃗µ0
ν + ξ

i⃗

F ∥z∥ , (5.105)

in which Lν has the standard units of area per time.

Constitutive laws within concentrated-solution theory are generally put in terms of

species fluxes, rather than component fluxes. Such laws can be written using the ionic

conductivity, migration coefficients, and the component diffusivity matrix by leveraging

equation (5.93). Insertion of equations (5.105) yields

j⃗ 0 = −NLνc
0
T

RT
∇⃗µ0

ν +

(
Nξ +

z

∥z∥

)
i⃗

F ∥z∥ , (5.106)

an expression useful for understanding the spectral structure of the thermodynamic

component diffusivities. Inserting these transport laws into kinematic relation (5.89),

introducing ψν and ψz with equation (5.102), and applying equation (5.103) show that

−c
0
Tψ

⊤
ν Lν

RT
∇⃗µ0

ν = 0⃗, (5.107)

for any ∇⃗µ0
ν . Thus, because Lν is symmetric, it must afford ψν as a null eigenvector:

Lνψν = o.

Note that in the absence of current density, equation (5.105) reduces to a generalized

Fick’s law that expresses component excess fluxes solely in terms of the symmetric

component-diffusivity matrix Lν and without contributions from migration. Miller

deployed transport laws of this form in his experimental tests of the Onsager reciprocal

relations [106], which confirmed symmetry of the matrix Lν .

A property count is helpful here. The (n− 1)× (n− 1) component-diffusivity ma-

trix Lν is symmetric, reducing its number of independent entries by 1
2
(n− 1) (n− 2),

and affords ψν as a null eigenvector, adding (n− 1) additional constraints; this leaves
1
2
(n− 1) (n− 2) of its entries independently specifiable. The (n− 1)-dimensional col-

umn ξ is constrained by species molar masses and equivalent charges by equation

(5.103), leaving (n − 2) independent migration coefficients. Finally, equation (5.99)

defines a single ionic conductivity. Summing up, the symmetric, positive-semidefinite

147



flux-explicit Onsager matrix with respect to the salt–charge basis breaks down as

L0
Z =

c0T
RT




Lν o

o⊤ 0


+

κ0

F 2 ∥z∥2



ξξ⊤ ξ

ξ⊤ 1


 , (5.108)

in which Lνψν = o and ψ⊤
ν ξ+ψz = 0, with ψν and ψz defined in terms of stoichiometry

in the fundamental equilibria, species molar masses, and species charges through equa-

tions (5.86) and (5.102), and consequently depends on 1
2
n(n−1) independent transport

coefficients. This equals the number of Stefan–Maxwell diffusivities that underpin the

original transport matrix M0.

Recently molecular-dynamics techniques have been deployed to measure the On-

sager diffusion matrix L, which sits relative to the mass-average velocity and appears

in the electroneutral inverted form of equation (5.34) [62],5

j⃗ 0 = −L0∇⃗µ0. (5.109)

The transport properties that make up L0 relate to M0 directly through

M0 = lim
γ→0

[
L0 +

c0 (c0)
⊤

γ

]−1

, (5.110)

which is the inversion in limit form as in Chapter 4. The congruence transformation

L0
Z = Z−⊤L0Z−1 (5.111)

also relates the naive Onsager matrix directly to the component diffusivities, migration

coefficients, and ionic conductivity over a salt–charge basis through equation (5.108).

5.11 Alternative convective velocities

Up to now we have adopted a convention of defining L0
Z and j⃗ relative to the mass-

average velocity, but it is straightforward to change the kinematic constraint that

defines the convective reference velocity in equation (5.88) to any other ψ′ satisfying

5A molecular dynamics simulation can be described with equation (5.109) if the simulated control
volume conserves charge and has characteristic dimensions much larger than the Debye length.
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equation (5.87). (For example, letting ψ′ = 1/cT defines the mole-average velocity.)

The conversion of the set of excess molar fluxes relative to the mass-average veloc-

ity, composed of J⃗i, to excess fluxes relative to another velocity, composed of J⃗ ψ′

i , is

accomplished by the projection operator

j⃗ψ
′
=
(
I− cψ′⊤) j⃗. (5.112)

Observe that a similar projection can be used to move from excess fluxes that sat-

isfy kinematic relation ψ′ back to fluxes in excess of convection at the mass-average

reference velocity, through

j⃗ =
(
I− cψ⊤) j⃗ψ′

. (5.113)

Transformation (5.112) can be expressed in terms of excess fluxes over a salt–charge

basis as

j⃗ψ
′

Z =
[
I− cZ(ψ

′
Z)

⊤] j⃗Z , (5.114)

where ψ′
Z = Zψ′.

With an alternative kinematic relation in hand, one can exploit equation (5.95) or

(5.96), with ψ′
Z in place of ψZ , to identify the flux-explicit electroneutral transport

relations relative to ψ′ as

j⃗ 0,ψ
′

Z = −L0,ψ′

Z ∇⃗µ0
Z , (5.115)

in which

L0,ψ′

Z =
[
I− c0Z(ψ

′
Z)

⊤]L0
Z

[
I−ψ′

Z(c
0
Z)

⊤] (5.116)

establishes a congruence between L0,ψ′

Z and L0
Z . One can also compute L0,ψ′

Z directly

from M0
Z , using

L0,ψ′

Z = lim
γ→0

(
M0

Z +
ψZψ

⊤
Z

γ

)−1

, (5.117)

which is analogous to equation (5.95). In this new reference frame for the excess fluxes,

diffusivities and migration coefficients can be identified by partitioning L0,ψ′

Z as

L0,ψ′

Z =
c0T
RT




L
ψ′

ν o

o⊤ 0




+
κ0

F 2 ∥z∥2



ξψ

′(
ξψ

′)⊤
ξψ

′

(
ξψ

′)⊤
1


 , (5.118)
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similar to how L0
Z is partitioned in equation (5.108). Note that the second matrix on

the right is proportional to the outer product of [ξψ
′
, 1]⊤, and is consequently positive

semidefinite in general.

One can write excess component fluxes relative to the alternative convective velocity

and with respect to the salt–charge basis as

j⃗ψ
′

ν = −c
0
TL

ψ′

ν

RT
∇⃗µ0

ν + ξ
ψ′ i⃗

F ∥z∥ , (5.119)

which derives from equation (5.105). Here, the component diffusivities relative to the

average velocity determined by ψ′ are defined as

L
ψ′

ν =
[
In−1 − cν(ψ

′
ν)

⊤]Lν
[
In−1 −ψ′

ν(cν)
⊤] , (5.120)

and

ξψ
′
=
[
In−1 − cν(ψ

′
ν)

⊤] ξ − ψ′
zcν (5.121)

defines migration coefficients in the new frame. Similar to the projection in equation

(5.113), one can create transformations that change the reference frame from velocity

ψ′⊤n⃗ back to the mass-average velocity by replacing ψ′
ν with ψν and ψ′

z with ψz in

equations (5.120) and (5.121), as well as swapping L
ψ′

ν with Lν and ξψ
′
with ξ.

In Newman’s implementations of concentrated-solution theory [116], one of the

species velocities — say, that of species m — is used as the convective reference. Thus

the coefficients that Newman identifies in the flux-explicit equations follow from taking

ψ′
Z = Zim/c

0
m in equation (5.116). This produces species flux laws in the form

j⃗ 0,ψ
′
= −c

0
TNL

ψ′

ν

RT
∇⃗µ0

ν +

(
Nξψ

′
+

z

∥z∥

)
i⃗

F ∥z∥ . (5.122)

Newman’s development also produces a slightly different MacInnes equation,

i⃗ = −κ0∇⃗Φ0
z −

κ0

F ∥z∥
(
ξψ

′)⊤∇⃗µ0
ν , (5.123)

wherein the migration coefficients are constrained by kinematic relation ψ′, but κ0

remains unaffected because its value is independent of the choice of convective velocity.

Note that the embedding of an arbitrary reference velocity in flux-explicit transport

matrices (e.g., L) makes properties derived from them somewhat ambiguous. When
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tabulating transport parameters, it may be preferable to work with the electroneutral

transport matrix M0
Z , which conveys frame-invariant information. The computation

of Mν can be accomplished readily given a flux-explicit form; in fact, one can use the

procedure of Chapter 4 and a block inversion identity to show that

Mν =
RT

c0T
lim
γ→0

(
L
ψ′

ν +
cνc

⊤
ν

γ

)−1

, (5.124)

and also that

mz = Mνξ
ψ′

and Mzz =
F 2∥z∥2
κ0

+ (ξψ
′
)⊤Mνξ

ψ′
(5.125)

for any ψ′, elucidating the structure within M0
Z through equation (5.80). Despite its

basis on a transport matrix L0,ψ′

Z , it should be emphasized that M0
Z enjoys uniqueness

and is independent of the convective velocity. Notably, the submatrix Mν depends only

on the diffusion coefficients. and the only matrix inversion that needs to be performed

is that in equation (5.124). The entries of mz are zero in the absence of migration, and

Mzz matches the electric resistivity plus a quadratic correction.

5.12 Transference numbers

Equations (5.101) and (5.106) provide a pair of constitutive equations similar, but

not identical, to the familiar equations from concentrated-solution theory and Nernst–

Planck dilute-solution theory. To achieve complete agreement one must consider how

migration coefficients relate to the transference numbers more familiar from electro-

chemistry [14, 98, 116]. Let the transference number of species i relative to the mass-

average velocity be ti. These can be formed into an n-dimensional column matrix t,

related to the migration coefficients as

t =
diag (z)

∥z∥

(
Nξ +

z

∥z∥

)
. (5.126)

Multiplication of this result through by 1⊤ shows that 1⊤t = 1, that is, transference

numbers sum to unity. Note that even in the case of vanishing migration coefficients,

the right side of equation (5.126) is non-zero, and the transference numbers become a

partition of unity weighted by the species charge. The migration coefficients deviate

from this standard.
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Sometimes it is desirable to change the reference velocity relative to which trans-

ference is expressed. Incorporating the alternative migration coefficient from equation

(5.121) into equation (5.126) shows that

tψ
′
=

diag (z)

∥z∥

(
Nξψ

′
+

z

∥z∥

)
(5.127)

yields the set of species transference numbers relative to the reference velocity estab-

lished by kinematic relation ψ′. These also afford the property that 1⊤tψ
′
= 1.

Because diag (z) appears on the right of equation (5.126), ti vanishes for all i such

that zi = 0. Thus, transference numbers as traditionally defined only have meaning

for charged species. Importantly, specifying a set of independent transference numbers

does not generally suffice to specify the Onsager transport matrix. Newman addresses

this point by using transference numbers for uncharged species expressed as ratios ti/zi,

noting that the ratio is finite for any species i with zi = 0 [116]. Indeed, one can see

with equation (5.126) that ti/zi can be written under the assumption that ti ∝ zi as

ti
zi

=
1

∥z∥

(
Nξ +

z

∥z∥

)

i

, (5.128)

in which the right side is generally nonzero for any i.

Rather than taxing ourselves by ignoring apparent divisions by zero when trans-

ference numbers are involved, we propose that it is simpler to think of transport in

terms of migration coefficients, which are defined unambiguously in terms of Onsager

coefficients for species with and without charge, as fundamental. The nontrivial trans-

ference numbers that make up t are subsidiary quantities that have a useful physical

interpretation, but do not have as much essential content. Note that the distinction

between t and ξ becomes particularly important for electrolytes containing multiple

uncharged species, such as the cosolvent blends commonly used in lithium-ion-battery

electrolytes [144, 156], fuel-cell membranes susceptible to gas crossover [154], or elec-

trolytes for lithium–air batteries [107].

5.13 Component diffusion coefficients

Although the component diffusivity matrices Lν and L
ψ′

ν have units of area per time,

their dependence on the convective velocity obfuscates their connection to energy dis-

sipation. Newman addresses this issue by identifying combinations of Stefan–Maxwell
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coefficients that quantify the frame-invariant part of the dissipation that arises from

component interdiffusion [116, 125]. The process Newman uses to identify thermody-

namic component diffusivities within binary solutions can be generalized to situations

with more components as follows.

Instead of defining coefficients as entries of the diffusivity matrix Lν , a more nat-

ural set of component diffusivities is defined by revisiting the Stefan–Maxwell form.

Physically, one expects that in situations where electroneutrality is maintained and the

current density vanishes uniformly, the mass-transport model describing an n-species

electrolytic system should be no different than the model describing a corresponding

(n − 1)-species nonelectrolytic transport system in which every uncharged species is

taken to be a component of the original n-ary electrolyte. This equivalence suggests

that Mν possesses the structure

c0T
RT

Mνij =





−νiνj
Dij

if i ̸= j

n−1∑

k ̸=i

νiνkcν,k
Dikcν,j

if i = j

, (5.129)

which defines an alternative set of binary diffusion coefficients Dij that describe drag

interactions between components i and j as they move relative to each other. Here,

the diffusivities that parametrize current-free, electroneutral component–component

interactions are defined analogously to how species–species interactions are defined in

equation (5.2), with a minor stoichiometric correction to account for the fact that

component i within a salt–charge basis is actually made up of νi species through the

fundamental equilibria. We shall distinguish component diffusion coefficients from

Stefan–Maxwell coefficients by writing them in Fraktur font, rather than a script font.

Intrinsic properties of the Onsager matrix MZ demand that the coefficients defined

by equation (5.129) are symmetric in their indices, Dij = Dji, and that Dii is undefined

for all i. Hence equation (5.129) defines 1
2
(n−1)(n−2) independent diffusion coefficients

— one for each pair of components. Matrix Mν must be positive semidefinite, a

property guaranteed if each Dij is positive, and by construction it affords cν as a null

eigenvector. Furthermore, a block inversion identity shows that equations (5.117) and

(5.118) imply

L
ψ′

ν = lim
γ→0

(
c0T
RT

Mν +
ψ′
νψ

′
ν
⊤

γ

)−1

, (5.130)

an inverted form of equation (5.124). Thus, L
ψ′

ν , the portion of the Onsager diffusivity
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matrix for electroneutral components over a salt–charge basis limited to situations

where current density vanishes uniformly, relates directly to the pseudoinverse of Mν .

When casting Lν in terms of component diffusivities Dij with definition (5.129) and

inversion formula (5.130), it is necessary to assume that every entry of cν is nonzero

almost everywhere. This must be borne in mind when considering systems where prod-

ucts of the fundamental equilibria are not unique. The situation described in section

5.2, where two binary salts without a common ion are dissolved into an uncharged

solvent, provides a simple example. That system can pass locally through composi-

tions where a component concentration vanishes, but all of the ions have non-negative

concentrations, as described in the discussion at the end of section 5.8.1. This state

nominally induces singular behavior in one of the diagonal entries defined in equation

(5.129). Observe, however, that the component diffusivities Dij are defined solely in

terms of the off-diagonal entries of Mij. Therefore, although must take care when ap-

plying inversion formula (5.130), the diffusion coefficients Dij remain well posed across

the range of available cν .

5.14 Reference electrodes

Despite the ambiguity in Φ0
z demanded by Guggenheim’s principle, the salt–charge po-

tential can be related directly to an experimentally measurable voltage by introducing

the concept of a reference electrode. A heterogeneous half-reaction suitable for use

within a reference electrode can be generally expressed as

n∑

i=1

siX
zi
i +

∑

j

s′jYj ⇋ ne−e
−, (5.131)

in which Xzi
i is the chemical symbol of species i, Yj is the symbol of uncharged entity j

that forms in an immediately adjacent phase, e− denotes electrons, the integer si is the

stoichiometric coefficient of species i in the half-reaction, integer s′i is the stoichiometric

coefficient of Yj, and the positive integer ne− is the number of electrons involved. Since

half-reactions balance charge, the set {si}ni=1 must generally satisfy

n∑

i=1

sizi = s⊤z = ne−ze− , (5.132)
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where ze− is the equivalent charge of electrons. (If a half-reaction is written as a

reduction, then si or s
′
i is negative when species i is a reactant and positive when it is

a product.) Note that the matrix form in the middle of this expression indicates that

by definition, the half-reaction stoichiometry column s is not orthogonal to z.

The oxidation potential Φ⊖ associated with reference-electrode reaction (5.131) is

defined such that

ne−Fze−∇⃗Φ⊖ =
n∑

i=1

si∇⃗µi. (5.133)

After defining sZ = Z−⊤s = [sν , sz]
⊤ and assuming an electroneutral state, this is

written equivalently as

ne−Fze−∇⃗Φ⊖ = s⊤Z∇⃗µ0
Z = s⊤ν ∇⃗µ0

ν + szF ∥z∥ ∇⃗Φ0
z, (5.134)

and since

s⊤z = s⊤ZZz = ∥z∥ sz = ne−ze− , (5.135)

it follows that

∇⃗Φ⊖ =
s⊤ν ∇⃗µ0

ν

ne−Fze−
+ ∇⃗Φ0

z, (5.136)

a relation that allows the voltage of a given reference electrode to be inferred after

one has computed the component and salt-charge potentials. Note that at uniform

temperature, pressure, and composition,

(
∇⃗Φ⊖

)
T,p,yν

=
(
∇⃗Φ0

z

)
T,p,yν

(5.137)

for any reference-electrode half-reaction, showing the intrinsic utility of the salt–charge

potential.

5.15 Examples

5.15.1 The binary electrolyte

The model of a binary electrolytic solution — a liquid comprising a single simple salt

dissolved in a single uncharged solvent — is the simplest and most common imple-

mentation of concentrated solution theory. Newman’s identification of transport laws

for this system begins by adopting Onsager–Stefan–Maxwell equations (5.1) with the
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transport coefficients defined in equation (5.2). He uses these in combination with the

electroneutrality approximation (5.3), Guggenheim condition (5.9) for the salt, and

Faraday’s law (5.22) to derive species flux laws in the form of equation (5.122) and

a MacInnes equation in the form of equation (5.123), casting both in terms of prop-

erties relative to the solvent velocity. The development involves apparently ad hoc

manipulation of the transport equations to obtain compact forms of the flux-explicit

laws.

Newman’s process can be formalized with a salt–charge basis under electroneutral-

ity. Let 0, +, and − distinguish the solvent, cation, and anion species, respectively,

and subscripts 0, e denote the solvent and salt components. Set the stoichiometric

coefficients for the reactants in the fundamental equilibrium forming the salt as

ν+ = − νz−
z+ − z−

, ν− =
νz+

z+ − z−
, (5.138)

and note that ν = ν+ + ν−. This framing demonstrates that z+ν+ + z−ν− = 0 more

directly, and will produce results more obviously consistent with Newman [50]. The

products of the fundamental equilibria for this system are unique, so the salt–charge

basis is unique up to ordering of the ions. We let the salt–charge transformation Z

take the form

Z =




1 0 0

0 − νz−
z+−z−

νz+
z+−z−

0 z+
∥z∥

z−
∥z∥



, (5.139)

in which ∥z∥ =
√
z2+ + z2− because z0 = 0. Given this transformation, one can write

the set of species concentrations in the neutral state, c0, as a parametric function of

the component concentrations c0 and ce through equation (5.55),




c00

c0+

c0−



= Z⊤




c0

ce

0



=




c0

− z−ν
z+−z− · ce
z+ν

z+−z− · ce



. (5.140)

The electroneutral component chemical potentials can be written using equations (5.76)
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and (5.77), which together with the relation y0 = 1− νye show that

∇⃗



µ0
0

µ0
e


 = RT



X0

00 X0
0e

X0
e0 X0

ee


 ∇⃗



y0

ye




=
RT (1 + Λ00νyey0)

yey0




−ye
y0


 ν∇⃗ye, (5.141)

parametrized by the single excess activity-coefficient derivative function Λ00 (ye).

Using the salt–charge transformation from equation (5.139) in equation (5.80) shows

that

Mν =
νRT (z+D0+ − z−D0−)

cT (z+ − z−)D0+D0−




ce
c0

−1

−1
c0
ce


 , (5.142)

mz =
RT (z+D0− + z−D0+)

cT ∥z∥2 D0+D0−




−1

c0
ce


 , and (5.143)

Mzz = −RT∥z∥2
cTz+z−

[
1

D+−
+

(z+−z−)(z3+D0−+z3−D0+)c0
∥z∥4D0+D0−νce

]
. (5.144)

Since the M0
Z matrix is invariant with respect to the choice of convective velocity,

these expressions can be used in equation (5.84) or (5.94), or even alternative versions

of equation (5.94) in which the set of excess component fluxes relative to the mass-

average velocity, j⃗ 0Z , is replaced with a set relative to some other velocity, j⃗ 0,ψ
′

Z .

Newman’s concentrated solution theory uses flux-explicit forms of the transport

laws. Following Newman, we refer the excess fluxes to the solvent velocity (i.e., N⃗0/c0)

by taking

ψ′
Z =

Z

c00




1

0

0



=

1

c0




1

0

0




(5.145)

in equation (5.114). This changes the dynamical variables to a set of electroneutral
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excess species fluxes

j⃗ 0,0Z =




0

J⃗ 0,0
e

i⃗

F ∥z∥




(5.146)

whose first member is trivial, and whose second describes the excess salt flux relative

to the solvent velocity.

With matrix M0
Z built up of the sub-blocks defined by equations (5.142) through

(5.144), the transport matrix L0
Z for the flux-explicit transport laws can be computed

directly using equation (5.96). The ionic conductivity follows from the entry in the

last row and column of L0
Z through equation (5.99), yielding

κ0 = −cTF
2z+z−
RT

[
1

D+−
+

c0 (z+ − z−)

νce (z+D0+ − z−D0−)

]−1

, (5.147)

whence the last column (or last row) of L0
Z can be inserted into equation (5.100), after

which equation (5.121) produces

ξ0 =



ξ00

ξ0e


 =




0

−(z+ − z−) (z−D0+ + z+D0−)

∥z∥ ν (z+D0+ − z−D0−)


 , (5.148)

the component migration coefficients relative to the solvent velocity. Migration coeffi-

cients can be used to compute transference numbers with equation (5.127), yielding

t0 =




t00

t0+

t0−



=




0

z+D0+

z+D0+−z−D0−

− z−D0−
z+D0+−z−D0−



. (5.149)

The transference number t00 vanishes necessarily because the solvent species is un-

charged, conveniently matching the solvent component’s null migration coefficient. For

binary electrolytes, no information is lost by using transference numbers in place of

migration coefficients.

A third flux-explicit transport property, D, is related to the Stefan–Maxwell coef-

ficients upon comparison of the computed expression (5.142) with (5.129). This shows
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that

D =
(z+ − z−)D0+D0−

z+D0+ − z−D0−
(5.150)

defines the thermodynamic diffusivity of salt in solvent.

Equations (5.147), (5.148), and (5.150) establish three macroscopic transport prop-

erties that parametrize equations (5.122) and (5.123) in terms of Stefan–Maxwell dif-

fusivities. Notably, equations (5.147), (5.149), and (5.150) respectively match the def-

inition of ionic conductivity in Newman’s equation 12.23, cation transference number

relative to the solvent velocity in Newman’s 12.11, and thermodynamic diffusivity in

Newman’s 12.10 [116].

Given ξ and L0
Z , the component diffusivities relative to the mass-average velocity,

Lν , are given by equation (5.108), producing

L
0

ν =




0 0

0
ce (z+ − z−)D0+D0−

νc0 (z+D0+ − z−D0−)


 (5.151)

after changing the reference velocity to that of the solvent with equation (5.120).

Since transport properties are often measured by postulating flux-explicit consti-

tutive laws, it is useful to take an alternative approach in which kinematically and

thermodynamically consistent flux-explicit transport equations are written a priori,

and then work in the opposite direction to establish how the component Onsager–

Stefan–Maxwell matrix M0
Z depends on the posited properties. This route enables the

incorporation of macroscopic transport properties into numerical solvers that exploit

the spectral structure of force-explicit forms, such as those presented Chapter 2 and 3.

For the binary electrolyte, i0 (the first column of the identity matrix) sits in the

nullspace of the symmetric matrix L
0

ν , and consequently the matrix only has one

nonzero entry (in the second row and second column),

L
0

ν =




0 0

0 L


 =




0 0

0
ceD

νc0


 , (5.152)

in which the single Onsager diffusivity of salt relative to the solvent velocity, L , is

expressed in terms of a thermodynamic diffusivity D by applying inversion formula

(5.130) to definition (5.129). Similarly, i0 is orthogonal to ξ0, which therefore also

159



must have just one nonzero entry,

ξ0 =




0

ξ


 , (5.153)

where ξ stands for the salt migration coefficient relative to the solvent velocity. This

property relates to the cation transference number relative to solvent as

ξ = −(z+ − z−)
[(
1− t0+

)
z2+ − z2−t

0
+

]

νz+z− ∥z∥ (5.154)

through equation (5.127).

The known structures of L
0

ν and ξ0 allow species flux laws relative to the solvent

velocity to be written directly in the form of equation (5.122). Bringing in equations

(5.138), (5.149), and (5.152), one finds

J⃗ 0
0 = 0, (5.155)

J⃗ 0
+ = −Dc0T

RT

ν+ce
νc0

∇⃗µ0
e +

t0+⃗i

Fz+
, (5.156)

J⃗ 0
− = −Dc0T

RT

ν−ce
νc0

∇⃗µ0
e +

(
1− t0+

)⃗
i

Fz−
. (5.157)

Flux laws (5.156) and (5.157) match Newman’s equations 12.8 and 12.9, respectively

[116]. A discussion describing the similarity and differences of these flux explicit laws

to the Nernst–Planck theory (1.53) may be found in [116].

Finally, posit an ionic conductivity κ0 to write an electroneutral MacInnes equation

in the form of (5.123), as

i⃗

κ0
= −∇⃗Φ0

z −
(z+ − z−)

νFz+z−

(
z2+

z2+ + z2−
− t0+

)
∇⃗µ0

e, (5.158)

which depends on the salt–charge potential. Introducing a reference-electrode potential
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with equation (5.136) gives

i⃗

κ0
=− ∇⃗Φ⊖ +

s0∇⃗µ0
0

ne−Fze−

+
z+ − z−
ne−Fze−ν

[
t0+
s−
z+

−
(
1− t0+

)s+
z−

]
∇⃗µ0

e, (5.159)

in harmony with Newman’s equation 12.27 [116].

Given κ0, as well as L
0

ν and ξ0 matrices in the forms from equations (5.152) and

(5.153), one can use relationships (5.124) and (5.125) to construct the M0
Z matrix

needed to implement the electroneutral Onsager–Stefan–Maxwell equations. Perform-

ing the calculation, one finds

Mν =
RT

c0TD




νce
c0

−ν

−ν νc0
ce


 , (5.160)

mz =
νRTξ

c0TD




1

− c0
ce


 , (5.161)

and

Mzz =
F 2 ∥z∥2
κ0

+
νRTc0ξ

2

c0TceD
. (5.162)

One can also elucidate the Stefan–Maxwell coefficients, by inverting the congruence

transformation in equation (5.80): Mc0 = Z−1M0
ZZ

−⊤. Off-diagonal entries of M0

relate to Dij values through equation (5.2). Introduce t0+ in favor of ξ via equation

(5.154) to show that

1

D0+

=− (1− t0+) (z+ − z−)

z−D
,

1

D0−
=
t0+ (z+ − z−)

z+D
,

1

D+−
=− F 2z+z−c

0
T

RTκ0
+
t0+(1− t0+) (z+ − z−)

2 c0
νDz+z−ce

, (5.163)

consistent with Newman’s equations 14.1–14.3.
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5.15.2 The molten salt

Pollard and Newman applied concentrated solution theory [125] to the other possible

liquid electrolyte with three species: a molten solution of two simple salts that share a

common ion. For, example a molten mixture of the ions Na+, Al3+ and Cl− finds uses

in sodium-nickel-chloride batteries [138]. From transport laws based in the Onsager–

Stefan–Maxwell equations, they ultimately developed flux-explicit laws in the form of

equation (5.122) and a MacInnes equation in the form of equation (5.123).

Here we apply the salt–charge framework to obtain transport laws consistent with

Pollard and Newman’s results. The flux laws we formulate will not precisely identify

with the Pollard–Newman equations, however. Whereas they used the common ion’s

velocity as the reference for convection, we instead use the velocity of one of the salts.

This alternative convention creates component flux laws that involve a single chemical-

potential gradient directly, rather than requiring additional use of the Gibbs–Duhem

equation to eliminate a dependent driving force.

Let the charges of the three species comprising the binary molten salt be z =

[z1, z2, z3]
⊤. We assume that the third species is counter-charged to the first two, and

denote the sign of its charge by ±. Again, the choice of products of the fundamental

equilibria is unique; we label the simple salts formed from these three species with

indices corresponding to the similarly charged ion that distinguishes them: e1 and e2.

The stoichiometric coefficients of the ions within these salts are written in terms of the

species charges and total formula-unit stoichiometries νe1 and νe2 as

νe11 = − νe1z3
z1 − z3

, νe13 =
νe1z1
z1 − z3

, (5.164)

νe22 = − νe2z3
z2 − z3

, νe23 =
νe2z2
z2 − z3

, (5.165)

so that νe1 = νe11 +νe13 and νe2 = νe22 +νe23 . The matrix Z that represents the salt–charge

basis is unique up to ordering of the ions. We choose to write it as

Z =




νe11 0 νe13

0 νe22 νe23

z1
∥z∥

z2
∥z∥

z3
∥z∥



, (5.166)

where ∥z∥ =
√
z21 + z22 + z23 , bearing in mind that the reactant stoichiometric coeffi-

cients from the fundamental equilibria satisfy equations (5.164) and (5.165).
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With salt–charge transformation (5.166), the electroneutral species concentrations

c0 are cast in terms of component concentrations ce1 and ce2 through equation (5.55),

as 


c01

c02

c03



= Z⊤




ce1

ce2

0



=




− νe1z3
z1−z3 ce1

− νe2z3
z2−z3 ce2

νe11 ce1 + νe22 ce2



. (5.167)

The electroneutral component chemical potentials can then be written using equations

(5.76) and (5.77). Together with the relation νe2ye2 = 1− νe1ye1 , these show that

∇⃗



µ0
e1

µ0
e2


 =RT



X0

e1e1
X0

e1e2

X0
e2e2

X0
e2e2


 ∇⃗



ye1

ye2




=RT




ν
e1
1

ye1
+

(ν
e1
3 )2

ν
e1
3 ye1+ν

e2
3 ye2

ν
e1
3 ν

e2
3

ν
e1
3 ye1+ν

e2
3 ye2

ν
e1
3 ν

e2
3

ν
e1
3 ye1+ν

e2
3 ye2

ν
e2
2

ye2
+

(ν
e2
3 )2

ν
e1
3 ye1+ν

e2
3 ye2


 ∇⃗



ye1

ye2




+
Λe1e1νe1ye1νe2ye2

ν2e1




−ye2
ye1


 νe2∇⃗ye2 , (5.168)

in which a single function Λe1e1 (ye2) parametrizes the gradient of either salt’s mean

molar activity coefficient within the solution. Observe that the ideal contribution to

mixing free energy depends in a rather subtle way on the salt fractions ye1 and ye2 .

Rather than repeating in their entirety the development illustrated for the binary

electrolyte, we leverage the structural knowledge provided by our framework to ab-

breviate the process. Because there are three species, there are three macroscopic

transport properties D, ξ and κ0. Using the structure posited in (5.129) we may write

Mν =
RTνe1νe2
c0TD




ce2
ce1

−1

−1
ce1
ce2


 . (5.169)

To eliminate the chemical-potential gradient of salt 1 from the flux-explicit laws, it is

convenient to choose ψ′ such that ψ′
Z = ie1 — that is, to let the convective velocity be

that of the first salt (i.e., N⃗e1/ce1). There is a single non-trivial migration coefficient ξ
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relative to this reference velocity:

ξe1 =




0

ξ


 . (5.170)

Using equations (5.125) then shows that

mz =
RTνe1νe2ξ

c0TD




−1

ce1
ce2


 and (5.171)

Mzz =
F 2∥z∥2
κ0

+
RTνe1νe2ξ

2

c0TD

ce1
ce2
. (5.172)

Next, taking the transport matrix (5.2), performing the congruence transformation

(5.36) and comparing it to the equations (5.169), (5.171), (5.172) allows identification

of the three macroscopic transport properties in terms of Stefan–Maxwell coefficients.

These are

D =
c03(z1 − z3)(z2 − z3)(
c03z

2
3

D12
+

c02z
2
2

D13
+

c01z
2
1

D23

) , (5.173)

ξ · νe1νe2c
0
1c

0
3z

2
3

Dν
e1
1

=
z23c3(c

0
1z2−c02z1)

D12∥z∥ − z2c01c
0
2(z

2
1+z

2
3)+(c02)

2z1z22
D13∥z∥

+
(c01)

2z21z2+c
0
1c

0
2z1(z

2
2+z

2
3)

D23∥z∥ , (5.174)

κ0 =
F 2c0T

(
z21c

0
1

D23
+

z22c
0
2

D13
+

z23c
0
3

D12

)

RT
(

c01
D12D13

+
c02

D12D23
+

c03
D13D23

) . (5.175)

Here the conductivity is identical to Pollard and Newman’s equation 33 [125]. The

diffusivity defined in equation (5.173) relates to the diffusion coefficient identified in

equation 9 of reference [125], which we will label D , as

D = D
c0T
c03

νe1νe2
νe11 ν

e2
2

. (5.176)

Although the prefactor that relates our D to Pollard and Newman’s D is composition-

dependent, the factor only involves the mole fraction of the common ion, which is

always of order unity.
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It is equally straightforward to invert this process. Similar to the binary electrolyte,

entries of M0 may be related to the original Stefan–Maxwell diffusivities Dij by invert-

ing the congruence transformation in equation (5.80) and examining the off-diagonal

elements in light of equation (5.79). This comparison shows that the diffusivities relate

to the macroscopic properties by

1
D12

=
[c01(z21+z23)+c02z1z2][c02(z22+z23)+c01z1z2]νe1νe2

Dc01c
0
2ν

e1
1 ν

e2
2 ∥z∥4

− ξνe1νe2 [c
0
1z1(z

2
1−z22+z23)−c02z2(−z21+z22+z23)]

D∥z∥3c02νe1

−
(
F 2c0T
RTκ0

+
νe1νe2ξ

2

D

ce1
ce2

)
z1z2
∥z∥2 ,

1
D13

=− z3(c01z2−c02z1)[c02(z22+z23)+c01z1z2]νe1νe2
Dc01c

0
2ν

e1
1 ν

e2
2 ∥z∥4

+
ξz3νe1νe2 [c02(−z21+z22+z23)+2c01z1z2]

Dc02ν
e1
1 ∥z∥3

−
(
F 2c0T
RTκ0

+
νe1νe2ξ

2

D

ce1
ce2

)
z1z3
∥z∥2 ,

1
D23

=− z3(c02z1−c01z2)[c02(z21+z23)+c02z1z2]νe1νe2
Dc01c

0
2ν

e1
1 ν

e2
2 ∥z∥4

+
ξz3νe1νe2 [c01(z21−z22+z23)+2c02z1z2]

Dc02ν
e2
1 ∥z∥3

−
(
F 2c0T
RTκ0

+
νe1νe2ξ

2

D

ce1
ce2

)
z2z3
∥z∥2 .

(5.177)

Pollard and Newman do not write down these relationships, presumably because of

their algebraic complexity. Stating explicit forms for the Stefan–Maxwell coefficients

in terms of flux-explicit properties becomes increasingly cumbersome as the number of

species (and the number of charged species) in a system increases.

With our choice of convective velocity, the matrix L
e1
ν also affords a single non-

trivial entry,

L
e1
ν =




0 0

0 D
νe1νe2

ν
e1
1 ce2
ce1


 (5.178)

After deriving transference numbers te11 , t
e1
2 , and te13 relative to salt 1 with equation
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(5.127), the laws governing the species excess fluxes are found to be

J⃗ e1
1 =

te11 i⃗

F z1
(5.179)

J⃗ e1
2 = −c

0
TD

RT

νe11 ν
e2
2 ce2

νe1νe2ce1
∇⃗µ0

e2
+
te12 i⃗

F z2
(5.180)

J⃗ e1
3 = −c

0
TD

RT

νe11 ν
e2
3 ce2

νe1νe2ce1
∇⃗µ0

e2
+
te13 i⃗

F z3
. (5.181)

Interestingly, excess flux of ion 1 relative to the velocity of salt 1 can be driven by

migration, but not by diffusion. Equation (5.127) shows that all three transference

numbers here are parametric functions of the single migration coefficient ξ, through




te11

te12

te13



=

diag (z)Z⊤

∥z∥




0

ξ

1



. (5.182)

Thus, as well as satisfying the relation te11 + te12 + te13 = 1 that follows from the last

row of this matrix equation, the species transference numbers relative to salt 1 are also

constrained such that (z22 + z23)t
e1
1 + z21(t

e1
2 + te13 ) = 0, which follows from the first row.

The reference velocity under ξe1 can be changed to that of the common ion by

moving through the mass-average velocity with transformation (5.121). Then one can

derive the associated transference numbers, denoted t3i , with equation (5.127) to find

Pollard and Newman’s expression

t32 =
z2

D13
− z3

D12(
z2

D13
− z3

D12

)
+

z1c01
z2c02

(
z1

D23
− z3

D12

) , (5.183)

which appears in their equation 10 [125]. With a migration coefficient relative to

salt 1 and the reference-electrode potential from equation (5.136), one finds a concise

MacInnes equation,

i⃗

κ0
=− ∇⃗Φ⊖ +

se1∇⃗µ0
e1

ne−Fze−
+

(
se2

ne−Fze−
− κ0ξ

F∥z∥

)
∇⃗µ0

e2
, (5.184)

which agrees with Pollard and Newman’s equation 32 [125].
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5.15.3 The cosolvent electrolyte

For a final illustration of our method of developing flux laws for concentrated mul-

ticomponent electrolytes, we consider a four-species liquid solution comprising two

uncharged species (which we call a cosolvent) and a single salt. Electrolytic solutions

of this type are used in lithium-ion batteries, which typically use a blend of a linear

and a cyclic carbonate to dissolve a simple lithium salt [156]. We let subscripts + and

− describe the cation and anion, respectively, a subcript e, the salt they associate to

form and the two solvents as the subscripts 0 and o. Similarly to the binary-electrolyte

example, the stoichiometric coefficients for the salt satisfy equation (5.138), where ν is

the total salt stoichiometry.

A salt–charge basis for the cosolvent electrolyte is embodied by the transformation

matrix

Z =




1 0 0 0

0 1 0 0

0 0 − νz−
z+−z−

νz+
z+−z−

0 0 z+
∥z∥

z−
∥z∥



. (5.185)

The species concentrations in the neutral state in terms of the composition concentra-

tions are then 


c00

c0o

c0+

c0−



= Z




c0

co

ce

0



=




c0

co

− z−ν
z+−z− · ce
z+ν

z+−z− · ce



, (5.186)

parametric functions of the three component concentrations c0, co, and ce.

The nonideal parts of the electroneutral component chemical potentials are

parametrised by a symmetric 2× 2 block matrix

Λ =




Λ00 Λ0o

Λ0o Λoo,


 , (5.187)

whose three independent entries are functions of only two of the three component

fractions y0, yo, and ye. Following equation (5.70), the gradients of the electroneutral
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component chemical potentials are expanded as

∇⃗




µ0
0

µ0
o

µ0
e



=RT ∇⃗ lnyν

+RT (I3 − νy⊤
ν )




Λ o

o⊤ 0


 ∇⃗yν , (5.188)

where in this case ν = [1, 1, ν]⊤ and yν = [y0, yo, ye]
⊤.

To derive force and flux explicit laws, we again use the ansatz (5.129) to write

c0TMν

RT
=




co
c0D0o

+ νce
c0D0e

− 1
D0o

− ν
D0e

− 1
D0o

c01
c02D0o

+ νce
coDoe

− ν
Doe

− ν
D0e

− ν
Doe

νc0
ceD0e

+ νco
ceDoe



. (5.189)

These entries straightforwardly relate to the Stefan–Maxwell coefficients through

D0o = D0o, (5.190)

D0e =
(z+ − z−)D0+D0−

D0+z+ − D0−z−
, (5.191)

Doe =
(z+ − z−)Do+Do−

Do+z+ − Do−z−
. (5.192)

Observe that the second two definitions take forms similar to equation (5.150), despite

the addition of a solvent.

Taking the reference velocity to be that of the first solvent, i.e, ψ′ = i0, the diffu-

sivity matrix and migration coefficients assume the forms

L
0

ν =




0 0 0

0 Lo L×

0 L× Le



, ξ0 =




0

ξo

ξe



. (5.193)

The terms appearing in the diffusion matrix are understood as follows. Lo denotes the
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Onsager diffusivity of the second solvent relative to the velocity of the first, L× the

cross-diffusivity between the second solvent and the salt in a frame moving with the

first solvent, and Le the diffusivity of the salt relative to the first solvent’s velocity.

Each of these parameters is independent. The set of migration coefficients depends on

two independent parameters ξo and ξe. A distinction from the previous cases is that a

neutral species — the second solvent — may carry current. Thus transference numbers

as typically understood do not suffice to write complete flux-explicit transport laws for

this system.

By relation (5.130), the Onsager diffusivities that make up L
0

ν can be understood

in terms of component diffusivities, as

Lo =
coD0o(Doec0 + D0eco)

c0(Doec0 + D0oνce + D0eco)
(5.194)

Le =
ceD0e(Doec0 + D0oνce)

c0(Doec0 + D0oνce + D0eco)
(5.195)

L× =
D0oD0ecoce

c0(Doec0 + νD0oce + D0eco)
. (5.196)

Each of these expressions agrees within a prefactor with the thermodynamic oxygen

diffusivity, the thermodynamic electrolyte diffusivity, and the cross diffusivity reported

for lithium/air-battery electrolytes by Monroe [107].

The benefits of relying on both migration coefficients and directly writing flux laws

in the salt–charge basis are made most clear by this example. Equation (5.119) reads

for the two-solvent case as

J⃗ 0
0 = 0⃗, (5.197)

J⃗ 0
o = −Lo

c0T∇⃗µo

RT
− L×

c0T∇⃗µe

RT
+ ξo

i⃗

F∥z∥ (5.198)

J⃗ 0
e = −L×

c0T∇⃗µo

RT
− Le

c0T∇⃗µe

RT
+ ξe

i⃗

F∥z∥ . (5.199)

Equations (5.197)-(5.199) are equivalent to equations 14-16 in the paper by Monroe

[107]. These laws combine with the MacInnes equation for a reference electrode, written

through equations (5.123) and (5.136) as

i⃗ = −κ0∇⃗Φ⊖ +
κ0s⊤ν ∇⃗µ0

ν

ne−Fze−
− κ0ξ0

⊤∇⃗µ0
ν

F ∥z∥ , (5.200)
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to offer a complete description of isothermal, isobaric mass transport in the cosolvent

electrolyte.

One could proceed as in the previous examples to elucidate how the migration co-

efficients, diffusivities, and conductivity relate to the Stefan–Maxwell coefficients. We

refrain from doing so here, because of the substantial rise in complexity entailed in

extending this process to four species. On account of the matrix inversion involved,

writing out the entries within transport-property matrices becomes increasingly unten-

able as the number of species increases. Nevertheless, this process was implemented

and found to produce relationships among parameters consistent with those reported

earlier [107].

The matrix forms that connect flux-explicit and force-explicit representations of

transport laws are compact and generally useful. The operations described in prior

sections are readily implemented with symbolic manipulation programs for systems

containing large numbers of species. Perhaps most important is that the structures

of the transport coefficients that support both force-explicit and flux-explicit repre-

sentations of the electroneutral transport laws are very general. As shown in these

examples, structural knowledge can used to create consistent sets of thermodynamic

and transport constitutive laws a priori in any representation, for electrolytes involving

any number of components.

5.16 Numerical implementation: Hull cell

Numerical schemes that are developed to solve the OSM equations for transport of

neutral species, and whose efficacy relies on the spectral structure of Mc or M, may

be implemented on the electroneutral OSM equations. Indeed, we have discussed how

Sylvester’s law of inertia guarantees that the spectral structure remains essentially

intact, in that M0
Z is symmetric positive semidefinite with one null eigenvalue corre-

sponding to the vector c0Z .

Chapters 2 and 3 developed such schemes using finite elements. The singularity

of the transport matrices was numerically resolved by the augmentation procedure

(4.30). In this context specifically, for a reference velocity ψ we solve the augmented

electroneutral OSM equations as

−∇⃗µZ = Mγ,ψ
Z n⃗Z , (5.201)

170



where Mγ,ψ
Z , defined as MZ + γψZψ

⊤
Z can be shown to be a symmetric positive def-

inite matrix (essentially a mimicry of Lemma 1). These equations are coupled to the

component balances (5.32) and (electroneutral) charge continuity (5.33).

We illustrate this by considering the numerical solution of a hull cell containing an

electrolytic solution of LiPF6 in EMC, an electrolyte commonly used in lithium ion

batteries. The transformation matrix to the salt-charge basis we use is

Z =




1 0 0

0 1 1

0 1√
2

− 1√
2



. (5.202)

The first two rows correspond to the equilibria

EMC ⇌ EMC and Li+ + PF−
6 ⇌ LiPF6. (5.203)

The transport properties for this electrolyte, along with its composition dependence,

has been extensively measured. The properties in [151, 152], are summarized in Table

5.1. Here the terms D, χ are defined through the relations

D = Dχ (5.204)

χ = 1 + Λ00νyey0. (5.205)

The relation between the migration coefficient ξ transference number, equation (5.154)

reduces to

ξ =
1− 2t0+√

2
. (5.206)

The ρ term appearing in Table 5.1 is derived from a least squares fit from densio-

metric data contained in the supplementary information of [151, 152], and acts as the

equation of state for this system.

After inferring the component diffusivity and migration coefficients from equations

(5.204) and (5.206), we may use equations (5.160)-(5.162) to assemble the matrix MZ .

The composition of the electrolyte at rest was taken as ye = 0.15. The molar mass

of EMC, m0, is 104.105 gmol−1 and the molar mass of LiPF6, me, is 151.905 gmol−1.

A voltage difference across the anode and cathode of Van = 10mV and Vcath = 0 was
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Properties
Term Function Units

κ
(
48.93y

3/2
e − 284.8y

5/2
e 817.8y4e

)2
S m−1

D (4.998− 29.96ye + 53.78y2e )× 10−10 m2s−1

χ 1− 18.38y
1
2
e + 155.3ye − 450.6y

3
2
e + 1506y

5
2
e −

t0+ 0.4107− 1.487ye + 2.547y2e −
ρ 1007.1 + 105 ×

(
0.0180ye − 0.1946y2e + 1.960y3e −

7.008y4e + 8.004y5e
) g L−1

Table 5.1: All data necessary to construct the transport matrix and the thermodynamic
factor.

applied and enforced by the Robin boundary condition

i⃗ · n
∣∣
an

= −F∥z∥i0
RT

(Van − Φ) (5.207)

i⃗ · n
∣∣
cath

= −F∥z∥i0
RT

(
Vcath − Φ

)
(5.208)

for i0 chosen large (1000 Am−2) as to ensure the condition Φ = Van/cath. We assume

stripping and plating of lithium at the cathode and anode respectively. This is via the

relation

N⃗Li · n =
i⃗ · n
F∥z∥ . (5.209)

All other boundary conditions are set as homogenous Neumann boundary conditions.

The stripping and plating of lithium at the boundary as expressed in (5.209) implies

a transfer of mass across the solution. It would be therefore be inconsistent to take the

reference velocity as the mass-average velocity and then assume this to be zero. Instead

we utilise the method of Chapter 2, but choose the reference velocity to be that of the

solvent, and assume this is zero. This is also convenient due to this being the reference

frame in which the transference numbers are measured. A steady–state simulation

was performed with Firedrake software [129], using the MUMPS direct linear solver

[1, 2] via PETSc [12, 13]. The mesh of the geometry was constructed using the Gmsh

software [65]. Each linear system had 183831 degrees of freedom. The finite elements

are choosen as CG2 for component mole fractions/voltage and DG1 for fluxes/current.

The computed current distribution from this set up is plotted in Figure 5.1. We

can observe the current concentrates at the upper corner as this is closer to the anode.

This example illustrates the potential of the framework to model concentrated elec-

trolyte with the full composition dependence, on complex geometries. Similarly we
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Figure 5.1: Plot of the current density (mA cm−2) magnitude |⃗i|. The streamlines
denote the trajectory of the current from the anode (left) to the cathode (right).

might consider modeling two solvents or transient dynamics. Given the relevant trans-

port data, the scope of application could be extended much further.

5.17 Conclusion

We have detailed the consequences of electroneutrality on the Onsager–Stefan–Maxwell

equations. The implications of electroneutrality on the chemical potential constituent

laws and other thermodynamic quantities are provided. Crucially, rather than intro-

ducing an additional algebraic constraint, it was seen that by constructing the salt-

charge basis, electroneutrality may be inbuilt into the equations. This allowed us to

consider the electroneutral Onsager–Stefan–Maxwell equations which involve n−1 neu-

tral species and voltage. The process to invert this to a flux explicit form was given and

the transport properties common in concentrated solution theory, given along with sev-

eral examples to substantiate the process. Taken together, this has provided a general

formulation of the transport equations for an electroneutral electrolyte which retains

the structure of the transport equations for neutral species. The utility of this formu-

lation was underlined by simulating electrolyte transport in the same way we would

that of neutral species.
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Chapter 6

Conclusions

The thesis has developed a framework for modelling multicomponent transport. The

original research upon which this thesis is based covers both novel numerical techniques

based on the thermodynamic structure of the problem, and original formulations and

consolidations of the theory such that it may fit under common paradigms. At every

stage the practicality of this framework was demonstrated by implementing various

examples.

In reality, this has only opened gates of possible applications that fall under the

purview of the methodologies developed here. From here it we might apply these

techniques to model a variety of battery chemistries, or to simulate a catalytic reactor.

Clearly, the utility of the framework laid here in more complex and impactful examples.

The thesis lays the bulk of the foundation work for such examples, although numer-

ical and practical challenges lie ahead. For example, it is well known that in regimes

such as high Péclet numbers, finely engineered numerical techniques are needed for

robustness. Nor have we introduced upon any efficient methods to solve the linear

systems, likely required for practical simulations in three dimensions.

It is hoped a primary strength of this thesis will be its generality. Rather than ad-

vocating for one particular application, or one particular finite element family, or even

one particular numerical formulation, it is the systematic use and preservation of the

structure of linear irreversible thermodynamics and its consequences in computation

that is expected to be useful. The accomplishment of this thesis lies then in provid-

ing a platform to effectively solve multicomponent transport both by developing the

fundamental structure of the equations, and by way of providing a concrete numerical

technique. It is hoped that the development of this platform will make for fruitful and

interesting future research.

174



Appendix A

A.1 Inversion of transport matrices

Both the procedure that maps M to Lψ for a given kinematic relation ψ, and the

inverse process, by which Lψ maps to M given the Gibbs–Duhem relation 1, require

some further justification. Here we present formulas to construct Lψ from M and M

from Lψ, as well as demonstrating that these two mappings are inverses of each other.

Given a symmetric matrix R with a single null eigenvector r, and an additional

column matrix p such that p⊤r ̸= 0, the augmented matrix Rp (γ), defined as

Rp (γ) = R+ γpp⊤, (A.1)

has rank one higher than R whenever γ ̸= 0. This construction is amenable to one

of the generalized Sherman–Morrison formulas derived by Baksalary et al. [11]. We

employ the notation A♯ to represent the Moore–Penrose pseudoinverse of A. Further

note that since there is just one null eigenvector of R, the matrix Baksalary and

colleagues call QR⊤ , which represents the orthogonal projector onto the orthogonal

complement of the column space of R, can be formed explicitly:

QR⊤ =
rr⊤

r⊤r
. (A.2)

Equation (2.5) from reference [11] then yields

[Rp (γ)]♯ =

(
I− rp⊤

r⊤p

)
R♯

(
I− pr⊤

r⊤p

)
+

1

γ

rr⊤

(r⊤p)2
(A.3)

after some algebraic rearrangement.
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Next define the matrix P such that

P =

(
I− rp⊤

r⊤p

)
R♯

(
I− pr⊤

r⊤p

)
. (A.4)

Direct calculation shows that P affords p as a null eigenvector, explaining its notation.

The matrix P so formed is unique because R♯ is, and the fact that symmetry of R

implies symmetry of R♯ means P = P⊤ as well.

Since R has a single null eigenvector and Rp (γ) has rank one higher than R, it

follows that Rp (γ) is invertible. Therefore the pseudoinverse [Rp (γ)]♯ simplifies to the

standard matrix inverse; equation (A.3) rearranges to give

P = [Rp (γ)]−1 − 1

γ

rr⊤

(r⊤p)2
. (A.5)

This formula for P is independent of the choice of nonzero γ and circumvents the

computation of R♯. A trivial rearrangement of this result,

[Rp (γ)]−1 = P+
1

γ

rr⊤

(r⊤p)2
, (A.6)

substantiates the asymptotic behaviour asserted in equation (4.34). Direct calculation

then shows that

P = lim
γ→∞

[Rp (γ)]−1 , (A.7)

justifying the claim that the limit in equation (4.33) exists.

Finally we consider uniqueness of the mapping between P and R. Suppose we have

a new matrix, P̂, whose sole null eigenvector is also the previously defined column

matrix p, and let r continue to be the sole null eigenvector of R. For any ϕ ̸= 0 the

augmented matrix

P̂r (ϕ) = P̂+ ϕrr⊤ (A.8)

is invertible with rank one higher than P̂. As before, the formula of Baksalary et

al. [11] constructs a unique matrix

R̂ =
[
P̂r (ϕ)

]−1

− 1

ϕ

pp⊤

(r⊤p)2
. (A.9)

Letting γ = ϕ−1
(
r⊤p

)−2
in equation (A.1) and using that result to eliminate the
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second term on the right produces an equality which proves that R̂ = R if and only if

[
P̂r (ϕ)

]−1

= Rp

(
1

ϕ (r⊤p)2

)
. (A.10)

Since the matrices here are nonsingular, one can invert both sides, then insert equations

(A.6) and (A.8) to show that P̂ = P. Thus our flux-law inversion establishes a bijective

mapping between the space of matrices P = P⊤ whose nullspaces are spanned by p

and the space of matrices R = R⊤ whose nullspaces are spanned by r.

The transport-law inversions developed in section 4.3.2 can be implemented directly

using the general equations provided here. Specifically, to get flux-explicit isothermal

transport laws from the Onsager–Stefan–Maxwell formulation, take r = 1, p = ψ, and

R = M, then use equation (A.4), (A.5), or (A.7) to produce P = Lψ. Alternatively,

to retrieve force-explicit isothermal transport laws from the isothermal Onsager–Fick–

Fourier formulation, let r = ψ, p = 1, and R = Lψ, in which case any of the same

equations will produce P = M.

A.2 Construction of Soret diffusivities

For i, j = 1, 2, ..., n, take as given a set of Newman–Soret diffusivities Ãij that satisfy

Ãij = −Ãij and Ãii = 0. Practically, these would be taken from measurements of each

binary system, analogous to the construction of Table 4.3. Consistency of the modelling

framework demands that a proper Newman–Soret matrix with entries Aij be based on a

set of Soret diffusivities Di. What constrains us from immediately identifying Aij with

Ãij is the fact that it is not clear that this extrapolated Aij has the form demanded

by equation (4.39) for some set of Soret diffusivities DT
i . For example, in a ternary

mixture, equation (4.39) implies that A12 + A23 = A13, but inspection of the entries

tabulated in Table 4.3 shows that this does not hold. Thus the data in Ãij require

some regularization to produce Aij.

To regularize Aij, we choose its entries such that each is as close to possible to Ãij.

That is, we impose structure (4.39) on the coefficients, while minimizing the changes,

according to the minimization problem

min
DT
i ∈R

n∑

i,j

[(
DT
i − DT

j

)
− Ãij

]2
, (A.11)
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subject to the constraint given by equation (4.40) with ψ = 1. A direct computation

shows that this minimum is obtained by setting

DT
i =

1

n

n∑

j=1

Ãij. (A.12)

Note that the kinematic relation chosen for the minimization problem implicitly

sets a somewhat nonphysical reference velocity for Soret diffusivities. Since Aij is

independent of the convective reference velocity, however, this mathematically conve-

nient choice is immaterial. To enforce a constraint on DT
i with another ψ in (4.40),

one could simply perform a shift analogous to that stated in equation (4.27) post facto.
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