
Shape Optimisation and Robust
Solvers for Incompressible Flow

Florian Wechsung
Balliol College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2019

Contents

1 Introduction 7
1.1 Mathematical formulations of optimisation over shapes 7
1.2 Structure and contributions of this thesis 9

1.2.1 Shape optimisation . 9
1.2.2 Fast solvers for the incompressible Navier–Stokes equations . . 10
1.2.3 Shape optimisation with multigrid solvers 11

1.3 Software . 12

I Shape optimisation 13

2 Shape optimisation and shape calculus 14
2.1 General spaces of deformations . 15
2.2 Discussion of the necessary regularity of deformations 21
2.3 Reduction of PDE constraints via adjoint solutions 25
2.4 Structure of Shape Derivatives . 29
2.5 Numerical shape optimisation . 32

2.5.1 Optimisation . 32
2.5.2 Discretisation . 33
2.5.3 Software . 34

3 Automated calculation of shape derivatives 37
3.1 Shape differentiation on the reference element 38
3.2 Examples . 41
3.3 Code validation . 46
3.4 Shape optimisation of a pipe . 47

2

4 Nearly conformal mesh deformation methods for shape optimisation
in two dimensions 52
4.1 Discussion of deformations and mesh quality 53
4.2 Conformal mappings in two dimensions 55
4.3 Nearly conformal shape gradients . 57

4.3.1 CR(α) + H̊1-shape gradients 58
4.3.2 Nearly conformal shape gradients with mixed boundary conditions 63
4.3.3 CR(α) +H(sym)-shape gradients 64

4.4 Numerical experiments . 65
4.4.1 Levelset example . 65
4.4.2 A negative example: Annulus deformation 70
4.4.3 Energy minimisation in slow flow 71

4.5 Discussion of the three dimensional case 77

II Large scale solvers for the Navier–Stokes equations 79

5 Augmented Lagrangian preconditioning for the stationary incom-
pressible Navier–Stokes equations 80
5.1 Preconditioning Strategies . 82
5.2 Augmented Lagrangian preconditioning 84
5.3 Solving the top-left block . 86
5.4 Subspace correction methods for nearly singular problems 88

6 Augmented Lagrangian preconditioning for a low order discretisa-
tion 97
6.1 Robust smoothing and prolongation in two dimensions 98

6.1.1 Prolongation . 98
6.1.2 Relaxation . 100

6.2 Robust smoothing and prolongation in three dimensions 105
6.2.1 Prolongation . 105
6.2.2 Smoothing . 108

6.3 Including the advection term . 109
6.4 Numerical Results . 111

6.4.1 Algorithm details . 111
6.4.2 Solving the top-left block only: nearly incompressible elasticity 112
6.4.3 Solver verification with the method of manufactured solutions 116

3

6.4.4 Two-dimensional experiments 118
6.4.5 Three-dimensional experiments 122
6.4.6 Computational performance 123

7 Augmented Lagrangian preconditioning for divergence-free finite el-
ement pairs 127
7.1 Stability of the Scott-Vogelius element 128
7.2 Solving the top-left block . 130

7.2.1 Robust prolongation . 130
7.2.2 Robust smoothing . 132

7.3 Stabilisation for the advection terms 138
7.4 Numerical results . 139

7.4.1 Solving the top-left block only: nearly incompressible elasticity 139
7.4.2 Verification and pressure robustness 141
7.4.3 Algorithmic performance in two and three dimensions 142

III Combination and conclusions 147

8 Shape optimisation with geometric multigrid solvers 148
8.1 Nestedness preserving high-order deformations 148
8.2 Regularisation . 152
8.3 Drag minimisation of an immersed object 154
8.4 Optimisation of a pipe . 157

9 Conclusions and outlook 163
9.1 Shape Optimisation . 163
9.2 Robust large-scale solvers for the incompressible Navier–Stokes equations164

4

Acknowledgements

I would like to thank the following people who made this thesis possible:

My supervisor Patrick Farrell for his excellent guidance, supervision, and
advice. His curiosity and enthusiasm for solving problems have been a
great source of inspiration and motivation throughout these years.

Lawrence Mitchell, Alberto Paganini, and Kevin Sturm, who were fantastic
collaborators and excellent sparring partners in many discussions on both
analysis and implementation.

Mark Taylor, for introducing me to the engineering side of computational
fluid dynamics and giving me a glimpse into the world of race cars.

Chris Breward and Colin Please, for a great CDT and their support
throughout four years of InFoMM.

The students of InFoMM cohort 2 and the students in the numerical
analysis group for making even long working days enjoyable. In particular
Abi, Bogdan, Matt, Michael, Thomas, and Tino for the fantastic time
spent together in Oxford and abroad.

The wonderful Caoimhe, for her continuous love and support throughout
both good and stressful times.

My parents and brother, who have always supported and encouraged me
in all endeavours. This would not have been possible without you.

Abstract

When designing a new car or a plane, engineers need to solve the Navier–
Stokes equations to understand how air flows around the object. Based on
experience and intuition, they modify the design slightly, then solve the
equations again, and inspect the changes. This process is iterated many
times until a final design that minimises or maximises some quantity of
interest, such as drag or lift, is found. The goal of shape optimisation is to
automate this type of process.

In this thesis we address several issues related to shape optimisation. Fo-
cussing on the case when the shape is discretised using a mesh and when
PDE constraints are solved using the finite element method, we describe
a reformulation of the shape derivative as the derivative of the pushfor-
ward from the reference element. This viewpoint allows for automated
calculation of shape derivatives in finite element software. When shape
optimisation is performed by deforming an initial mesh, the choice of
deformation is important. We propose a new Hilbert space structure on
the space of deformations that results in high mesh quality of the deformed
domains.

We then focus on the solution of a particular PDE constraint given by the
steady, incompressible Navier–Stokes equations that govern laminar flow.
The solution of these equations becomes challenging for large Reynolds
number. We develop augmented Lagrangian based preconditioners that
exhibit robust performance as the Reynolds number is increased. The
effectiveness and scalability of the developed solvers is demonstrated for a
range of test problems.

Chapter 1

Introduction

The design of optimal shapes is a task faced by engineers in a wide range of disciplines.
Often this problem can be expressed as minimisation of an objective functional J over
a set of admissible shapes Uad, i.e. it is of the form

minimise
Ω∈Uad

J(Ω). (1.1)

Classical objectives are the drag or lift of a plane, the downforce of a race car, the
strength of a structure, or the efficiency of an acoustic device.

1.1 Mathematical formulations of optimisation over
shapes

There is a range of difficulties associated with finding an optimal shape. The first
is that there is no obvious structure on the set of shapes. There are two popular
approaches for reformulating the optimisation in a tractable manner. In topology
optimisation, one considers a function ϕ : Rd → {0,+1} and then defines the domain
as Ω := {ϕ = 1}. Optimisation over shapes is thus translated to optimisation over
all such functions ϕ. However, this problem is, in general, ill-posed and does not
admit optimal solutions as often designs can be improved by adding finer and finer
microstructures [SP98]. In practice this means that solutions are mesh dependent and
that often the solution that was found cannot be manufactured.

A common approach to counter this is to relax the problem to a search for functions
ϕ : Rd → [0, 1] and then to penalise intermediate values of ϕ; this leads to a diffuse but
narrow boundary of Ω. In order to avoid fine microstructures, one adds a regularisation
term, e.g. in the form of the gradient of ϕ; this is the diffuse analogue to penalising the
perimeter of the resulting shape. The SIMP (solid isotropic material with penalisation)
[Ben89] and the phase field approach [BC03] are of this type.

7

Another problem arises when considering problems with a constraint given by a
partial differential equation (PDE): since the domain obtained using a regularisation
has a diffuse interface, it is not clear where to solve the PDE. The usual solution is to
consider a so-called Ersatzmaterial approach. In the case of aerodynamic optimisation
this means that one considers the car or wing as a porous medium with extremely low
porosity [Gar+16] and solves for the flow in the entire space. However, this can lead
to both inaccuracies and ill-conditioning of the PDE problem to be solved.

The approach of shape optimisation is different. Here, one assumes that one is
given a reasonable initial guess for the shape and then deforms this initial shape in
order to minimise the functional [Mic72; MS76; Sim80; DZ11; HP15].

In parametric shape optimisation, this is done by parameterising either the shape
itself or deformations of the shape and then optimising for the coefficients of the
parameterisation. This has the advantage that the optimisation then reduces to an
optimisation problem in Rn, for which a vast amount of theory and algorithms exist
[NW06]. However, only a small, finite-dimensional space of shapes can be represented
by such parameterisations and hence the desired optimal shape might not be included
in the search space. For these reasons, we follow the alternative, nonparametric
approach and consider deformations that lie in an infinite-dimensional space D of
vector fields:

minimise
T∈D

J(T(Ω)). (1.2)

For many applications, the objective depends not only on the shape, but also on the
solution to some PDE defined on the shape. Given a function space X (Ω) on Ω we
denote the PDE constraint on Ω by e(Ω, ·) : X (Ω)→ X (Ω)∗. Then the optimisation
problem to be solved is given by

minimise
T∈D, u∈X (T(Ω))

J(T(Ω), u)

subject to e(T(Ω), u) = 0.
(1.3)

Shape optimisation thus combines functional analysis and geometry with two areas
of numerical analysis. First, it requires the development of efficient optimisation
algorithms on infinite-dimensional function spaces. These can often be borrowed from
classical PDE constrained optimisation but usually need to be modified in order to
take the nonstandard nature of the control into account. Secondly, since the functional
needs to be evaluated for many different shapes, it requires the ability to solve the
constraining PDE in an efficient way. This twofold nature of shape optimisation is
reflected in the structure of this thesis. Part I discusses several aspects of shape
optimisation, whereas Part II is focussed on the fast solution of a particular PDE

8

constraint, namely the incompressible Navier–Stokes equations. Lastly, in Part III
we address some issues that arise when using geometric multigrid solvers for shape
optimisation problems.

1.2 Structure and contributions of this thesis

1.2.1 Shape optimisation

In order to perform efficient optimisation over a large control space, the calculation of
derivatives is crucial. In the case of shape optimisation, this itself poses a challenge, in
particular when the objective is subject to a PDE constraint, as both the PDE and its
solution change as the domain deforms. Applying the rules of shape calculus is often
tedious and prone to error: even for simple objectives and constraints these calculations
regularly span many pages in papers and dissertations on shape optimisation.

To express partial differential equations in weak form, Alnæs et al. developed the
Unified Form Language (UFL) [Aln+14]. This language has become the foundation
for the increasingly popular FEniCS [LMW12] and Firedrake [Rat+16] finite element
libraries. Furthermore, the dolfin-adjoint [Far+13] project has demonstrated that
this language can be used to automatically derive adjoints for PDE constrained
optimisation problems. We will describe an extension to UFL for automatically and
symbolically deriving shape derivatives of a large class of integrals. The key insight of
this implementation is that a classical Gâteaux derivative with respect to the pull-back
performed when assembling integrals over finite element functions is equivalent to
shape differentiation. The approach is generic, extends to higher order derivatives,
and makes shape optimisation easily accessible to users of FEniCS and Firedrake. In
particular, it enables rapid development of solvers for shape optimisation problems that
are constrained by complicated, nonlinear PDEs such as the Navier–Stokes equations.
This work is presented in Chapter 3 and has been published in [Ham+19].

Once the shape derivative has been calculated, it can be used to obtain deformations
of the domain that lead to a reduction of the objective. These deformations are often
obtained by calculating the Riesz representative of the shape derivative in a particular
Hilbert space of deformations. When the domain is represented by a mesh, changing
the shape corresponds to moving the vertices of the mesh. However, care is required in
order to avoid tangling, stretching, or kinks when deforming the mesh. This is crucial,
as highly stretched elements can reduce the accuracy of the finite element solution or
even lead to failure of convergence.

9

One way to avoid such problems is to consider conformal mappings for the mesh
deformations. These mappings preserve angles and hence avoid stretching of the
elements in the mesh. In two dimensions they can be characterised by the Cauchy–
Riemann equations. In Chapter 4 we will describe a procedure that augments a given
inner product with a least-squares formulation of the Cauchy–Riemann equations to
change the geometry of the function space in a way that penalises deformations that
are not conformal. We prove that in a particular limit, this yields perfectly conformal
deformations and demonstrate high mesh quality in several numerical examples. This
work has been published in [ISW18].

1.2.2 Fast solvers for the incompressible Navier–Stokes equa-
tions

In the case of aerodynamic and hydrodynamic shape optimisation, the PDE constraint
is often given by some variant of the incompressible Navier–Stokes equations. A good
solver for the linear systems arising in Newton’s method applied to these equations
should have two properties: first, that its computational complexity scales well with
the number of degrees of freedom (dofs); and secondly, that its convergence does not
degrade as parameters such as the Reynolds number are varied. It has proven very
difficult to develop solvers that exhibit both properties; matrix factorisations are robust
to Reynolds number but scale badly with dof count, whereas Schur complement based
algorithms such as pressure convection-diffusion (PCD) and least-squares commutator
(LSC) scale linearly in the dof count but their performance decreases as the Reynolds
number is increased [KLW02; Elm+06; ESW14].

In 2006, Benzi & Olshanskii [BO06] proposed a preconditioner of augmented
Lagrangian type for the incompressible Navier–Stokes equations. The key idea is to
augment the momentum block with a term penalising the divergence of the velocity.
Since we require incompressibility, this does not change the discrete solution of the
system but it turns out that it simplifies the approximation of the Schur complement
significantly. However, since this added term has a large kernel consisting of solenoidal
vector fields, solving the momentum block becomes difficult. Benzi & Olshanskii
proposed a multigrid scheme for this block in two dimensions that builds on previous
work of Schöberl [Sch99a; Sch99b]. Before focussing on particular discretisations,
we describe the general strategy of augmented Lagrangian preconditioning and then
outline the framework for robust multigrid schemes developed by Schöberl in Chapter 5.

10

The work of Benzi & Olshanskii focussed on a particular low order discretisation
in two dimensions. In Chapter 6 we extend their work and present a Reynolds-
robust preconditioner for the stationary, incompressible Navier–Stokes equations in
three dimensions. While the same general strategy applies as in two dimensions, the
prolongation operator in three dimensions requires modifications in order to obtain a
robust scheme. We give an efficient, fully parallel implementation on unstructured
grids and demonstrate only very mild growth of iteration counts up to Reynolds
number as large as 10 000 in two dimensions and 5 000 in three dimensions. This work
has been published in [FMW19].

A drawback of the approach of Benzi & Olshanskii is that it requires piecewise
constant pressures and is hence limited to first order convergence. In addition,
the utilised finite elements only enforce the divergence constraint weakly and as a
consequence the discretisation is not pressure robust: errors in the pressure solution
affect the velocity. As discussed in the recent survey [Joh+17], this lack of pressure
robustness particularly affects the solution at high Reynolds number: the velocity
error has a term that scales with the Reynolds number multiplied by the pressure
error. As a result, discretisations which do satisfy pressure robustness are becoming
increasingly popular. In Chapter 7 we will demonstrate how a similar scheme can
be developed for the pressure robust Scott-Vogelius finite element [SV85]. However,
since this element is known not to be inf-sup stable on arbitrary meshes, we consider
barycentrically refined meshes instead. These meshes result in a nonnested hierarchy
for which we will develop a suitable prolongation operator. In addition, motivated by
recent results in finite element exterior calculus, we will construct a tailored relaxation
operator to obtain an effective multigrid scheme. This combination of finite element
and preconditioner yields a solver with performance and approximation quality that
are both robust with respect to the Reynolds number. A manuscript on this work is
in preparation.

1.2.3 Shape optimisation with multigrid solvers

The multigrid solvers that we develop in Part II rely heavily on mesh hierarchies with
a (partially) nested structure. In Chapter 8 we will describe a shape optimisation
strategy that is based on high order deformations of the coarse grid and preserves
the nestedness of the hierarchy. We will combine the automated calculation of shape
derivatives from Chapter 3, the Cauchy–Riemann based inner product from Chapter 4,
and the solver developed in Chapter 6 to perform shape optimisation for two classical
problems in two and three dimensions.

11

Finally, in Chapter 9 we summarise the work and outline possible extensions and
directions for future study.

1.3 Software

The methods and algorithms developed as part of this thesis have been implemented
using the Firedrake [Rat+16] and PETSc [Bal+18] libraries. Links to the code imple-
menting the numerical examples are given at the end of each chapter.

12

Part I

Shape optimisation

13

Chapter 2

Shape optimisation and shape
calculus

A shape functional is a function that maps domains to real numbers.
Definition 2.1.
Let A ⊂ P(Rd) :=

{
Ω : Ω ⊂ Rd

}
be a set of admissible shapes. A shape functional is

a map
J : A → R. (2.1)

Classically, shape optimisation has been studied by considering deformations of
an initial domain Ω, i.e. one considers vector fields T : Rd → Rd and then calculates
J(T(Ω)) [MS76; Sim80; DZ11; HP15]. These deformations are typically contained
in the space of differentiable or Lipschitz continuous functions. Though we assume
the reader to be familiar with these spaces, we recall their definition and elementary
properties in order to set the notation.

For an open set Ω ⊂ Rd we denote the space of k-times continuously differentiable
functions from Ω to Rm by Ck(Ω;Rm). In order to equip these functions with a Banach
space structure, we need to require that they are well-behaved at the boundary: we
denote the space of functions f ∈ Ck(Ω;Rm) so that f and its derivatives can
continuously be extended to Ω by Ck(Ω;Rm). For 0 ≤ l ≤ k we can define the
seminorms

|f |Cl(Ω;Rm) :=

{
supx∈Ω |||f(x)|||2 if l = 0,

supx∈Ω

∣∣∣∣∣∣Dlf(x)
∣∣∣∣∣∣

2
if l ≥ 1,

(2.2)

where |||·|||2 is the usual 2-norm for (multi-)linear operators. Using these we can define
the norms

‖f‖Ck(Ω;Rm) :=
k∑
l=0

|f |Cl(Ω;Rm) , (2.3)

and indeed (Ck(Ω;Rm), ‖·‖Ck(Ω;Rm)) is a Banach space.

14

Sometimes, enforcing differentiability of the deformations is too strict a requirement;
Lipschitz deformations are an alternative that are well-behaved almost everywhere
but allow for kinks. A function f : Ω→ Rm is said to be Lipschitz continuous if

∃c > 0,∀x, y ∈ Ω, ‖f(y)− f(x)‖2 ≤ c ‖x− y‖2 . (2.4)

The smallest c for which the above inequality holds is denoted by Lip(f). We denote
the spaces of Lipschitz continuous functions by C0,1(Ω;Rm) and the space of Lipschitz
continuously k-times differentiable functions by Ck,1(Ω;Rm). As before we define the
spaces Ck,1(Ω;Rm) and these are Banach spaces with the norm

‖f‖Ck,1(Ω;Rm) := max

{
‖f‖Ck(Ω;Rm) , max

0≤|α|≤k
sup

x,y∈Ω, x6=y

‖∂αf(y)− ∂αf(x)‖2

‖x− y‖2

}
. (2.5)

From now on we will use boldface to denote vector fields. Furthermore, capital letters
will denote vector fields that are used to deform the domain whereas lower case letters
will be used in the context of PDE constraints on the domain.

2.1 General spaces of deformations

For a given space D of functions from Rd to Rd, we denote perturbations of the identity
by

TX := Id + X, X ∈ D. (2.6)

In order to avoid overlapping, compressing or tearing of the initial shape Ω when
deforming it, we cannot consider arbitrary X but only those so that TX is bijective
and (TX)−1 is itself a perturbation of the identity, i.e. (TX)−1 = Id + Y for some
Y ∈ D.

This idea was introduced by Micheletti in [Mic72] for spaces of differentiable
functions and subsequently extended to more general function spaces. We follow the
exposition in [DZ11].
Definition 2.2.
Let D be a real vector space of mappings from Rd to Rd. We define the Micheletti
space of deformations F(D) via

F(D) :=
{
TX = Id + X : X ∈ D,TX bijective and T−1

X − Id ∈ D
}
. (2.7)

We will use this notation for the rest of this thesis: for X ∈ D, TX = Id + X

denotes the perturbation of the identity by X and ΩX = TX(Ω) denotes the perturbed
domain.

15

One can show that if D satisfies a closedness property, then F(D) is a group for
the composition operator.
Theorem 2.3.
Let D be a real vector space of mappings from Rd to Rd. Then F(D) is a group for
the composition ◦ if and only if

∀ Y ∈ D, ∀ Id + X ∈ F(D), Y ◦ (Id + X) ∈ D. (2.8)

In particular (Id + X)−1 − Id = −X ◦ (Id + X)−1 ∈ D.

Proof. See [DZ11, Chapter 3, Theorem 2.1].

This assumption is satisfied for D = Ck,1(Rd;Rd) and for D = Ck(Rd;Rd) for
k ≥ 0. If D is a normed space, then one can define a metric d on F(D) via

d(Id,T) := inf
n∈N>0, Ti∈F(D),

T=T1◦···◦Tn

n∑
i=1

‖Ti − Id‖D +
∥∥T−1

i − Id
∥∥
D (2.9)

and
d(T,S) := d(Id,S ◦T−1). (2.10)

Under some assumptions that are again satisfied for the case D = Ck,1(Rd;Rd) and
for D = Ck(Rd;Rd), d is indeed a metric on F(D).
Theorem 2.4.
Let D be equal to Ck(Rd;Rd) or Ck,1(Rd;Rd), k ≥ 0. Then (F(D), d) is a complete
metric space.

Proof. See [DZ11, Chapter 3, Theorem 2.6].

The definition of the Micheletti spaces motivates to consider the following functional

JΩ : D → R

X 7→ J(TX(Ω)),
(2.11)

and to minimise it over all X ∈ D with TX ∈ F(D). For this functional we can now
consider its Gâteaux and Fréchet derivatives.
Definition 2.5.
Let X and Y be Banach spaces, let U ⊂ X be an open subset and let F : U → Y .

• F is said to have a Gâteaux semiderivative at x in the direction h if the following
limit exists and is finite:

dF (x;h) := lim
s↓0

F (x+ sh)− F (x)

s
. (2.12)

16

• F is said to be Gâteaux differentiable at x if it has a Gâteaux semiderivative at
x in all directions h ∈ X and the map

h 7→ dF (x;h) : X → R (2.13)

is linear and continuous.

• F is said to be Fréchet differentiable at x if F is Gâteaux differentiable at x and

lim
‖h‖X→0

‖F (x+ h)− F (x)− dF (x;h)‖Y
‖h‖X

= 0. (2.14)

If F is Gâteaux differentiable at x then dF (x; ·) is an element of X∗ and we will
sometimes write the derivative as the dual pairing

〈dF (x), h〉X∗,X ≡ dF (x;h). (2.15)

Given a shape functional J , we say that J is shape differentiable in Ω if JΩ is Fréchet
differentiable at 0,

dJΩ(0; V) = lim
s→0

JΩ(sV)− JΩ(0)

s
(2.16)

Note that this definition is equivalent to the classical expression

dJ(Ω)[V] = lim
s→0

J((Id + sV)(Ω))− J(Ω)

s
(2.17)

and in fact we will often write dJ(Ω)[V] to refer to the shape derivative.

Example 2.6. Let g ∈ C1(Rd;R) and define

J(Ω) =

∫
Ω

g dx. (2.18)

Then
JΩ(X) =

∫
ΩX

g dx =

∫
Ω

g ◦TX det(DTX) dx (2.19)

and hence using det(DTX) = 1 + div(X) + o(‖X‖), we obtain that J is shape differen-
tiable with shape derivative given by

dJΩ(0; V) =

∫
Ω

∇g ·V + g div(V) dx =

∫
Ω

div(gV) dx. (2.20)

At a domain ΩX, there are now two kinds of derivatives: the shape derivative, e.g.
the derivative of JΩX

at 0, and the classical Fréchet derivative of JΩ at X. These two
are related via the following Theorem.

17

Theorem 2.7 ([DZ11, Theorem 9.3.4]).
Let J be a shape functional, D be a normed vector subspace of C0,1(Rd,Rd), and X ∈ D
with TX ∈ F(D).

1. JΩ has a Gâteaux semiderivative at X in the direction V ∈ D if and only if JΩX

has a Gâteaux semiderivative at 0 in direction V ◦T−1
X and it holds

dJΩ(X; V) = dJΩX
(0; V ◦T−1

X). (2.21)

2. JΩ is Gâteaux differentiable at X if and only if JΩX
is Gâteaux differentiable at

0.

3. JΩ is Fréchet differentiable at X if and only if JΩX
is Fréchet differentiable at 0.

Proof. We observe that, for s > 0,

Id + X + sV = [Id + s(V ◦ (Id + X)−1)] ◦ (Id + X) (2.22)

and hence
J([Id + X + sV](Ω))− J([Id + X](Ω))

s

=
J([Id + s(V ◦ (Id + X)−1)](ΩX))− J(ΩX)

s

=
J([Id + s(V ◦T−1

X)](ΩX))− J(ΩX)

s
,

(2.23)

i.e. the two difference quotients in the definition of the derivatives dJΩ(X; V) and
dJΩX

(0; V ◦T−1
X) are identical. This implies all three statements.

This property is crucial for the implementation of shape optimisation algorithms
and will be used repeatedly in later chapters.

The optimisation problem that we would like to solve is thus

minimise
X∈D

JΩ(X)

subject to TX ∈ F(D).
(2.24)

However, in practice we do not want to consider deformations of the entire space Rd,
but are only interested in the deformation of Ω itself. The natural consequence is
then to minimise JΩ(X) over a class of functions defined on Ω that are diffeomor-
phisms onto their image. This leads to a new problem: while for functions that are
defined on the entire space, it is essentially enough to ensure that they are locally
diffeomorphisms, as Hadamard’s global inverse function theorem then guarantees that

18

they are global diffeomorphisms; this is not the case for functions defined on subsets
only. In consequence one often makes the explicit or tacit assumption that the initial
shape Ω is close in some sense to the optimal shape and only a small perturbation
of the initial shape is necessary. However, when this assumption is violated and the
optimisation algorithm chooses deformations TX that are not diffeomorphisms this
will lead to a collapsed or overlapping domain, see Figure 2.1. We will now develop

Figure 2.1: The channel around an airfoil is highly nonconvex; this means that
deformations can quickly lead to overlapping of the mesh.

a sufficient condition on X that guarantees that TX is indeed a diffeomorphism; a
crucial ingredient for this condition is the bi-Lipschitz property.
Definition 2.8.
Let Ω ⊂ Rd be an open set and let X : Ω → Rd be a Lipschitz continuous function.
We say that X is bi-Lipschitz if there exists an ε > 0 such that

ε ‖x− y‖ ≤ ‖X(x)−X(y)‖ ≤ Lip(X) ‖x− y‖ for all x, y ∈ Ω. (2.25)

We denote the largest ε that satisfies the above inequality by Lip(X).
The lower bound immediately implies that X is injective, hence bijective onto its

image O = X(Ω). Now let x′, y′ ∈ O with X(x) = x′ and X(y) = y′ for some x, y ∈ Ω.
Then ∥∥X−1(x′)−X−1(y′)

∥∥ = ‖x− y‖

≤ 1

Lip(X)
‖X(x)−X(y)‖ =

1

Lip(X)
‖x′ − y′‖ (2.26)

and similarly∥∥X−1(x′)−X−1(y′)
∥∥ = ‖x− y‖

≥ 1

Lip(X)
‖X(x)−X(y)‖ =

1

Lip(X)
‖x′ − y′‖ .

(2.27)

19

From this we can deduce that

Lip(X−1) =
1

Lip(X)
and Lip(X−1) =

1

Lip(X)
. (2.28)

We can show that small enough Lipschitz continuous perturbations of the identity are
actually bi-Lipschitz.
Proposition 2.9 ([DZ11, §3, Theorem 2.15]).
Let Ω ⊂ Rd be an open set and let X : Ω → Rd be a Lipschitz continuous function
with Lip(X) < 1. Then TX = Id + X is bi-Lipschitz.

Proof. Let x, y ∈ Ω, then

‖TX(x)−TX(y)‖ = ‖x− y + X(x)−X(y)‖ ≤ (1 + Lip(X)) ‖x− y‖ . (2.29)

Similarly,

‖TX(x)−TX(y)‖ ≥ ‖x− y‖ − ‖X(x)−X(x)‖ ≥ (1− Lip(X)) ‖x− y‖ . (2.30)

Due to its global nature it is not clear how one would enforce a condition on
the Lipschitz constant in an optimisation algorithm. However, for a certain class of
domains, the Lipschitz constant of a function can be estimated by the supremum of
the gradient of the function. This gives us a local constraint on X that we can enforce
in the optimisation algorithm.
Definition 2.10.
Let Ω ⊂ Rd be an open set. We say that Ω is quasiconvex if there exists ζ(Ω) such
that for all x, y ∈ Ω

inf

{∫ 1

0

‖γ′(s)‖ ds : γ ∈ C1([0, 1]; Ω), γ(0) = x, γ(1) = y

}
≤ 1

ζ(Ω)
‖x− y‖ . (2.31)

The value ζ(Ω) is a measure for how nonconvex a domain is; for convex domains
any two points can be connected by a straight line and it holds that ζ(Ω) = 1. The
channel around the airfoil in Figure 2.1 is an example of a quasiconvex domain.

Now let X be continuously differentiable on Ω and let γ be a path between x, y ∈ Ω.
Then it holds that

‖X(x)−X(y)‖ =

∥∥∥∥∫ 1

0

(X ◦ γ)′(s) ds

∥∥∥∥ ≤ ∫ 1

0

|||(DX)(γ(s))|||2 ‖γ
′(s)‖2 ds. (2.32)

Taking the infimum over all paths between x and y yields

Lip(X) ≤ |X|C1(Ω;Rd)

1

ζ(Ω)
, (2.33)

and hence we can ensure that TX = Id + X is bi-Lipschitz if |X|C1(Ω;Rd) < ζ(Ω).

20

Proposition 2.11.
Let Ω ⊂ Rd be a quasiconvex, open set and let k ≥ 1. If X ∈ Ck(Ω;Rd) satisfies
|X|C1(Ω;Rd) ≡ sup |||DX|||2 < ζ(Ω) then TX is a Ck-diffeomorphism.

Proof. Since |X|C1(Ω;Rd) < ζ(Ω) ≤ 1 it follows that TX has nonzero derivative every-
where and hence TX is locally a Ck-diffeomorphism by the inverse function theorem.
From the calculation above we deduced that TX is bi-Lipschitz and hence globally
bijective. Thus TX is globally a Ck-diffeomorphism.

On quasiconvex domains the space of Lipschitz functions can be identified with the
Sobolev space W 1,∞ and the Lipschitz constant can be bounded by the W 1,∞ norm.
Theorem 2.12 ([HKT08, Theorem 7]).
Let Ω ⊂ Rd be a quasiconvex, open set. Then C0,1(Ω;Rm) = W 1,∞(Ω;Rm) in the sense
that every Lipschitz function is in W 1,∞(Ω;Rm) and every function in W 1,∞(Ω;Rm)

has a representative in C0,1(Ω;Rm). Furthermore f ∈ W 1,∞(Ω;Rm) is differentiable
almost everywhere, its strong derivative coincides almost everywhere with its weak
derivative and it holds that

Lip(f) ≤ ζ(Ω) ‖Df‖∞ . (2.34)

Hence we can formulate a version of Proposition 2.11 for Lipschitz continuous
functions.
Corollary 2.13.
Let Ω ⊂ Rd be a quasiconvex, open set. If X ∈ W 1,∞(Ω;Rd) satisfies ess sup |||DX|||2 <
ζ(Ω), then TX is a bi-Lipschitz map.

To summarise, given a shape functional J , initial shape Ω and a class of defor-
mations D that is either C0,1(Ω;Rd), W 1,∞(Ω;Rd) or Ck(Ω;Rd), the optimisation
problem that we consider is

minimise
X∈D

JΩ(X)

subject to |||DX|||2 ≤ ζ(Ω)− ε a.e.
(2.35)

Here we have introduced a fixed ε > 0 in order to minimise over a closed set.

2.2 Discussion of the necessary regularity of defor-
mations

When deciding what regularity to choose for the deformations one has to balance
different demands on the space of deformations.

21

1. The deformations need to satisfy a minimum regularity in order to guarantee
existence of a solution to a PDE constraint on the deformed domain.

2. The deformation space should be large enough to contain all deformations of
interest to the engineer.

3. The functional under consideration should be Fréchet differentiable in the
deformation space.

4. The deformation space should have the properties necessary to define optimisa-
tion algorithms and prove their convergence.

We will see that satisfying all four properties is often impossible. In order to address
the first and the second point, we need to understand regularity concepts for domains.
Definition 2.14 (Regularity of domains).
Let Ω ⊂ Rd be an open set with ∂Ω 6= ∅, let k ≥ 0, l ∈ [0, 1].

1. Ω is locally the epigraph of a Ck,l function if for each point x ∈ ∂Ω there
exists r > 0, and a Ck,l function γ : Rd−1 → R such that, upon relabeling and
reorienting the coordinate axes if necessary, we have

Ω ∩B(x, r) = {x ∈ B(x, r) : xn > γ(x1, . . . , xd−1)} . (2.36)

We also say that Ω is strongly Ck,l and in the case k = 0, l = 1, we say that Ω

is strongly Lipschitz.

2. Ω is said to be weakly Ck,l regular, if for all x ∈ ∂Ω there exists an r > 0 and a
function G : B(x, r)→ Rd such that

• G is injective,

• G and G−1 (defined on its image) are Ck,l

• Ω ∩ B(x, r) = {y ∈ B(x, r) : Gd(y) < 0} where Gd is the d-th component
of G.

Again, in the case k = 0, l = 1, we say that Ω is weakly Lipschitz regular.

Remark 2.15. One can easily check, that strong Lipschitz regularity implies weak
Lipschitz regularity, by defining G(x) = (x1, . . . , xd−1, γ(x1, . . . , xd−1)− xd). In fact,
for domains that are at least continuously differentiable, strong and weak regularity are
equivalent. However, the proof for this uses the implicit function theorem and hence
does not extend to the Lipschitz case [Gri11, Theorem 1.2.1.5].

22

In many applications, kinks in the domain should explicitly be allowed and the
deformation should be able to create new kinks as well as flatten existing ones, hence
Lipschitz deformations should be admissible and deformations cannot be required to
be C1. Lipschitz continuity is also the regularity that is necessary for the change of
variables formula to hold — a key ingredient in the calculation of shape derivatives,
as it relates the initial and the deformed domain.
Theorem 2.16 (Change of variables).
Let Ω ⊂ Rd be an open set, let T : Ω→ Rd be a bi-Lipschitz function. Then, for every
integrable function g : T(Ω)→ Rd,∫

Ω

g(T) |det(DT)| dx =

∫
T(Ω)

g dx. (2.37)

Proof. See [EG15, Ch. 3.3, Theorem 2].

The shape optimisation problems that we want to study will usually contain a
PDE constraint. However, for most equations of interest, existence and uniqueness
of a solution to the PDE requires the domain to be strongly Lipschitz regular. The
following example shows that applying a Lipschitz continuous deformation to a strongly
Lipschitz domain, does not imply that the deformed domain is again strongly Lipschitz,
but only implies weak Lipschitz regularity [Gri11, p. 8]. This is only guaranteed when
the deformation is at least C1.
Lemma 2.17.
Let Ω ⊂ Rd be strongly Lipschitz and let T : Ω→ Rd be a C1-diffeomorphism onto its
image. Then T(Ω) is again strongly Lipschitz.

Proof. See [HMT07, Theorem 4.1].

Lemma 2.18.
Let Ω ⊂ Rd be weakly Lipschitz and let T : Ω → Rd be bi-Lipschitz. Then T(Ω) is
again weakly Lipschitz.

Proof. Let G be the map for Ω satisfying the assumptions of Definition 2.14, then
T−1 ◦G also satisfies these assumptions and hence T(G) is weakly Lipschitz.

However, for two reasons we can still justify using Lipschitz deformations. First,
one can show that small Lipschitz deformations do indeed preserve strong Lipschitz
regularity, and secondly, it is possible to extend certain existence and uniqueness
results to deformations of strong Lipschitz domains, even if they are potentially just
weakly Lipschitz.

23

Lemma 2.19.
Let Ω ⊂ Rd be strongly Lipschitz. Then there exists c(Ω) with 0 < c(Ω) < 1 such that

∀X ∈ C0,1(Rd;Rd) s.t. Lip(X) ≤ c(Ω), (Id + X)(Ω) is strongly Lipschitz. (2.38)

Proof. See [Bel+97, Lemma 3].

Existence and uniqueness results usually require strong Lipschitz regularity of the
domain. However, for Lipschitz deformations of such domains one can often use a
pull-back argument to extend these results. We illustrate this for the Poisson problem.
Proposition 2.20 ([DZ11, § 10.5.5]).
Let Ω ⊂ Rd be a strongly Lipschitz domain and let T : Ω → Rd be a bi-Lipschitz
function. Then for any g ∈ L2(T (Ω)) there exists a unique weak solution to the
Poisson problem with homogeneous boundary conditions, i.e.

∃!u ∈ H1
0 (T(Ω)) s.t.

∫
T(Ω)

∇u·∇v dx =

∫
T(Ω)

gv dx for all v ∈ H1
0 (T(Ω)). (2.39)

Remark 2.21. In the same way as [DZ11], we employ two notations for derivatives.
We use Euler notation for deformations of domains and vector calculus notation for
PDE constraints.

Proof of Proposition 2.20. Using an approximation argument we obtain that v 7→
ṽ := v ◦T is a bijective mapping from H1

0 (T(Ω)) to H1
0 (Ω). By the change of variables

formula it holds that∫
T(Ω)

∇u · ∇v dx−
∫
T(Ω)

gv dx

=

∫
Ω

((∇u) ◦T) · ((∇v) ◦T) |det(DT)| − (g ◦T)(v ◦T) |det DT| dx

=

∫
Ω

(DT−>∇(u ◦T)) · (DT−>∇(v ◦T)) |det(DT)|

− (g ◦T)(v ◦T) |det(DT)| dx

=

∫
Ω

(∇ũ)>(DT−1 DT−>)∇ṽ |det(DT)| − g̃ṽ |det(DT)| dx.

(2.40)

Using Lemma 2.22 we can invoke the Lax-Milgram Theorem to guarantee existence of
a unique solution ũ ∈ H1

0 (Ω) to∫
Ω

(∇ũ)>(DT−1 DT−>)∇ṽ |det(DT)| − g̃ṽ |det(DT)| dx = 0 (2.41)

for all ṽ ∈ H1
0 (Ω). If we then define u = ũ ◦T−1, we obtain a solution to the problem

on T(Ω). To see that this solution is unique, assume that there exists a second

24

solution w. Then w̃ = w ◦ T is a distinct solution to the problem on Ω, which is a
contradiction.

Lemma 2.22.
Let Ω ⊂ Rd be an open set and let T : Ω→ Rd be a bi-Lipschitz continuous function.
Then for a, b ∈ Rd it holds that∣∣b>DT−1 DT−>a

∣∣ ≤ Lip(T)−2 ‖b‖ ‖a‖ ,

a>DT−1 DT−>a ≥ Lip(T)−2 ‖a‖2 ,

|det(DT)| ≥ Lip(T)d a.e.

(2.42)

Proof. Consider the singular value decomposition DT = UΣV>, with σ1 ≥ . . . ≥ σd.
Then it holds that σ1 ≤ Lip(T) and σd ≥ Lip(T). Now observe that

DT−1 DT−> = VΣ−1U>UΣ−1V> = VΣ−2V> (2.43)

and hence ∣∣b>DT−1 DT−>a
∣∣ ≤ σ−2

d ‖b‖ ‖a‖

a>DT−1 DT−>a ≥ σ−2
1 ‖a‖

2 .
(2.44)

The last claim follows from the fact that the absolute value of the determinant of a
matrix is equal to the product of its singular values.

In the same fashion, existence and uniqueness of solutions on domains that are
Lipschitz deformations of strong Lipschitz domains can be proven for other PDEs of
interest. The third requirement, differentiability of the shape functional, is usually
satisfied in W 1,∞. Unfortunately, neither W 1,∞(Ω;Rd) nor the spaces of continuously
differentiable functions are reflexive, making it difficult to prove existence of optimal
deformations. In fact, existence and uniqueness of optimal shapes is only known for a
small number of problems.

2.3 Reduction of PDE constraints via adjoint solu-
tions

Many shape optimisation problems are subject to an additional PDE constraint. This
complicates the problem, as the PDE and its solution will depend on the shape.

Let Ω ⊂ Rd be a given initial domain and denote its deformations by ΩX = TX(Ω).
Assume the PDE constraint on ΩX is given by a (possibly nonlinear) function

e(ΩX, ·) : X (ΩX)→ X (ΩX)∗

u 7→
(
v 7→ e(ΩX, u; v)

) (2.45)

25

that is required to be zero, e(ΩX, u) = 0. Here X (ΩX) is some Sobolev space in which
we search for a solution, e.g. X (ΩX) = H1

0 (ΩX;R). If the mapping

u 7→ u ◦T−1
X : X (Ω)→ X (ΩX) (2.46)

is bijective, then we can employ a pull-back in order to express the PDE constraint
for all perturbations ΩX as a constraint defined on Ω. For ease of notation we will
denote the space on the initial domain simply by X ≡ X (Ω). Define

eΩ : D ×X → X ∗ (2.47)

(X, u) 7→
(
v 7→ eΩ(X, u; v) := e(ΩX, u ◦T−1

X ; v ◦T−1
X)
)
, (2.48)

where TX = Id + X. We arrive at the formulation

minimise
X∈D, u∈X

JΩ(X, u)

subject to eΩ(X, u) = 0,

‖DX‖2 ≤ ζ(Ω)− ε a.e.

(2.49)

There are two approaches for solving such constrained problems. The first is to solve
for X and u simultaneously; this is known as the all-at-once approach. Alternatively,
if there is a well-defined solution operator X 7→ S(X) such that eΩ(X, S(X)) = 0,
then one can reduce the optimisation problem to

minimise
X∈D

JΩ(X)

subject to ‖DX‖2 ≤ ζ(Ω)− ε a.e.,
(2.50)

where JΩ(X) = JΩ(X, S(X)). To perform efficient optimisation, the derivative of
JΩ is needed. Recalling Theorem 2.7 we observe that we only need to know how to
calculate the derivative at X = 0. To calculate the derivative at a general X, we can
then make use of the identity

dJΩ(X; V) = dJΩX
(0; V ◦T−1

X). (2.51)

However, in order to calculate the derivative of JΩ, the solution operator S needs to
be differentiated as well.

Assume that J and e are continuously Fréchet differentiable and furthermore
assume that ∂eΩ

∂u
(0, S(0)) is an invertible map from X to X ∗. Then, by the implicit

function theorem, the solution operator S is continuously differentiable and furthermore
it holds that

dJΩ(0; V) =
〈∂JΩ

∂X
(0, S(0)),V

〉
+
〈∂JΩ

∂X
, dS(0; V)

〉
for all V ∈ D. (2.52)

26

However, in order to avoid having to differentiate the solution operator S, we now
illustrate the adjoint approach to calculating the derivative under PDE constraints
[Hin+09]. We begin by defining the Lagrangian

L(X, u, v) := JΩ(X, u) + eΩ(X, u; v) (2.53)

and observe that
JΩ(X) = L(X, S(X), v) for all v ∈ X . (2.54)

Then it holds that for any v ∈ X and V ∈ D

dJΩ(0; V) ≡
〈dJΩ(0)

dX
,V
〉

=
〈 ∂L
∂X

(0, S(0), v),V
〉

+
〈∂L
∂u

(0, S(0), v), 〈S ′(0),V〉
〉
.

(2.55)

Hence, if we pick v such that

∂L
∂u

(0, S(0), v) = 0 in X ∗ (2.56)

then we obtain that

dJΩ(0; V) =
〈 ∂L
∂X

(0, S(0), v),V
〉

for all V ∈ D. (2.57)

Equation (2.56) can equivalently be written as

∂eΩ

∂u
(0, S(0); v)− ∂JΩ

∂u
(0, S(0)) = 0 in X ∗ (2.58)

and is known as the adjoint equation and v is the adjoint to the state u = S(0).

Example 2.23. To illustrate the above, we consider the example of energy minimisa-
tion in Stokes flow. We consider a channel A ⊂ Rd containing an obstacle B ⊂⊂ A

and define the domain Ω = A \B. The (reduced) objective that we consider is given by

J (Ω) =

∫
Ω

1

2
‖∇u‖2 dx (2.59)

where u satisfies the Stokes equations. In strong form these are given by: find (u, p)

such that
−∆u +∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂B,

u = u∞ on ∂A,

(2.60)

27

for some constant far-field velocity u∞. The weak form is given by: find u ∈ H1(Ω;Rd)

and p ∈ L2(Ω) such that u = u∞ on ∂A, u = 0 on ∂B, and

〈e(Ω, (u, p)), (v, q)〉 :=

∫
Ω

∇u : ∇v dx

−
∫

Ω

(∇ · v)p dx−
∫

Ω

(∇ · u)q dx
!

= 0

(2.61)

for all v ∈ H1
0 (Ω;Rd), q ∈ L2

0(Ω). We use the subscript X to denote the composition
with T−1

X , e.g. vX = v ◦T−1
X . The Lagrangian is then given by

LΩ(X, (u, p); (v, q)) =

∫
ΩX

1

2
‖∇uX‖2 dx+

∫
ΩX

∇uX : ∇vX dx

−
∫

ΩX

pX(∇ · vX) dx−
∫

ΩX

qX(∇ · uX) dx

=

∫
Ω

1

2
‖∇uX‖2 ◦TX det(DTX) dx

+

∫
Ω

(∇uX) ◦TX : (∇vX◦)TX det(DTX) dx

−
∫

Ω

(∇ · vX) ◦TXp det(DTX) dx

−
∫

Ω

(∇ · uX) ◦TXq det(DTX) dx.

(2.62)

Note that
(∇vX) ◦TX = DX−>∇v (2.63)

and
(∇ · vX) ◦TX = tr(DX−>∇v). (2.64)

Using the identities
〈∂X det(DTX)|X=0,V〉 = div(V),

〈∂X DTX
−1|X=0,V〉 = −DV,

(2.65)

we obtain

〈∂XLΩ(0, (u, p), (v, q)); V〉

=

∫
Ω

−∇u : (DV>∇u) +
1

2
‖∇u‖2 div(V) dx

+

∫
Ω

−[DV>∇u] : ∇v −∇u : [DV>∇v] +∇u : ∇v div(V) dx

+

∫
Ω

tr(DV>∇v)p− (∇ · v)p div(V) dx

+

∫
Ω

tr(DV>∇u)q − (∇ · u)q div(V) dx.

(2.66)

28

The adjoint problem is obtained by taking the derivative of the Lagrangian with respect
to the state: find (v, q) such that

0
!

=〈∂(u,p)LΩ(0, (u, p); (v, q)), (û, p̂)〉

=

∫
Ω

∇û : ∇u dx+

∫
Ω

∇û : ∇v dx−
∫

Ω

(∇ · v)p̂ dx−
∫

Ω

(∇ · ŵ)q dx
(2.67)

for all û ∈ H1
0 (Ω;Rd), p̂ ∈ L2

0(Ω). For this particular problem, we can see that the
solution to the adjoint equation is given by (v, q) = (0, p). Thus by (2.57) we conclude
that the shape derivative is given by

dJΩ(0; V) = 〈∂XLΩ(0, (u, p); (0, p)),V〉

=

∫
Ω

−∇u : (DV>∇u) +
1

2
‖∇u‖2 div(V) dx

+

∫
Ω

tr(DV>∇u)p− (∇ · u)p div(V) dx.

(2.68)

Differentiability for the Navier–Stokes case was proven in [Bel+97]. We remark that
having a closed form expression for the adjoint equation is not typical.

2.4 Structure of Shape Derivatives

We have formulated shape optimisation problems as a search for optimal deformations
of an initial shape. However, since there are many mappings that map an initial domain
to the same deformed domain, we cannot hope for uniqueness of optimal deformations.
Furthermore, this nonuniqueness has a significant impact on the structure of shape
derivatives. Before stating the general structure theorem, we illustrate this using a
simple example.

Example 2.24. In Example 2.6 we studied the shape objective

J(Ω) =

∫
Ω

g dx (2.69)

for a function g ∈ C1(Rd,R) and showed that

dJ(Ω)[V] =

∫
Ω

div(gV) dx. (2.70)

Assuming Lipschitz regularity of ∂Ω we can apply integration by parts and we obtain
that

dJ(Ω)[V] =

∫
∂Ω

gV · n dx. (2.71)

This means that, to first order, the shape objective is invariant with respect to defor-
mations in the interior of Ω or tangential deformation of ∂Ω.

29

The expression in (2.70) for the derivative involving the integral over Ω is known as
the volume form, and the expression in (2.71) involving the integral over the boundary
is known as the surface form of the derivative. Indeed, for a domain with sufficiently
smooth boundary ∂Ω, dJΩ can always be expressed as a distribution on the boundary
acting only on normal vector fields. A similar statement holds for the second derivative.
Theorem 2.25 (Structure Theorem).
Assume that J is differentiable at Ω.

1. Assume Ω has C1 regularity, then there exists a continuous linear functional
l̃1 : C1(∂Ω;Rd)→ R such that

dJ(Ω)[V] = l̃1(V) for all V ∈ C1(Ω;Rd). (2.72)

2. Assume Ω has C2 regularity, then there exists a continuous linear functional
l1 : C1(∂Ω)→ R such that

dJ(Ω)[V] = l1(V · n) for all V ∈ C1(Ω;Rd). (2.73)

3. Assume Ω has C3 regularity and J is twice differentiable, then there exists a
continuous, bilinear l2 : C1(∂Ω)× C1(∂Ω)→ R such that

d2J(Ω)[V,W] = l2(V · n,W · n)

− l1(Vτ ·DτnW + n ·DτVW + n ·DτWV)
(2.74)

for all V,W ∈ C2(Ω;Rd).

Proof. See [DZ11, §9, Theorem 3.6 & Corollary 1], [NP02, Theorem 2.1], [Stu16,
Theorem 2.6 & 2.10].

The structure theorem implies that for sufficiently regular domains and deforma-
tions,

• the first shape derivative only depends on deformations on the boundary and in
normal direction,

• the second shape derivative only depends on deformations on the boundary (in
normal or tangential direction),

• at a stationary point, the second shape derivative only depends on deformations
on the boundary and in normal direction.

30

The structure theorem motivates the formulation of optimisation problems as a
search over normal deformations of the boundary and to use the surface form of the
derivative. This has the advantage that the derivative then does not have the large
kernel consisting of deformations that have zero normal component on the boundary,
but has several disadvantages. First, finite element approximations and polyhedral
meshes usually do not satisfy the requirements for the structure theorem and hence
simply discretising the surface form of the shape derivative obtained for the continuous
problem introduces an error. It was shown in [HPS15] that the volume formulation of
the derivative admits higher accuracy when computed numerically, in fact it usually
corresponds to the exact derivative of the discrete problem. Secondly, if the boundary
of a domain is Ck+1 regular, then the normal is only Ck regular and hence with each
update in normal direction one loses regularity of the domain. For these reasons, using
the volume form of the shape derivative has been more popular in recent works on
shape optimisation. However, the invariance of the shape objective with respect to
interior and (to first order) tangential deformations introduces other problems. Close
to the minimiser those components of the derivative that arise from the discretisation
can dominate; often this is reflected in deformations that only move interior nodes
and do not change the domain but have an effect on the value of the discretised
objective. When these spurious modes dominate, this can lead to degeneration of the
mesh. It also poses problems for the development of second order methods: since the
Hessian has a large nullspace a standard Newton method cannot be applied. One
way of dealing with this issue is to add a regularisation term to the objective or to
the Hessian [KU14; Sch18]. Alternatively, one can introduce a smaller control space
E (e.g. one that lives on the boundary), an extension operator E : E → D and then
minimise the objective J̃Ω(e) = JΩ(E(e)). This still allows for the use of the volume
formula of the shape derivative and if E is chosen appropriately then the first and
second derivatives of J̃Ω do not have the same nullspace [Bra+09; Bra+12; KU14].

A new approach was recently suggested in [Etl+18], where the gradient is projected
onto a subspace D̃ ⊂ D. The space D̃ is chosen so that the projection is given by the
identity for smooth shapes, but removes spurious deformations in the interior and in
tangential direction on the boundary for the discretised problem.

The contributions of the next two chapters, namely the automated calculation of
shape derivatives and an inner product that creates nearly conformal deformations, are
orthogonal to this issue and hence we do not choose a particular form of regularisation
but perform the optimisation directly on the deformation space D. Finally, for the

31

problems we study in Chapter 8 we will combine Tikhonov regularisation with a
projection approach similar to [Etl+18], though for a different choice of subspace.

2.5 Numerical shape optimisation

2.5.1 Optimisation

In the previous section we formulated shape optimisation as an optimisation problem
looking for an optimal deformation X ∈ D. In order to perform gradient based
optimisation, we assume that the shape derivative satisfies the higher regularity
dJ ∈ H∗ for some Hilbert space (H, (·, ·)H). Given a shape derivative dJΩ(X; ·) ∈ H∗,
the shape gradient ∇JΩ(X) ∈ H is then given by the solution to

find U ∈ H s.t. (U,V)H = dJΩ(X; V) for all V ∈ H. (2.75)

We emphasise the distinction between the shape derivative as an element in the dual
space and the shape gradient as an element in the primal space and that the gradient
is dependent on the inner product defined on the space of deformations. Later in
Chapter 4 we will use this dependence to define an inner product that results in
gradients that have particularly good properties. Note that obtaining the gradient
from the derivative involves the solution of a PDE; this is in contrast to classical
optimisation in Rn equipped with the l2 inner product, where the gradient is simply
the transpose of the derivative.

In Theorem 2.7 it was shown that

dJΩ(X; V) = dJΩX
(0; V ◦T−1

X) = dJ(ΩX)[V ◦T−1
X], (2.76)

relating the derivative from the reference domain dJΩ(X; ·) to the classical shape
derivative dJ(ΩX)[·]. This is crucial because it means that the derivative as an element
of the dual space on the reference domain Ω can be calculated on the deformed domain
ΩX.

A simple steepest descent algorithm then reads as follows:

32

Algorithm 1 Steepest descent shape optimisation algorithm
1: X← 0
2: k ← 0
3: while not converged do
4: Set ΩX = {x+ X(x) : x ∈ Ω}.
5: Calculate the shape derivative dJ(ΩX) ∈ [H(ΩX)]∗.
6: Calculate the shape gradient ∇J(X) ∈ [H(Ω)] satisfying

(∇J(X),V)H = dJ(ΩX)[V ◦T−1
X] for all V ∈ H. (2.77)

7: Set X = X− αk∇J(X) for some step size αk > 0.
8: k ← k + 1
9: end while

Here the step size αk is usually chosen to satisfy the (strong) Wolfe conditions,
ensuring that both the objective and the gradient are reduced sufficiently [NW06,
§3.1].

First order methods can perform poorly for optimisation problems with very
anisotropic Hessians. To improve performance, quasi Newton-methods approximate
the Hessian of the objective by inspecting the change of the gradient throughout the
optimisation. This adds little extra computational cost but can improve performance
significantly [NW06, §7.2, Theorem 3.7]. We will use the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [Noc80], [NW06, §7.2].

2.5.2 Discretisation

We use the finite element method to solve the governing PDEs and hence we assume that
the initial domain Ω is given as a triangulationMh of Ω into closed triangles/tetrahedra
that satisfy Ω = ∪K∈Mh

K and K◦1 ∩ K◦2 = ∅ for all K1 6= K2 in Mh. Such a
triangulation can be used to define a set of global basis function bi : Ω → Rd,
1 ≤ i ≤ n, spanning the finite element space. The finite element space bΩ,i is called
Lagrangian of order p, if

1. the functions bΩ,i are continuous in Ω,

2. bΩ,i|K is a polynomial of order p for all K ∈Mh, and

3. the degrees of freedom are given by point evaluations.

The global basis functions are related to local basis functions in the following way: there
exists a reference element K̂, local basis functions b̂j and bijective, affine functions

33

{
GK : K → K̂ | K ∈Mh(Ω)

}
such that

bΩ,i|K = b̂j ◦GK for some j for all i and K ∈Mh(Ω). (2.78)

These scalar functions induce a natural basis {bΩ,i}i≤d·M for the space of vector fields.
Often one considers piecewise affine deformations of the initial domain Ω, i.e. TX =

Id+X where X =
∑

i αibΩ,i. The basis functions on the deformed domain ΩX = TX(Ω)

are then given by
b̃ΩX,i|KX

= b̂i ◦GKX
, (2.79)

where GKX
= GK ◦ TX|K−1 and KX = TX(K). Note that GKX

is again an affine
transformation and that the relationship between the basis functions on the deformed
and on the initial domain is given by bΩX,i = bΩ,i ◦ T−1

X . It turns out that this relation
is crucial for the calculation of the shape derivative. Revisiting (2.75) in the discretised
case, we need to find U =

∑d·M
j=0 ujbΩ,j such that∑

j

αj(bj,Ω,bi,Ω)H︸ ︷︷ ︸
=Aij

= dJΩ(X; bi,Ω) for all i. (2.80)

The matrix A = {Aij}ij is assembled once on the reference domain; since it is used
repeatedly we will usually factorise it as the cost of this factorisation is amortized
throughout the optimisation procedure. The right-hand side can be rewritten as

dJΩ(X; bi,Ω)
(2.76)
= dJΩX

(0; bi,Ω ◦T−1
X) = dJΩX

(0; bi,ΩX
) for all i. (2.81)

This means that the initially awkward looking relationship between the shape deriva-
tive on the reference domain Ω and the derivative on ΩX exactly translates to the
relationship between finite element basis functions on the initial and the deformed
domain. In particular, this means that the right-hand side in (2.80) can be assembled
on the deformed domain ΩX.

2.5.3 Software

The numerical experiments in this thesis are all performed using the Firedrake li-
brary [Rat+16]. Firedrake is a library for the automated solution of PDEs using
the finite element method. Problems are expressed in the Unified Form Language
(UFL) [Aln+14] which was developed as part of the FEniCS project [LMW12]. We
show an example solving the Poisson problem on the unit square in Listing 1. The
symbolic manner in which PDEs are specified in UFL (see lines 10 and 12) enables

34

many automated calculations, such as the derivation of Jacobians, adjoints and shape
derivatives.

Listing 1 Sample code using Firedrake and UFL to solve the Poisson problem.
1 from firedrake import *

2 # Load a mesh and create a CG1 function space
3 mesh = UnitSquareMesh(10, 10)
4 V = FunctionSpace(mesh, "Lagrange", 1)

5 # Define the trial and the test function
6 u = Function(V)
7 v = TestFunction(V)

8 # Define a right hand side
9 x, y = SpatialCoordinate(mesh)

10 rhs = (1 + 8*pi*pi)*cos(2*pi*x)*cos(2*pi*y)

11 # Define the PDE in weak form and specify boundary conditions
12 F = inner(grad(u), grad(v)) * dx - rhs * v * dx
13 bc = DirichletBC(V, 0, "on_boundary")

14 # Specify the Krylov method (Conjugate Gradient)
15 # and the preconditioner (AMG) to be used
16 sp = {'ksp_type': 'cg', 'pc_type': 'hypre'}
17 solve(F==0, u, bcs=bc, solver_parameters=sp)

18 # Output the solution in VTK format
19 File("u.pvd").write(u)

For efficient assembly, Firedrake generates and compiles C code kernels at runtime.
The arising linear systems are solved using the PETSc library [Bal+97; Bal+16;
Bal+18].

To facilitate the efficient formulation of shape optimisation problems in Firedrake,
a lightweight library called Fireshape was developed with Alberto Paganini. The
library provides efficient ways of specifying deformation spaces to be used. This ranges
from the common choice of piecewise affine finite elements (corresponding to simply
moving the vertices of the mesh) to high-order spline spaces that can enforce arbitrary
regularity on the deformations. The spline approach is described in detail in [PWF18]
but not included in this thesis as it is mostly Paganini’s work.

UFL already provides methods to automatically calculate derivatives of expres-
sions with respect to functions, which has been used in the dolfin-adjoint project to
automatically derive adjoints for linear, nonlinear, steady or transient PDEs [Far+13;
MFD19]. In Chapter 3 we will extend UFL to calculate shape derivatives.

35

While there exists a vast number of software libraries that implement gradient
based optimisation algorithms, many assume that the control space is given by Rn and
that the inner product is the l2 inner product. The Rapid Optimization Library (ROL)
of the Trilinos software package is a C++ implementation of a large class of first and
second order optimisation algorithms for constrained and unconstrained optimisation.
ROL was developed with PDE constrained optimisation in mind [RK14] and allows for
the user to provide custom data structures, inner products and Riesz-maps to facilitate
optimisation in function spaces. A Python wrapper for ROL written in collaboration
with Chris Richardson is available at [WR].

Combining the capabilities of UFL, Firedrake, dolfin-adjoint, and ROL, we are able to
perform shape optimisation with Fireshape by simply writing a solver for the constraint
equation and an objective to be minimised: the required adjoints and shape derivatives
are then all calculated automatically and ROL is called to perform the optimisation.

36

Chapter 3

Automated calculation of shape
derivatives

While only relying on basic transformation rules, the calculation of shape derivatives is
often a lengthy and error-prone exercise. The reason for this is that even simple, linear
PDEs are nonlinear with respect to the domain. We illustrate this by considering the
partial derivative of the weak form of the Laplace equation, that is

e(Ω, u; v) :=

∫
Ω

∇u · ∇v dx. (3.1)

We can rewrite this equation as described in Section 2.3,

e(X, u; v) =

∫
ΩX

∇uX · ∇vX dx, (3.2)

where uX = u ◦T−1
X and vX = v ◦T−1

X . Performing a pullback to Ω, we obtain

e(X, u; v) =

∫
Ω

(∇uX) ◦TX · (∇vX) ◦TX det(DTX) dx

=

∫
Ω

(DTX)−>∇u · (DTX
−>∇v) det(DTX) dx.

(3.3)

Differentiating with respect to X, we obtain

〈∂e(0, u; v)

∂X
,V〉 = −

∫
Ω

(DV)>∇u · ∇v +∇u · (DV)>∇v −∇u · ∇v div(V) dx. (3.4)

For the second derivative, the number of terms increases to 12. One can easily imagine
how lengthy such calculations become once more complicated PDEs such as the
Navier–Stokes equations are considered.

To simplify this process, Schmidt [Sch18] introduces the open-source library
FEMorph: an automatic shape differentiation toolbox for the Unified Form Language.

37

FEMorph is based on refactoring UFL expressions and applying shape calculus differ-
entiation rules recursively. It can compute first- and second-order shape derivatives
(both in so-called weak and strong form), and it has been successfully employed to
solve shape optimisation problems [SSW18]. The disadvantage of this approach is
that it requires the manual implementation of individual shape calculus rules as well
as intricate restructuring and pattern matching on UFL expressions. In addition, the
tool assumes that an affinely mapped finite element space is used.

This chapter presents an alternative approach to automated shape differentiation.
The key idea is to rely solely on pullbacks and standard Gâteaux derivatives. The
approach is generic and robust, as it circumvents the need to implement individual
shape calculus rules. We only require a minor addition to UFL, as UFL already supports
Gâteaux derivatives with respect to functions and is aware of the different types of
pullbacks required for a large number of finite element spaces. As a result of the
work presented, UFL is now capable of automatically shape differentiating almost any
surface or volume integral that can be expressed in it.

3.1 Shape differentiation on the reference element

We recall the definition of the shape derivative from (2.17): the shape derivative of J
at Ω in the direction V ∈ W 1,∞(Ω,Rd) is given by

dJ(Ω)[V] := lim
s→0

J((Id + sV)(Ω))− J(Ω)

s
. (3.5)

To simplify notation, for the rest of this chapter we fix a deformation direction V and
denote

Ts = Id + sV and Ωs = Ts(Ω). (3.6)

To illustrate the shape differentiation of a shape functional, we consider the prototypical
example

J(Ωs) =

∫
Ωs

us dx. (3.7)

where us is some scalar function. The subscript s highlights the possible dependence
of us on the domain Ωs; we write u = u0.

The standard procedure to compute dJ is to transform the integral and rewrite

J(Ωs) =

∫
Ω

(us ◦Ts) det(DTs) dx. (3.8)

38

Note that det(DTs) > 0 for s sufficiently small. Then, by linearity of the integral, the
shape derivative dJ is given by

dJ(Ω)[V] =

∫
Ω

ds((us ◦Ts) det DTs) dx

=

∫
Ω

ds(us ◦Ts) + u div(V) dx. (3.9)

where ds(·) denotes the derivative with respect to s at s = 0. The term ds(us ◦Ts) is
often called the material derivative [Ber10]. Its explicit formula depends on whether
the function us does or does not dependent on the domain Ωs (see Section 3.2).

We now focus on the case of a single triangle K given as the pushforward of a
reference element K̂, i.e. K = F(K̂). We observe that if K is deformed by a vector
field Ts, then the deformed element satisfies

Ts(K) = (F + sF ◦V)(K̂). (3.10)

As mentioned above, the integrand of a shape objective may change as the domain is
deformed. Viewing the objective from the reference element, we denote this dependence
with the subscript uF and write our shape objective as

J(K) ≡ J(F(K̂)) =

∫
F(K̂)

uF dx. (3.11)

To calculate the shape derivative in the direction V, we note that (Id + sV) ◦ F =

F + sV ◦ F and hence

J((Id + sV)(K)) =

∫
(F+sV◦F)(K̂)

uF+sV◦F dx

=

∫
K̂

uF+sV◦F ◦ (F + sV ◦ F) det(D(F + sV ◦ F)) dx̂,

(3.12)

where we use dx̂ to refer to an integral over the reference element. The shape derivative
is given by taking the derivative at s = 0, and hence we observe that

dJ(K)[V] =

∫
K̂

〈dF[uF ◦ F det(DF)],V ◦ F〉 dx̂. (3.13)

Usually the direction V is a Lagrange finite element function and we denote V̂ = V◦F.
We thus obtain

dJ(K)[V] =

∫
K̂

(
〈dF[uF ◦ F], V̂〉+ uF ◦ F tr(DV̂ DF−1)

)
det(DF) dx̂. (3.14)

39

Now let Ω be a mesh given by the union of elements {Ki}i. Adding subscripts to the
deformation, the integrand and the mapping from the reference element to denote the
restriction to the element Ki, we then obtain

dJ(Ω)[V]

=
∑
i

∫
K̂

(
〈dFi [ui,Fi ◦ Fi], V̂i〉+ ui,Fi ◦ Fi tr(DV̂i DF−1

i)
)

det(DFi) dx̂.
(3.15)

Equation (3.15) gives an alternative expression for the shape derivative (3.9): this
new expression is assembled on the reference element instead of on the physical
domain. More importantly, the derivation above also implies that it is possible to
evaluate dJ(Ω)[V] by performing the steps necessary for the assembly of J(Ω) and,
at the appropriate time, inserting a standard Gâteaux directional derivative with
respect to the pushforward. Simply adding this step to the existing pipeline in UFL
enables completely automated shape differentiation (see Figure 3.1). Note that this
also enables the computation of higher-order shape derivatives by simply taking
higher-order Gâteaux derivatives in (3.15).

Remark 3.1. The integral in (3.15) is approximated by quadrature. For polynomial
expressions, UFL automatically chooses a degree so that the integration is exact. When
this is not possible, an estimate for a suitable degree is made. UFL also allows the user
to specify the quadrature degree. In that case it is crucial that the same quadrature
degree is specified for the assembly of the objective and the shape derivative.

Input: integrand in physical space

Estimate quadrature degree

Pullback to reference element

New: calculate derivatives with respect to pushforward

Output: integrand in reference space

Figure 3.1: Symbolic workflow in UFL to transform integrals from physical to reference
space.

40

3.2 Examples

We now study several examples that cover most standard applications. We begin with
the simple case where the integrand is a globally defined function without dependence
on the domain.

Example 3.2. Let f : Rd → R and consider

J(Ω) =

∫
Ω

f dx. (3.16)

In the notation of (3.9) this corresponds to us = f and we obtain the shape derivative
in physical space:

dJ(Ω)[V] =

∫
Ω

ds(f ◦Ts) + f div(V) dx =

∫
Ω

∇f ·V + f div(V) dx. (3.17)

Similarly, in the notation of (3.15) we have ui,Fi = f and we obtain the equivalent
expression on the reference element:

dJ(K)[V] =
∑
i

∫
K̂

(
V̂i · (∇f ◦ Fi) + f ◦ Fi tr(DV̂i DF−1

i)
)

det(DFi) dx̂. (3.18)

This is now done automatically in UFL. Example code is shown in Listing 2 for the
case f(x, y) = sin(x) cos(y).

Listing 2 Firedrake code to compute dJ for Example 3.2.
1 from firedrake import *
2 mesh = UnitSquareMesh(10, 10)
3 x, y = X = SpatialCoordinate(mesh)
4 f = sin(x) * cos(y)
5 J = f * dx
6 dJ = assemble(derivative(J, X))

We now study objectives with integrands given by finite element functions.

Example 3.3. Consider a family {Vh(Ωs)}s of affinely mapped, scalar finite element
spaces on the deformed domains {Ωs}s. Given v ∈ Vh(Ω), we are interested in the
sensitivity of the integral of v when the domain is deformed but the coefficient vector
corresponding to v is kept constant. Since the element is affinely mapped, we obtain
that the relation between the function on the deformed domain and on the initial
domain is given by

vs = v ◦T−1
s , (3.19)

and the objective is

J(Ωs) =

∫
Ωs

vs dx. (3.20)

41

The expression for the shape derivative on Ω can then be obtained using (3.9):

dJ(Ω)[Vs] =

∫
Ω

ds(vTs ◦Ts) + v div(V) dx =

∫
Ω

v div(V) dx. (3.21)

On the other hand, on a single element Ki, we observe that v|Ki = v̂i ◦ F−1
i for some

function v̂i on the reference element. Assume now the element is deformed with a
deformation V, then we note that vs|Ts(K) = v̂i◦(Fi+sV◦Fi)

−1. Let F = Fi+sV◦Fi

then we conclude
vs|Ts(K) = vi,F := v̂i ◦ F−1 (3.22)

We thus obtain

dJ(Ω)[V]

=
∑
i

∫
K̂

(
〈dFi [vi,Fi ◦ Fi], V̂i〉︸ ︷︷ ︸

=0

+ vi,Fi ◦ Fi tr(DV̂i DF−1
i)
)

det(DFi) dx̂

=
∑
i

∫
K̂

(
v̂i tr(DV̂i DF−1

i)
)

det(DFi) dx̂.

(3.23)

The new feature in UFL automatically performs the pullback and calculates the deriva-
tive, as shown below.

Listing 3 Firedrake code to compute dJ for Example 3.3.
1 from firedrake import *
2 mesh = UnitSquareMesh(10, 10)
3 V = FunctionSpace(mesh, "CG", 1)
4 x, y = X = SpatialCoordinate(mesh)
5 v = interpolate(sin(x) * cos(y), V)
6 J = v * dx
7 dJ = assemble(derivative(J, X))

Example 3.4. We continue the previous example but now study the case when the
shape objective is given by

J(Ωs) =

∫
Ωs

‖∇vs‖2 dx. (3.24)

By vs = v ◦T−1
s we obtain

∇vs = DT−>s ∇v (3.25)

and hence the shape derivative in physical space is given by

dJ(Ω)[Vs] =

∫
Ω

ds(vTs ◦Ts) + ‖∇v‖2 div(V) dx

=

∫
Ω

−2∇v · (DV>∇v) + ‖∇v‖2 div(V) dx

(3.26)

42

To obtain the expression on the reference element, we observe that the integrand on a
single element Ki satisfies

ui,F = ‖DF−>∇v̂i‖2 ◦ F−1 (3.27)

and hence

dJ(Ω)[V]

=
∑
i

∫
K̂

(
〈dFi [ui,Fi ◦ Fi], V̂i〉+ ‖DF−>v̂i‖2 tr(DV̂i DF−1

i)
)

det(DFi) dx̂

=
∑
i

∫
K̂

(
− 2(DF−>i ∇v̂i) · (DF−>i DV̂>i DFi

−>∇v̂i) + v̂i tr(DV̂i DF−1
i)
)

det(DFi) dx̂.

(3.28)

Listing 4 Firedrake code to compute dJ for Example 3.4.
1 from firedrake import *
2 mesh = UnitSquareMesh(10, 10)
3 V = FunctionSpace(mesh, "CG", 1)
4 x, y = X = SpatialCoordinate(mesh)
5 v = interpolate(sin(x) * cos(y), V)
6 J = inner(grad(v), grad(v)) * dx
7 dJ = assemble(derivative(J, X))

So far we have only studied affinely mapped elements. We now highlight the effect
of different choices of finite elements on the shape derivative and demonstrate that
the implementation in UFL handles these cases automatically.

Example 3.5. We consider the same objective as in Example 3.3 again, but this time
we study the case of an H(div) conforming element. In that case a finite element
vector field v is mapped from the reference domain using the contravariant Piola
transform, i.e.

v ◦ Fi|Ki =
1

det(DFi)
DFiv̂i. (3.29)

As a consequence, the relationship between a function on the original domain and on
the deformed domain is given by

vs =
1

det(DTs)
DTsv ◦T−1

s . (3.30)

To obtain a scalar integrand we take the inner product with some constant vector a,

43

and then calculate the shape derivative of J(Ω) =
∫

Ω
v · a dx:

dJ(Ω)[V] =

∫
Ω

(
ds(vTs ◦Ts) + div(V)

)
· a dx

=

∫
Ω

(
[− div(V) + DV]v + v div(V)

)
· a dx

=

∫
Ω

(
DVv

)
· a dx.

(3.31)

For an H(curl) conforming element the relationships are

v ◦ Fi|Ki = (DFi)
−>v̂i. (3.32)

and hence
vs = (DTs)

−>v ◦T−1
s , (3.33)

and hence the shape derivative for the same objective is given by

dJ(Ω)[V] =

∫
Ω

(
ds(vTs ◦Ts) + div(V)

)
· a dx

=

∫
Ω

(
DV>v + v div(V)

)
· a dx.

(3.34)

Despite the objective being seemingly the same as in Example 3.3, the type of finite
element function and its mapping to the reference element directly affects the shape
derivative. Since UFL is aware of the mapping that is applied for finite element spaces
such as the Nédélec spaces, it automatically performs the correct pullback. We do
not give the expression on the reference domain, but show code in Listing 5 that
automatically derives the equivalent expressions on the reference element to (3.31)
and (3.34). We highlight that the user does not have to specify the mapping manually
and that the correctness is checked by asserting that the automatically derived shape
derivative is equal to (up to machine accuracy) the manually implemented shape
derivative.

44

Listing 5 Firedrake code to compute the shape derivative for objectives involving
nonaffinely mapped elements.

1 from firedrake import *
2 import numpy as np
3 mesh = UnitSquareMesh(10, 10)
4 defo = TestFunction(mesh.coordinates.function_space())
5 a = Constant((1, 1))
6 x, y = X = SpatialCoordinate(mesh)

7 V = FunctionSpace(mesh, "Nedelec 1st kind H(div)", 1)
8 v = project(as_vector([sin(x), cos(y)]), V)
9 J = inner(v, a) * dx

10 dJ = assemble(derivative(J, X, defo))
11 dJmanual = assemble(inner(grad(defo)*v, a) * dx)
12 # compare manual implementation and automatically derived shape derivative
13 assert np.allclose(dJ.vector()[:], dJmanual.vector()[:])

14 V = FunctionSpace(mesh, "Nedelec 1st kind H(curl)", 1)
15 v = project(as_vector([sin(x), cos(y)]), V)
16 J = inner(v, a) * dx
17 dJ = assemble(derivative(J, X, defo))
18 dJmanual = assemble(inner(-transpose(grad(defo))*v + v *div(defo), a)*dx)
19 # compare manual implementation and automatically derived shape derivative
20 assert np.allclose(dJ.vector()[:], dJmanual.vector()[:])

Remark 3.6. The current implementation in UFL does not work for elements such as
the Hermite element that require different pullbacks for point evaluation and derivative
degrees of freedom, as for these elements the pullback is not performed in UFL.

Lastly we consider an objective constrained by a boundary value problem.

Example 3.7. Consider

J(Ωs) =

∫
Ωs

us dx (3.35)

where us is the Lagrange finite element solution to the boundary value problem

−∆us + us = f in Ωs,

∂us/∂n = 0 on ∂Ωs.
(3.36)

As described in Section 2.3, we introduce the Lagrangian

Ls(us, vs) := J(Ωs) + es(us, vs), (3.37)

where

es(us, vs) :=

∫
Ωs

∇us · ∇vs + usvs − fvs dx = 0 for all vs ∈ Vh(Ωs) (3.38)

stems from the weak formulation of the PDE constraint (3.36). The shape derivative
dJ in direction V is then equal to the derivative of Ls(u ◦T−1

s , p ◦T−1
s) with respect

45

to s, where u is the solution to (3.38) for s = 0 and p ∈ Vh(Ω) is the solution to the
adjoint boundary value problem. The shape derivative of Ls(u ◦T−1

s , p ◦T−1
s) can be

computed as in Examples 3.3 and 3.4. The result is

dJ(Ω)[V] =

∫
Ω

(u+∇u · ∇p+ up− fp) div(V)

− p∇f ·V −∇u · (DV + DVT)∇p dx. (3.39)

Again we omit the equivalent formula on the reference element because of its length.
However, as Listing 6 shows, UFL removes the need to derive the shape derivative by
hand, and we can easily compute dJ with a single line of code.

Listing 6 Firedrake code to compute dJ from Example 3.7 when f(x, y) = xy in (3.38).
1 from firedrake import *
2 mesh = UnitSquareMesh(10, 10)
3 V = FunctionSpace(mesh, "CG", 1)
4 x, y = X = SpatialCoordinate(mesh)
5 u, p, v = Function(V), Function(V), TestFunction(V)
6 e = inner(grad(u), grad(v))*dx + u*v*dx - x*y*v*dx
7 J = u * dx
8 solve(e == 0, u) # solve the state equation
9 L = replace(e, {v: p}) + J # define the Lagrangian

10 solve(derivative(L, u) == 0, p) # solve the adjoint equation
11 dJ = assemble(derivative(L, X))

3.3 Code validation

We validate our implementation by testing that the Taylor expansions truncated to
first and second order satisfy the asymptotic conditions

∆1(J, s) = O(s2) and ∆2(J, s) = O(s3). (3.40)

where
∆1(J, s) := |J((Id + sV)(Ω))− J(Ω)− s dJ(Ω)[V]| (3.41)

and

∆2(J, s) := |J((Id + sV)(Ω))− J(Ω)− s dJ(Ω)[V]− 1

2
s2d2J(Ω)[V,V]|. (3.42)

In Figure 3.2, we plot the values of ∆1 and ∆2 for s = 2−1, 2−2, . . . , 2−10, and J

as in Examples 3.2 and 3.4 from the previous section (we denote these functionals
J1 and J2 respectively). The vector field V is chosen randomly. This experiment
clearly displays the asymptotic rates predicted by (3.40). The same convergence rates

46

2−10 2−9 2−8 2−7 2−6 2−5 2−4 2−3 2−2 2−1

10−14

10−11

10−8

10−5

10−2

s

∆
i(
J
,s

)
Taylor test

|∆1(J1, s)|
|∆2(J1, s)|
|∆1(J2, s)|
|∆2(J2, s)|
s2

s3

Figure 3.2: Taylor test for Examples 3.2 and 3.7. The convergence rates match the
expected convergence.

can be observed for other test cases, including functionals that are not linear in u
and involve integration both in Ω and on ∂Ω, and that are constrained to linear and
nonlinear boundary value problems with nonconstant right-hand sides and nonconstant
Neumann and Dirichlet boundary conditions.

3.4 Shape optimisation of a pipe

In the classical paper by Sigmund [Sig01] A 99 line topology optimization code written
in MATLAB was presented. The code was developed for educational purposes to
illustrate the basic features of a typical topology optimisation routine in a concise but
readable fashion. It was later shortened even further in [And+11]. In this section we
show that a similarly terse implementation of a basic shape optimisation routine is
possible in Firedrake and UFL.

As a test case we consider the optimisation of a pipe to minimise the dissipation
of kinetic energy of the fluid into heat. This example is taken from [Sch10, §6.2.3]. To
simplify the exposition, we use a very simple optimisation strategy. At the end of the
section, we will comment on possible improvements.

A pipe contains viscous fluid, which flows in from the left and is modelled using
the incompressible Navier–Stokes equations. To be precise, let Ω be the shape of the
pipe, let ∂Ω = Γin ∪ Γwall ∪ Γout, and let u and p be the velocity and the pressure of

47

the fluid, respectively. Then, u and p satisfy

−2ν∇ · (Eu) + (u · ∇)u +∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = g on Γin,

u = 0 on Γwall,

pn− 2νEu · n = 0 on Γout,

where Eu = 1
2
(∇u+∇u>) is the symmetric part of the gradient, g is given as Poiseuille

flow, and as in [Sch10] we pick ν = 1/400.

Γin

Γwall

Γout

Figure 3.3: Computational domain for the Navier–Stokes pipe optimisation problem.
The dotted part of the boundary is free to be deformed.

The goal is to modify the central region of the pipe so that the shape functional

J(Ω) =

∫
Ω

νEu : Eu dx

is minimised. To solve this shape optimisation problem, we parametrise the initial
design with a polygonal mesh and update the node coordinates using the steepest
descent algorithm with fixed step size. As descent directions, we use Riesz representa-
tives of the shape gradient with respect to the standard H1

0 inner product. To avoid
degenerate results, we penalise changes of the pipe volume. The whole algorithm,
including the solution of state and adjoint equations, and the calculation of shape
derivatives, is shown in Listing 7.

In lines 2–4 we load the finite element mesh pipe.msh and extract the vertex
coordinates. The mesh is generated with Gmsh [GR09]. Lines 5–8 define the Gramian
matrix of the inner product employed to compute descent directions. In lines 9–13, we
define the space of [P2]2−P1 Taylor-Hood finite elements, which we use to discretise the
weak formulation of the Navier–Stokes equations and set up the functions containing

48

Figure 3.4: Initial (left) and optimised (right) shape of a pipe connecting a given
inflow and outflow.

the solutions to the state and adjoint equation as well as the test functions for the weak
form. In lines 14–19 we define the weak formulation of the Navier–Stokes equations as
well as some parameters to prescribe the use of the MUMPS direct solver [Ame+00]
to solve the linearised equations. In lines 20–26, we define the shape functional J , the
functional describing the volume of the shape, as well as the Lagrangian and its shape
derivative.

In lines 27–31 we set up a function that updates the solution to the state and
the adjoint equations. Note that, whenever the function solve_state_and_adjoint

is called, the new values of the velocity u are stored in the file u.pvd (which can
be visualised using Paraview [AGL05]). Finally, lines 33–46 contain the optimisation
algorithm: for 100 iterations we compute the shape derivative (lines 34–35), compute
the descent direction (line 36), update the domain (line 38), and update the state
and adjoint solutions (line 39). The optimised shape is displayed in Figure 3.4, the
convergence is shown in Figure 3.5.

Note that Listing 7 can be readily used for a 3D problem by simply passing a 3D
mesh and changing the inflow boundary condition.

While this example demonstrates how even a fairly complicated shape optimisation
problem can be expressed and solved very concisely in Firedrake and UFL, it also
demonstrates that typically shape optimisation problems suffer from several difficulties
that go beyond the solution of the PDE and the calculation of derivatives. In Section 2.4
we discussed that the search for deformations is poorly conditioned since the functional
is nearly invariant with respect to deformations with support inside the domain. This
problem manifests itself here in the form of significant slower convergence of the
optimisation scheme after ∼ 100 iterations. In addition, we observe kinks in the shape
where the domain changes from being fixed to being free to move. This is likely due
to the singularity that arises when solving the Poisson problem in order to obtain the
shape gradient, since at these points the boundary condition changes from a Dirichlet
to a natural boundary condition.

49

Listing 7 Complete code to run a simple steepest descent algorithm to optimise
the shape of the pipe. Lines 23 and 25 use the newly developed automatic shape
differentiation.

1 from firedrake import *

2 mesh = Mesh("pipe.msh")
3 coords = mesh.coordinates.vector()
4 X = SpatialCoordinate(mesh)

5 W = mesh.coordinates.function_space()
6 gradJ = Function(W)
7 phi, psi = TrialFunction(W), TestFunction(W)
8 A_riesz = assemble(inner(grad(phi), grad(psi)) * dx, bcs=DirichletBC(W, 0, [1, 2, 3]))

9 Z = VectorFunctionSpace(mesh, "CG", 2) * FunctionSpace(mesh, "CG", 1)
10 z, z_adj = Function(Z), Function(Z)
11 u, p = split(z)
12 test = TestFunction(Z)
13 v, q = split(test)

14 nu = 1./400.
15 e = 2*nu*inner(sym(grad(u)), sym(grad(v)))*dx - p*div(v)*dx \
16 + inner(dot(grad(u), u), v)*dx + div(u)*q*dx
17 uin = 6 * as_vector([(1-X[1])*X[1], 0])
18 bcs = [DirichletBC(Z.sub(0), 0., [3, 4]), DirichletBC(Z.sub(0), uin, 1)]
19 sp = {"mat_type": "aij", "pc_type": "lu", "pc_factor_mat_solver_type": "mumps"}

20 J = nu * inner(sym(grad(u)), sym(grad(u))) * dx
21 volume = Constant(1.) * dx(domain=mesh)
22 target_volume = assemble(volume)
23 dvol = derivative(volume, X)
24 L = replace(e, {test: z_adj}) + J
25 dL = derivative(L, X)
26 c = 1/20 # penalty parameter for volume constraint

27 out = File("u.pvd")
28 def solve_state_and_adjoint():
29 solve(e==0, z, bcs=bcs, solver_parameters=sp)
30 solve(derivative(L, z)==0, z_adj, bcs=homogenize(bcs), solver_parameters=sp)
31 out.write(z.split()[0])

32 solve_state_and_adjoint()
33 for i in range(200):
34 dJ = assemble(dL).vector() + assemble(dvol).vector() * c * 2 \
35 * (assemble(volume)-target_volume)
36 solve(A_riesz, gradJ, dJ)
37 print("i = %3i; J = %.6f; ||dJ|| = %.6f" % (i, assemble(J), norm(grad(gradJ))))
38 coords -= gradJ.vector()
39 solve_state_and_adjoint()

50

0 20 40 60 80 100 120 140 160 180 200
0.2

0.22

0.24

0.26

0.28

0.3

Iteration

J

J

10−4

10−3

10−2

10−1

‖∇
J
‖

J
‖∇J‖

Figure 3.5: Convergence for the pipe optimisation problem: the value of the objective
is reduced by approximately a third, the H1-norm of the gradient is reduced by three
orders of magnitude. Convergence slows down after approximately 100 iterations.

Finally, we note that the convergence could be improved significantly by using a
quasi Newton method and a linesearch. We refrain from using either here to keep the
example terse.

Code availability

The automated calculation of shape derivatives has been merged into UFL, Firedrake
and FEniCS. The code for the numerical experiments from this chapter is available at
https://github.com/florianwechsung/ThesisNumerics. For reproducibility, all
major Firedrake components as well as the code used to run these examples have been
archived on Zenodo [Fir19; Wec19c].

51

https://github.com/florianwechsung/ThesisNumerics

Chapter 4

Nearly conformal mesh deformation
methods for shape optimisation in
two dimensions

In Chapter 2 we formulated shape optimisation problems as a search for optimal
deformations T = Id + X of an initial domain Ω. Many shape optimisation problems
are subject to a PDE constraint and often this constraint is solved using the finite
element method. In such cases the domain Ω is replaced by an approximation Ωh that
consists of a regular triangulation. Then the optimisation process successively deforms
the initial domain Ωh by applying transformations to the grid points. As mentioned
in Section 2.4, there are many deformations T of an initial domain that all map to
the same deformed domain.

As we will discuss in Section 4.1, in order to obtain an accurate solution to the PDE
constraint, the geometry of the mesh is crucial; in many cases a mesh consisting of
triangles / tetrahedra that are as close to unilateral as possible is desirable. However,
in general there is no guarantee that the deformed mesh T(Ωh

0) is still regular, i.e. that
cells have not become highly stretched or even overlap. For this reason, a common
strategy is to either remesh the domain at every step in the optimisation or every few
steps when the mesh quality has degraded past a threshold [Mor+12; Sch18; EH18;
HL19]. However, frequent remeshing is undesirable for several reasons: first, it can
be an expensive process for complicated geometries and may even require manual
intervention. Secondly, changing the mesh introduces noise into the objective, as two
different meshes of the same geometry usually result in slightly different solutions to
the PDE constraint and different values of the objective.

Therefore, when remeshing is impractical, not possible, or expensive, it is important
to find ‘tame’ deformation fields T that deform the mesh ‘as well as possible’ while

52

decreasing the cost function J sufficiently well.
In [Sch14] a two stage approach is introduced: a ‘good’ deformation is calculated on

the boundary first and then extended into the volume by solving a convection-diffusion
equation. In several papers the good properties of the linear elasticity equations
have been observed for mesh deformation [Dwi09; SS16]. Here the shape derivative
is essentially viewed as a force acting on an elastic medium. Lastly, we mention
free-form deformation boxes, initially developed to model simple deformations in
computer graphics but now frequently employed in aerodynamic design optimisation
to parametrise shape deformations [Sam04; PEA15].

The approach presented in this work is based on conformal mappings in two
dimensions; this is the family of mappings that preserve angles. These mapping are
attractive as mesh properties such as equilateral elements remain constant under a
conformal mapping and have been used for mesh generation extensively [Bro81; Riz81;
Ive82]. We consider the two-dimensional case as then conformality can be achieved by
enforcing that the deformation satisfies the Cauchy–Riemann equations. However, as
the Cauchy–Riemann equations do not admit solutions for any given boundary data,
we consider a relaxed formulation instead. Based on this idea, we will develop an inner
product that penalises nonconformal deformations. A gradient based method using
this inner product will then at each step pick a ‘good’ deformation that preserves the
mesh quality. We will briefly outline a possible extension to three dimensions at the
end of the chapter.

4.1 Discussion of deformations and mesh quality

There are several reasons why the choice of deformation is important. As discussed in
the previous chapter, the primary criterion for a good deformation is that it should be
a diffeomorphism: this is crucial as this is required by the transformation rule relating
integrals over T(Ω) and Ω, which is used in the calculation of shape derivatives.

In addition, when representing the domain with a mesh and using finite elements
to solve for a PDE constraint on the domain, the deformation becomes even more
important as it directly influences the underlying mesh. On a convex domain an
overlap of the mesh implies a negative determinant of the deformation, meaning that
mass and stiffness matrices become indefinite and iterative solvers such as conjugate
gradients will fail.

However, merely being a diffeomorphism is not enough for a good deformation.
Deformations that strongly stretch or compress a mesh resulting in long and thin

53

elements can have consequences for both the approximation error and the performance
of linear solvers. We henceforth assume that Ω ⊂ R2 is a bounded domain with a
polygonal boundary ∂Ω. LetM = {K} be a simplicial triangulation of Ω consisting
of triangles K such that

Ω =
⋃
K∈M

K. (4.1)

For every element K ∈M, h(K) denotes the diameter of the smallest ball containing
K and ρ(K) is the diameter of the largest ball contained in K. A measure for the
quality of an element is given by the ratio

η(K) :=
h(K)

2ρ(K)
∈ [1,∞). (4.2)

The value of η(K) is 1 for equilateral triangles and becomes large for long-and-thin
triangles. Convergence results for finite element solutions are often based on the
fundamental classic interpolation estimate (see e.g. [Cia02, Theorem 3.1.5]), stating
that

|v − Πk
Kv|Hm(K) ≤ C

h(K)k+1

ρ(K)m
|v|Hk+1(K) for v ∈ Hk+1(K) (4.3)

where m ∈ {0, 1} and k is the polynomial degree and Πk
K is the interpolation into the

space of polynomials of degree k on the element K. If we choose m = 1 and k = 1, we
see that the approximation error for the gradient when using piecewise affine elements
depends both on the mesh size h(K) but also on the quality indicator η(K).

These interpolation estimates have been significantly refined in subsequent work
and it has been understood that stretched elements do not reduce the approximation
quality if they are aligned with the Hessian of the function [FP01]. A classical example
for this are boundary layer meshes at the wall in the context of fluid dynamics:
the solution changes rapidly in the direction away from the wall but only slowly
tangentially along the wall. Hence, elements that are thin in normal direction but long
in tangential direction are often used. However, for cases with less a priori knowledge
about the structure of the solution, an isotropic mesh is typically desired. We refer
to [Knu07] for a more detailed discussion of mesh quality measures and their use.

Another reason that uniform meshes are often desirable is the effect of stretched
meshes on the performance of linear solvers. This is closely related to anisotropy in
the differential operators. To see this, consider the case of a typical finite difference

54

stencil for the Laplacian on a structured grid in two dimensions:

∆u(x, y) = ∂xxu(x, y) + ∂yyu(x, y) ≈u(x− hx, y) + u(x+ hx, y)− 2u(x, y)

h2
x

+
u(x, y − hy) + u(x, y + hy)− 2u(x, y)

h2
y

.

(4.4)

If we set hy = hx/
√
ε, i.e. the grid spacing is large in y direction, then the resulting

stencil is equivalent to that of the operator ∂xxu(x, y) + ε∂yyu(x, y) on a uniform
grid. This operator has a near-nullspace of functions that are independent of y and
hence becomes poorly conditioned as ε → 0. This problem is studied in detail for
example in the multigrid community where methods such as plane-smoothing or semi-
coarsening have been developed to capture this nullspace [Bra82, Section 3.3], [Wes04,
p. 124], [PG97]. However, these methods are more expensive and add complexity to
the implementation, and for isotropic problems a regular grid will mean that they can
be avoided.

For the reasons discussed, we are interested in finite element meshes consisting
of elements that are nearly equilateral. If we assume that the initial mesh is regular,
then a way of preserving this quality is by considering angle-preserving mappings.

4.2 Conformal mappings in two dimensions

A function X : Ω → R2 is called conformal if it preserves angles between curves.
Identifying the vector field X in the canonical way with a complex function, it is well
known that a complex differentiable function with nonvanishing complex derivative is
conformal [Gam01, p. 59]. Conversely, a conformal C1 vector field with nonvanishing
real derivatives is in fact complex differentiable [Gam01, p. 126].

We recall that complex differentiability can be characterised by the Cauchy–
Riemann equations: any C1 vector field X = (X1, X2) with partial derivatives that
satisfy

∂xX1 − ∂yX2 = 0,

∂yX1 + ∂xX2 = 0,
(4.5)

is complex differentiable. There exist similar results requiring weaker assumptions on
X; we refer to [GM78]. Again, the converse result holds. A function that is complex
differentiable everywhere is called holomorphic.

Denoting

B:=

(
−∂x ∂y
∂y ∂x

)
(4.6)

55

we are looking for deformations X that satisfy BX = 0. In an abuse of notation, the
partial derivatives in (4.6) will refer to strong or weak derivatives, depending on the
regularity of X. The operator B gives rise to two natural boundary value problems:
Problem 4.1 (Cauchy–Riemann Dirichlet BVP).
Given h ∈ [C(∂Ω)]2 the Cauchy–Riemann Dirichlet boundary value problem reads:
find X ∈ [C1(Ω)]2 ∩ [C(Ω)]2 such that

BX = 0 in Ω, (4.7a)

X = h on ∂Ω. (4.7b)

Problem 4.2 (Cauchy–Riemann Neumann BVP).
Given g ∈ [C(∂Ω)]2 the Cauchy–Riemann Neumann boundary value problem reads:
find X ∈ [C1(Ω)]2 such that

BX = 0 in Ω, (4.8a)

DXn = g on ∂Ω, (4.8b)

where n denotes the outward-pointing normal vector field along ∂Ω.
Observe that the twofold application of the Cauchy–Riemann operator yields the

vectorial Laplace operator B2 := B◦B=I2∆, where I2 ∈ R2×2 denotes the identity
matrix in R2. Therefore, every holomorphic mapping is also harmonic, that is, the
Laplacian of the function vanishes. The converse does not hold (take e.g. X(x, y) =

(ax, y) for a 6= 1), and in fact the boundary value problems (4.7) and (4.8) do not
have solutions in general. However, when the data h in the Dirichlet case and g in
the Neumann case satisfy certain compatibility conditions then (4.7) and (4.8) admit
solutions, respectively. In [Beg05, Theorem 7 and 8] a closed formula for the solution
to (4.7) and (4.8) on the unit disc is given and necessary and sufficient conditions are
provided.

The set of holomorphic mappings might seem to be small, however, the Riemann
mapping theorem guarantees that every simply-connected domain Ω ⊂ R2 can be
mapped to the unit disc D ⊂ R2 via a bi-holomorphic map. The precise statement of
the Riemann mapping theorem is as follows; see [Con95, Thm. 4.2, p. 160].
Definition 4.3.
Let Ω ⊂ R2 be open. We call X : Ω → X(Ω) a bi-holomorphic mapping if X is
holomorphic and injective with holomorphic inverse.
Theorem 4.4.
Let Ω (R2 be a simply-connected domain. Then there exists a bi-holomorphic map X

from Ω onto the unit disc D ⊂ R2, such that X(a) = 0 and X′(a) is positive definite.

56

This theorem motivates us to perform shape optimisation in two dimensions using
conformal mappings.

4.3 Nearly conformal shape gradients

While usually the shape derivative dJ(Ω)[V] in (2.17) is defined with at least V ∈
C0,1(Ω;Rd) regularity in mind, for optimisation purposes it is commonly assumed that
dJ(Ω) is a well-defined and continuous functional on H1(Ω;Rd). This is necessary
to obtain a Hilbert-space structure to perform gradient based optimisation. In
practice, the function space H1(Ω;Rd) is often discretised using Lagrange finite
element functions, which in turn have C0,1(Ω;Rd) regularity again.

Let (H, (·, ·)H) be a Hilbert space that is continuously embedded into H1(Ω;R2).
The H-shape gradient of J at Ω with respect to (H, (·, ·)H) is defined as the unique
element ∇J(Ω) ∈ H that satisfies

(∇J(Ω),V)H = dJ(Ω)[V] for all V ∈ H. (4.9)

There is a close relation between the H-shape gradient and steepest descent directions
in H. Indeed, it can be shown (see [ES18, Lemma 2.2]) that the negative normalised
H-shape gradient −∇J(Ω)/‖∇J(Ω)‖H solves the minimisation problem

min
U∈H,
‖U‖H=1

dJ(Ω)[U] (4.10)

and hence the negative H-shape gradient is in fact the steepest descent direction in
H. In addition, we observe that the H-shape gradient is the minimiser of

min
U∈H

1

2
‖U‖2

H − dJ(Ω)[U]. (4.11)

In order to retain mesh quality, we propose to use H-shape gradients that satisfy the
Cauchy–Riemann equations as well as possible; one way to achieve this is by replacing
(4.11) by the following optimisation problem

min
U∈H,
BU=0

1

2
‖U‖2

H − dJ(Ω)[U], (4.12)

where B corresponds to the Cauchy–Riemann equations using weak partial derivatives.
We will see later that the minimisation problem (4.12) is related to the Cauchy–
Riemann Neumann boundary value problem. However, we already know that the
Neumann boundary value problem does not always have solutions because the boundary

57

data has to satisfy compatibility conditions. Therefore, even when Ω is not a stationary
point, it might happen that the only solution to (4.12) is given by U ≡ 0.

In order to enlarge the shape deformation space, but still retain some conformality
we propose to enforce the conformality constraint weakly by adding a penalty term.
We will see later that in certain cases this approach yields strictly conformal mappings.
Thus, we consider the following regularised version of (4.12),

min
U∈H

1

2

(
1

α
‖BU‖2

L2 + ‖U‖2
H

)
− dJ(Ω)[U], α > 0. (4.13)

The existence of a unique minimiser follows by standard arguments (see proof of
Lemma 4.6). In addition, this minimiser is then the H-shape gradient of J at Ω with
respect to H equipped with the inner product

(U,V)CR(α)+H :=
1

α
(BU,BV)L2 + (U,V)H. (4.14)

Lastly, we remark that the solution in the limit α → 0 is also known as a viscosity
solution, see [Att96].

4.3.1 CR(α) + H̊1-shape gradients

We begin by studying the space H := H̊1(Ω;R2) consisting of all functions U ∈
H1(Ω;R2) with mean zero, that is,

∫
Ω

U dx = 0. This space becomes a Hilbert space
when equipped with the inner product

(U,V)H̊1 := (DU,DV)[L2]2×2 :=

∫
Ω

DU : DV dx. (4.15)

The shape gradient is then given by the solution to the following optimisation problem.
Problem 4.5.
We study the following relaxation of (4.12): find a minimiser Uα ∈ H̊1(Ω;R2) of

min
U∈H̊1(Ω;R2)

1

2

(
1

α
‖BU‖2

[L2]2 + ‖DU‖2
[L2]2×2

)
− dJ(Ω)[U], α > 0, (4.16)

where ‖DU‖2
[L2]2×2 :=

∫
Ω

DU : DU dx.
To simplify the exposition, we assume that the derivative can be expressed as the

integral over a function g on the boundary (cf. Section 2.4), i.e.

dJ(Ω)[V] =

∫
∂Ω

g ·V ds for all V ∈ H. (4.17)

We emphasise that the main result of this section, Proposition 4.8, holds as well for
other inner products and under the assumption that dJ(Ω) is merely an element of
the dual space of H, i.e., it is compatible with using the volume formula of the shape
derivative.

58

Lemma 4.6.
There exists a unique minimiser Uα ∈ H̊1(Ω,R2) of (4.16) and Uα satisfies

1

α
(BUα,BV)[L2]2 + (DUα,DV)[L2]2×2 =

∫
∂Ω

g ·V ds (4.18)

for all V ∈ H̊1(Ω;R2). If Uα ∈ C2(Ω;R2) ∩ C1(Ω;R2) then Uα satisfies the corre-
sponding Euler-Lagrange equations:

∆Uα = 0 in Ω, (4.19a)

DUαn + D̂Uαn + αDUαn = αg on ∂Ω, (4.19b)

where
D̂U =

(
−∂yU2 ∂xU2

∂yU1 −∂xU1

)
. (4.20)

Proof. It follows from Poincaré’s inequality that U 7→ ‖DU‖[L2]2×2 is a norm on
H̊1(Ω;R2) that is equivalent to the norm U 7→ ‖U‖[H1]2 :=

√
‖U‖[L2]2 + ‖DU‖[L2]2×2 .

This implies that the functional (4.16) is strictly convex on H̊1(Ω;R2). Furthermore,
it is lower semi-continuous and hence by convexity also weakly lower semi-continuous
on this space. As a result, existence of a unique minimiser follows from the direct
method of calculus of variations.

Multiplying with α, the first order necessary and sufficient optimality condition
of (4.16) reads: find Uα ∈ H̊1(Ω,R2) such that∫

Ω

BUα · BV + αDUα : DV dx = α

∫
∂Ω

g ·V ds for all V ∈ H̊1(Ω;R2). (4.21)

Denoting Uα = (U1, U2) and V = (V1, V2), by the definition of B, using integration by
parts twice and Schwarz’s theorem, we have that∫

Ω

BUα · BV dx (4.22)

=

∫
Ω

∂xU1∂xV1 + ∂yU2∂yV2 − ∂yU2∂xV1 − ∂xU1∂yV2 (4.23)

+ ∂yU1∂yV1 + ∂yU1∂xV2 + ∂xU2∂yV1 + ∂xU2∂xV2 dx

=

∫
Ω

DUα : DV − ∂yU2∂xV1 − ∂xU1∂yV2 + ∂yU1∂xV2 + ∂xU2∂yV1 dx (4.24)

=

∫
Ω

DUα : DV − ∂yU2∂xV1 − ∂xU1∂yV2 − ∂x∂y︸︷︷︸
=∂y∂x

U1V2 − ∂y∂x︸︷︷︸
=∂x∂y

U2V1 dx (4.25)

+

∫
∂Ω

∂yU1V2n1 + ∂xU2V1n2 ds

59

=

∫
Ω

DUα : DV − ∂yU2∂xV1 − ∂xU1∂yV2 + ∂xU1∂yV2 + ∂yU2∂xV1 dx (4.26)

+

∫
∂Ω

∂yU1V2n1 + ∂xU2V1n2 − ∂xU1V2n2 − ∂yU2V1n1 ds

=

∫
Ω

DUα : DV dx+

∫
∂Ω

∂yU1V2n1 + ∂xU2V1n2 − ∂xU1V2n2 − ∂yU2V1n1 ds. (4.27)

Using this identity in (4.21) we obtain∫
Ω

−(1 + α) div(DUα) ·V dx+

∫
∂Ω

(DUαn + D̂Uαn + αDUαn) ·V ds

= α

∫
∂Ω

g ·V ds,

(4.28)

and (4.19) follows.

It turns out that if g is compatible, that is, if the Cauchy–Riemann Neumann
problem (4.8) admits a solution, then this solution is also a minimiser of (4.16).
Corollary 4.7.
Let g ∈ C(∂Ω;R2) be given. Suppose that (4.8) admits a solution U ∈ C2(Ω;R2) ∩
C1(Ω;R2). Then U (up to a constant) is the minimiser of (4.16) and satisfies the
Neumann problem

∆U = 0 in Ω, (4.29a)

DUn = g on ∂Ω. (4.29b)

Proof. If U is a solution to (4.8) then ∆U = 0 in Ω and also DU = −D̂U on ∂Ω.
Therefore, U solves

∆U = 0 in Ω, (4.30)

(DU−DU + αDU)n = αg on ∂Ω, (4.31)

and thus owing to Lemma 4.6 U is the unique minimiser (up to a constant) of (4.16).

The previous lemma only gives a characterisation of the minimiser of (4.16) in the
case that the Cauchy–Riemann Neumann boundary value problem admits a solution.
In general, this problem does not have a solution and as a result the minimisers of (4.16)
cannot be holomorphic. However, we can show that they are nearly holomorphic by
splitting the space H̊1(Ω;R2) into a holomorphic and a nonholomorphic part. In the
following proposition we think of H = H̊1(Ω;R2) but H could be any Hilbert space
continuously embedded into H1(Ω;R2).

60

Proposition 4.8.
Let H = H̊1(Ω;R2) and consider the orthogonal decomposition H = V ⊕ V ⊥ for
V = {U ∈ H : BU = 0}. Furthermore, let ϕg be the unique solution to

(ϕg,V)H =

∫
∂Ω

g ·V ds for all V ∈ H, (4.32)

where g ∈ L2(∂Ω) is a given function. Denote ϕg = ϕ
(1)
g + ϕ

(2)
g for ϕ

(1)
g ∈ V and

ϕ
(2)
g ∈ V ⊥ and decompose the solution Uα = U

(1)
α + U

(2)
α of (4.16) in the same way.

Then

(i) U
(1)
α = ϕ

(1)
g for all α > 0.

(ii) U
(2)
α satisfies

(BU(2)
α ,BV(2))[L2]2 + α(U(2)

α ,V(2))H = α

∫
∂Ω

g ·V(2) ds (4.33)

for all V(2) ∈ V ⊥.

(iii) There exists a constant C > 0 independent of α such that

‖U(2)
α ‖H ≤ ‖ϕ(2)

g ‖H ≤ C‖g‖[L2(∂Ω)]2 . (4.34)

(iv) We have

Uα → ϕ(1)
g strongly in H as α→ 0, (4.35)

1√
α

B(Uα)→ 0 strongly in L2(Ω;R2) as α→ 0. (4.36)

Proof. ad (i): First we observe that using the weak form of (4.32) the optimality
condition (4.21) is equivalent to: find U

(1)
α ∈ V and U

(2)
α ∈ V ⊥ such that

(BU(2)
α ,BV(2))[L2]2 + α(U(1)

α ,V(1))H + α(U(2)
α ,V(2))H

= α(ϕ(1)
g ,V(1))H + α(ϕ(2)

g ,V(2))H
(4.37)

for all V(1) ∈ V and V(2) ∈ V ⊥. By testing (4.37) with V(2) = 0 we obtain

(U(1)
α −ϕ(1)

g ,V(1))H = 0 (4.38)

for all V(1) ∈ V . This means that U
(1)
α −ϕ(1)

g ∈ V ⊥, but since by definition U
(1)
α −ϕ(1)

g ∈
V we conclude that U

(1)
α = ϕ

(1)
g .

ad (ii) & (iii): Testing (4.37) with V(1) = 0 we immediately obtain (4.33). To obtain

61

the bound for U
(2)
α we test (4.33) with V(2) = U

(2)
α and use the continuity of the trace

to obtain that

‖U(2)
α ‖2

H ≤ ‖g‖[L2(∂Ω)]2‖U(2)
α ‖[L2(∂Ω)]2 � ‖g‖[L2(∂Ω)]2‖U(2)

α ‖H. (4.39)

Dividing by ‖U(2)
α ‖H gives the result.

ad (iv): First note that V ⊥ is closed and convex and thus by the Hahn-Banach
Separation Theorem V ⊥ is also weakly closed. By (iii) we then have that for every
null-sequence (αn), there exists U

(2)
0 ∈ V ⊥ and a subsequence (αnk) of (αn) such that

U
(2)
αnk

⇀ U
(2)
0 . Therefore, using (4.33) we find

(BU
(2)
0 ,BU

(2)
0)[L2]2 = lim

k→∞
(BU(2)

αnk
,BU

(2)
0)[L2]2

(4.33)
= lim

k→∞
−αnk(U(2)

αnk
,U

(2)
0)H + αnk

∫
∂Ω

g ·U(2)
0 ds = 0.

(4.40)

Thus, BU
(2)
0 = 0, which means U

(2)
0 ∈ V and hence U

(2)
0 = 0. Since the null-sequence

(αn) was arbitrary and since the limit is unique we obtain that U
(2)
α ⇀ 0 in H as

α→ 0.
Testing (4.33) with V

(2)
α = U

(2)
α , we obtain (using the continuity of the trace

operator)

lim
α→0
‖BU(2)

α ‖2
[L2]2 = − lim

α→0
α‖U(2)

α ‖2
H︸ ︷︷ ︸

bounded

+ lim
α→0

α

∫
∂Ω

g ·U(2)
α ds︸ ︷︷ ︸

bounded

= 0. (4.41)

This shows BU
(2)
α → 0 in L2(Ω;R2) as α→ 0. To show that U

(2)
α → 0 strongly in H as

α→ 0, we show that its norm converges to 0. We test (4.33) again with V
(2)
α = U

(2)
α

and taking into account that we may assume α < 1 we obtain the estimate

α‖BU(2)
α ‖2

[L2]2 + α‖U(2)
α ‖2

H ≤ ‖BU(2)
α ‖2

[L2]2 + α‖U(2)
α ‖2

H

= α

∫
∂Ω

g ·U(2)
α ds

(4.42)

and thus dividing by α it follows that

lim
α→0
‖U(2)

α ‖2
H ≤ − lim

α→0
‖BU(2)

α ‖2
[L2]2 + lim

α→0

∫
∂Ω

g ·U(2)
α ds = 0, (4.43)

and hence U
(2)
α converges strongly to 0. Using this strong convergence and divid-

ing (4.41) by α we obtain B(U
(2)
α√
α

)→ 0 in L2(Ω;R2) as α→ 0.

62

4.3.2 Nearly conformal shape gradients with mixed boundary
conditions

Often a part of the boundary ∂Ω is clamped, meaning that only a part of the shape can
freely move. The next lemma shows that the space of clamped conformal mappings is
essentially zero. The key reason for this is that nontrivial holomorphic functions only
have so called isolated zeros [Gam01, p. 155–156].
Definition 4.9.
Let E be a set and let z0 ∈ E, we say that z0 is an isolated point of the set E if there
is ρ > 0 such that |z − z0| ≥ ρ for all points z ∈ E other than z0.

Now let ΓD ⊂ ∂Ω be a measurable subset of the boundary with at least one point
that is not isolated. We define Γ := ∂Ω \ ΓD and let H1

Γ(Ω;R2) := {U ∈ H1(Ω;R2) :

U|ΓD = 0}.
Lemma 4.10.
Let Ω ⊂ R2 be an open set and let ΓD ⊂ ∂Ω have at least one point that is not isolated.
Then U ∈ H1

Γ(Ω;R2) satisfies BU = 0 a.e. on Ω if and only if U = 0 a.e. on Ω.

Proof. It was proven in [GM78, Thm. 9] that a function that satisfies the Cauchy–
Riemann equations in a distributional sense is equal to a holomorphic function almost
everywhere, hence there exists a holomorphic function Ũ with Ũ = U a.e., and in
particular Ũ|ΓD ≡ 0. Since ΓD has at least one point that is not isolated, [Gam01,
p. 156] implies that Ũ = 0 and hence U = 0 a.e..

This means that a decomposition into a holomorphic and a nonholomorphic part
as in Proposition 4.8 is not possible for this case and that the solution will always
be nonholomorphic. Since we cannot hope for a perfectly conformal deformation, the
goal now is to control where the deformation is close to conformal and where we can
accept nonconformality. To that end we introduce a weighting function µ ∈ L∞(Ω).
Problem 4.11.
We study the following relaxation of (4.12): find a minimiser Uα ∈ H̊1(Ω;R2) of

min
U∈H̊1(Ω;R2)

1

2

(
1

α
‖µBU‖2

[L2]2 + ‖DU‖2
[L2]2×2

)
− dJ(Ω)[U], α > 0. (4.44)

Although the weight function µ is arbitrary, a choice yielding good numerical
results on which we report later, is given by

µ(x) :=

(
ε

d∂Ω(x) + ε

)1/2

, (4.45)

63

where d∂Ω(x) := infy∈∂Ω |x − y| denotes the distance function associated with ∂Ω

and ε > 0 is a small parameter. The intuition behind this choice is that it enforces
more holomorphicity near the boundary of Ω which is justified by the fact that grid
points near the boundary are subject to larger deformations. The corresponding
Euler-Lagrange equation to (4.44) reads: find U ∈ H1

Γ(Ω;R2) such that
1

α
(µBU, µBV)[L2]2 + (DU,DV)[L2]2×2 = dJ(Ω)[V], (4.46)

for all V ∈ H1
Γ(Ω;R2). Existence and uniqueness of a minimiser U follows by the

same reasoning as in the previous case.

4.3.3 CR(α) +H(sym)-shape gradients

As we will see in the numerical examples, deformations obtained using the standard
H1 inner product often lead to poor mesh quality. In [SS16] it was observed that a
significant improvement can be achieved by calculating shape gradients with respect
to the inner product induced by the symmetric bilinear form arising in the linear
elasticity equations. The motivation behind this choice is to model the domain as an
elastic medium and the shape derivative as a force acting on it — the gradient is then
the deformation obtained by solving the linear elasticity equations.

We define the symmetric and antisymmetric parts of the derivative DU in the
usual way through

EU :=
1

2
(DU + DU>) and WU :=

1

2
(DU−DU>). (4.47)

We have DU = EU + WU, and in fact this decomposition is orthogonal with respect
to the Frobenius inner product for matrices. Therefore, for any U ∈ H1(Ω;R2) it
holds that ‖DU‖2

[L2]2×2 = ‖EU‖2
[L2]2×2 + ‖WU‖2

[L2]2×2 .
Now, observe that ‖WU‖2

[L2]2×2 = ‖∂xU2 − ∂yU1‖2
L2 and hence attempting to

minimise this term, as is done when using the standard H1 inner product, could be
counterproductive when also trying to closely satisfy the Cauchy–Riemann equations,
as they require ∂xU2 + ∂yU1 = 0.

In order for the symmetric part of the gradient to induce a norm on H1(Ω;R2),
we have to remove the null-space of the skew-symmetric part. We define

H(sym,Ω) := {U ∈ L2(Ω;R2) : EU ∈ L2(Ω;R2×2)}. (4.48)

By Korn’s inequality [KO88, Thm. 2 and Thm. 4] we know that H(sym,Ω) =

H1(Ω;R2), and that

H̊(sym,Ω) := {U ∈ H(sym,Ω) :

∫
Ω

U dx = 0 and
∫

Ω

∂yU1 + ∂xU2 dx = 0} (4.49)

64

is a Hilbert space when equipped with the inner product given by

(U,V)H̊(sym) := (EU,EU)[L2]2×2 . (4.50)

This bilinear form corresponds to the weak form of the linear elasticity equations for
a material with Lamé parameters λ = 0 and µ = 1

2
.

As before, this inner product can be augmented with a Cauchy–Riemann penalisa-
tion to improve conformality. The resulting inner product is given by

(U,V)H̊(sym)+CR(α) :=
1

α
(BU,BV)[L2]2 + (EU,EV)[L2]2×2 . (4.51)

4.4 Numerical experiments

In this section we study three numerical examples. The first example considers a
simply-connected domain with the entire boundary free to move. For this ideal case we
will obtain deformations leading to very high mesh quality. We then study a case that
is not simply-connected and for which no conformal mapping can be found. Lastly,
we study the classical example of energy minimisation in slow flow.

For all problems in this section the space of deformations H is discretised using
first order Lagrangian elements, i.e. we are optimising for the location of the vertices
of the mesh.

4.4.1 Levelset example

We begin by considering a simple levelset example: the goal is to shrink a circle to a
clover-like shape, as seen in Figure 4.1. Mathematically this is achieved by minimising
the shape function J(Ω) =

∫
Ω
f dx where f is given by

f(x, y) =(
√

(x− a)2 + by2 − 1)(
√

(x+ a)2 + by2 − 1)

(
√
bx2 + (y − a)2 − 1)(

√
bx2 + (y + a)2 − 1)− ε,

(4.52)

where a = 4/5, b = 2 and ε = 0.001

This example illustrates two challenges that mesh deformation methods often
face. First, the initial mesh has to be significantly compressed; if this compression is
not performed evenly one can quickly obtain overlapping mesh elements. Secondly,
the final mesh contains areas of high curvature; this often leads to highly stretched
elements.

65

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Initial Shape

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Optimal Shape

Figure 4.1: The initial shape (left) is a circle of radius 3; the minimiser of J is given
by the clover-like shape on the right.

We compare four different inner products to calculate the shape gradients:

(U,V)H̊1 = (DU,DV)[L2]2×2 ,

(U,V)H̊(sym) = (EU,EV)[L2]2×2 ,

(U,V)CR(α)+H̊1 =
1

α
(BU,BV)[L2]2 + (DU,DV)[L2]2×2 ,

(U,V)CR(α)+H̊(sym) =
1

α
(BU,BV)[L2]2 + (EU,EV)[L2]2×2 .

(4.53)

Comparison of mesh quality for small α

We begin by choosing α = 10−2; this leads to deformations that are close to perfectly
conformal. In Figure 4.2 we show the optimal shape obtained from each of the four
inner products in (4.53). We note that the optimisation fails for the standard (·, ·)H̊1

inner product because the mesh overlaps (cf. first row in Figure 4.2). The inner product
that uses the symmetric part of the gradient performs significantly better and using it
the L-BFGS algorithm converges to the expected optimal shape. However, looking
closer at the area of high curvature we can see that some of the elements have been
significantly stretched (cf. second row in Figure 4.2). If we add the Cauchy–Riemann
regularisation to either of the two inner products we can see that all triangles remain
close to unilateral (cf. third and fourth row in Figure 4.2). The nearly conformal
mappings achieve this by changing the size of the elements: elements are shrunk where
large deformations are necessary and magnified elsewhere.

66

Figure 4.2: Optimal shapes obtained using the different inner products. First
row: (·, ·)H̊1 . Second row: (·, ·)H̊(sym). Third row: (·, ·)CR(10−2)+H̊1 . Fourth row:
(·, ·)CR(10−2)+H̊(sym).

We can quantify these findings by considering the distribution of the element
quality η(K) = h(K)/(2ρ(K)).

For a range of η we count the fraction of cells that satisfy η(K) ≤ η, see Figure 4.3.

67

The initial mesh was obtained using Gmsh [GR09] and we can see that most (98.4%)
elements have a mesh quality of better than 1.2 (brown solid line). In particular, Ta-
ble 4.1 shows that none of the elements have mesh quality larger than 1.5. We do not
plot the mesh quality distribution for the unaugmented (·, ·)H̊1 inner product as the
mesh degenerates. For the (·, ·)H̊(sym) inner product (blue dashed line with squares)
we observe a clear loss in quality, with now only 68.5% of elements having a quality of
better than 1.2. In addition, the worst element now has a quality of 3.3.

Augmenting either of the two inner products with the Cauchy–Riemann term and
choosing α = 0.01 (green lines), recovers the initial mesh quality almost entirely as
can be seen both in Figure 4.3 and Table 4.1.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

0

0.2

0.4

0.6

0.8

1

η

Fr
ac

ti
on

of
ce

ll
w

it
h
η
(K

)
≤
η

CR(0.3) + H̊1(sym) CR(0.3) +H1

CR(10−2) + H̊1(sym) CR(10−2) + H̊1

H̊1(sym) Initial mesh

Figure 4.3: Mesh quality as measured via (4.2).

Percentage of cells with η(K) greater than
maxK η(K)1.5 1.75 2.0 2.5 3.0

Initial mesh 0.0% 0.0% 0.0% 0.0% 0.0% 1.5
H̊(sym) 5.6% 1.9% 0.7% 0.2% 0.1% 3.3
CR(0.3) + H̊(sym) 0.1% 0.0% 0.0% 0.0% 0.0% 1.6
CR(10−2) + H̊(sym) 0.0% 0.0% 0.0% 0.0% 0.0% 1.5
CR(0.3) + H̊1 2.1% 1.3% 0.8% 0.5% 0.3% 6.3
CR(10−2) + H̊1 0.1% 0.0% 0.0% 0.0% 0.0% 1.5

Table 4.1: The (·, ·)H̊1 inner product yields a number of severely stretched elements.
Adding the Cauchy–Riemann regularisation with small enough α leads to a mesh in
which the worst element quality maxK η(K) in the final mesh is the same as compared
to the initial mesh.

68

Behaviour for larger α

In order to achieve deformations that are nearly conformal, Proposition 4.8 suggests
that we should choose α very small. However, while this does indeed lead to high mesh
quality, there are two disadvantages to picking α too small. First, the linear mapping
associated with the Riesz map becomes poorly conditioned and calculating the gradient
becomes more computationally expensive. However, this is usually not a problem
as the bottleneck for most applications lies in the calculation of the state and the
adjoint equation and the calculation of the gradient is comparatively cheap. Secondly,
restricting the optimisation to mappings that are almost entirely conformal means that
the algorithm will need more steps to converge; this can be seen in Figure 4.4 where
we plot the norm of the gradient at each L-BFGS iteration. For a fair comparison we
plot the norm of the gradient in the (·, ·)H̊(sym) inner product for all cases.

For α = 10−3, the gradient is almost four orders of magnitude larger than without
the added Cauchy–Riemann terms after the same number of iterations. As α is
increased, this difference is significantly reduced: for α = 10−2 the magnitude of the
gradient differs by roughly one order of magnitude. However, Figure 4.3 and Table 4.1
suggest that such a small value of α is not necessary. A value of α = 0.3 already
results in significant improvement of the mesh quality (orange lines in Figure 4.3),
especially when using the (·, ·)CR(α)+H̊(sym) inner product. In Figure 4.5 we show
a close-up of the high curvature area for this value of α, and we can see that the
nearly conformal mappings obtained from the inner product (·, ·)CR(α)+H̊(sym) result
in very good mesh quality. Using the (·, ·)H̊1 inner product, without any Cauchy–
Riemann augmentation, the algorithm would fail due to overlapping mesh elements;
the augmented version now converges but still admits visibly stretched elements. We
highlight that Figure 4.4 shows no noticeable difference in speed for these two variants
compared to the unaugmented inner product.

To summarise, we note that a balance must be struck between picking α very small
to enforce the conformality strongly, and picking α large to ensure speed.

69

0 10 20 30 40 50 60 70 80 90 100

10−8

10−6

10−4

10−2

100

Iteration

CR(10−3) + H̊1(sym) CR(10−3) + H̊1

CR(10−2) + H̊1(sym) CR(10−2) + H̊1

CR(0.3) + H̊1(sym) CR(0.3) +H1

H̊1(sym)

Figure 4.4: Convergence history of the L-BFGS algorithm. The algorithm is terminated
after 100 steps.

Figure 4.5: Close up of the obtained shape using the (·, ·)CR(α)+H̊1 (left) and
(·, ·)CR(α)+H̊(sym) (right) inner products for α = 0.3.

4.4.2 A negative example: Annulus deformation

We saw in the previous section that if a conformal mapping between the initial and the
optimal shape exists, then our proposed inner products yield deformations resulting
in good mesh quality. However, the Riemann mapping does not hold for domains
that are not simply-connected. The simplest example is that of two annuli: let
A(r, R) := {z : r < |z| < R} denote an annulus of outer radius R and inner radius
r. Schottky [Sch77], [IKO11, Theorem 1.2] proved that the annulus A(r, R) can be
conformally mapped to the annulus A(r′, R′) if and only if R

r
= R′

r′
.

Regarding mesh deformation, this is a somewhat sobering result as it implies that
two annuli that do not have the same radii-ratio can never be mapped to each other

70

without loss of mesh quality. Furthermore, in [IKO11, Theorem 1.4] it was proven
that a harmonic mapping only exists if

R′

r′
≥ 1

2

(
R

r
+
r

R

)
. (4.54)

To illustrate this, we pick R = R′ = 1 and r = 1
2
and choose Ω = A(r, R) for

the initial domain. Now for r′ ∈ (0, 1) we define fr′(x) = |x − 1||x − r′| and the
corresponding objective Jr′(Ω) :=

∫
Ω
fr′(x) dx. The annulus A(r′, R′) is the global

minimiser of this function and we note that solving (4.54) for r′ gives that a harmonic
map between the initial and the optimal shape exists for r′ ≤ 0.8.

For r′ ∈ (0.5, 0.8), all four inner products result in nearly identical deformations,
as shown in Figure 4.6 for r′ = 0.75. For r′ = 0.8, the mesh is highly distorted and
elements near the inner boundary are flattened; the methods all fail for r′ = 0.85,
aligning with the result of [IKO11].

Figure 4.6: Initial mesh (left) and meshes obtained for A(0.75, 1.0) using inner products
(·, ·)H̊1 , (·, ·)H̊(sym), (·, ·)CR(10−2)+H̊1 , and (·, ·)CR(10−2)+H̊(sym) for α = 10−2.

This shows that while for simply-connected domains large deformations can be
performed without loss of mesh quality, once the topology of the domain changes the
problem of mesh deformation becomes significantly harder. For this specific problem
the deformations can be improved by weighting the inner product to avoid the strong
compression at the inner boundary, but we are not aware of any deformation method
induced by an inner product that handles this problem without such modifications.

4.4.3 Energy minimisation in slow flow

We now consider a classical example in shape optimisation: the minimisation of
dissipated energy in a fluid governed by Stokes’ equations. LetD ⊂ R2 be a rectangular
channel (−3,+3)× (−2,+2) with a circular obstacle at (0, 0) of radius 1/2 as shown
in Figure 4.7. We denote the part of the channel without the obstacle by Ω :=

(−3,+3)× (−2,+2) \B1/2(0).

71

Γ∞

Γ∞

Γ∞

Γ∞ Γ Ω

Figure 4.7: Computational domain for the BVP (4.55).

Given a far-field velocity u∞, the velocity field u and the pressure p are then
governed by the following boundary value problem:

−∇ · (2Eu) +∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = u∞ on Γ∞,

u = 0 on Γ.

(4.55)

We choose these boundary conditions over a more natural outflow condition for
comparability with existing literature on energy minimisation in Stokes flow [Pir74;
SS16]. The corresponding weak form is given by: find p ∈ L2(Ω) with

∫
Ω
p dx = 0 and

u ∈ [H1(Ω)]2 with u|Γ∞ = u∞ and u|Γ = 0 such that∫
Ω

2Eu : Ev − p(∇ · v)− q(∇ · u) dx = 0 (4.56)

for all q ∈ L2(Ω) and v ∈ [H1(Ω)]2 with v|Γ∞∪Γ = 0. We discretise the state equation
using a classical Taylor-Hood [P2]2−P1 discretisation [HT74]. The dissipated energy
of (4.56) can be calculated by the integral

J(Ω) =

∫
Ω

Eu : Eu dx. (4.57)

We require the volume and the barycentre of the obstacle Ωo := D \ Ω to remain
constant; these constraints are enforced using an augmented Lagrangian method. For
a more detailed treatment of the Stokes problem with these constraints we refer to
[SS16].

The optimal shape for this problem is the well known ogive [Pir74] and depicted in
Figure 4.8. Mesh deformation methods often struggle with this problem at the leading
and trailing edge, as creating the sharp tips represents a significant deformation. Due
to Lemma 4.10 we know that there is no conformal mapping between the initial and the
optimal shape. Hence, we consider a weighting µ as in (4.45) (using ε = 0.01) in order
to distribute the nonconformality over the entire volume of the mesh and obtain good

72

mesh quality. The inner products (·, ·)H̊1 and (·, ·)H̊(sym) without Cauchy–Riemann
augmentation both lead to overlapping meshes for this problem; we avoid this by
weighting them with the same µ. When referring to the different inner products we
omit µ for brevity as it is the same for all inner products considered in this section.

Figure 4.8: Top row: Initial shape and optimal shape for the Stokes energy minimisation
problem subject to volume and barycentre constraints. Bottom: Close up of optimal
shape comparing with wedges of angle 90◦.

The obtained flow-fields for the initial and the optimal shape are presented in
Figure 4.8. The methods all behave similarly in the interior of the mesh; however,
clear differences can be observed near the tips of the obstacle. In Figure 4.9 we show
the meshes near the tip obtained by using the classical H̊1 and H̊(sym) inner products
both without and with Cauchy–Riemann augmentation. The mesh obtained from
the H̊1 inner product (top left) contains stretched elements and a highly degenerated
element at the tip. Using H̊(sym) (bottom left) results in a better mesh with minor
stretch of the elements. Augmenting either of the two inner products with the proposed
Cauchy–Riemann term (top right and bottom right) yields further improvement and
results in a mesh without noticeable stretch. As in the levelset example, the nearly
conformal mappings achieve this by shrinking the elements where the deformation

73

Figure 4.9: Mesh at the tip of the ogive. Augmenting an inner product with the
Cauchy–Riemann term yields meshes without noticeably stretched elements. Top
left: (·, ·)H̊1 . Top right: (·, ·)CR(10−2)+H̊1 . Bottom left: (·, ·)H̊(sym). Bottom right:
(·, ·)CR(10−2)+H̊(sym).

74

is largest. We quantify the observed improvement by looking at the distribution
of the quality measure η(K). For a range of η we count the fraction of cells that
satisfy η(K) ≤ η, see Figure 4.10. As we know that there cannot be a conformal
mapping between the initial and the optimal shape we expect some loss of quality.
However, we observe that using the Cauchy–Riemann augmentation reduces the loss
significantly. This becomes even more apparent when looking at the fraction of cells

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

0

0.2

0.4

0.6

0.8

1

η

Fr
ac

ti
on

of
ce

ll
w

it
h
η
(K

)
≤
η

H̊1(sym) H1

CR(10−2) + H̊1(sym) CR(10−2) + H̊1

Initial mesh

Figure 4.10: Fraction of cells K that satisfy η(K) ≤ η for varying η. While the
deformations obtained from the regularised inner products are not able to retain the
initial mesh quality, they result in a clear improvement over the nonregularised inner
products.

with large values η(K), see Table 4.2. In the original mesh the worst element quality
is maxK η(K) = 1.5. Deforming it using (·, ·)H̊1 yields a mesh with maxK η(K) = 5.8,
using (·, ·)H̊(sym) yields maxK η(K) = 2.6. Regularizing either of these with the Cauchy–
Riemann term, improves this to maxK η(K) = 1.6. The convergence to the optimal
shape is similar for all four compared inner products, as shown in Figure 4.11.

75

Percentage of cells with η(K) greater than
maxK η(K)1.5 1.75 2.0 2.5 3.0

Initial mesh 0.0% 0.0% 0.0% 0.0% 0.0% 1.5
H̊(sym) 1.5% 0.4% 0.1% 0.0% 0.0% 2.6
CR(10−2) + H̊(sym) 0.1% 0.0% 0.0% 0.0% 0.0% 1.6
H̊1 2.5% 0.9% 0.4% 0.1% 0.0% 5.8
CR(10−2) + H̊1 0.1% 0.0% 0.0% 0.0% 0.0% 1.6

Table 4.2: The (·, ·)H̊1 inner product yields a number of severely stretched elements.
Adding the Cauchy–Riemann regularisation leads to a mesh in which the worst element
quality maxK η(K) in the final mesh is only slightly larger than in the initial mesh.

0 20 40 60
7

8

9

10

11

PDE solves

Functional value

H̊1(sym)

H1

CR(10−2) + H̊1(sym)

CR(10−2) + H̊1

0 20 40 60
10−9

10−6

10−3

100

PDE solves

Norm of gradient of Lagrangian
H̊1(sym)

H1

CR(10−2) + H̊1(sym)

CR(10−2) + H̊1

Figure 4.11: The convergence is similar for all four considered inner products. The
optimisation was stopped after 5 iterations of the augmented Lagrangian method.

76

4.5 Discussion of the three dimensional case

We consider only two dimensional problems in this chapter, as the Cauchy–Riemann
equations are an inherently two dimensional concept. However, we briefly outline how
one could attempt to extend the work presented here to higher dimensions. In general,
a mapping T : Rd → Rd is angle preserving if it satisfies the system of nonlinear
equations [IM01, Section 2.1]

BdT := DT>DT− (det(DT))2/dId = 0. (4.58)

One can show that this equation is equivalent to the Cauchy–Riemann equations
when d = 2, which is why these equations are also known as the Cauchy–Riemann
system [IM01, p. 34]. For d ≥ 3 however, this equation is highly nonlinear and
furthermore overdetermined, which in turn implies that the exact solutions for (4.58)
can be parametrised by finitely many parameters. In addition, the powerful statement
of the Riemann mapping theorem does not extend to higher dimensions.

While this means that we cannot expect results as good as in two dimensions,
we make some remarks how one could use the Cauchy–Riemann system in three
dimensions. One approach is to linearise Bd around T = Id, resulting in

B̂dX := (DX> + DX)− 2

d
div(X). (4.59)

One could then proceed as previously and augment a given inner product (·, ·)H on
H1(Ω;R3) and define

(U,V)H+CR(α) := (U,V)H +
1

α
(B̂3U, B̂3V)L2 . (4.60)

When the initial guess is close to the optimal shape we can then hope that the
deformation is close to conformal. Alternatively, one could augment the shape
functional itself, e.g. by considering

ĴΩ(X) = JΩ(X) +
1

α

∥∥Bd(Id + X)
∥∥2

L2 . (4.61)

However, apart from the rare case that a conformal mapping between the initial and
the optimal shape of JΩ exists, the minimisers of JΩ and ĴΩ do not coincide. We do
not explore these ideas further at this stage.

77

Code availability

The code for the numerical experiments from this chapter is available at https:

//github.com/florianwechsung/ThesisNumerics. For reproducibility, all major
Firedrake components as well as the code used to run these examples have been
archived on Zenodo [Fir19; Wec19c; Wec19a].

78

https://github.com/florianwechsung/ThesisNumerics
https://github.com/florianwechsung/ThesisNumerics

Part II

Large scale solvers for the
Navier–Stokes equations

79

Chapter 5

Augmented Lagrangian
preconditioning for the stationary
incompressible Navier–Stokes
equations

Many problems in science and engineering involve the simulation of the flow of a
fluid or gas. Examples include the flow of air around aeroplanes or cars, the flow of
blood, or the flow of water in a pipe or around a boat. Frequently these simulations
naturally give rise to shape optimisation problems: an engineer who solves for the
airflow around a race car often does this in order to find a design that improves a
quantity of interest such as the drag or downforce.

The Reynolds number, defined as Re = UL
ν

where U is the characteristic velocity, L
is the characteristic length scale of the flow, and ν > 0 is the kinematic viscosity of the
fluid, is an important dimensionless number governing the nature of the flow. At very
low Reynolds number, the flow is laminar and its simulation is well understood [SW94];
as the Reynolds number increases, the flow becomes more complex and the simulation
difficulty increases accordingly.

We consider the stationary, incompressible, Newtonian Navier–Stokes equations.
Given a bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}, a decomposition of the
boundary ∂Ω = ΓD ∪ ΓN , a forcing term f and boundary data g, their strong form is:
find a velocity u and pressure p such that

−∇ · (2νEu) + (u · ∇)u +∇p = f in Ω, (5.1a)

∇ · u = 0 in Ω, (5.1b)

u = g on ΓD, (5.1c)

2νEu · n = pn on ΓN , (5.1d)

80

where Eu = 1
2
(∇u +∇uT). In the limit of short length scales, low velocity, or high

viscosity the advection term can be dropped and one obtains the Stokes equations,
which we already studied in Section 4.4.3:

−∇ · (2νEu) +∇p = f in Ω, (5.2a)

∇ · u = 0 in Ω, (5.2b)

u = g on ΓD, (5.2c)

2νEu · n = pn on ΓN . (5.2d)

The viscosity ν is often omitted as it can be absorbed into the solution.
The importance of the Stokes and Navier–Stokes equations has motivated a great

deal of research on algorithms for their solution; for a general overview of the field, see
the textbooks of Turek [Tur99], Elman, Silvester & Wathen [ESW14], or Brandt [BL11].

Remark 5.1. It is well known that stationary solutions to the Navier–Stokes equations
cease to be stable for large Reynolds number (roughly at Re ∼ 102–104, depending on
the geometry). However, even then a fast solver for the stationary equations is valuable
for implicit timestepping schemes with large timesteps or for bifurcation analysis.

For boundary data g ∈ H1/2(ΓD;Rd), we define

Vg := {v ∈ H1(Ω;Rd) : v|ΓD = g}. (5.3)

The weak form of (5.1) that we consider is: find (u, p) ∈ Vg ×Q such that

(2νEu,Ev) + (u · ∇u,v)− (p,∇ · v) = 〈f ,v〉 ∀v ∈ V0, (5.4)

− (q,∇ · u) = 0 ∀q ∈ Q, (5.5)

where (·, ·) denotes the L2 inner product, and 〈f ,v〉 denotes the dual pairing of
f ∈ H−1(Ω;Rd) and v. If |Γ \ ΓD| = 0, then a suitable space Q for the pressure is
given by L̊2 := {q ∈ L2 :

∫
Ω
q dx = 0}, otherwise we set Q := L2(Ω).

These equations become highly nonlinear as ν decreases. Given an initial guess u0

that satisfies the boundary conditions, Newton’s method applied to these equations
results in linear systems of the form: find (u, q) ∈ V0 ×Q such that

(2νEu,Ev) + (u · ∇w,v) + (w · ∇u,v)− (p,∇ · v) = 〈f (1),v〉 ∀v ∈ V0, (5.6)

− (q,∇ · u) = 〈f (2), q〉 ∀q ∈ Q, (5.7)

81

for appropriate right hand sides f (1) and f (2) and where w is the velocity solution in
the last iteration. An alternative to Newton’s method is the Picard iteration, which
corresponds to dropping one of the advection terms, i.e.

(2νEu,Ev) + (w · ∇u,v)− (p,∇ · v) = 〈f (1),v〉 ∀v ∈ V0, (5.8)

− (q,∇ · u) = 〈f (2), q〉 ∀q ∈ Q. (5.9)

Picard iteration has two advantages compared to Newton’s method: first, it can be
shown to be globally convergent for large enough viscosity [Kar82, Theorem 4.3], and
second, the bilinear form involving u and v is coercive for any viscosity ν. While
Newton’s method does not exhibit these properties, it yields quadratic convergence
close to the true solution [GR86, §4.6.3]. In this thesis we will consider only the
equations arising from Newton iteration.

5.1 Preconditioning Strategies

After discretisation using suitable spaces Vh ⊂ V0, Qh ⊂ Q (discussed in detail in
Chapters 6 and 7), at each Newton step a nonsymmetric linear system of saddle point
type must be solved: [

A BT

B 0

] [
u
p

]
=

[
b
c

]
, (5.10)

where A is the discrete linearised momentum operator, BT is the discrete gradient
operator, B is the discrete divergence operator, and u and p are the updates to the
coefficients for velocity and pressure respectively. The solution of these equations is
complicated by several features of the system: first, it is nonsymmetric due to the
advection term, and second, it is indefinite due to its saddle-point like structure.

One strategy to solve these systems is to employ a monolithic multigrid iteration
on the entire system with a suitable coupled relaxation method, such as the algorithms
of Vanka [Van86] or Braess & Sarazin [BS97]. Vanka iteration works well for moderate
Reynolds numbers [Tur99], but the iteration counts have been observed to increase
significantly once the Reynolds number becomes large [BO06].

An alternative approach to solving (5.10) is to build preconditioners based on
block factorisations [MGW00; Ips01; BGL05; ESW14; Wat15]:[

A BT

B 0

]−1

=

[
I −A−1BT

0 I

] [
A−1 0

0 S−1

] [
I 0

−BA−1 I

]
(5.11)

where S is the Schur complement given by

S = −BA−1BT . (5.12)

82

It was shown in [MGW00], that in fact the diagonal preconditioner

P =

[
A−1 0

0 −S−1

]
(5.13)

results in a matrix PA with only 3 distinct eigenvalues. While the matrix S is usually
dense and hence not formed exactly, this motivates preconditioners of the form (5.11)
or (5.13) where A−1 and S−1 are replaced by approximations. Cheap approximations
have to be devised on a PDE specific basis.

For the Stokes equations, the Schur complement is spectrally equivalent to the
viscosity-weighted pressure mass matrix [SW94]. A mesh independent preconditioner
can be obtained by approximating the inverse of the top-left block with an AMG
cycle and the Schur-complement with the diagonal of the pressure mass matrix.
We note that this preconditioner can also be derived using a functional analytic
approach as it is spectrally equivalent to the Riesz-map in the appropriate function
space [MW11; GHS14; HS15]. For the Navier–Stokes equations this choice still yields
mesh independent convergence and is effective for very small Reynolds numbers, but
the convergence deteriorates with Reynolds number [ES96; ESW14].

The pressure convection-diffusion (PCD) approach [KLW02] constructs an auxiliary
convection-diffusion operator on the pressure space, and hypothesises that a certain
commutator is small. This yields an approximation to the Schur complement inverse
that involves the inverse of the Laplacian on the pressure space, the application
of the auxiliary convection-diffusion operator, and the inverse of the pressure mass
matrix. The least-squares commutator (LSC) approach [Elm+06] is based on a
similar idea, but derives the commutator algebraically. Both of these approaches yield
mesh independent iteration counts and perform well for moderate Reynolds numbers.
However, as the Reynolds number increases, the iterations counts grow at a rate
between ∼ Re1/3 and ∼ Re1/2 depending on the exact variant of the preconditioner
and problem under consideration [KLW02]. One might ask whether this growth is
due to the Schur-complement approximation or simply because AMG becomes a
poor approximation for A−1. It was demonstrated in [ESW14, Table 9.3] that the
ideal versions of the preconditioners, i.e. when all solves are performed exactly, admit
similar growth of iteration counts. This suggests that it is the approximation of the
Schur-complement that degrades as the Reynolds number increases.

83

5.2 Augmented Lagrangian preconditioning

In [Ols02; BO06] Benzi & Olshanskii propose a different approach: they modify
the equations in a way that does not change their solution, but forces the Schur-
complement to be close to an operator that can easily be inverted. This approach
is known as augmented Lagrangian or grad-div stabilisation [OR03; BO06; GGV03;
OB08; BO11; FG83; Kob95].

The discrete variant of this approach replaces (5.10) with[
A+ γBTWB BT

B 0

] [
u
p

]
=

[
b + γBTWc

c

]
, (5.14)

for some matrix W . We see immediately that a solution to (5.10) is also a solution
to (5.14) and vice versa. The Schur-complement however, does change.
Lemma 5.2.
The Schur-complement of the matrix in (5.14) satisfies

S−1
γ = S−1 − γW (5.15)

where S−1 is the Schur-complement of the matrix in (5.10).

Proof. We recall the Sherman-Morrison-Woodbury identity [Hag89]: for matrices A,
U , C and V such that A, C and C−1 + V A−1U are invertible, it holds that

(A+ UCV)−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1. (5.16)

We use this identity twice to obtain

S−1
γ = −(B(A+ γBTWB)−1BT)−1

= −(B(A−1 − A−1BT (
1

γ
W−1 +BA−1BT)−1BA−1)BT)−1

= −(BA−1BT︸ ︷︷ ︸
−S

−γBA−1BT (W−1 +BA−1BT)−1BA−1BT)−1

= (S + S(
1

γ
W−1 − S)−1S)−1

= (S−1 − S−1S(
1

γ
W−1 − S + SS−1S)−1SS−1)

= S−1 − γW.

(5.17)

84

Given any approximation S̃−1 ≈ S−1, we approximate the new Schur complement
by S̃−1

γ = S̃−1 − γW . In the previous section we remarked that the approximation
S ≈ −νMp, where Mp is the pressure mass matrix, results in a mesh independent
preconditioner. This suggests the choice W = M−1

p , as then

S−1
γ = S−1 − γM−1

p ≈ −(ν + γ)M−1
p . (5.18)

Clearly the approximation becomes better as γ →∞ for fixed mesh size and viscosity,
in the sense that

∣∣∣∣∣∣S−1
γ + (ν + γ)M−1

p

∣∣∣∣∣∣/∣∣∣∣∣∣S−1
γ

∣∣∣∣∣∣→ 0. In [BO06; Ols02] the eigenvalues
of the preconditioned system are studied for the above choice of W and it is shown
that the choice γ ∼ ν−1 yields uniformly bounded eigenvalues in ν and h.

However, it is well known that the eigenvalues of a matrix do not characterise
the convergence of GMRES for a linear system [GPS96]. Instead, it is sufficient to
bound the field-of-values of the preconditioned system [Sta97, Theorem 3.2], [EE01,
Corollary 6.2], [OT14, §1.3]. This analysis was performed in [BO11] for the augmented
Lagrangian preconditioner for the Oseen problem, using general results of Loghin &
Wathen [LW04]. One of the key ingredients in this analysis is that the momentum
operator is coercive with constant ν. They use this to prove that the choice γ ∼ ν−1

results in an optimal preconditioner (assuming exact solves of the momentum block).
However, the momentum operator of the Newton linearisation of (5.1) is only coercive
for ν > ν0 for some problem-dependent ν0 [GR86, p. 300]. Fortin & Glowinski
remark [FG83, p. 85] that this is typically a very restrictive condition: for ν large
enough so that ν > ν0 the Stokes approximation itself is usually adequate. This
proof strategy would therefore require significant extension to apply to the Newton
linearisation considered here.

In practice, Benzi & Olshanskii [BO06] observe that a constant choice of γ yields
mesh independent and nearly Reynolds number independent results. We will develop
solvers that are robust to large values of γ, and hence we simply choose γ large. In the
experiments of Section 6.4, we take the value γ = 104, to match the largest Reynolds
number considered. Considering an implementation of this scheme, we note that a
triple matrix product like BTWB is both expensive to compute and store. However,
for W = M−1

p adding γBTM−1
p B to the linear system corresponds to augmenting the

weak form with a term

γc(u,v) = γ

∫
Ω

ΠQh(∇ · u)ΠQh(∇ · v) dx, (5.19)

where ΠQh is the projection onto Qh. When the pressure space consists of discontinuous
functions, then this projection can be evaluated cheaply and the integral can be

85

assembled directly. We will later also study a discretisation that satisfies div(Vh) ⊂ Qh,
in which case the projection reduces to the identity.

Remark 5.3. The same augmentation but without the projection onto Qh is also
known as grad-div stabilisation as it corresponds to the weak form of −γ∇∇ · u. This
stabilisation has several advantageous properties. For example, it significantly improves
the pressure-robustness of discretisations where the incompressibility constraint is
not enforced pointwise [OR03; HR12; Joh+17]. It also arises in other contexts in
the numerical analysis of (5.1). For example, Boffi & Lovadina [BL97] showed that
the addition of the term h−1/2(∇ · u,∇ · v)L2(Ω) to the weak form of the [P2]

2−P0

discretisation of (5.1) improves its convergence order. It also arises in the iterated
penalty [Tem68; BS08] and artificial compressibility [Cho67] methods for the Stokes
and Navier–Stokes equations.

To demonstrate the efficacy of the approach, we show iteration counts for the ideal
version of the augmented Lagrangian preconditioner, that is when the top-left block
is solved exactly. The iteration counts are shown in Table 5.1: as γ is increased, the
preconditioner becomes a very good approximation of the true inverse of the Jacobian.
To summarise, the augmented Lagrangian approach adds little cost to the assembly
of the system but improves the approximation of the Schur-complement significantly.
However, as we discuss in the next section, the price to be paid for this improvement

γ
Reynolds number

10 100 1000 5000 10000

0 13.00 25.33
1 7.50 5.33 5.00 4.00 3.50

102 2.00 2.00 1.67 1.50 1.50
104 1.50 1.00 1.00 1.00 1.00

Table 5.1: Average number of outer Krylov iterations per Newton step for a two
dimension lid-driven cavity problem on a 32× 32 uniform grid using the ideal version
of the augmented Lagrangian preconditioner. For γ = 0 the solver exceeds the limit
of 100 iterations at Re = 300.

is that the top-left block becomes much harder to solve.

5.3 Solving the top-left block

Let us denote
Aγ := A+ γBTM−1

p B. (5.20)

86

While it is understood how to solve linear systems involving A, the added augmented
Lagrangian term introduces extra difficulty. The matrix BTM−1

p B has a large nullspace,
consisting of all vector fields with vanishing projected divergence. This implies that
as γ becomes large, Aγ becomes nearly singular and standard iterative solvers for A
become ineffective at solving systems involving Aγ.

We demonstrate this in Table 5.2, where we apply standard geometric multigrid
with Jacobi smoothing [MM16] and algebraic multigrid [FY02] to the Aγ system. We
clearly see that convergence degrades quickly as the ratio γ/ν is increased.

Refinements Degrees of freedom γ/ν
0 1 10 102 103 104 106 108

Geometric multigrid

1 578 5 5 7 20 >100 >100 >100 >100
2 2 178 5 5 7 24 >100 >100 >100 >100
3 8 450 5 5 7 26 >100 >100 >100 >100
4 33 282 5 5 7 27 >100 >100 >100 >100

Algebraic multigrid

1 578 7 7 11 28 57 87 >100 >100
2 2 178 8 7 11 29 74 >100 >100 >100
3 8 450 7 7 12 34 93 >100 >100 >100
4 33 282 8 8 14 39 >100 >100 >100 >100

Table 5.2: Iteration counts for a system involving the top-left block Aγ only. Excerpt
from Table 6.2 in Section 6.4.2.

A key insight of [BO06; OB08] was that a specialised multigrid algorithm could be
built for Aγ with convergence that does not deteriorates as γ/ν →∞ by applying the
seminal work of Schöberl [Sch99b; Sch99a], who developed parameter robust multigrid
methods in the context of nearly incompressible elasticity. The method involves a
custom smoother that effectively treats errors in the kernel of the discrete divergence
term and a specialised prolongation operator whose continuity constant is independent
of γ and ν. Using this scheme for the top-left block, the augmented Lagrangian
preconditioner exhibits outer iteration counts that grow only very slowly with Reynolds
number [BO06]. However, it is described as difficult to implement [HBH10; BOW11],
and so despite promising results in [BO06; OB08], to the best of the author’s knowledge,
all of the works that use augmented Lagrangian preconditioning and the Schur
complement approximation (5.18) employ either matrix factorisation as the inner
solver [NW07; RVS08; BB10; HNC11; HR12] or a block-triangular approximation to

87

Aγ [BOW11; HBH10; BO11; HVK18]. This block-triangular approximation decouples
linear systems involving Aγ into d scalar anisotropic advection–diffusion problems,
which may be solved with algebraic multigrid techniques. However, this simplicity
comes at a price; the scheme is much more sensitive to the choice of γ, and its
convergence deteriorates somewhat as the Reynolds number increases [BOW11].

To preserve both robustness and scalability, we choose to implement the geometric
multigrid scheme for the full Aγ matrix. In the next section we will review the theory
developed by Schöberl for nearly singular problems and describe the requirements for
the smoothing and prolongation operators. In [Sch99a; Sch99b] a full convergence
proof for the W-cycle and the variable V-cycle is given. However, the nearly singular
nature and a potential nonnestedness complicates the analysis and the final result
is somewhat weaker than the usual textbook multigrid efficiency. Convergence is
proven for a sufficiently high number of smoothing iterations and the bounds on the
contraction rate in terms of smoothing iterations are weaker than usual. We do not
reproduce the full multigrid convergence proof here, instead we will illustrate the
requirement for a parameter robust smoother and prolongation on the basis of an
additive two level method as in [Sch99b, Section 3.1.2]. In Chapters 6 and 7 we will
then construct smoothing and prolongation operators for specific discretisations and
prove that they satisfy the necessary properties for a robust scheme.

5.4 Subspace correction methods for nearly singular
problems

Preconditioners for problems that are given as the sum of a positive definite and a
positive semidefinite operator have been subject to extensive study, in particular in
the context of solving problems in H(div) and H(curl), where problems involving
bilinear forms (u,v) 7→ (u,v) + γ(∇ · u,∇ · v) and (u,v) 7→ (u,v) + γ(∇× u,∇× v)

arise frequently [EW92; VW92; HT97; AFW97; AFW00; HX07]. Ewing & Wang
and Vassilevski & Wang studied Schwarz methods for the H(div) case and realised
the importance of subspace decompositions that respect the kernel of the divergence.
General formulations of this idea were developed by Schöberl [Sch99a; Sch99b; Sch98]
(for additive relaxation) and Lee et al. [Lee+07; LWC09] (for multiplicative relaxation).

Both Schöberl and Lee et al. only consider the case of a symmetric system and the
author is not aware of any literature that has treated nonsymmetric nearly singular
problems. For this reason, the following analysis will consider the Stokes problem
only. We will demonstrate in the numerical experiments that the resulting smoother

88

performs remarkably well even when the advection terms are included. Ignoring
advection, the problem associated with the top-left block can be written as

ah,γ(u,v) := a(u,v) + γch(u,v), (5.21)

where
a(u,v) := 2ν(Eu,Ev),

ch(u,v) := (ΠQh(∇ · u),ΠQh(∇ · v)).
(5.22)

We define the operator Ah,γ : Vh → V ∗h by

〈Ah,γu,v〉 := ah,γ(u,v), (5.23)

and we drop the subscript γ to denote the case without augmentation, i.e.

〈Ahu,v〉 := a(u,v). (5.24)

In addition, without loss of generality we can assume ν = 1 (if not, we divide the
equation by ν and then follow the analysis below with γ̂ = γ/ν).

Many smoothers commonly used in multigrid can be expressed as so called subspace
correction methods. We consider a decomposition

Vh =
∑
i

Vi (5.25)

where the sum is not necessarily a direct sum. For each subspace i we denote the
natural inclusion by Ii : Vi → Vh and we define the restriction Ai of Ah,γ onto Vi as

〈Aiui,vi〉 := 〈Ah,γIiui, Iivi〉 for all ui,vi ∈ Vi. (5.26)

The additive Schwarz preconditioner associated with the subspace decomposition {Vi}
is then defined by the action of its inverse:

D−1
h,γ =

∑
i

IiA
−1
i I∗i . (5.27)

The method is also known as the parallel subspace correction method [Xu92]. A
standard result in the theory of subspace correction methods ([Xu01, Eqn. (4.11)],
[Sch99b, Theorem 4.1]) is that

‖uh‖2
Dh,γ

= inf
ui∈Vi∑
i ui=uh

∑
i

‖ui‖2
Ai
. (5.28)

In order to prove spectral equivalence of Dh,γ and Ah,γ , we want to obtain a bound of
the form

c1Dh,γ ≤ Ah,γ ≤ c2Dh,γ, (5.29)

89

where M ≤ N means that ‖u‖M ≤ ‖u‖N for all u. The number of iterations required
by the conjugate gradient method for Ah,γ preconditioned by Dh,γ then behaves like√
c2/c1 [Wat15, eqn. (2.18)].
Let us study the second inequality in (5.29) first and give a bound for c2. For i

and j we define

gij =

{
1, if ∃vi ∈ Vi,vj ∈ Vj : | supp(vi) ∩ supp(vj)| > 0

0, otherwise,
(5.30)

indicating interaction between subspaces Vi and Vj. The overlap is then defined as
NO = maxi

∑
j gij. Let uh =

∑
i Iiui be a splitting of uh ∈ Vh. Then

‖uh‖2
Ah,γ

=
∑
ij

ah,γ(Iiui, Ijuj) =
∑
ij

gijah,γ(Iiui, Ijuj)

≤
∑
ij

gij‖ui‖Ai‖uj‖Aj ≤
1

2

∑
ij

gij(‖ui‖2
Ai

+ ‖uj‖2
Aj

)

≤ NO

∑
i

‖ui‖2
Ai
.

(5.31)

By (5.28), the statement follows with c2 = NO. We note that this bound is independent
of the PDE.

However, the first inequality in (5.29) is harder to obtain and usually depends not
only on the smoother but also on the PDE and the mesh size. We demonstrate this
for the case of Jacobi relaxation, i.e. when Vi = {αϕi : α ∈ R} where {ϕi} is the
set of basis functions of Vh. We note that the decomposition uh =

∑
ui, ui ∈ Vi is

unique, and hence

‖uh‖2
Dh,γ

=
∑
i

‖ui‖2
Ah,γ
� (1 + γ)

∑
i

‖ui‖2
1 �

1 + γ

h2

∑
i

‖ui‖2
0

� (1 + γ)h−2‖uh‖2
0 � (1 + γ)h−2‖uh‖2

Ah,γ
.

(5.32)

This bound is parameter dependent and degrades as γ →∞.
In order to obtain a bound independent of γ, we require a subspace decomposition

that respects the nullspace of the singular operator, which we denote by

Nh = {vh ∈ Vh : ΠQh(∇ · vh) = 0}. (5.33)

To give an intuition, we consider a u0 ∈ Nh. If the subspace decomposition satisfies

Nh =
∑
i

Vi ∩Nh, (5.34)

90

then u0 can be written as

u0 =
∑
i

u0,i, u0,i ∈ Vi ∩Nh. (5.35)

We redo the calculation in (5.32) but use the fact that each of the u0,i are divergence-
free, to obtain

‖u0‖2
Dh,γ
≤
∑
i

‖u0,i‖2
Ah,γ
�
∑
i

‖u0,i‖2
1. (5.36)

We now make this idea rigorous and prove γ independent spectral equivalence of
Dh,γ and Ah,γ. A key assumption, which we will need to check for each element and
subspace decomposition individually, is that the splitting in (5.35) is stable, so that
the last term in (5.36) can be bounded.
Proposition 5.4 ([Sch99b, Theorem 4.1]).
Let {Vi} be a subspace decomposition of Vh with overlap NO and assume that the pair
Vh ×Qh is inf-sup stable for the mixed problem

B((u, p), (v, q)) := a(u,v) + (∇ · v, p) + (∇ · u, q). (5.37)

Assume that uh ∈ Vh and u0 ∈ Nh satisfy

inf
uh=

∑
ui

ui∈Vi

∑
i

‖ui‖2
1 ≤ c1(h)‖uh‖2

0

inf
u0=

∑
u0,i

u0,i∈Nh∩Vi

∑
i

‖u0,i‖2
1 ≤ c2(h)‖u0‖2

0.
(5.38)

Then it holds that
(c1(h) + c2(h))−1Dh,γ � Ah,γ ≤ NODh,γ, (5.39)

with constants independent of γ.

Proof. Let uh ∈ Vh, and consider a decomposition uh = u0 + u1 obtained by solving

B((u1, p1), (vh, qh)) = (∇ · uh, qh) for all (vh, qh) ∈ Vh ×Qh. (5.40)

Testing with vh = 0 we obtain that ΠQh(∇·u1) = ΠQh(∇·uh) and hence ΠQh(∇·u0) = 0.
Furthermore, by stability we have

‖u1‖1 � sup
vh∈Vh
qh∈Qh

B((u1, p1), (vh, qh))

‖(vh, qh)‖

(5.40)
≤ sup

vh∈Vh
qh∈Qh

‖ΠQh(∇ · uh)‖0‖qh‖0

‖(vh, qh)‖

≤ ‖ΠQh(∇ · uh)‖0

(5.41)

91

and hence ‖u1‖1 � ‖uh‖1 and ‖u1‖1 � γ−1/2‖uh‖Ah,γ . Using u0 = uh − u1 we obtain
in addition that ‖u0‖1 � ‖uh‖1 and conclude

‖uh‖2
Dh
≤ inf

u1=
∑

u1,i

u1,i∈Vi

∑
i

‖u1,i‖2
Ah,γ︸ ︷︷ ︸

≤(1+γ)‖u1,i‖21

+ inf
u0=

∑
u0,i

u0,i∈Nh∩Vi

∑
i

‖u0,i‖2
Ah,γ︸ ︷︷ ︸

=‖u0,i‖21

(5.38)
� (1 + γ)c1(h)‖u1‖2

0 + c2(h)‖u0‖2
0

� (1 + γ)c1(h)‖u1‖2
1 + c2(h)‖u0‖2

1

� (c1(h) + c2(h))‖uh‖2
Ah,γ

.

(5.42)

We will usually see bounds that behave as c1 ∼ h−2 and c2 ∼ h−4. The reason
for the fast growth of c2 is that we will construct the splitting into divergence-free
functions by expressing u0 = ∇ × Φ for a potential Φ ∈ H2(Ω;Rd), introducing
second derivatives into the estimates. This quartic growth of c2 complicates a standard
multigrid analysis, as one needs to show that a coarse-grid solve reduces the error in
a way so that Dh,γ acts on it in a mesh independent way. The analysis simplifies if
instead we consider an additive coarse-grid solve.

Let VH be a coarse-grid space (not necessarily satisfying VH ⊂ Vh), let PH : VH →
Vh be a prolongation operator, and let AH,γ : VH → V ∗H correspond to the PDE on
the coarse space VH . Then we define

C−1
h,γ = PHA

−1
H,γP

∗
H +

∑
i

IiA
−1
i I∗i (5.43)

to be the additive Schwarz preconditioner with coarse-grid correction.
Proposition 5.5 ([Sch99b, Lemma 3.5]).
Assume that

1. the overlap of local spaces Vi is bounded by NO;

2. the prolongation PH : VH → Vh is continuous in the energy norm with a constant
independent of γ, i.e.

‖PHuH‖Ah,γ ≤ CP‖uH‖AH,γ for all uH ∈ VH ; (5.44)

3. there exists an interpolation operator IH : Vh → VH that is continuous with a
constant independent of γ, i.e.

‖IHuh‖AH,γ ≤ CI‖uh‖Ah,γ for all uh ∈ Vh; (5.45)

92

4. the difference uf = uh − PHIHuh satisfies

inf
ui∈Vi∑
i ui=uf

∑
i

‖ui‖2
Ah,γ
≤ CS‖uh‖2

Ah,γ
for all uh ∈ Vh (5.46)

with a constant independent of γ.

Then the additive Schwarz preconditioner with coarse-grid correction satisfies

(C2
I + CS)−1Ch,γ ≤ Ah,γ ≤ (1 +NO) max{C2

P , 1}Ch,γ. (5.47)

Remark 5.6. One can show that requirements 2.)-4.) are in fact necessary to obtain
an optimal two-level preconditioner.

Proof. Let uh = PHuH +
∑

i Iiui be an arbitrary splitting, and denote

Ωi = ∪v∈Vi supp(v), (5.48)

then

‖uh‖2
Ah,γ

= ‖PHuH‖2
Ah,γ

+ 2
∑
i

ah,γ(PHuH , Iiui) +
∑
ij

ah,γ(Iiui, Ijuj)

≤ ‖PHuH‖2
Ah,γ

+ 2
∑
i

‖PHuH‖Ah,γ(Ωi)‖ui‖Ai +NO

∑
i

‖ui‖2
Ai

≤ ‖PHuH‖2
Ah,γ

+
∑
i

‖PHuH‖2
Ah,γ(Ωi)

+
∑
i

‖ui‖2
Ai

+NO

∑
i

‖ui‖2
Ai

≤ (1 +NO)
(
‖PHuH‖2

Ah,γ
+
∑
i

‖ui‖2
Ai

)
≤ max{1, C2

P}(1 +NO)
(
‖uH‖2

AH,γ
+
∑
i

‖ui‖2
Ai

)
.

(5.49)

Since the splitting was arbitrary, we obtain

Ah,γ ≤ (1 +NO) max{C2
P , 1}Ch,γ. (5.50)

For the lower bound, we consider the splitting uh = PHIHuh + (uh − PHIHuh) =

PHIHuh + uf and calculate

‖uh‖2
Ch,γ
≤ ‖IHuh‖2

AH,γ
+ inf

ui∈Vi∑
i ui=uf

∑
i

‖ui‖2
Ah,γ

≤ C2
I ‖uh‖Ah,γ + CS‖uh‖2

Ah,γ

= (C2
I + CS)‖uh‖2

Ah,γ
.

(5.51)

93

This proposition has two implications. First, though we cannot expect to bound
‖uh‖Dh,γ � ‖uh‖Ah,γ for all uh ∈ Vh independently of γ and h, it is enough to be able
to prove these bounds for functions of the form uf = uh − PHIHuh. Secondly, we
require a robust prolongation operator to map coarse grid to fine grid functions. To
get an intuition for this requirement, we calculate

‖uH‖2
AH,γ

= ‖uH‖2
AH

+ γ‖ΠQH (∇ · uH)‖2
0

‖PHuH‖2
Ah,γ

= ‖PHuH‖2
Ah

+ γ‖ΠQh(∇ · (PHuH))‖2
0.

(5.52)

The key difficulty lies in the second term of this norm. To see this, observe that for
an element uH ∈ NH the second term in ‖uH‖2

AH,γ
vanishes, but since it does not

necessarily hold that PHuH ∈ Nh, the corresponding term in ‖PHuH‖2
Ah,γ

might be
large.

To avoid this, we must modify the prolongation operator to map fields that are
discretely divergence-free on the coarse grid to fields that are (nearly) discretely
divergence-free on the fine grid. We now describe a modification of the standard
prolongation operator that satisfies this conditions. This type of modification goes
back to Schöberl’s work, though we give a different derivation and proof.

Let uH ∈ NH be a discretely divergence-free function on the coarse-grid and
denote the standard prolongation induced by the interpolation operator on the finite
element space by PHuH . We are interested in finding a small perturbation ũh such
that PHuH − ũh ∈ Nh. This is for example given by solving

min
ũh∈Vh

a(ũh, ũh)

s.t. ΠQh(∇ · ũh) = ΠQh(∇ · PHuH).
(5.53)

This corresponds to solving a Stokes like problem in Vh ×Qh. We will now relax this
problem in two aspects. First, we do not need to enforce that PHuH − ũh has zero
discrete divergence, but it is enough if it is suitably small, i.e. we can instead find
ũh ∈ Vh that minimises

min
ũh∈Vh

a(ũh, ũh) + γ‖ΠQh(∇ · (PHuH − ũh))‖2
0. (5.54)

This corresponds to solving

ah,γ(ũh, ṽh) = γ(ΠQh(∇ · PHuH),ΠQh(∇ · ṽh)) for all ṽh ∈ Vh. (5.55)

Clearly at this stage we have not gained much, since we now need to solve a global
problem involving the nearly singular bilinear form ah,γ. However, it turns out that

94

under certain assumptions that we will state in the following proposition, one can
instead solve the same problem on smaller spaces Ṽh ⊂ Vh and Q̃h ⊂ Qh:

min
ũh∈Ṽh

a(ũh, ũh) + γ‖ΠQ̃h
(∇ · (PHuH − ũh))‖2

0. (5.56)

or equivalently: find ũh ∈ Ṽh such that

ah,γ(ũh,vh) = γ(ΠQ̃h
(∇ · (PHuH)),ΠQ̃h

(∇ · vh)) for all vh ∈ Vh. (5.57)

How exactly one chooses these subspaces will depend on the discretisation under
consideration and will be studied in detail in the next two chapters.
Proposition 5.7 (Robust prolongation).
Assume we can split Qh = Q̃H ⊕ Q̃h and that Q̃H ⊂ QH . Let PH : VH → Vh be a
prolongation operator that is continuous in the ‖ ·‖1 norm and preserves the divergence
with respect to Q̃H , i.e.

(∇ · (PHvH), q̃H) = (∇ · vH , q̃H) for all q̃H ∈ Q̃H ,vH ∈ VH . (5.58)

Assume in addition that there exists a Ṽh ⊂ Vh such that

(∇ · ṽh, q̃H) = 0 for all q̃H ∈ Q̃H , ṽh ∈ Ṽh. (5.59)

and such that the pairing Ṽh × Q̃h is inf-sup stable, i.e.

inf
q̃h∈Q̃h

sup
ṽh∈Ṽh

(q̃h,∇ · ṽh)
‖ṽh‖1‖q̃h‖0

≥ c (5.60)

for some mesh independent c > 0. For uH ∈ VH , define ũh as the solution to

ah,γ(ũh, ṽh) = γ(ΠQh(∇ · (PHuH)), (ΠQh(∇ · (ṽh)))) for all ṽh ∈ Ṽh. (5.61)

Then the prolongation P̃H : VH → Vh defined by

P̃HuH = PHuH − ũh (5.62)

is continuous in the energy norm.

Remark 5.8. The problems in (5.57) and (5.61) are equivalent by the assumption
in (5.59).

Remark 5.9. This prolongation operator is very similar to the one used by [Sch99b,
Theorem 4.2] and [BO06, Lemma 5.1]. The difference is that in Schöberl’s work the
problem in (5.61) is replaced with

ah,γ(ũh, ṽh) = ah,γ(PHuH , ṽh) for all ṽh ∈ Ṽh. (5.63)

95

We use the version in (5.61) for two reasons: first, it reduces to the standard prolon-
gation for γ = 0, and second, it can be viewed as a local version of the global problem
in (5.55), where as solving a global version of (5.63) would lead to ũh = PHuH and
hence P̃HuH = 0.

The proofs of Schöberl and Benzi & Olshanskii are based on an equivalent mixed
problem. We give a different proof motivated by the formulation as an optimisation
problem and use the existence of a Fortin operator due to inf-sup stability.

Proof of Proposition 5.7. We denote

J(ṽh) := a(ṽh, ṽh) + γ‖ΠQ̃h
(∇ · (PHuH − ṽh))‖2

0, (5.64)

and observe that ũh is the unique minimiser of J in Ṽh. By inf-sup stability of the
pairing Ṽh × Q̃h there exists a continuous Fortin operator I : V → Ṽh that satisfies

ΠQ̃h
(∇ · (Iv)) = ΠQ̃h

(∇ · v) for all v ∈ V. (5.65)

Let ūh := I(PHuH) ∈ Ṽh and observe that

J(ũh) ≤ J(ūh) = a(ūh, ūh) � ‖PHuH‖2
1 � ‖uH‖2

1. (5.66)

We conclude
‖P̃HuH‖2

Ah,γ

≤‖PHuH − ũh‖2
Ah

+ γ‖ΠQh(∇ · (PHuH − ũh))‖2
0

�‖PHuH‖2
Ah︸ ︷︷ ︸

�‖uH‖2Ah

+ ‖ũh‖2
Ah

+ γ‖ΠQ̃h
(∇ · (PHuH − ũh))‖2

0︸ ︷︷ ︸
=J(ũh) �

(5.66)
‖uH‖21

+ γ‖ΠQ̃H
(∇ · (PHuH − ũh))‖2

0

�‖uH‖2
1 + γ‖ΠQ̃H

(∇ · (PHuH))︸ ︷︷ ︸
=

(5.58)
ΠQ̃H

(∇·uH)

‖2
0 + γ‖ΠQ̃H

(∇ · ũh)︸ ︷︷ ︸
=

(5.59)
0

‖

�‖uH‖2
1 + γ‖ΠQ̃H

(∇ · uH)‖

�‖uH‖2
AH,γ

.

(5.67)

Remark 5.10. Note that if div(VH) ⊂ QH , then discretely divergence-free vectorfields
on the coarse grid are in fact exactly divergence-free. If in addition VH ⊂ Vh, then
the natural inclusion is a continuous prolongation operator. This corresponds to the
situation that was studied by Lee et al. [LWC09] for nearly singular elasticity and hence
they do not require special prolongation operators. However, as we will see in the next
two chapters, H1-conforming, stable discretisations for the Stokes and Navier–Stokes
equations are often either nonnested or not exactly divergence-free.

96

Chapter 6

Augmented Lagrangian
preconditioning for a low order
discretisation

In the previous chapter we described the requirements for a multigrid scheme with γ
robust performance for the top-left block Aγ that arises in the augmented Lagrangian
formulation. We will now study the specific case of a low order discretisation with
piecewise constant pressures. For this case the discrete divergence corresponds directly
to the flux across edges/facets in 2D/3D, simplifying the characterisation of divergence-
free vector fields.

The chapter is organised as follows. In Section 6.1 we describe the two dimensional
case that Schöberl, Benzi & Olshanskii studied and construct robust smoothing and
prolongation operators for the [P2]2−P0 element. We then extend their work to three
dimensions. While the same general strategy applies in three dimensions, in Section 6.2
we will explain that the [P2]3−P0 element cannot be used, as it would lead to ill-posed
problems as part of the prolongation. We will propose appropriate alternative finite
element discretisations and matching prolongation operators that result in a robust
multigrid scheme.

The study will have ignored the advection term up to that point. In Section 6.3
we discuss the inclusion of the advection term and the stabilisation scheme that we
employ. We present an implementation of the full solver in Section 6.4, based on
the Firedrake finite element library and the developed PCPATCH preconditioner in
PETSc. We demonstrate robust performance up to Re = 10 000 in two dimensions
and Re = 5 000 in three dimensions for two classical benchmark problems.

97

6.1 Robust smoothing and prolongation in two di-
mensions

Given a simply-connected domain Ω, we consider a simplicial mesh MH , that is
∪K∈MH

K = Ω with int(K1) ∩ int(K2) = ∅ for all K1 6= K2 ∈ MH . A fine gridMh,
h = H/2 is then obtained by regular refinement of the simplices inMH . As before
we only consider the two level case in the exposition, but the approach extends in
the usual way to arbitrarily many levels. The function spaces we consider in two
dimensions are given by

Vh := {v ∈ H1(Ω;R2) : v|K ∈ [P 2(K)]2 ∀K ∈Mh}, (6.1)

Qh := {q ∈ L2(Ω) : q|K ∈ P 0(K) ∀K ∈Mh}, (6.2)

with coarse grid spaces VH and QH defined in the same way onMH . If the velocity is
prescribed on all of ∂Ω, then we require in addition that the pressures in QH and Qh

integrate to zero.

6.1.1 Prolongation

We begin by studying the prolongation operator that maps VH to Vh. Since the spaces
are nested, the standard prolongation PH given by interpolation at the degrees of
freedom is equal to the identity operator. However, as discussed at the end of the
previous chapter, a velocity field that is divergence-free with respect to QH does not
necessarily need to be divergence-free with respect to the (larger) space Qh. In order
to use Proposition 5.7 we denote

Q̃H := QH ,

Q̃h := {qh ∈ Qh : ΠQHqh = 0},
(6.3)

and by definition
Qh = Q̃H ⊕ Q̃h. (6.4)

The space Q̃h represents the ‘extra pressure functions’ obtained by refining the mesh.
Since VH ⊂ Vh and the prolongation is just the identity, we immediately obtain that
the divergence with respect to functions in Q̃H is preserved, i.e.

(∇ · (PHuH), q̃H) = (∇ · uH , q̃H) ∀uH ∈ VH , q̃H ∈ Q̃H . (6.5)

Hence, if a function is discretely divergence-free on the coarse grid, after prolongation
it remains discretely divergence-free with respect to functions in Q̃H . In order to

98

remove any divergence with respect to functions in Q̃h, we will solve a local problem
in each cell. To this end, we define

Ṽh := {vh ∈ Vh : vh|∂K = 0 ∀K ∈MH}. (6.6)

The space Ṽh consists of velocity degrees of freedom in Vh that are in the interior of
coarse cells K ∈MH , as shown in Figure 6.1. We note that though we always show
regular grids, this is not required.

Figure 6.1: The subspace Ṽh consists of local patches collecting 6 degrees of freedom
inside each coarse-grid cell.

Since functions in Ṽh vanish on the boundary of coarse grid cells, we obtain

(∇ · ũh, q̃H) = 0 ∀ũh ∈ Ṽh, q̃H ∈ Q̃H . (6.7)

Lastly we note that the pairing Ṽh× Q̃h is inf-sup stable and hence by Proposition 5.7,
a robust prolongation operator P̃H is then given by

P̃HuH = uH − ũh (6.8)

where ũh ∈ Ṽh solves

ah,γ(ũh, ṽh) = γ(ΠQh(∇ · uH),ΠQh(∇ · ṽh)) for all ṽh ∈ Ṽh. (6.9)

We highlight that the space Ṽh decouples into small patch solves involving only 6

degrees of freedom per coarse grid cell as shown in Figure 6.1. This is crucial for an
efficient implementation.

99

6.1.2 Relaxation

In the previous chapter we established that the key requirement for a subspace
decomposition {Vi} is that it decomposes the nullspace of the divergence. In the case
of piecewise continuous pressures, this is satisfied by choosing subspaces corresponding
to patches around vertices of the mesh. More specifically, for each vertex vi in the
meshMh, its star is the patch of elements sharing vi:

star(vi) :=
⋃

K∈Mh : vi∈K

K. (6.10)

The subspace decomposition we consider is given by subspaces Vi associated with each
vertex vi defined by

Vi := {uh ∈ Vh : supp(uh) ⊂ star(vi)}. (6.11)

We call the resulting subspace correction method a star iteration, it is shown in
Figure 6.2. For the reader’s convenience, we repeat the argument of [Sch99b, Sec-

Figure 6.2: The star patch around a vertex collects the degrees of freedom inside the
cells attached to this vertex. The overlap is given by NO = 2.

tion 4.1.2] to show that this decomposition satisfies the requirement in Proposition 5.5
for a robust relaxation. The proof for this Lemma requires the assumption that Ω is
simply-connected. In practice, we observe good performance for the multigrid scheme
also for domains that do not satisfy this assumption, as the nonlocal solenoidal vector
fields are captured by the coarse grid solve.
Proposition 6.1.
Consider the subspace decomposition defined in (6.11) and denote by Dh,γ the subspace

100

Figure 6.3: The integration regions around each degree of freedom (highlighted in red)
are chosen to either be entirely inside or entirely outside of each domain Ωi (dashed).

correction method associated with the decomposition {Vi}. Then uh ∈ Vh and u0 ∈ Nh
satisfy

inf
uh=

∑
ui

ui∈Vi

∑
i

‖ui‖2
1 � h−2‖uh‖2

0 (6.12)

inf
u0=

∑
u0,i

u0,i∈Nh∩Vi

∑
i

‖u0,i‖2
1 � h−4‖u0‖2

0. (6.13)

Moreover, it holds that

(h−2 + h−4)−1Dh,γ � Ah,γ ≤ NODh,γ (6.14)

where N0 is the maximum number of overlapping subspaces in the mesh. In particular,
the bounds are independent of γ.

Proof. The second inequality in (6.14) was proven in (5.31) and estimate (6.12) follows
by performing the same calculation as in (5.32) but with γ = 0. It remains to prove
the splitting estimate for divergence-free vector fields.

Step 1: Decomposition of divergence-free vector fields. We observe that a discretely
divergence-free vector field u0 ∈ Nh can be suitably modified in the interior of each
cell to become continuously divergence-free by solving a local Stokes problem. Denote
this continuously divergence-free vector field by ũ and recall that then ũ = ∇×Φ for
some vector field Φ ∈ H2

0 (Ω) with ‖Φ‖2 � ‖ũ‖1 [GR86, p. 42]. Now pick a covering
{Ωi}i such that Ωi is strictly contained in star(vi) in the sense, that for any x ∈ Ωi it

101

holds B(x, h/10) ⊂ star(vi). Choosing a partition of unity {ρi}i such that for all i

‖ρi‖L∞ ≤ 1

‖ρi‖W 1,∞ � h−1

‖ρi‖W 2,∞ � h−2

supp(ρi) ⊂ Ωi,

(6.15)

we define Φi = ρiΦ and obtain a decomposition

Φ =
∑
i

Φi. (6.16)

Now let I1 : V → Vh be a Scott–Zhang interpolation operator [SZ90]. We construct
the interpolation operator to integrate over a region of size h/10 of the facets close to
each degree of freedom only, as shown in Figure 6.3. Together with the requirement
on the covering {Ωi}i this implies a locality property

I1(v) ∈ Vi for all v ∈ V s.t. supp(v) ⊂ Ωi. (6.17)

The operator can be chosen such that I1(uh) = uh. Furthermore, define I2 : V →
Vh as in the classical proof for inf-sup stability of the [P2]

2−P0 element [Bof+08,
Proposition 3.1]:

I2(v)(M) = 0, for all vertices M,∫
E

I2(v) ds =

∫
E

v ds, for all edges E.
(6.18)

Now define I(v) = I1(v) + I2(v − I1(v)), then it holds that

I(vh) = vh for all vh ∈ Vh,∫
E

I(v) ds =

∫
E

v ds for all v ∈ V,

I(v) ∈ Vi for all v ∈ V s.t. supp(v) ⊂ Ωi.

(6.19)

Hence we can define
ui := I(∇×Φi) ∈ Vi (6.20)

and conclude that∑
i

ui =
∑
i

I(∇×Φi) = I(∇×Φ) = I(ũ) = uh. (6.21)

Lastly, using the fact that we are considering piecewise constant pressures, ui ∈ Vi∩Nh
follows from∫

K

∇ · ui dx =

∫
∂K

ui · n ds =

∫
∂K

(∇×Φi) · n ds =

∫
K

∇ · (∇×Φi) dx = 0 (6.22)

102

for any element K ∈Mh.
Step 2: Splitting estimate for divergence-free vector fields. The bound in (6.13)

can now be obtained by calculating

inf
u0=

∑
u0,i

u0,i∈Nh∩Vi

∑
i

‖u0,i‖2
1

≤
∑
i

‖ui‖2
1 =

∑
i

‖Ih(∇× (ρiΦ))‖2
1

�
∑
i

‖ρiΦ‖2
2 �

∑
i

h−4‖Φ‖2
0,Ωi

+ h−2‖Φ‖2
1,Ωi

+ ‖Φ‖2
2,Ωi

� h−4‖u0‖2
0.

(6.23)

Finally, the claim in (6.14) follows from Proposition 5.4

We have proven that the block Jacobi method induced by the spaces {Vi} yields a
γ robust but mesh dependent relaxation. By adding a coarse grid solve, we obtain a
preconditioner that is also mesh independent.
Proposition 6.2 ([Sch99b, § 4.2.1]).
There exists a continuous interpolation operator IH : Vh → VH such that for every
uh ∈ Vh the difference

uf = uh − P̃HIHuh (6.24)

satisfies
inf

ui∈Vi∑
i ui=uf

∑
i

‖ui‖2
Ah,γ
≤ CS‖uh‖2

Ah,γ
. (6.25)

Hence the additive two-level solver given by

C−1
h,γ = PHA

−1
H,γP

∗
H +

∑
i

IiA
−1
i I∗i (6.26)

satisfies the requirements of Proposition 5.5 and is both γ and h robust.

Proof. First we construct a Fortin operator as in the proof of Lemma 6.1, i.e. a
continuous linear map IH : V → VH that satisfies∫

E

IHvH ds =

∫
E

vH ds (6.27)

for every edge E in the coarse-gridMH . Then for every vh ∈ Vh we have by continuity
‖IHvh‖1 � ‖vh‖1 and since edge integrals are preserved we have

‖ΠQH (∇ · (IHvh))‖0 = ‖ΠQH (∇ · vh)‖0 ≤ ‖ΠQh(∇ · vh)‖0 (6.28)

103

and hence
‖IHvh‖AH,γ � ‖vh‖Ah,γ . (6.29)

Note that the prolongation operator P̃H is exact on coarse grid edges E, and hence∫
E

uf ds = 0. (6.30)

We now split uf = u0 + u1 by solving for u1 ∈ Ṽh and p1 ∈ Q̃h that satisfy

B((u1, p1), (ṽ, q̃)) = (∇ · uf , qh) for all ṽ ∈ Ṽh, q̃ ∈ Q̃h. (6.31)

Then we have
ΠQ̃h

(∇ · u1) = ΠQ̃h
(∇ · uf) (6.32)

and since 0 = ΠQ̃H
(∇ · u1) = ΠQ̃H

(∇ · uf) and Qh = Q̃H ⊕ Q̃h we have

ΠQh(∇ · u1) = ΠQh(∇ · uf). (6.33)

In addition, by stability (following the same argument as in (5.41)) we have

‖u1‖1 � sup
v∈Ṽh
q̃∈Q̃h

B((u1, p1), (ṽ, q̃))

‖(ṽ, q̃)‖
≤ sup

v∈Ṽh
q̃∈Q̃h

‖ΠQ̃h
(∇ · uf)‖0‖q‖0

‖(ṽ, q̃)‖
(6.34)

and hence ‖u1‖1 � ‖uf‖1, ‖u1‖1 � γ−1/2‖uf‖Ah,γ and ‖u0‖1 � ‖uf‖1. Note that since
u1 vanishes on coarse-grid edges, we additionally have ‖u1‖0 � H‖u1‖1.

Now proceed as in the proof of Lemma 6.1 and modify u0 in the interior of each
cell so that it becomes divergence-free. Denote this vector field by ũ0 and then pick
Φ ∈ H2

0 (Ω) so that ∇×Φ = ũf . On a coarse grid edge E with tangent t it then holds∫
E

∇Φ · t ds =

∫
E

(∇×Φ) · n ds =

∫
E

u0 · n ds =

∫
E

uf · n ds = 0, (6.35)

implying that Φ has the same value on every coarse grid vertex, and since Φ is zero
on the boundary, we know that this value is zero. The P1 interpolant of Φ vanishes,
and hence we obtain that

‖Φ‖0 � H−2‖Φ‖2 and ‖Φ‖1 � H−1‖Φ‖2. (6.36)

Proceeding as in (6.23), we obtain

‖u0‖2
Ah,γ

= inf
u0=

∑
u0,i

u0,i∈Nh∩Vi

∑
i

‖u0,i‖2
1 � ‖Φ‖2

2 � ‖ũ0‖2
1 � ‖uf‖2

1. (6.37)

Finally,
‖uf‖2

Dh,γ
≤ ‖u0‖2

Dh,γ
+ ‖u1‖2

Dh,γ
� ‖uf‖2

Ah,γ
. (6.38)

104

Remark 6.3. Pressure elements other than P0 have been considered for the aug-
mented Lagrangian preconditioner. Benzi & Olshanskii [BO06, Table 6.2] also present
results for the [P1isoP2]

2−P1 pair, where the pressure mass matrix solve in ΠQh is
approximated by the inverse of a diagonal matrix. However, for this element pairing
the developed multigrid scheme is not independent of the ratio γ/ν and hence as ν
decreases, γ has to be decreased correspondingly. This in turn leads to worse control
of the Schur complement and consequent growth in iteration counts.

6.2 Robust smoothing and prolongation in three di-
mensions

6.2.1 Prolongation

We now turn to the three dimensional case. Unfortunately, in three dimensions the
choice [P2]

3 − P0 results in a pairing Ṽh−Q̃h in the local solves for the prolongation
that is not inf-sup stable. This can be seen by counting degrees of freedom: [P2]3 only
has degrees of freedom on edges and vertices. Since there are zero vertices and only
one edge not on the boundary of the refined coarse tetrahedron (see Figure 6.4), we
have dim(Ṽh) = 3. On the other hand, the pressure space satisfies dim(Q̃h) = 7 (one
dimension is fixed by the nullspace). The local solve can therefore not be well-posed.

Figure 6.4: The uniform refinement of a coarse mesh tetrahedron yields eight fine mesh
tetrahedra. Only the edge highlighted in blue does not lie entirely on the boundary of
the tetrahedron.

105

Increasing the degree of the velocity space to piecewise cubic polynomials, i.e. choos-
ing the element pair [P3]3−P0, introduces additional degrees of freedom on the facets
and results in a stable element pair. However, this element is extremely expensive
while being suboptimal by two orders for the velocity. Alternatively, Bernardi &
Raugel [BR85b; BR85a] suggest enriching the piecewise linear velocity space with
bubble functions on each facet1. While it is only necessary to add a single bubble
function for the normal component of the velocity on each facet, this adds significant
complexity to the implementation as these functions are not affine equivalent; they
require a Piola transform to preserve the normal orientation. This means that the
basis functions associated with vertices and those associated with facets need to be
pulled-back differently, complicating the implementation. For this reason we choose
instead to enrich the space with facet bubbles for all three components of the velocity,
obtaining the [P1 ⊕BF

3]3−P0 element. As can be seen in Figure 6.5, this results in an
element with significantly fewer degrees of freedom than [P3]3−P0. We also show the
[P2 ⊕BF

3]3 element in Figure 6.5. It turns out that this element satisfies a particular
property that is useful in the prolongation that we will discuss later.

Figure 6.5: The P1 ⊕BF
3 , P2, P2 ⊕BF

3 and P3 elements.

Though the [P1 ⊕ BF
3]3−P0 element satisfies the inf-sup condition, it introduces

a different difficulty: it violates VH ⊂ Vh. The nonnestedness is demonstrated in
Figure 6.6; a coarse bubble cannot be interpolated exactly by functions in Vh. In
particular, this means that the flux across coarse grid faces is not preserved, hence
violating condition (5.58) required for the robust prolongation operator. A brief
calculation shows that every coarse grid bubble is interpolated by four fine grid
bubbles: one with coefficient 1, the other three with coefficient 1/2. From this it
follows immediately that the integral of the prolonged bubble is equal to (1+3· 1

2
)/4 = 5

8

of the integral of the coarse bubble. Hence, when using a hierarchical basis, since the
1The bubble function on each facet is the product of the barycentric coordinates that are nonzero

on that facet.

106

dofs on fine facet
dofs on coarse facet

Figure 6.6: Left: Degrees of freedom on the facet of a coarse cell and its refinement.
Middle: Bubble function on a coarse facet. Right: Prolongation of a bubble function.

piecewise linear basis functions are prolonged exactly we can obtain a prolongation
that satisfies (5.58) by simply multiplying the coefficients of the fine grid bubble
functions by 8/5.
Lemma 6.4.
Let IP1

h , I
P1⊕BF3
h : C0 → Vh be the standard interpolation operators associated with the

P1 and the P1 ⊕BF
3 finite elements. For v ∈ C0(Ω), define the interpolation

Ph(v) = IP1
h v + γI

P1⊕BF3
h (v − IP1

h v) (6.39)

where γ = 5
8
. Then

‖v − Phv‖0 � h2‖v‖2 ∀v ∈ H2,

‖PhvH‖1 + h−1‖vH − PhvH‖0 � ‖vH‖1 ∀vH ∈ VH .
(6.40)

Furthermore, for any vH ∈ VH and qH ∈ QH , it holds∫
Ω

(∇ · (PhvH))qH dx =

∫
Ω

(∇ · vH)qH dx. (6.41)

Proof. The first statement in (6.40) follows from the Bramble Hilbert Lemma and a
scaling argument since Ph is invariant on piecewise affine functions [Cia02, Theorem
3.1.6]. To prove the second statement, one follows the argument of [Zha90, Proposition
2.2] to prove that the approximation property holds for IP1

h and IP1⊕BF3
h . The idea is to

construct Scott-Zhang [SZ90] operators (for which we know that optimal approximation
holds) that are equivalent to IP1

h and IP1⊕BF3
h on the finite element space. We then

have for k ∈ {0, 1}

hk−1‖PhvH‖k
≤hk−1‖IP1

h vH − vH‖k + hk−1‖IP1⊕BF3
h (vH − IP1

h vH︸ ︷︷ ︸
∈VH

)‖k
�‖vH‖1 + ‖vH − IP1

h vH‖1

�‖vH‖1.

(6.42)

107

The last statement follows by the discussion preceding the Lemma.

The robust prolongation operator can then be built in the same manner as explained
in Section 6.1.1. To demonstrate the need for the rescaling of the facet bubble function,
we show the residual of the outer flexible GMRES iteration for the linear solve in the
first Newton step at Re = 10 for a lid-driven cavity problem (see section 6.4.5 for
details) in Table 6.1. Without modifying the prolongation of the facet bubbles, we
observe no convergence.

Iteration Residual with bubble scaling Residual without bubble scaling
0 3.50 3.50
1 2.34× 10−2 3.50
2 2.04× 10−2 3.50
3 4.50× 10−3 3.50
4 6.79× 10−4 3.50
5 1.36× 10−4 3.49
6 1.33× 10−4 3.48
7 2.19× 10−5 3.48

Table 6.1: Residual of the outer flexible GMRES solver when employing the [P1 ⊕
BF

3]3−P0 element. It is necessary to modify the prolongation operator to achieve
convergence with this element.

Lastly, we consider the [P2 ⊕ BF
3]3 − P0 element. While it is also nonnested, it

turns out that the interpolation is exact on the facets of each coarse cell and hence flux
preserving. To see this, observe that the cubic facet bubble function is only quadratic
on the newly introduced edges of a regularly refined facet, as they are parallel to the
edges of the coarse facet and therefore one of the barycentric coordinates is constant.
The coarse bubble function is therefore prolonged exactly. This means that despite
the velocity spaces not being nested, the fluxes across coarse grid facets are preserved
and one does not need a modification as just described for the [P1⊕BF

3]3−P0 element.
However, in our preliminary numerical experiments the simpler prolongation was
outweighed by the cost of the larger number of degrees of degrees of freedom, and
hence we use [P1 ⊕BF

3]3−P0 for the numerical experiments in Section 6.4.

6.2.2 Smoothing

As in two dimensions, we consider subspaces {Vi} given by velocity functions with
support in the star of vertices {vi}, where star(vi) denotes all cells attached to the
vertex vi. The proof for parameter robustness of the smoother in three dimensions is
almost entirely analogous to the two dimensional case, with the difference that the

108

Fortin operator is now chosen to preserve integrals over facets and not edges. For a
divergence-free vector field u, the existence of a potential Φ that satisfies the bound
‖Φ‖2 � ‖u‖1 is now guaranteed by [CM10]. However, we note that the bound was
only proven for domains that are starlike with respect to some ball (i.e. in particular
for convex domains).

A statement similar to Proposition 6.2 is harder to obtain as we cannot prove
similar bounds to (6.36). Instead we refer to the proof for the multiplicative multigrid
method in [Sch99a] that does not require these strong bounds.

6.3 Including the advection term

So far we have neglected the terms arising from the linearisation of the advection term.
Since we apply a Newton linearisation, the top left block corresponds to solves of the
form: find u ∈ Vh such that

(2νEu,Ev) + (w · ∇u,v) + (u · ∇w,v) + γ(ΠQh(∇ · u),ΠQh(∇ · v)) = 〈f ,v〉 (6.43)

for all v ∈ Vh, while the Picard linearisation yields: find u ∈ Vh such that

(2νEu,Ev) + (w · ∇u,v) + γ(ΠQh(∇ · u),ΠQh(∇ · v)) = 〈f ,v〉 (6.44)

for all v ∈ Vh. It is well known that straightforward Galerkin discretisations of
advection-dominated problems are oscillatory [BH82; Tur99; QV08; ESW14]. Several
approaches have been developed to avoid these issues, for example by adding a
small amount of artificial viscosity as in the case of Streamline Upwind/Petrov
Galerkin (SUPG) or Galerkin Least Squares (GLS) or by enriching the space with
bubble functions. In addition, it has been observed that mesh-dependent SUPG
stabilisation is highly advantageous for multigrid smoothers on advection-dominated
problems [Ram99; Tur99]. To apply SUPG stabilisation, we recall the strong form of
the momentum residual given by

L(u, p) = −∇ · (2νEu) + (u · ∇)u +∇p− f . (6.45)

Note that since we consider piecewise constant pressures, ∇p = 0 and hence the
residual only depends on u, L(u, p) = L(u). SUPG stabilisation then corresponds to
adding the following term to the weak form:

SUPG(u,v) :=

∫
Ω

δ(u)L(u) ·
(
(u · ∇)v

)
dx. (6.46)

109

Here δ(u) is a weighting function that should be small in regions where the flow is
well-resolved and large where stabilisation is necessary. The particular form employed
in this work is

δ(u) = δd

(
4‖u‖2

h2
+

144ν2

h4

)−1/2

, (6.47)

with δd = 1 in two dimensions and δd = 1/20 in three dimensions. To the best of the
author’s knowledge this form was first suggested in [SHJ91, eq. (3.58)]. It is important
to take account of the dependence of δ on the (unknown) solution u when taking the
derivatives required by Newton’s method; in this work, these derivatives are calculated
automatically and symbolically by the Unified Form Language [Aln+14]. Note that the
added terms only depend on u and v, hence they only affect the top-left block of the
Jacobian. This is crucial, as a pollution of the off-diagonal blocks would complicate
the Schur complement approximation.

The Picard linearisation is easier to solve but sacrifices quadratic convergence of
the nonlinear solver. Several authors have reported success with geometric multigrid
for scalar analogues of (6.44) without the grad-div term, using a combination of
line/plane relaxation and SUPG stabilisation [Ram99; OR04; WE06]. Olshanskii and
Benzi [OB08] and Elman et al. [ELW03] apply preconditioners built on the Picard
linearisation (6.44) to the Newton linearisation (6.43), with good results.

Numerical experiments indicated that the additive star iteration alone was not
effective as a relaxation method for (6.43). (Benzi and Olshanskii [BO06] used a
multiplicative star iteration with multiple directional sweeps, but we wished to avoid
this as its performance varies with the core count in parallel.) We investigated the
multiplicative composition of additive star iterations and plane smoothers, and while
this led to a successful multigrid cycle, the plane smoothers were quite expensive (in-
volving many 2D solves) and were also difficult to parallelise on arbitrary unstructured
grids where the parallel decomposition does not divide into planes. While the additive
star iteration alone is not effective as a relaxation for (6.43), we found that a few
iterations of GMRES preconditioned by the additive star iteration remains contractive
even for low viscosities. This point merits further analysis but will not be analysed
further in this work. This relaxation method also has the advantage that it is easy to
parallelise, with convergence independent of the parallel decomposition.

110

6.4 Numerical Results

6.4.1 Algorithm details

A graphical representation of the entire algorithm is shown in Figure 6.7. We employ
simple continuation in Reynolds number as a globalisation device, as Newton’s method
is not globally convergent. To improve convergence, the l2 line search method in
PETSc [Bru+15], which aims to reduce the l2 norm of the residual, is used.

Continuation

Newton solver with line search
Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization
Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Additive star iteration

Figure 6.7: An outline of the algorithm for solving (5.1).

We use flexible GMRES [Saa93] as the outermost solver for the linearised Newton
system, as we employ GMRES in the multigrid relaxation. If the pressure is only
defined up to a constant, then the appropriate nullspace is passed to the Krylov solver
and the solution is orthogonalized against the nullspace at every iteration. We use the
full block factorisation preconditioner

P−1 =

(
I −Ã−1

γ BT

0 I

)(
Ã−1
γ 0

0 S̃−1

)(
I 0

−BÃ−1
γ I

)
(6.48)

with approximate inner solves Ã−1
γ and S̃−1 for the augmented momentum block and

the Schur complement respectively. The diagonal, upper and lower triangular variants
described in [MGW00; Ips01] also converge well, but these took longer runtimes in
preliminary experiments.

We use one application of a full multigrid cycle [BL11, Figure 1.2] using the
components described in Sections 6.1 and 6.2 for Ã−1

γ . The problem on each level
is constructed by rediscretisation; fine grid functions, such as the current iterate in
the Newton scheme, are transferred to the coarse levels via injection. On each level

111

the SUPG stabilisation is performed with parameters corresponding to the mesh in
question. For each relaxation sweep we perform 6 (in 2D) or 10 (in 3D) GMRES
iterations preconditioned by the additive star iteration; at lower Reynolds numbers this
can be reduced, but we found that these expensive smoothers represented the optimal
tradeoff between inner and outer work at higher Reynolds numbers. The problem
on the coarsest level is solved with the SuperLU_DIST sparse direct solver [LD03].
For scalability, the coarse grid solve is agglomerated onto a single compute node
using PETSc’s telescoping facility [May+16]. As all inner solvers are additive, the
convergence of the solver is independent of the parallel decomposition (up to roundoff).

The solver is implemented in the Firedrake library which relies on PETSc for
the solution of linear systems. PETSc provides implementations of all standard
Krylov-methods, as well as interfaces to direct solvers and many preconditioners. The
particular strength of the library lies in the ability to arbitrarily nest linear solvers,
which we rely on heavily. To perform the local solves as part of the smoothing and
the prolongation, a new preconditioner in PETSc called PCPATCH was developed.
This was done in collaboration with Lawrence Mitchell and Patrick Farrell and
extended the previous work by Kirby and Mitchell in [KM18]. PCPATCH relies on the
DMPlex unstructured mesh component [KK05; KK09] in PETSc. The user provides a
topological description of the patches (e.g. star around each vertex), PCPATCH then
assembles the local problems, solves the systems and combines the solutions either
additively or multiplicatively.

Differently from Benzi & Olshanskii, we also modify the restriction operator so
that it is the adjoint to the modified prolongation. This relationship is assumed in
the multigrid convergence proof by Schöeberl and we observed that it improves the
robustness of the solver at very little extra cost.

6.4.2 Solving the top-left block only: nearly incompressible
elasticity

We begin by studying the performance of the multigrid scheme when applied to the
top-left block only, without any advection. This corresponds to solving the linear
elasticity equations in the nearly incompressible regime. The model problem we study
is given by: find u ∈ Vh such that∫

Ω

Eu : Ev dx+ γ̂

∫
Ω

ΠQh(∇ · u)ΠQh(∇ · v) dx =

∫
Ω

f · v dx (6.49)

for all v ∈ Vh. We choose Ω = [0, 1]d, homogeneous Dirichlet boundary conditions on
∂Ω and set f = (1, 1) in two and f = (1, 1, 1) in three dimensions. Though this problem

112

is symmetric, we use the same configuration involving GMRES as described above,
as this will be necessary once the nonsymmetric advection and stabilisation terms
from the Navier–Stokes equations are added. The parameter γ̂ will correspond to the
ratio γ/ν used in the augmented Lagrangian preconditioner. The largest parameter
studied, γ̂ = 108, corresponds to the case of ν = 10−4 and γ = 104.

We compare four different configurations of the solver: for the relaxation we
compare the robust relaxation method against standard point Jacobi, and for the grid
transfers we compare the robust scheme developed above to a standard grid transfer
based on point interpolation. In addition, we also show iteration counts when using
the boomeramg algebraic multigrid routine from the hypre library [FY02]. Results
in two and three dimensions are shown in Tables 6.2 and 6.3. We clearly see that
both robust smoothers and robust prolongation operators are crucial for well behaved
iteration counts as γ̂ is increased. The results are qualitatively similar in two and
three dimensions, though iteration counts are larger in the latter case.

113

Refinements Degrees of freedom γ̂
0 1 10 102 103 104 106 108

Robust relaxation & robust transfer

1 578 3 3 4 4 4 4 4 4
2 2 178 4 4 4 5 5 5 5 5
3 8 450 4 4 4 5 5 5 5 5
4 33 282 3 4 4 4 4 4 4 4

Robust relaxation & standard transfer

1 578 3 3 4 5 7 26 >100 >100
2 2 178 4 4 5 6 12 >100 >100 >100
3 8 450 4 4 5 7 20 >100 >100 >100
4 33 282 3 4 5 7 >100 >100 >100 >100

Jacobi relaxation & robust transfer

1 578 5 5 6 16 81 >100 >100 >100
2 2 178 5 5 6 17 >100 >100 >100 >100
3 8 450 5 5 6 17 >100 >100 >100 >100
4 33 282 5 5 6 17 >100 >100 >100 >100

Jacobi relaxation & standard transfer

1 578 5 5 7 20 >100 >100 >100 >100
2 2 178 5 5 7 24 >100 >100 >100 >100
3 8 450 5 5 7 26 >100 >100 >100 >100
4 33 282 5 5 7 27 >100 >100 >100 >100

Algebraic multigrid

1 578 7 7 11 28 57 87 >100 >100
2 2 178 8 7 11 29 74 >100 >100 >100
3 8 450 7 7 12 34 93 >100 >100 >100
4 33 282 8 8 14 39 >100 >100 >100 >100

Table 6.2: Iteration counts in two dimensions for the [P2]2−P0 element for five different
geometric and algebraic multigrid variants. The geometric multigrid results are
obtained with a 4× 4 coarse grid.

114

Refinements Degrees of freedom γ̂
0 1 10 102 103 104 106 108

Robust relaxation & robust transfer

1 21 771 3 4 5 7 8 8 8 8
2 166 803 5 5 6 9 9 10 10 10
3 1 305 891 6 6 7 9 11 11 11 11

Robust relaxation & standard transfer

1 21 771 3 4 5 7 10 16 >100 >100
2 166 803 5 5 6 9 13 42 >100 >100
3 1 305 891 6 6 8 10 14 >100 >100 >100

Jacobi relaxation & robust transfer

1 21 771 6 6 7 15 68 >100 >100 >100
2 166 803 8 8 9 18 >100 >100 >100 >100
3 1 305 891 9 9 10 19 >100 >100 >100 >100

Jacobi relaxation & standard transfer

1 21 771 6 6 7 14 79 >100 >100 >100
2 166 803 9 9 9 17 >100 >100 >100 >100
3 1 305 891 9 9 10 19 >100 >100 >100 >100

Algebraic multigrid

1 21 771 13 15 12 32 >100 >100 >100 >100
2 166 803 14 17 13 32 >100 >100 >100 >100
3 1 305 891 15 17 14 34 >100 >100 >100 >100

Table 6.3: Iteration counts in three dimensions for the [P1 ⊕BF
3]3−P0 element for five

different geometric and algebraic multigrid variants. The geometric multigrid results
are obtained with a 4× 4× 4 coarse grid.

115

6.4.3 Solver verification with the method of manufactured so-
lutions

In order to verify the implementation and the convergence of the [P1 ⊕ BF
3]3−P0

element we employ the method of manufactured solution. We start by considering the
pressure and velocity field proposed in [STH89], which is rescaled to the [0, 2]2 square.
This results in u = (u1, u2) with

u1(x, y) =
1

4
(x− 2)2x2y

(
y2 − 2

)
u2(x, y) = − 1

4
x
(
x2 − 3x+ 2

)
y2
(
y2 − 4

)
p̃(x, y) =

xy (3x4 − 15x3 + 10x2y2 − 30x (y2 − 2) + 20 (y2 − 2))

5Re

− 1

128
(x− 2)4x4y2

(
y4 − 2y2 + 8

)
p(x, y) = p̃− 1

4

∫
[0,2]2

p̃(x, y) dx = p̃+
1408

33075
− 8

5Re
.

(6.50)

As we are primarily interested in the three dimensional case, we extend the vector field
into the z dimension via u(x, y, z) = (u1(x, y), u2(x, y), 0) and consider the domain
Ω = [0, 2]3. The pressure remains the same as in two dimensions. In order to avoid the
flow being perfectly aligned with the mesh, we consider an unstructured coarse grid.

To demonstrate that the error convergence is independent of γ, we run the solver
for values γ = 1 and γ = 104. Figure 6.8 shows the error between the computed
velocity and pressure and their known analytical solutions for Re = 10, Re = 100 and
Re = 500. A large value of γ does not impact the convergence.

Due to the P0 discretisation for the pressure we expect, and see, first order
convergence of the pressure and of the gradient of the velocity. However, though we
would hope to see second order convergence of the velocity in the L2 norm, for the
case of Re = 500 we observe only first order convergence on coarse meshes. This
may be explained by the added SUPG stabilisation not being adjoint consistent,
preventing the use of the typical Aubin-Nitsche duality argument [Arn+02], [OD09,
p. 3508], [Hic+13]. Only for sufficiently fine meshes the convergence order improves,
as the weight in the SUPG stabilisation (6.47) decreases with the mesh size.

Comparing the velocity error for fixed mesh size, we observe that the error increases
significantly as the Reynolds number is increased from Re = 10 to Re = 500. This
behaviour is expected for a discretisation that does not enforce the divergence constraint
exactly. In the next chapter, we will extend the solver to an exactly divergence-free
discretisation and see Reynolds-robust errors for the velocity.

116

2−5 2−4 2−3 2−2 2−1
10−4

10−3

10−2

10−1

100

101

h

er
ro
r

Re = 10

2−5 2−4 2−3 2−2 2−1
10−4

10−3

10−2

10−1

100

101

h

er
ro
r

Re = 100

2−5 2−4 2−3 2−2 2−1
10−4

10−3

10−2

10−1

100

101

h

er
ro
r

Re = 500

γ = 104, ‖u− uh‖L2

γ = 104, ‖∇u−∇uh‖L2

γ = 104, ‖p− ph‖L2

γ = 1 , ‖u− uh‖L2

γ = 1 , ‖∇u−∇uh‖L2

γ = 1 , ‖p− ph‖L2

h

h2

Figure 6.8: Convergence of the computed velocity and pressure field as the mesh is
refined.

117

6.4.4 Two-dimensional experiments

Figure 6.9: Streamlines for the two dimensional lid-driven cavity problem at Re = 2500.
The domain is given by the [0, 2]× [0, 2] square. The boundary condition on the top is
given by a horizontal velocity field u(x, y) = (x2(2− x)2, 0) and the other boundaries
are equipped with a no-slip condition.

Figure 6.10: Streamlines for the two dimensional backwards-facing step problem at
Re = 200. The domain is given by ([0, 10] × [0, 2]) \ ([0, 1) × [0, 1)). The inflow
condition at the top-left boundary is given by a horizontal velocity field u(x, y) =
(4(2− y)(y − 1), 0), a natural outflow condition is enforced on the right and the other
boundaries are equipped with a no-slip condition.

We consider two representative benchmark problems: the regularised lid-driven
cavity and backward-facing step problems, shown in Figures 6.9 and 6.10, and described
in detail in [ESW14, Examples 8.1.2 and 8.1.3]. For each experiment, we fix a coarse
grid and vary the number of refinements to vary the size of the problem under
consideration; all refinements are used in the multigrid iteration, to ensure that the

118

convergence does not deteriorate as more levels are employed. We employ the [P2]2−P0

element for all two dimensional experiments. To investigate the performance of the
solver with Reynolds number, the problem is first solved for Re = 10, then Re = 100,
and then in steps of 100 until Re = 10 000, with the solution for the previous value
of Re used as initial guess for the next. The initial guess for Re = 10 is obtained by
solving the Stokes equations. The augmented Lagrangian parameter is set to γ = 104

in these and all subsequent experiments.
The linear solves are terminated with an absolute tolerance of 10−10 in the `2-norm

and a relative tolerance of 10−9. The nonlinear solves are terminated with an absolute
tolerance of 10−8 and a relative tolerance of 10−9. As each outer iteration of the
Krylov method does a fixed amount of work (i.e. all subproblems are solved with a
fixed number of iterations, not to a specified tolerance), the solver scales well with
mesh size and Reynolds number if the iteration counts remain approximately constant.

For comparison, we solve the same problems using the reference implementations
of the PCD and LSC preconditioners in version 3.5 of IFISS [ERS14], up to Re = 1 000,
as IFISS does not employ stabilisation of the advection term. For both of these
preconditioners we use the variant that takes corrections for the boundary conditions
into account and we solve the inner problems in the Schur complement approximation
using an algebraic multigrid solver. We employ the hybrid strategy suggested by
[ESW14, p. 391] that uses a single sweep of ILU(0) on the finest level and two
iterations of point-damped Jacobi for pre- and post-smoothing on all coarsened levels.
A relative tolerance of 10−6 is set for the Krylov solver and an absolute tolerance of
10−8 for the Newton solver.

We begin by considering the regularised lid-driven cavity problem. Iteration counts
using the PCD and LSC preconditioners are shown in Table 6.4. Using PCD the
iteration counts increase by about a factor of approximately 6 as the Reynolds number
is increased from Re = 10 to Re = 1 000. For LSC we observe a larger increase in
iteration counts: with growth varying between factors of 6 and 10 for different meshes.

The coarse grid used for the augmented Lagrangian preconditioner is the 16× 16

grid of triangles of negative slope. The results are shown in Table 6.5. We observe
at most a doubling of iteration counts as the Reynolds number is increased from
Re = 10 to Re = 1 000. As the Reynolds number is increased further to Re = 10 000

iteration counts increase further, by a factor of 2 to 3. Overall we observe that the
preconditioner becomes more robust as the mesh is refined and the flow is resolved
better. For the finest mesh iteration counts less than quadruple over a range of 4

119

1/h Degrees of freedom Reynolds number
10 100 1 000

26 1.25× 104 24.5/22.5 42.0/49.3 157.0/205.7
27 4.97× 104 25.5/21.0 42.7/43.3 149.0/207.3
28 1.98× 105 26.0/23.0 44.0/38.0 137.0/180.0

Table 6.4: Average number of outer Krylov iterations per Newton step for the 2D
regularised lid-driven cavity problem with PCD/LSC preconditioner.

orders of magnitude for the Reynolds number. Finally, we study the nonregularised

Refinements Degrees of freedom Reynolds number
10 100 1 000 5 000 10 000

1 1.05× 104 2.50 4.00 5.00 8.00 15.00
2 4.15× 104 2.50 3.33 5.00 8.50 9.50
3 1.65× 105 2.50 3.33 4.33 7.50 9.00
4 6.57× 105 2.50 3.00 3.67 8.00 8.50

Table 6.5: Average number of outer Krylov iterations per Newton step for the 2D
regularised lid-driven cavity problem with augmented Lagrangian preconditioner.

version of the lid-driven cavity. Here the boundary condition at the top of the domain
is replaced with a constant value of u = (1, 0)T , leading to a discontinuity of the
boundary conditions in the two top corners. This makes the problem more challenging.
The iteration counts are shown in Table 6.6: the behaviour is qualitatively similar to
the regularised case, though iteration counts at high Reynolds number are slightly
larger.

Refinements Degrees of freedom Reynolds number
10 100 1 000 5 000 10 000

1 1.05× 104 3.00 4.67 5.67 9.50 14.00
2 4.15× 104 2.50 3.67 6.00 10.00 13.00
3 1.65× 105 2.50 3.33 5.67 9.00 11.50
4 6.57× 105 2.50 3.00 4.67 9.00 11.50

Table 6.6: Average number of outer Krylov iterations per Newton step for the 2D
nonregularised lid-driven cavity problem with augmented Lagrangian preconditioner.

For the backward-facing step we observe that the performance is dependent on
the resolution of the coarse grid. We consider two experiments, one starting with
a coarse grid consisting of 6 475 vertices and 12 546 elements (labeled A) and one

120

consisting of 25 194 vertices and 49 583 elements (labeled B). Both triangular meshes
were generated with Gmsh [GR09]. For mesh A, we observe that the iteration counts
for large Reynolds numbers show the solver degrades somewhat as the mesh is refined,
see Table 6.7. Using the finer coarse grid B alleviates this problem. The bottom half
of Table 6.7 shows that iteration counts only marginally grow as we increase from
Re = 10 to Re = 10 000. Since we did not see robustness issues using very coarse grids
for the symmetric example in Section 6.4.2, this suggests that the scheme requires a
‘fine enough’ coarse grid solve to capture the advection terms adequately.

Refinements Degrees of freedom Reynolds number
10 100 1 000 5 000 10 000

coarse grid A

1 2.53× 105 2.67 3.00 4.00 11.00 10.00
2 1.01× 106 2.67 2.25 3.50 8.00 18.50
3 4.02× 106 3.50 3.33 3.50 7.50 10.50
4 1.61× 107 6.50 3.67 2.50 6.50 18.00

coarse grid B

1 9.95× 105 2.33 2.25 3.50 3.50 5.50
2 3.97× 106 3.00 2.67 3.50 3.50 4.50
3 1.59× 107 3.00 3.33 2.50 3.50 4.00

Table 6.7: Average number of outer Krylov iterations per Newton step for the 2D
backward-facing step problem for two different coarse grids with augmented Lagrangian
preconditioner.

The results for PCD and LSC on the backwards-facing step are shown in Table 6.8.
The iteration counts approximately treble as we increase from Re = 10 to Re = 1 000.

1/h Degrees of freedom Reynolds number
10 100 1 000

26 5.91× 104 27.5/21.5 38.0/35.0 167.0/152.3
27 2.36× 105 29.0/23.0 38.0/32.3 122.3/114.0
28 9.38× 105 29.0/31.5 37.5/33.0 106.0/97.3

Table 6.8: Average number of outer Krylov iterations per Newton step for the 2D
backwards-facing step problem with PCD/LSC preconditioner.

121

6.4.5 Three-dimensional experiments

The lid-driven cavity and backward-facing step problems can both be extended to three
dimensions in a natural way. For the lid-driven cavity, we consider the cube Ω = [0, 2]3

with no-slip boundary conditions on all sides apart from the top boundary {y = 2}. On
the top boundary we enforce u(x, y, z) = (x2(2−x)2z2(2−z)2, 0, 0)T . The three dimen-
sional backwards-facing step is given by Ω = (([0, 10]× [1, 2]) ∪ ([1, 10]× [0, 1]))×[0, 1].
We enforce the inflow condition u(x, y, z) = (4(2− y)(y − 1)z(1− z), 0, 0)T on the left
boundary {x = 0}, a natural outflow condition on the right boundary {x = 10}, and
no-slip boundary conditions on the remaining boundaries.

Two aspects of the solver were modified compared to the version used in two
dimensions. First, we observe that reducing the size of the SUPG stabilisation by a
factor of 1/20 improves convergence significantly. Secondly, all tolerances in the linear
and nonlinear solvers are relaxed to 10−8. The three-dimensional experiments were
both run for [P1 ⊕ BF

3]3−P0 discretisations of up to one billion degrees of freedom
on ARCHER, the UK national supercomputer. Images of the solutions are shown in
Figures 6.11 and 6.12.

Refinements Degrees of freedom Reynolds number
10 100 1 000 2 500 5 000

1 2.13× 106 4.50 4.33 4.50 4.00 3.50
2 1.69× 107 4.00 4.33 4.50 4.00 5.00
3 1.35× 108 4.00 3.67 3.50 3.00 8.00
4 1.08× 109 3.50 3.67 3.00 2.50 5.00

Table 6.9: Average number of outer Krylov iterations per Newton step for the 3D
regularised lid-driven cavity problem.

Refinements Degrees of freedom Reynolds number
10 100 1 000 2 500 5 000

1 2.56× 106 5.00 4.67 4.00 4.50 4.00
2 2.01× 107 5.00 4.67 5.00 4.00 8.00
3 1.60× 108 5.50 4.67 3.50 3.00 5.00
4 1.27× 109 5.50 3.67 3.00 3.00 4.00

Table 6.10: Average number of outer Krylov iterations per Newton step for the 3D
backwards-facing step problem.

As for the two-dimensional case, we see only very little variation of the iteration
counts with Reynolds number over this range.

122

To stress the solver further, the lid-driven cavity with 2 refinements (1.7 × 107

degrees of freedom) was run until failure. Iteration counts remain stable until Re =

7 000, then begin to increase, with eventual failure of convergence at Re = 7 700.

Figure 6.11: Interior view of the streamtubes of the 3D lid-driven cavity at Re = 5 000.
The color denotes speed.

Figure 6.12: Interior view of the streamtubes of the 3D backwards-facing step at
Re = 1 000. The color denotes speed.

6.4.6 Computational performance

Having seen that the algorithmic scalability of the solver is good, with well-controlled
iteration counts, we now consider the computational performance.

123

Scaling

In Figures 6.13a and 6.13b we perform a weak scaling analysis: as the problem size
is increased the number of MPI processes is increased simultaneously so that the
number of degrees of freedom per process stays constant. We show the aggregate time
to solution for the first three continuation steps. Perfect weak scaling corresponds
to a constant time to solution as the problem size is increased, however, since the
complexity of a multigrid cycle is only asymptotically linear, we expect some increase
in runtime.

In two dimensions we see an increase in runtime by ∼ 72% as the problem is
increased by a factor of 256. In three dimensions we see approximately a doubling
in runtime as the problem size is increased by a factor of 512. We attribute this
increase to two factors: firstly, the coarse grid solve is performed on a single node,
hence the matrix needs to be gathered onto that node which introduces significant
communication. The alternative would be a distributed solve, but this was slower in
our experiments due to communication during the solve. Secondly, there is a load
imbalance in the default mesh distribution. Standard finite element mesh partitioning
schemes result in a well-balanced partition of cells. However, for the block Jacobi
smoother to have perfect load balance the number of vertices (around which the
blocks are built) owned by each process must also be equal. We notice this problem
in particular in three dimensions. Calculating the ratio between the largest number
of vertices on a core and the average number of vertices, we observe that this ratio
increases gradually from for the smallest problem ∼ 1.28 to ∼ 1.95 for the biggest
problem. The development of a mesh partitioning scheme that balances both cells
and vertices is ongoing work.

Finally, we remark that both in two and three dimensions we observe a jump in
runtime for the largest problem. This can be understood by studying the network
topology of the ARCHER supercomputer: a so-called group is formed of 376 nodes
and within such a group every node is interconnected, enabling fast communication.
Since a node has 24 cores, this means that problems running on up to 9024 cores fit
in a single group. Past that, the communication cost increases due to the extra cost
of communication between groups over optical interconnect.

In addition, we compare the runtime to that of the ideal version of the preconditioner
where we use the MUMPS [Ame+00] distributed memory sparse direct solver for the
top-left block (denoted by AL-LU in the plot). While for smaller problems a direct
solver is faster, we see a clear performance advantage of the multigrid scheme once
the problem size exceeds a few million degrees of freedom.

124

48 192 768 3072 12288
0

100

200

[2.3] [9.2] [37] [147] [590]

Cores
[DoFs ×106]

T
im

e
to

so
lu
ti
on

[s
ec
] AL-MG

AL-LU

(a) Weak scaling of the two-dimensional lid-
driven cavity.

48 384 3072 24578
0

200

400

600

800

[2.13] [16.9] [134.9] [1077]

Cores
[DoFs ×106]

T
im

e
to

so
lu
ti
on

[s
ec
] AL-MG

AL-LU

(b) Weak scaling of the three-dimensional
lid-driven cavity.

Figure 6.13: Weak scaling of time to solution over the first three continuation steps.
AL-LU: augmented Lagrangian preconditioner with sparse direct solve for the top-left
block. AL-MG: augmented Lagrangian preconditioner with multigrid scheme for
top-left block.

Runtime comparison to SIMPLE

We compare the solver to an implementation of SIMPLE [Pat80, Section 6.7] in the
same software framework. We select the lid-driven cavity in two dimensions with three
refinements (1.6 ×105 degrees of freedom) as a representative problem. The SIMPLE
preconditioner is given by

P−1
SIMPLE =

(
I − diag(A)−1BT

0 I

)(
Ã−1 0

0 S̃−1
SIMPLE

)(
I 0

−BÃ−1 I

)
, (6.51)

where
S̃SIMPLE = −BT diag(A)−1B (6.52)

and no grad-div augmentation is employed. Ã−1 is approximated by one full multigrid
cycle of the ML algebraic multigrid library [Gee+06]; S̃−1

SIMPLE is approximated with
one V cycle of ML2.

The results for several continuation steps are shown in Table 6.11. The compu-
tations were performed in serial. Each SIMPLE iteration is approximately 20 times
faster than an augmented Lagrangian iteration, but the lower cost per iteration is
outweighed by the greater number of iterations required.

2For fairness, we do not use exact inner solves, since our solver also does not use exact inner
solves. Of the algebraic multigrid libraries available in PETSc, ML performed the best.

125

Reynolds number Augmented Lagrangian SIMPLE
Total iterations Time (min) Total iterations Time (min)

10 6 0.14 827 1.00
50 6 0.15 1137 1.38
100 7 0.17 1409 1.70
150 7 0.17 1525 1.84
200 7 0.17 1544 1.86

Table 6.11: Iteration count and runtime comparison against the SIMPLE precondi-
tioner.

Code availability

The subspace correction preconditioner has been incorporated into PETSc and Firedrake.
The code for the Navier–Stokes solver and the numerical experiments in this chapter
can be found at https://github.com/florianwechsung/alfi/. For reproducibility,
all major Firedrake components as well as the code used to run these examples have
been archived on Zenodo [Fir19; Wec19b].

126

https://github.com/florianwechsung/alfi/

Chapter 7

Augmented Lagrangian
preconditioning for divergence-free
finite element pairs

In the previous chapter we studied a preconditioner for the Navier–Stokes equations
that sees only very modest iteration growth as the Reynolds number is increased.
However, the scheme is tightly coupled to the use of piecewise constant elements for
the pressure and does not enforce the divergence constraint exactly. As a consequence,
in the numerical experiments we observed that the velocity error increased with the
Reynolds number.

This problem can be illustrated by studying a priori error estimates for the Stokes
equations: the discrete solution uh ∈ Vh to the Stokes problem can be shown to
satisfy [Joh+17, (3.5)]

‖∇ (u− uh) ‖L2(Ω) ≤ 2 inf
ũh∈Nh

‖∇ (u− ũh) ‖L2(Ω) + ν−1 inf
qh∈Qh

‖p− qh‖L2(Ω), (7.1)

where Nh is the space of discretely divergence-free vector fields. For large values of
ν−1 the second term in this estimate eventually dominates.

Though the spaces V and Q satisfy div(V) = Q, many of the arguably most popular
finite element discretisation for the Stokes and Navier–Stokes equations such as the
Taylor-Hood, the Mini or the [P2]2−P0 element, do not satisfy the finite dimensional
analogue, that is div(Vh) = Qh. The reason for this is that the inf-sup condition
requires a certain richness of the velocity space, that often leads to div(Vh)) Qh,
implying that the divergence constraint is not enforced exactly. This relaxation in
turn results in the appearance of the pressure in the velocity error estimate.

For choices Vh ×Qh that satisfy div(Vh) = Qh, one can improve the error estimate

127

for the velocity to be independent of the pressure:

‖∇ (u− uh) ‖L2(Ω) ≤ 2 inf
ũh∈Nh

‖∇ (u− ũh) ‖L2(Ω). (7.2)

This property is known as pressure robustness. Other advantages of such discretisations
are discussed in [Joh+17]. The analysis is more complicated for the Navier–Stokes
equations but progress has recently been made in [ALM18]. We also mention that
similar results are available for the time dependent case [LR19].

There are several choices of element pairs that satisfy our requirements for pressure
robustness. They include H(div)−L2(Ω) discretisations, such as the Raviart-Thomas
and Brezzi-Douglas-Marini families [CKS06; WY07]; (hybrid) DG schemes [CKS04;
CCS05]; or H1-conforming approaches such as the Scott-Vogelius Pk − Pdisc

k−1 pair. The
former two options allow for arbitrary order approximations, but at the expense of
more complex analysis: the discretisation of the momentum equation now requires
penalty terms to weakly enforce H1-conformity. To avoid these penalty terms and to
remain H1-conforming, we focus on the Scott-Vogelius element pair.

The remainder of this chapter is structured as follows: In Section 7.1 we discuss
inf-sup stability of the Scott-Vogelius element. Stability is only guaranteed on meshes
with a particular structure, resulting in a nonnested hierarchy. In Section 7.2 we
develop prolongation and smoothing operators. The prolongation will need to handle
the nonnestedness of the hierarchy and the subspaces in the smoother now need to
capture exactly divergence-free functions. A stabilisation scheme to avoid oscillations
in the advection dominated regime is discussed in Section 7.3 and numerical results
are presented in Section 7.4.

7.1 Stability of the Scott-Vogelius element

The stability of the Scott-Vogelius element is a topic of ongoing research. In two
dimensions, Scott & Vogelius proved [SV85] that the element is inf-sup stable for
k ≥ 4 if the mesh does not have so called singular vertices. In three dimensions, it
was proven more recently in [Zha11a] that the element is stable for k ≥ 6 on uniform
meshes. The stability on general tetrahedral meshes continues to be an open question.

On barycentrically refined meshes, however, the pair is known to be stable for
polynomial order k ≥ d, see [Qin94, Section 4.6 & 8.1] for the 2D case and [Zha04]
for the 3D case. If one is willing to consider the more complicated Powell-Sabin split,
the order can be reduced further to k = d− 1 [Zha08; Zha11b]. The two refinement
patterns are shown for the two dimensional case in Figure 7.1.

128

Figure 7.1: Barycentrically refined triangle, also known as Alfeld split, on the left and
Powell-Sabin split on the right.

In this chapter we will consider the case of k = d on barycentrically refined meshes,
but the analysis applies in the same way to the Powell-Sabin split.

In the context of a multigrid scheme, the requirement for barycentrically refined
elements has some implications for our mesh hierarchy. First, note that repeatedly
barycentrically refining a mesh leads to degenerate triangles. Furthermore, it is not
known whether regularly refining a mesh, on which an element pair with k = d is
stable, always results in a refined mesh for which stability is maintained. Consequently,
the multigrid hierarchy has to be built differently. Given a domain Ω, we consider
a simplicial mesh Mh = {Kh} with ∪Kh∈Mh

Kh = Ω and (Kh
1)◦ ∩ (Kh

2)◦ = ∅. The
elements Kh ∈Mh will be referred to as the macro cells. For each level h, we obtain
the mesh M̂h by barycentric refinement, that is, for each element Kh ∈Mh we obtain
d+ 1 many elements K̂h

i , 0 ≤ i ≤ d and

M̂h = {K̂h
i : 0 ≤ i ≤ d,Kh ∈Mh}. (7.3)

The function spaces on M̂h are then given by

Vh := {v ∈ H1(Ω;Rd) : v|K̂ ∈ [P d(K̂)]d ∀K̂ ∈ M̂h}, (7.4)

Qh := {q ∈ L2(Ω) : q|K̂ ∈ P
d−1(K̂) ∀K̂ ∈ M̂h}. (7.5)

We construct the hierarchy as follows: we start with an initial coarse triangulation
of the domain, given byMH . We obtainMh, h = 1

2
H, by uniform refinement of the

initial mesh. BothMH andMh are then refined barycentrically to obtain M̂H and
M̂h. Note that thoughMH andMh form a nested hierarchy, this is not true for M̂H

and M̂h. This two-level approach canonically extends to many levels; a hierarchy of
three levels is shown in Figure 7.2.

We will see in Section 7.2.2 that having a macro element structure at every level
not only guarantees inf-sup stability, but is also crucial in order to define a robust
relaxation method.

129

Figure 7.2: A three level barycentrically refined multigrid hierarchy.

7.2 Solving the top-left block

We proceed as in the previous chapter and begin by studying the augmented top-left
block without the advection terms:

ah,γ(u,v) := a(u,v) + γch(u,v), (7.6)

where
a(u,v) := (2νEu,Ev),

ch(u,v) := (ΠQh(∇ · u),ΠQh(∇ · v)).
(7.7)

We note that since div(Vh) ⊂ Qh, the projection ΠQh reduces to the identity mapping.

7.2.1 Robust prolongation

For nested function spaces, exact enforcement of the divergence simplifies the prolon-
gation significantly. Discretely divergence-free functions on the coarse grid are exactly
divergence-free, thus if the prolongation is the identity, they remain divergence-free
on the fine grid. This property was implicitly used in [LWC09] and [WZ14] to build
robust solvers for the elasticity equations using the Scott-Vogelius element with k ≥ 4

on standard, nested mesh hierarchies in two dimensions. In our case, due to the
barycentric refinement at each level, we do not have nested function spaces and hence
the prolongation is not exact and a divergence-free function on the coarse grid may
be prolonged to a function on the fine grid with nonzero divergence. However, we
observe that interpolation is exact on the boundaries of coarse grid macro cells. This

130

means that flux across these boundaries is preserved and hence the divergence with
respect to functions in

Q̃H := {q ∈ L2 : q ≡ const on coarse grid macro cells K ∈MH}, (7.8)

is preserved, i.e. we have for the standard interpolation operator PH : VH → Vh that

(∇ · uH , q̃H) = (∇ · (PHuH), q̃H) for all uH ∈ VH , q̃H ∈ Q̃H . (7.9)

Hence requirement (5.58) of Proposition 5.7 is satisfied. To correct for any extra
divergence gained due to interpolation inside a coarse grid macro cell we will perform
local solves again. To this end, we define the spaces

Q̃h := {qh ∈ Qh : ΠQ̃H
qh = 0}

Ṽh := {vh ∈ Vh : supp(vh) ⊂ K for some K ∈MH}.
(7.10)

The space Ṽh consists of local patches of velocity degrees of freedom contained in
coarse grid macro cells, as shown in Figure 7.3. As in the low order case, we highlight
that these patches decouple and hence solves involving Ṽh can be performed in parallel,
leading to scalable performance. By [Qin94, Section 4.6 & 8.1] and [Zha04] the pair

Figure 7.3: Degrees of freedom of the Ṽh on which we perform local solves to obtain a
robust prolongation in two dimensions.

Ṽh × Q̃h is inf-sup stable in both two and three dimensions, so it remains to check

(∇ · ṽh, q̃H) = 0 for all q̃H ∈ Q̃H , ṽh ∈ Ṽh, (7.11)

which follows from the requirement that the support of vector fields ṽh ∈ Ṽh is
contained in coarse grid macro cells and the definition of Q̃H . A robust prolongation
operator can now be constructed as in Proposition 5.7.

131

7.2.2 Robust smoothing

In the previous two chapters we have established that the core requirement to obtain
a parameter robust relaxation is a subspace decomposition that also decomposes the
kernel of the singular operator. In order to find such a decomposition, we now discuss
how one can characterise exactly divergence-free functions in Vh.

Characterisation of the kernel using exact de Rham complexes We begin
by recalling some fundamental de Rham complexes and then describe how they can
be used to construct a subspace decomposition that decomposes the kernel of the
divergence.

The smooth de Rham complex in two dimensions is given by

R id−→ C∞(Ω)
curl−−→ [C∞(Ω)]2

div−→ C∞(Ω)
null−−→ 0, (7.12)

and in three dimensions

R id−→ C∞(Ω)
grad−−→ [C∞(Ω)]3

curl−−→ [C∞(Ω)]3
div−→ C∞(Ω)

null−−→ 0. (7.13)

Such a complex is called exact, if the kernel of an operator is given by the range
of the preceding operator in the sequence, e.g. when range curl = ker div. It is well
known that these complexes are exact, precisely when the domain is simply-connected
[AFW06, p. 18]. Such an exactness property is of interest here, because it allows us to
characterise divergence-free vector fields as the curls of potentials.

Several lower regularity variants of these complexes exist, arguably the most well
known ones being

R id−→ H1(Ω)
curl−−→ H(div,Ω)

div−→ L2(Ω)
null−−→ 0, (7.14)

R id−→ H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−→ L2(Ω)

null−−→ 0. (7.15)

In the last decades, a significant effort has been made to find finite element spaces
that form exact subsequences of (7.14) and (7.15) [AFW06].

Example 7.1. In three dimensions one can obtain a discrete, exact subsequence
by discretising H1 with continuous Lagrange elements, H(curl,Ω) with Nedelec edge
elements, H(div,Ω) with Nedelec face elements and L2 with discontinuous Lagrange
elements.

132

Figure 7.4: A 2D exact Stokes complex on barycentrically refined meshes.

For this work, we are interested in characterising the kernel of the divergence of
vector fields with H1 regularity. Hence, we study the following complexes with more
regularity, that are sometimes referred to as the Stokes complexes,

R id−→ H2(Ω)
curl−−→ [H1(Ω)]2

div−→ L2(Ω)
null−−→ 0, (7.16)

and in three dimensions

R id−→ H2(Ω)
grad−−→ H1(curl,Ω)

curl−−→ [H1(Ω)]3
div−→ L2(Ω)

null−−→ 0, (7.17)

where H1(curl,Ω) = {u ∈ [H1(Ω)]3 : curlu ∈ [H1(Ω)]3}. Discrete complexes of this
form are much harder to construct and often result in high order polynomials due to
the high regularity requirements.

Assume now that we have been given a discrete exact subsequence of (7.16) or (7.17)
of the form

. . .→ Σh
curl−−→ Vh

div−→ Qh
null−−→ 0. (7.18)

Then for a divergence-free discrete vector field uh ∈ Vh, we can write it as the curl

of a potential Φh ∈ Σh. Assume Σh has a basis given by {Φj}, then Φh can be
written as Φh =

∑
j cjΦj for some coefficients cj. Now we can define a divergence-

free decomposition of uh as uh =
∑

j uj where uj = cj∇ × Φj. Hence, a subspace
decomposition {Vi} such that ∇ × Φj ∈ Vi for some i for any basis function Φj,
decomposes the kernel. To understand how to choose a decomposition {Vi} that
satisfies this property, we have to look at least at the support of the basis function
{Φj}.

In two dimensions and on barycentrically refined meshes, choosing Σh to be the
Hsieh-Clough-Tocher (HCT) finite element space together with continuous [P2]2 finite
element functions for Vh and discontinuous P1 finite element functions for Qh yields an
exact discrete complex [Joh+17, p. 514]. The three elements are displayed in Figure 7.4.
For a given vertex vi in the macro meshMh, we define the macro star(vi) of the vertex
as the union of all macro elements touching the vertex. We then see that for every

133

basis function Φj there exists a vertex vi such that supp(Φj) ⊂ macro star(vi). Hence,
also supp(∇×Φj) ⊂ macro star(vi) and if we define

Vi = {v ∈ Vh : supp(v) ⊂ macro star(vi)} (7.19)

then these subspaces decompose the kernel. More recently in [FGN18] an H1(curl,Ω)-
conforming element on barycentrically refined tetrahedral meshes was introduced that
forms an exact sequence with piecewise cubic continuous velocities and piecewise
quadratic discontinuous pressures. Hence, by the same argument we obtain that the
macro star around vertices provides a decomposition of the kernel of the divergence in
three dimensions.

Characterisation of the kernel by a localised Fortin operator In the previous
section we introduced discrete exact sequences as a tool to construct a subspace
decomposition that also decomposes the kernel of the divergence. When such an exact
sequence exists, the approach is clearly attractive since the subspace decomposition
can be found by simply studying the support of the basis functions in Σh. However, an
exact sequence only guarantees the existence of some Φh ∈ Σh so that ∇×Φh = uh,
but does not make statements about its norm. The proof for exactness in [FGN18] for
example is based on a counting argument and hence does not provide any bounds.

In two dimensions, this is not an issue as it is straightforward to obtain an element
in Σh with bounded norm, as we will now argue. For a divergence-free vector field we
know (see [GR86, Theorem 3.3]) that there exists a Φ ∈ H2

0 (Ω) such that ∇×Φ = uh

and ‖Φ‖2 � ‖uh‖1. Since ∇× in two dimensions simply corresponds to the rotated
gradient, we see that any two Φ that satisfy ∇×Φ = uh are equal up to a constant,
and hence we have in fact Φ ∈ Σh.

In three dimensions, the second step in this argument fails. It was proven by [CM10]
that the regularised Poincaré operator provides a bounded linear map

R : [Hs(Ω)]3 → [Hs+1(Ω)]3 s.t. ∇×R(u) = u for all u ∈ Hs with ∇ · u = 0, (7.20)

for any s and domain Ω that is star-like with respect to some ball. However, although
the norm of the potential obtained from this map is bounded by the norm of u, we
cannot directly infer this property for the discrete potential as the uniqueness property
that we exploited in two dimensions does not hold. In fact, we can add any gradient
to the potential Φ and still preserve ∇×Φ = u.

We briefly recall the approach in Chapter 6 to construct the subspace decomposition.
We constructed a covering {Ωi} of the domain and picked a corresponding partition

134

of unity {ρi}. We then constructed a particular interpolation operator I : V → Vh

and defined ui = I(∇ × (ρiΦ)). The operator I was essentially the same one as
in the classical proof for the inf-sup stability of the [P2]

2−P0 element, with minor
modifications so that it uses only values on element boundaries. However, as of
writing the author is not aware of a similar construction of a Fortin operator for the
Scott-Vogelius element in either two or three dimensions that could be modified.

While we do know that a Fortin operator must exist for the Scott-Vogelius element,
we do not a priori know whether it has a locality property similar to (6.17). We will
instead use the fact that the Scott-Vogelius element is known to be inf-sup stable on a
single macro element to construct a global Fortin operator by suitably gluing together
local Fortin operators on each macro element. We will formulate the statement and
proof for the special case of the Scott-Vogelius element on barycentric refinements, but
the same idea applies to Powell-Sabin splits or other macro elements for which inf-sup
stability is known. This approach is attractive as it does not require the explicit
construction of a [H2(Ω)]2/H1(curl,Ω)-conforming finite element.
Lemma 7.2 (Localised Fortin operator).
There exists a linear map Ih : V → Vh such that

• Ih is continuous,

• (qh,∇ · (Ih(v))) = (qh,∇ · v) for all qh ∈ Qh and v ∈ V ,

• Ih(vh) = vh for vh ∈ Vh,

• there exists a covering {Ωi} of Ω such that for all vertices vi in the macro mesh
it holds

Ih(v) ∈ Vi for all v ∈ V such that supp(v) ⊂ Ωi (7.21)

where {Vi} are the subspaces defined in (7.19).

Remark 7.3. The first three conditions are the classical conditions for a Fortin
operator. The last condition is necessary to ensure that the decomposition is local.

Proof. The idea is to combine a global Fortin operator that preserves the discrete
divergence with respect to pressures that are constant on macro cells with suitable
local Fortin operators. We begin by defining the space of constant pressures onMh:

Q̃h := {qh ∈ Qh : qh|K ≡ const ∀K ∈Mh}. (7.22)

Now let Ĩh : V → Vh be a Fortin operator for the pair Vh × Q̃h constructed as in the
proof of Lemma 6.1. The integration regions for the Scott-Zhang operator underlying

135

Ĩh and the covering {Ωi} that satisfies the locality property are shown in Figure 7.5.
We note that this operator is the identity on Vh and preserves the discrete divergence
with respect to Q̃h.

To treat the divergence with respect to the remaining pressures in Qh \ Q̃h we now
consider the macro elements separately. For each such macro triangle K we define the
spaces Vh,0(K) = {vh|K : vh ∈ Vh, supp(vh) ⊂ K} and Qh(K) = {qh|K : qh ∈ Q̃⊥h }.
The space Vh,0(K) consists of velocity fields supported in a macro cell and the space
Qh(K) consists of pressures on a macro cell that integrate to zero. We note that
Qh =

∑
K∈Mh

Qh(K)⊕ Q̃h. Since the Scott-Vogelius element is inf-sup stable on each
macro element, we know that there exist Fortin operators IKh : V (K) → Vh,0(K),
where V (K) = {v|K : v ∈ V }, such that

• IKh (vh) = vh for vh ∈ Vh,0(K)

• IKh is bounded as a map V (K) 7→ Vh,0(K)

• (qh,∇ · v) = (qh,∇ · (IKh (v))) for all qh ∈ Qh(K)

for all K, [For77], [EG04, Lemma 4.19].
Now we define

Ih(v) = Ĩh(v) +
∑
K

IKh ((v − Ĩh(v))|K). (7.23)

Clearly, Ih is linear and Ih(vh) = vh for all vh ∈ Vh. In addition, Ih is continuous with
continuity constant only dependent on the continuity constant of Ĩh and the local
Fortin operators, and Ih satisfies the locality property in (7.21).

Furthermore, we note that the discrete divergence of vector fields in Vh,0(K) with
respect to Q̃h is zero. It follows that

(qh,∇ · (Ih(v)))

=(qh,∇ · (Ĩh(v)))︸ ︷︷ ︸
=(qh,∇·v)

+
∑
K

(qh,∇ · (

∈Vh,0(K)︷ ︸︸ ︷
IKh ((v − Ĩh(v))|K)))︸ ︷︷ ︸

=0

=(qh,∇ · v)

(7.24)

for all qh ∈ Q̃h and v ∈ V .
Lastly, we show that Ih preserves the discrete divergence with respect to the local

pressures in Qh(K). For v ∈ V , K ∈Mh, and qh ∈ Qh(K), we have

(qh,∇ · (Ih(v)))

= (qh,∇ · (Ĩh(v))) + (qh,∇ · (IKh ((v − Ĩhv)|K)))

= (qh,∇ · (Ĩh(v))) + (qh,∇ · (v − Ĩh(v)))

= (qh,∇ · v),

(7.25)

136

Figure 7.5: Domain Ωi around a vertex vi (blue dashed line), covering all degrees of
freedom inside macro star(vi). The figure also shows integration regions (in red) for
vertex and edge degrees of freedom. Note that the integration regions are chosen so
that only those associated with macro star(vi) intersect with Ωi.

as desired.

Once we have obtained this localised Fortin operator, the proof for the existence
of a splitting is now the same as in Proposition 6.1.
Proposition 7.4.
Assume that Ω is simply-connected, consider the subspace decomposition defined
in (7.19) and denote by Dh,γ the subspace correction method associated with the
decomposition {Vi}. Then uh ∈ Vh and u0 ∈ Nh satisfy

inf
uh=

∑
ui

ui∈Vi

∑
i

‖ui‖2
1 � h−2‖uh‖2

0 (7.26)

inf
u0=

∑
u0,i

u0,i∈Nh∩Vi

∑
i

‖u0,i‖2
1 � h−4‖u0‖2

0. (7.27)

Moreover, it holds that

(h−2 + h−4)−1Dh,γ � Ah,γ ≤ NODh,γ (7.28)

where NO is the maximum number of overlapping subspaces in the mesh. In particular,
the bounds are independent of γ.

Proof. Exactly as in Lemma 6.1 but now pick the covering and the interpolation
operator constructed in Lemma 7.2.

137

7.3 Stabilisation for the advection terms

In the previous chapter we stabilised the advection terms using standard SUPG
stabilisation. Since we considered piecewise constant pressures, the pressure gradient
vanished and hence only the top-left block was modified. For the Scott-Vogelius
element this is not the case, and SUPG stabilisation results in a modification of the
upper off-diagonal block, introducing additional coupling between the velocity and
the pressure [BFH06, p. 1249], [Gel+05, p. 250]. In fact, in numerical experiments
we observe that even when solving the linear system using a direct solver, the outer
Newton solver fails to converge already for Re ∼ 50 for the two dimensional lid-driven
cavity. Furthermore, the modified top-right block needs to be taken into account when
adding the augmented Lagrangian term and in the multigrid scheme for the top-left
block.

In 1976 Douglas & Dupont [DD76] suggested an interior penalty scheme that
penalises a jump of the derivative across facets:

S(u,v) =
∑
K∈M̂h

1

2

∫
∂K

δh2
∂K

[[
∇u
]]
·
[[
∇v
]]

ds, (7.29)

where [[∇u]] denotes the jump of the gradient, h∂K is a function giving the facet size,
and δ is a free parameter. The term vanishes when the velocity has H2 regularity.

This scheme has received renewed attention and it was shown in [BH04] that it
successfully stabilises advection-dominated problems and has subsequently been used
to stabilise the Stokes [BH06] and the Oseen equations [BFH06; BL08]. In addition to
not introducing any additional coupling of the pressure and the velocity, an advantage
of this scheme is that it is adjoint consistent and preserves the order of convergence in
the L2 norm [BH04; BL08]. We demonstrate this in Section 7.4.2.

Let us now consider the effect of adding the term in (7.29) on the multigrid scheme
for the top-left block. Since S vanishes for functions that have continuous gradients, we
have added another bilinear form to our system that has a nontrivial kernel consisting
of C1 vector fields. As the weight δh2

∂K is small, the impact is not as significant as that
of the grad-div term, but for very high Reynolds number or coarse meshes, we still
observe reduced performance of the multigrid scheme. From Proposition 5.4, we know
that in order for the smoother to be robust, the subspace decomposition must provide
a decomposition of the kernel. In two dimensions, this is satisfied if k ≥ 3, as the
macro star around vertices then captures the support of the HCT element. In three
dimensions the lowest degree for a local basis for C1 vector fields on barycentrically
refined meshes is k = 5.

138

We emphasise that this argument is not rigorous, as it does not take into account
any potential interaction between the two singular terms. In addition, it is not clear
how one would construct a cheap, robust prolongation operator. However, in the
numerical experiments we will see that the scheme is noticeably more robust for k = 3

in two dimensions and k = 5 in three dimensions.

7.4 Numerical results

We present numerical results for the same benchmark problems as before. The general
setup of the solver is the same as previously shown in Figure 6.7, but we employ the
mesh hierarchy, the smoother, and the transfer operators that were developed in this
chapter. The free parameter δ in the stabilisation (7.29) is chosen to be cell dependent
as δ|K = 5 · 10−3‖u|K‖∞.

7.4.1 Solving the top-left block only: nearly incompressible
elasticity

We begin again by studying the performance for the top-left solve only without any
advection. Since for the Scott-Vogelius element the projection onto the pressure space
is given by the identity, the model problem we study is given by: find u ∈ Vh such
that ∫

Ω

Eu : Ev dx+ γ̂

∫
Ω

(∇ · u)(∇ · v) dx =

∫
Ω

f · v dx (7.30)

for all v ∈ Vh. As in Section 6.4.2, we choose Ω = [0, 1]d, homogeneous Dirichlet
boundary conditions on ∂Ω and set f = (1, 1) in two and f = (1, 1, 1) in three
dimensions.

In contrast to the results obtained previously for the [P2]2−P0 and the [P1⊕BF
3]3−P0

element, we now observe good multigrid performance with the standard prolongation
up to values of γ̂ = 104. Only for very large values of γ̂, the modified prolongation is
necessary. Recall that the purpose of the modified prolongation operator is essentially
to map (discretely) divergence-free vector fields from the coarse-grid to (discretely)
divergence-free vector fields on the fine grid. Since for the Scott-Vogelius discretisation,
a discretely divergence-free vector field is exactly divergence-free, the only introduced
divergence can stem from the interpolation error between the nonnested hierarchies.
The observation that the multigrid scheme without special prolongation is robust to
such large values of γ suggests that the divergence introduced by this error is very
small.

139

Refinements Degrees of freedom γ̂
0 1 10 102 103 104 106 108

Robust relaxation & robust transfer

1 1 602 3 4 5 6 6 5 4 3
2 6 274 3 4 5 6 6 5 4 3
3 24 834 3 4 5 6 6 5 4 3
4 98 818 3 4 5 6 5 5 4 3

Robust relaxation & standard transfer

1 1 602 3 3 5 6 6 7 28 >100
2 6 274 3 4 5 6 6 8 >100 >100
3 24 834 3 4 5 6 6 8 >100 >100
4 98 818 3 4 5 6 6 8 >100 >100

Jacobi relaxation & robust transfer

1 1 602 7 8 16 41 83 >100 >100 >100
2 6 274 7 9 18 47 >100 >100 >100 >100
3 24 834 7 9 18 47 >100 >100 >100 >100
4 98 818 7 9 18 47 >100 >100 >100 >100

Jacobi relaxation & standard transfer

1 1 602 7 8 16 45 >100 >100 >100 >100
2 6 274 7 9 18 53 >100 >100 >100 >100
3 24 834 7 9 18 55 >100 >100 >100 >100
4 98 818 7 9 18 55 >100 >100 >100 >100

Algebraic multigrid

1 1 602 11 13 22 55 >100 >100 >100 >100
2 6 274 11 14 26 64 >100 >100 >100 >100
3 24 834 12 15 29 74 >100 >100 >100 >100
4 98 818 13 16 33 83 >100 >100 >100 >100

Table 7.1: Iteration counts in two dimensions for the [P2]2 element for five different
geometric and algebraic multigrid variants. The geometric multigrid results are
obtained with a 4× 4 coarse grid.

140

Refinements Degrees of freedom γ̂
0 1 10 102 103 104 106 108

Robust relaxation & robust transfer

1 23 871 3 3 3 4 5 5 4 2
2 185 115 3 4 4 6 6 6 5 3
3 1 458 867 3 4 5 6 7 7 6 4

Robust relaxation & standard transfer

1 23 871 3 3 3 4 5 6 9 >100
2 185 115 3 4 4 6 7 7 27 >100
3 1 458 867 3 4 5 6 8 9 >100 >100

Jacobi relaxation & robust transfer

1 23 871 8 9 17 51 >100 >100 >100 >100
2 185 115 10 12 21 60 >100 >100 >100 >100
3 1 458 867 10 12 22 63 >100 >100 >100 >100

Jacobi relaxation & standard transfer

1 23 871 8 9 17 64 >100 >100 >100 >100
2 185 115 10 12 22 74 >100 >100 >100 >100
3 1 458 867 10 12 22 76 >100 >100 >100 >100

Algebraic multigrid

1 23 871 20 23 38 >100 >100 >100 >100 >100
2 185 115 24 28 48 >100 >100 >100 >100 >100
3 1 458 867 27 32 54 >100 >100 >100 >100 >100

Table 7.2: Iteration counts in three dimensions for the [P3]3 element for five different
geometric and algebraic multigrid variants. The geometric multigrid results are
obtained with a 2× 2× 2 coarse grid.

7.4.2 Verification and pressure robustness

In order to validate the implementation and the claim for Reynolds number independent
errors of the velocity field, we study the same test case as in Section 6.4.3, but in two
dimensions. We observe the expected second order convergence of the velocity gradient
and of the pressure as the mesh is refined, see Figure 7.6. To compare with the
discretisation from the previous chapter, we perform the same tests for the [P2]2−P0

element on the same barycentrically refined mesh and with the stabilisation defined
in (7.29). As in Section 6.4.3 we see only first order convergence and a growing velocity
error as the Reynolds number is increased. This is in contrast to the [P2]

2−Pdisc
1

Scott-Vogelius element, which exhibits Reynolds-robust error estimates. The reason
for this is the weak enforcement of the divergence constraint for the [P2]2−P0 element

141

that can be seen in Figure 7.6. The solutions obtained using the Scott-Vogelius element
are divergence-free up to solver tolerances. In addition, we remark that with the
interior penalty type stabilisation we now observe the desired convergence rates for
the L2 error of the velocity, even for high Reynolds numbers and coarse meshes.

7.4.3 Algorithmic performance in two and three dimensions

As in the previous chapter, we study the lid-driven cavity and the backwards facing
step benchmark problems.

Two dimensions We begin by studying the regularised lid-driven cavity. The setup
is the same as in the previous chapter, apart from the coarse grid, which we choose
to be 10 × 10 instead of 16 × 16. Since the grid is barycentrically refined at every
level, this leads to a comparable problem size. As discussed in the previous section,
for k = 2 we do not expect the [Pk]2−Pdisc

k−1 pair to be fully robust due to nullspace
of the stabilisation terms. In Table 7.3 can see that iteration counts are stable from
Re = 10 to Re = 1 000 but then increase. This increase becomes less prominent as the
mesh is refined and the stabilisation term is reduced. If we choose k = 3 (in order to
capture the nullspace of the stabilisation term with the relaxation method), iteration
counts decrease significantly and robustness is improved.

Discretisation Degrees of freedom Reynolds number
10 100 1 000 5 000 10 000

[P2]2−Pdisc
1

1 1.70× 104 4.50 5.00 6.67 18.00 25.50
2 6.75× 104 4.00 4.33 5.67 16.00 29.00
3 2.69× 105 4.00 4.00 4.00 10.00 18.00
4 1.08× 106 3.00 3.33 2.67 6.50 11.50

[P3]2−Pdisc
2

1 3.62× 104 2.50 2.67 3.33 8.00 11.50
2 1.44× 105 2.50 2.67 2.33 5.50 9.50
3 5.77× 105 2.00 2.67 2.00 4.00 5.50
4 2.31× 106 2.00 2.67 2.00 2.50 5.00

Table 7.3: Average number of outer Krylov iterations per Newton step for the 2D
regularised lid-driven cavity problem using the Scott-Vogelius discretisation for k = 2
and k = 3.

142

2−8 2−7 2−6 2−5 2−4 2−3
10−6

10−5

10−4

10−3

10−2

10−1

100

h

‖∇(u− uh)‖0

[P2]2−Pdisc
1 ,Re = 101 [P2]2−P0, Re = 101 h

[P2]2−Pdisc
1 ,Re = 102 [P2]2−P0, Re = 102 h2

[P2]2−Pdisc
1 ,Re = 103 [P2]2−P0, Re = 103 h3

2−8 2−7 2−6 2−5 2−4 2−3
10−10

10−8

10−6

10−4

10−2

100

h

‖uh − u‖0

2−8 2−7 2−6 2−5 2−4 2−3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

h

‖p− ph‖0

2−8 2−7 2−6 2−5 2−4 2−3

10−14

10−10

10−6

10−2

h

‖∇ · uh‖0

Figure 7.6: Velocity and pressure error as well as L2 norm of the divergence for the
[P2]2−P0 and the [P2]2−Pdisc

1 element for different Reynolds numbers.

143

In addition to iteration counts, we also study the impact of the larger patches on
the runtime of the solver. We observe that for comparable problems, the runtime
is approximately two to three times longer for the [P2]

2−Pdisc
1 element. This is not

surprising, as the patches in the relaxation and prolongation contain roughly an
order of magnitude more degrees of freedom than in the low order case. However,
the convergence study in the previous section shows that when the problem has
sufficient regularity and even for moderately high Reynolds number, the Scott-Vogelius
discretisation leads to smaller approximation errors even on significantly coarser
meshes. In addition, we highlight that for high Reynolds number the runtime for
the [P3]2−Pdisc

2 element is competitive to the [P2]2−Pdisc
1 element despite significantly

more degrees of freedom. This is due to the improved robustness of this element at
high Reynolds number.

Discretisation Degrees of freedom Reynolds number
10 100 1 000 5 000 10 000

[P2]2−P0 6.57× 105 1.85 2.17 2.70 5.32 5.67
[P2]2−Pdisc

1 1.08× 106 3.27 3.51 2.97 6.04 10.16
[P3]2−Pdisc

2 2.31× 106 7.04 8.30 7.01 8.01 13.30

Table 7.4: Runtime per Newton step (in seconds) for the 2D regularised lid-driven
cavity using the [P2]

2−P0, [P2]
2−Pdisc

1 , and [P3]
2−Pdisc

2 element pairs. Measured on
two nodes of a Cray XC30 with two 12-core E5-2697v2 CPUs per node.

For the backwards-facing step the results are qualitatively similar, c.f. Table 7.5.
We observe growth of the iteration counts on coarse meshes past Re = 1 000, but see
significantly improved robustness as the mesh is refined. As before for the lid-driven
cavity, the performance of the solver can be improved noticeably by choosing the
[P3]2−Pdisc

2 element.

Three dimensions As in the previous chapter, we now study the three dimensional
variants of the two benchmark problems. We study iteration counts both with and
without adding the stabilisation terms in (7.29).

Results for the lid-driven cavity are shown in Table 7.6. Both with and without
stabilisation we observe iteration counts that approximately double as the Reynolds
number is increased from Re = 10 to Re = 5 000.

We show results for the backward-facing step in Table 7.7 Without stabilisation,
we observe iteration counts that approximately triple over the same range of Reynolds
numbers. However, when adding stabilisation, iteration counts increase significantly

144

Discretisation Degrees of freedom Reynolds number
10 100 1 000 5 000 10 000

[P2]2−Pdisc
1

1 4.79× 105 3.67 3.25 5.00 14.50 19.50
2 1.91× 106 3.67 3.25 4.00 8.50 13.50
3 7.64× 106 4.50 4.33 3.00 5.00 9.50

[P3]2−Pdisc
2

1 1.02× 106 2.00 2.00 2.50 4.50 6.00
2 4.10× 106 2.50 2.33 1.50 2.00 3.00
3 1.64× 107 2.50 3.33 2.00 1.50 2.00

Table 7.5: Average number of outer Krylov iterations per Newton step for the 2D
backwards-facing step problem using the Scott-Vogelius discretisation for k = 2 and
k = 3.

and blow up for very high Reynolds number. We attribute this to the issue raised
in Section 7.3: the stabilisation term itself has a large nullspace (consisting of C1

vector fields) that is not captured by the relaxation induced by the macro star around
vertices. If we choose k = 5 we know that a local basis for C1 functions exists. Indeed,
we see in Table 7.7, that iteration counts for the [P5]3−Pdisc

4 element are significantly
more robust. Though we would not recommend this as a practical discretisation due
to its high computational cost and memory requirements, the results demonstrate
the necessity of capturing the nullspace of all singular operators in order to obtain a
robust scheme.

Refinements Degrees of freedom Reynolds number
10 100 1 000 2 500 5 000

k = 3 without stabilisation

1 1.03× 106 3.00 3.67 3.50 4.00 5.00
2 8.22× 106 3.50 3.67 4.00 4.00 4.00
3 6.55× 107 3.00 3.33 3.50 3.50 4.00

k = 3 with stabilisation

1 1.03× 106 3.00 4.00 4.50 5.00 6.00
2 8.22× 106 3.50 4.00 5.50 6.00 6.50
3 6.55× 107 3.00 3.33 5.00 6.00 7.50

Table 7.6: Average number of outer Krylov iterations per Newton step for the 3D
regularised lid-driven cavity problem.

145

Refinements Degrees of freedom Reynolds number
10 100 1 000 2 500 5 000

k = 3 without stabilisation

1 3.85× 106 4.50 4.33 5.33 9.00 15.00
2 3.06× 107 5.00 5.33 5.33 10.00 12.00

k = 3 with stabilisation

1 3.85× 106 4.50 5.33 7.33 11.50 13.50
2 3.06× 107 5.00 6.33 12.50 14.00 154.00

k = 5 with stabilisation

1 3.81× 106 1.50 1.67 2.00 3.50 4.00
2 3.03× 107 2.00 1.67 2.00 2.50 5.00

Table 7.7: Average number of outer Krylov iterations per Newton step for the 3D
backwards-facing step problem. The results for k = 5 were obtained on a coarser mesh
to have a comparable number of degrees of freedom to the case of k = 3.

Code availability

The code for the Navier–Stokes solver and the numerical experiments in this chapter
can be found at https://github.com/florianwechsung/alfi/. For reproducibility,
all major Firedrake components as well as the code used to run these examples have
been archived on Zenodo [Fir19; Wec19b].

146

https://github.com/florianwechsung/alfi/

Part III

Combination and conclusions

147

Chapter 8

Shape optimisation with geometric
multigrid solvers

The goal of this chapter is to develop an approach that enables the use of the
previously developed solver for the Navier–Stokes equations for shape optimisation
problems. Recall that in order to define robust prolongation operators, the multigrid
schemes that we developed rely heavily on the nested structure of the mesh hierarchy.
This requirement raises two issues. If the boundary of the physical domain Ωphys is
curved, nested refinements of the coarse gridMH have the same boundary and do
not approximate ∂Ωphys as h → 0. The alternative is to adjust the boundary after
each refinement, however, then the nestedness property is lost. Both approaches are
demonstrated in Figure 8.1. The second issue is closely related: the optimal shape is
obtained by deforming the mesh. If we move the vertices of the fine grid, nestedness of
the hierarchy is not necessarily preserved. Alternatively, we can move the vertices of
the coarse grid and deform the fine meshes correspondingly. This preserves nestedness
of the hierarchy but restricts the set of representable shapes.

8.1 Nestedness preserving high-order deformations

The approach we suggest to address both issues is based on curved meshes and the
ideas of isoparametric finite elements. Let us start by considering an initial coarse
triangulationMH on a polytope that approximates Ωphys. For some element degree
p ≥ 2 we consider the Lagrange finite element space

HH() := {T ∈ H1(;Rd) : T|K ∈ [P p(K)]d ∀K ∈MH}. (8.1)

Now we construct a vector field TH ∈ HH() such that

Ω ≈ Ωphys where Ω := TH(). (8.2)

148

Figure 8.1: Coarse grid, first refinement, second refinement, and superimposed mesh hi-
erarchy obtained from an initial triangulation. Top row: without boundary adjustment.
Bottom row: with boundary adjustment after each refinement.

∂Ωphys ∂Ωphys

Ω

Figure 8.2: The smooth boundary ∂Ω can be approximated by deforming an initial
affine mesh with a piecewise quadratic deformation.

This can be done by projecting each facet or edge degree of freedom of HH() that lies
on the boundary of onto ∂Ωphys, as shown in Figure 8.2. Firedrake has an interface to
OpenCascade, so that the mapping TH can be obtained automatically if the geometry
is provided in STEP format, a commonly used file format in Computer-aided Design.

We now construct a mesh hierarchy as follows. The initial triangulation MH

is refined regularly to obtain a nested, fine triangulation Mh. We then define the
space Hh() onMh analogously to HH(), and since the hierarchy is nested we have
HH() ⊂ Hh(). Hence, we can define Th = PHH (TH), where PHH : HH()→ Hh()

is the prolongation operator given by finite element interpolation and is equal to the
identity. Deforming the coarse grid with TH and the refined grid with Th results
again in a nested hierarchy, as shown in Figure 8.3. The degree p of the deformation
is chosen large enough so that the deformed coarse mesh is a good approximation of

149

the physical domain.

Figure 8.3: Left: initial mesh deformed with a piecewise quadratic. Middle: refinements
of the coarse mesh deformed with the prolonged deformation from the coarse grid.
Right: superimposed mesh hierarchy demonstrating that nestedness is preserved.

We now repeat the same approach in order to perform shape optimisation: the
control space is given by high order deformations defined on the coarse-grid; this
deformation is then prolonged onto the fine grids in order to deform the entire mesh
hierarchy in a way that preserves nestedness.

To that end, we define HH(Ω) as the push-forward of HH() under TH :

HH(Ω) := {X ◦T−1
H : X ∈ HH()}, (8.3)

and Hh(Ω) is defined analogously. In an abuse of notation, we denote the prolongation
by PHH : HH(Ω)→ Hh(Ω). The shape optimisation problem can then be formulated as

minimise
XH∈HH(Ω)

J((Id + PHH XH)(Ω)). (8.4)

This approach is demonstrated in Figure 8.4 for the simple levelset problem that
we discussed in Section 4.4.1. Note that the shape derivative on the coarse grid is
obtained by applying the adjoint of the prolongation operator to the shape derivative
on the fine grid.

150

Figure 8.4: Left: coarse triangulation of a disk. Middle: Third refinement of the
triangulation of Ω obtained by deforming with piecewise cubics. Right: Optimal
shape given by (Id + PHH XH)(Ω) for some deformation XH ∈ HH(Ω).

Denote TX = Id + PHH XH , then the function spaces for velocity and pressure on
the deformed domain are given by

Vh(TX(Ω)) := {v ◦T−1
h ◦T−1

X : v ∈ Vh()}

Qh(TX(Ω)) := {q ◦T−1
h ◦T−1

X : q ∈ Qh()}.
(8.5)

Note that though these functions are not necessarily polynomials, they are still the
push forward of polynomials on the reference element but with respect to a different
mapping. In particular the strategy from Chapter 3 to automatically calculate shape
derivatives still applies.

Remark 8.1. Though the same approach can in principle be used to obtain nested
barycentrically refined mesh hierarchies, the Scott-Vogelius element does not en-
force the divergence constraint exactly on curved meshes. The reason for this is
that while div(Vh()) ⊂ Qh(), the corresponding property is not satisfied on Ω,
i.e. div(Vh(Ω)) 6⊂ Qh(Ω). To see this, let u = v ◦T−1

h ∈ Vh(Ω) and calculate

div(u) = tr(∇T−1
h (∇v) ◦T−1

h). (8.6)

If v is a polynomial of degree k, ∇v is a polynomial of degree k − 1 hence the entries
in (∇v) ◦T−1

h are in Qh(Ω). However, when Th is not affine, then this property is
not given for the product ∇T−1

h (∇v) ◦T−1
h . It may be possible to remedy this issue by

using a different mapping between functions on the affine mesh and the curved mesh,
but for now we focus on the low order discretisation from Chapter 6. We will later
briefly remark on H(div) conforming discretisations that are exactly divergence-free
even on curved meshes.

151

Remark 8.2. Multigrid solvers in the context of shape optimisation were also in-
vestigated by [SW17]. However, for the problems they consider the requirements for
the grid transfer operator are less strict and they do not have the same nestedness
requirements as here. Hence, they consider standard affine meshes and deformations
and interpolate the deformation from the fine grid to the coarser grids. That way the
coarse grid ‘moves with the fine grid’, but the hierarchy is not exactly nested, similar
to the bottom row of Figure 8.1. They see good multigrid performance for problems
involving diffusion and elasticity equations.

8.2 Regularisation

We now make three minor modifications to the optimisation problem that will allow
us to solve more challenging shape optimisation problems at higher Reynolds numbers.
First, we recall that we observed kinks in the boundary of the pipe example that we
studied in Section 3.4, see Figure 3.4. In order to obtain more regular deformations,
we augment the inner product with the bilinear form that arises in the C0 interior
penalty discretisation of the biharmonic operator [BS05; WKG06; Bre11]. Denoting
the set of elements in the mesh by {K} and the set of edges / facets by {E}, we let

aip(U,V) =
∑
K

∫
K

∆U ·∆V dx−
∑
E

∫
E

{{
∆U

}}[[∂V

∂nE

]]
ds

−
∑
E

∫
E

{{
∆V

}}[[∂U

∂nE

]]
ds+ σ

∑
E

1

hE

∫
E

[[
∂2U

∂n2
e

]][[
∂2V

∂n2
E

]]
ds,

(8.7)

where
[[
·
]]
denotes the jump and

{{
·
}}

denotes the average across a facet. The
parameter σ needs to be chosen large enough in order to guarantee coercivity [Bre11,
eqn. (3.23)]. We pick σ = 10.

The biharmonic operator has already been observed to be well suited for mesh
deformation in [Hel03] and was used in the context of shape optimisation in [Keu15,
§ 2.10.2.]. In Section 8.4 we will compare the shape obtained with and without the
biharmonic augmentation.

The inner product that we consider is then given by

(U,V)H := (E(U),E(V))L2 + α(BU,BV)L2 + βaip(U,V), (8.8)

where E denotes the symmetrised gradient and B denotes the Cauchy–Riemann
operator from Chapter 4. We set α = 0 in three dimensions.

152

For the second modification, we recall that in Section 2.4 we discussed that for
a smooth domain the shape derivative should be zero for deformations with a trace
that vanishes in normal direction. However, this is not the case for the discretised
problem. Figure 8.5 shows the magnitude of the discretised shape derivative for an
example problem; though small, there are noticeable contributions in the interior of
the domain.

Figure 8.5: Magnitude of the shape derivative of the drag of an obstacle immersed in
a fluid.

We recall the definition of the shape gradient,

(∇JΩ(X),V)H = dJΩ(X; V) for all V ∈ H. (8.9)

For the continuous problem the derivative is supported on the boundary, and hence,
denoting by H0 the space of deformations in H with zero trace, we have that

(∇JΩ(X),V)H = 0 for all V ∈ H0. (8.10)

Since the deformation X is simply a linear combination of the gradients throughout
the optimisation, this means that X also satisfies

(X,V)H = 0 for all V ∈ H0. (8.11)

We can regularise the discretised problem by enforcing the same property, that is we
solve

minimise
XH∈HH(Ω)

J((Id + PD
H XH)(Ω))

subject to (XH ,V)H = 0 for all V ∈ H0(Ω).
(8.12)

153

Remark 8.3. The approach is similar to the one proposed in [Etl+18]. Etling et. al. go
a step further and require at each step that the deformation direction can be obtained
as the solution of a Neumann problem, that is, they do not only remove interior
contributions of the derivative but also those with respect to tangential deformations
of the boundary. However, since the normal changes as the domain is deformed, this
is a constraint on each optimisation step rather than on the whole deformation, and it
is not clear how one could formulate an optimisation problem on the reference domain
that enforces this requirement at each step.

Finally, to remove the invariance with respect to tangential deformations of the
boundary, we add a small Tikhonov regularisation of the form ζ‖XH‖2

H to the objective.
We choose ζ = 10−4 in the experiments to follow. In Section 8.3 we show an example
for which the mesh degenerates due to spurious contributions to the shape derivative.

The shape derivatives for the examples shown below were almost all calculated
automatically using UFL; only the projection in the augmented Lagrangian term
involved a manual calculation for the shape derivative. As in Chapter 4.4.3 we enforce
the equality constraints in the optimisation problem using an augmented Lagrangian
algorithm; the inner, unconstrained optimisation problems are solved using L-BFGS.
We use piecewise quadratic deformations on the coarse grid for all examples. The
criterion developed in Corollary 2.13 for diffeomorphisms is not enforced explicitly in
the optimisation, but we use it at each step to check if the deformation is too large,
and reduce the step size if necessary.

We now revisit two of the problems that we already studied in previous chapters.

8.3 Drag minimisation of an immersed object

In Section 4.4.3 we studied the drag minimisation of an object immersed in Stokes
flow. In this section we replace the PDE constraint with the Navier–Stokes equations
and we use the preconditioner developed in Chapter 6 to solve the state and adjoint
equation. We want to allow for the angle of the tips to change, i.e. we do not expect
a smooth deformation, hence we choose β = 10−3 in (8.8). We start with an initial
shape that is similar to what was obtained for Stokes flow in Chapter 4 and perform
the optimisation for Reynolds numbers 125, 250, 500, and 1 000. The coarse mesh is
unstructured and consists of 1 406 cells. We perform three refinements resulting in
4.5 · 105 degrees of freedom for the PDE constraint.

The obtained shapes are shown in Figure 8.6, and the optimal shape and the
velocity field for Re = 1 000 are shown in 8.7. The optimal shape for Stokes flow that

154

we obtained in Section 4.4.3 was symmetric. This is expected as the equations are
linear and the objective does not change if the flow direction is reversed. Here we
clearly see that as the Reynolds number increases and the PDE constraint becomes
more nonlinear, the optimal shape becomes asymmetric.

Figure 8.6: Initial shape and optimal shapes for an immersed obstacle for Reynolds
numbers 125, 250, 500, and 1 000.

Figure 8.7: Optimal shape and velocity field for Re = 1 000. The colour denotes speed.

We demonstrate the necessity for the Tikhonov regularisation and the PDE
constraint on the control in Figure 8.8. Without this regularisation we obtain spurious
deformations in the interior once the shape is close to the optimal shape, eventually
causing the solver for the PDE constraint to fail.

155

Figure 8.8: Shape obtained without Tikhonov regularisation and control constraint
after 50 iterations and after 84 optimisation steps. We see significant deformations in
the interior of the domain.

Finally, in Figure 8.9 we show the objective value, the norm of the gradient of
the Lagrangian, the constraint violation and the average number of Krylov iterations
per Newton step for each Reynolds number. The norm of the gradient is reduced by
approximately six orders of magnitude and the violation of the volume and barycentre
constraints is of order 10−5–10−4. We note that despite the domain not satisfying the
assumption of being simply-connected that we made in Chapter 6, the preconditioner
remains effective. Iteration counts are slightly higher than in Chapter 6 as tighter
solver tolerances were chosen to obtain accurate gradients

156

0.94

0.96

0.98

1 Objective value

10−9

10−6

10−3

100

Gradient norm Re = 125
Re = 250
Re = 500
Re = 1 000

10−6

10−4

10−2

Constraint violation

0 20 40 60 80 100 120 140
0

5

10

Average number of Krylov iterations

Figure 8.9: Convergence history for the problem of minimising the drag of an obstacle
immersed in a fluid subject to a volume and barycentre constraint.

8.4 Optimisation of a pipe

We now revisit the optimisation of a pipe to reduce energy losses from Section 3.4,
though this time we will perform the optimisation both in two and in three dimensions
and at higher Reynolds number. The coarse mesh in two dimensions is again unstruc-
tured and consists of 6 394 cells. We perform two refinements resulting in 5.1 · 105

157

degrees of freedom for the PDE constraint.
The initial and the optimal shape for Reynolds numbers 125, 250, 500, and 1 000

are shown in Figure 8.10. For low Reynolds number the optimal shape is close to a
straight connection between the two fixed ends. As the Reynolds number is increased,
the optimal shape becomes more ‘S’ shaped and avoids sharp bends and high curvature.

Figure 8.10: Initial shape and optimal shapes for the pipe problem for Reynolds
numbers 125, 250, 500, and 1 000.

To motivate the use of the biharmonic operator in the inner product, we take
a closer look at the part of the boundary in the bottom left where the boundary
condition on the deformation changes from being fixed to being free. In Figure 8.11
we show close ups for Reynolds number 125 with and without the biharmonic term in
the inner product. Without the biharmonic term we see a tangled mesh after only 10
iterations of the optimisation scheme and in fact the solver fails in the next iteration.
In contrast, when using the biharmonic term we still observe a kink, but the mesh
does not degenerate throughout the optimisation.

Figure 8.11: Left: without the biharmonic term in the inner product the mesh
degenerates after only 10 optimisation steps and the solver for the PDE constraint
fails. Right: mesh obtained after 150 optimisation steps when including the biharmonic
term.

158

The convergence history is shown in Figure 8.12, and we see that the energy loss
is reduced by 15%–20% depending on the Reynolds number. We observe a reduction
of the gradient by between eight and ten orders of magnitude and a violation of the
volume constraint of at most order 10−5 after 200 iterations. The faster convergence
for higher Reynolds number may be explained by the initial guess being closer to the
optimal shape for these cases.

As for the obstacle example, we see well controlled iteration counts of the augmented
Lagrangian solver throughout the optimisation.

0.8

0.9

1 Objective value

10−15

10−10

10−5

100

Gradient norm Re = 125
Re = 250
Re = 500
Re = 1 000

10−9

10−6

10−3

100

Constraint violation

0 20 40 60 80 100 120 140 160 180 200
0

5

10 Average number of Krylov iterations

Figure 8.12: Convergence history for the two dimensional pipe shape optimisation
problem.

159

Lastly we study a three dimensional version of the pipe problem. We use the
[P2⊕BF

3]−P0 element here as we noted that the continuity constant of the prolongation,
when using the [P1 ⊕ BF

3]−P0 element, increased as the mesh was deformed, hence
affecting the performance of the preconditioner. In addition, we increase the Tikhonov
regularisation to 3 · 10−5. We start with a coarse mesh of 59 547 cells and refine it
once to obtain a problem with 5.5 · 106 degrees of freedom.

We show the obtained shapes obtained for Reynolds numbers 125, 250, 500, and
1 000 in Figure 8.13. The velocity field for Re = 500 is shown in Figure 8.14.

Figure 8.13: Optimal shape for the three dimensional pipe optimisation problem.
Top-left: Re = 125. Top-right: Re = 250. Bottom-left: Re = 500. Bottom-right:
Re = 1, 000.

Figure 8.14: Velocity field for the optimal shape at Re = 500.

For Re = 500 we observe some roughness in the lower part of the pipe which
increases for Re = 1 000. We also observe in Figure 8.15 that for the lower Reynolds
numbers we see good convergence as the gradient is reduced by approximately five
orders of magnitude and the constraint violation is of order 10−4. The convergence for

160

the Re = 1 000 case is not as good which we attribute to the relatively coarse mesh
that cannot resolve the flow fully at high Reynolds number. Finally, we note that
the performance of the preconditioner is very good throughout the optimisation for
all four Reynolds numbers. Convergence is achieved after approximately four Krylov
iterations per Newton step.

0.85

0.9

0.95

1 Objective value Re = 125
Re = 250
Re = 500
Re = 1 000

10−8

10−5

10−2

101

Gradient norm

10−6

10−5

10−4

10−3

10−2 Constraint violation

0 20 40 60 80 100 120 140
0

2

4

6

8
Average number of Krylov iterations

Figure 8.15: Convergence history for the three dimensional pipe shape optimisation
problem.

161

Code availability

The code for the numerical experiments from this chapter is available at https:

//github.com/florianwechsung/ThesisNumerics. For reproducibility, all major
Firedrake components as well as the code used to run these examples have been
archived on Zenodo [Fir19; Wec19c; Wec19a; Wec19b].

162

https://github.com/florianwechsung/ThesisNumerics
https://github.com/florianwechsung/ThesisNumerics

Chapter 9

Conclusions and outlook

In this thesis we have studied several questions that arise when performing shape
optimisation, with a focus on the case when the optimisation is constrained by the
incompressible Navier–Stokes equations.

9.1 Shape Optimisation

The first part of the thesis was concerned with two general aspects of shape optimisation.
In Chapter 3 we introduced a reformulation of the classical shape derivative in the
context of finite elements. We expressed the shape derivative as the derivative with
respect to the mapping between the reference and the physical element. This viewpoint
enables a straightforward implementation of automated shape differentiation in the
UFL software package and in other finite element codes. This new feature in UFL is
now the basis for the automated shape optimisation capabilities of the dolfin-adjoint
and Fireshape libraries.

In Chapter 4 we focussed on mesh deformation. In the context of finite elements,
the domain is given by a mesh, and we desire to find deformations that preserve the
angles in the mesh. As there are many deformations that transform a given initial
shape to the optimal shape, we were able to exploit this nonuniqueness to pick a
deformation with particularly good properties. By augmenting the inner product
with a least-squares formulation of the Cauchy–Riemann equations we obtained shape
gradients in two dimensions that are nearly conformal. Denoting this inner product by
(·, ·)CR(α)+H, we showed that in the limit α→ 0, the nonconformal part of the shape
gradient vanishes.

The Riemann mapping theorem guarantees that there exists a conformal mapping
between any two simply-connected domains in two dimensions. Aligning with this
result, in our numerical examples we observed that, in this case, the new inner product

163

indeed yields deformations that preserve angles in the mesh and we were able to
perform large shape deformations without mesh stretching or tangling. We noted that
a balance has to be struck: very small values of α yield highly conformal deformations
but slow down the optimisation and result in a harder problem for the Riesz map.

When the domain is not simply-connected or when the deformations are clamped
at a part of a boundary we cannot expect to find a conformal mapping between the
initial and the optimal shape. For this case we introduced a weighting into the inner
product that emphasises conformality of the deformation close to the boundary. Using
this weighting function we demonstrated an improvement of the mesh quality for the
classical problem of an object immersed in Stokes flow.

The approach presented is based on the Cauchy–Riemann equations and hence
does not naturally extend to three dimensions. In fact, we remark that in higher
dimensions the analogue to the Riemann mapping theorem does not hold and hence
we cannot expect there to be a conformal mapping between two domains, not even
when they are simply-connected.

For this reason it would be desirable to formulate other notions for the quality
of deformations and the resulting meshes, that translate more naturally to three
dimensions. In [Rui+19] a mesh deformation strategy is proposed that relies on
minimising a distortion measure of the mesh. However, the measure is nonlinear in the
deformation and hence cannot be incorporated into the inner product. Here it may
be desirable to take the approach outlined in Section 2.4 and to introduce a control
space E on the boundary, to formulate an extension operator E : E → D based on
[Rui+19], and to then minimise the objective J̃Ω(e) = JΩ(E(e)).

9.2 Robust large-scale solvers for the incompressible
Navier–Stokes equations

In the second part of the thesis we focussed on a particular PDE constraint given
by the steady, incompressible Navier–Stokes equations. The development of precon-
ditioners for these equations has been a highly active field for the last two decades.
In Chapter 5 we studied the augmented Lagrangian preconditioner by Benzi & Ol-
shanskii [BO06] that modifies the problem and shifts the difficulty from finding a
good Schur complement approximation to finding robust solvers for a modified top-left
block. For nearly singular symmetric problems like the one arising in the top-left block
of the augmented Lagrangian formulation, Schöberl developed the necessary theory
for multigrid preconditioners with robust performance with respect to the augmented

164

Lagrangian parameter γ and the viscosity ν. We outlined the framework developed by
Schöberl and argued that the two key ingredients for a robust multigrid scheme are a
relaxation and a prolongation operator with parameter independent performance. For
the relaxation one can obtain a robust scheme by considering a subspace correction
method built on a subspace decomposition that decomposes the nullspace of the
singular operator. A robust prolongation can be obtained by modifying the standard
prolongation operator to map discretely divergence-free vector fields on the coarse
grid to (nearly) divergence-free vector fields on the fine grid.

Up to this point the discussion did not specify a particular discretisation. In
Chapter 6 we began by studying the [P2]

2−P0 element that was already considered
by Benzi & Olshanskii. We described the construction of robust relaxation and
prolongation schemes in two dimensions and then argued that the same element
cannot be used in three dimensions. We discussed several alternatives and developed a
tailored prolongation scheme that preserves the divergence, leading to a robust scheme
in three dimensions. We presented a fully parallel and open-source implementation
in Firedrake and PETSc and solved problems with up to a billion degrees of freedom
on more than 24 000 cores, demonstrating that the solver is highly suitable for large
scale computations. In two dimensions and on the finest grids we observed at most a
quadrupling of iteration counts as the Reynolds number is increased from Re = 10 to
Re = 10 000. In three dimensions we observed robust performance up to Reynolds
number Re = 5 000, with iteration counts staying nearly constant from Re = 10 to
Re = 5 000.

The work in Chapter 6 relied on the use of piecewise constant pressures, as this
allowed us to identify the discrete divergence with the flux across facets. This is used
both in the construction of the robust relaxation and robust prolongation operators.
In Chapter 7 we turned our attention to the Scott-Vogelius discretisation. In addition
to higher order convergence, the element is particularly attractive as it enforces the
divergence constraint pointwise. This property in turn yields convergence of the
velocity error that is robust in the Reynolds number. This was not the case for the
discretisation in the previous chapter, for which we saw velocity errors that grew as
the Reynolds number was increased.

As the Scott-Vogelius element is not stable for arbitrary meshes, we focus on the
case of barycentrically refined meshes. The resulting hierarchies are nonnested, but a
robust prolongation operator could be obtained using a suitable local modification of
the standard prolongation. A robust relaxation method is obtained by considering
a subspace correction method based on the macro star around vertices. We showed

165

two distinct approaches to derive this relaxation scheme, one based on discrete exact
sequences and one based on building a particular Fortin operator by exploiting inf-sup
stability on the macro elements. We emphasise that the second approach extends
beyond the barycentrically refined case to meshes with different macro structures for
which inf-sup stability is known.

To avoid the loss of adjoint consistency and the strong coupling due to the SUPG
stabilisation utilised in Chapter 6, we employed an interior penalty type stabilisation.
We confirmed using the method of manufactured solutions that the velocity and
the pressure error converge at the expected rate and that the velocity error is now
independent of the Reynolds number.

In two dimensions, we observed modest growth of iteration counts for the [P2]2−Pdisc
1

element and slower growth or even constant iteration counts when the [P3]
2−Pdisc

2

element is used. We argued that the improved robustness in the higher order case is
due to the nullspace of the stabilisation term (consisting of C1 vector fields), which is
captured by the relaxation when cubic velocity elements are used.

In three dimensions, the results were qualitatively similar: for the lowest order
inf-sup stable discretisation, [P3]3−Pdisc

2 , we saw growth of the iteration counts due to
the difficulty introduced by the stabilisation term. In three dimensions the kernel of the
stabilisation is captured by quintic polynomials, and indeed we observed significantly
improved robustness for the [P5]3−Pdisc

4 element.
This work raises several questions and potential directions for future research. We

begin by discussing the choice of stabilisation scheme. While the [P3]2−Pdisc
2 discreti-

sation that is required in two dimensions for robust performance is not impractical,
the fifth order discretisation required for full robustness in three dimensions is very
expensive. Here Powell-Sabin splits become attractive, as one can construct a local
basis for C1 functions consisting of piecewise quadratic functions on these splits both
in two and three dimensions [GLN19, p. 1]. This means that we expect the scheme to
be fully robust when employing the [P2]2−Pdisc

1 or [P2]3−Pdisc
1 element. However, this

split is more difficult to implement and also increases the size of the local problems for
the relaxation further. An alternative to the interior penalty type stabilisation is local
projection stabilisation [BB04]. This stabilisation scheme is again adjoint consistent
and was used successfully for the Stokes and Navier–Stokes equations [LRL08], but
introduces other difficulties into the implementation as it augments the variational
form with a term involving projections onto a coarse grid space.

A further question associated with advection is the question of the performance of
the smoother for the top-left block. The theory we described only covers the symmetric

166

case without advection, and for this case we see complete robustness even on very
coarse grids. When advection is added, we observe that a certain resolution of the
coarse grid seems to be necessary for good performance. It would be desirable to both
understand the nonsymmetric case better and also to find a way to be able to use
coarse grids with fewer degrees of freedom while retaining robustness.

An alternative class of finite element pairs that enforce the divergence constraint
exactly are given by H(div)-L2 conforming discretisations. These elements are attrac-
tive for two reasons. First, they are inf-sup stable even at low order and on arbitrary
meshes. Secondly, they enforce the divergence constraint exactly, even on nonaffine
meshes. In addition, they are part of an exact discrete sequence and hence it is
straightforward to characterise the kernel of the divergence. Local subspaces given
by the star around vertices capture the kernel and yield a robust relaxation scheme.
This has already been exploited by Arnold, Falk, and Winther [AFW97; AFW00]
to develop robust multigrid methods for H(div) and H(curl) Riesz maps. This is
attractive as the macro element structure and the resulting macro star required for
the Scott-Vogelius element means that the subspaces for the relaxation involve many
degrees of freedom. In three dimensions the size of the problems to be solved for each
subspace can exceed a thousand degrees of freedom. This number is much smaller for
the standard star around vertices.

A second advantage of these discretisations is that they do not require special
prolongation operators. Since the divergence constraint is enforced exactly and a
nested hierarchy can be used, discretely divergence-free vector fields on the coarse grid
are exactly divergence-free and hence also divergence-free on the fine grid, since the
prolongation is simply the identity.

We also note that for certain elements there exist interpolation operators I : V → Vh

that preserve the divergence [GS03; XZ10]. Using such an operator for the prolongation
could remove the need for the nestedness of the mesh hierarchy. This would simplify
the use of the solver in the context of shape optimisation, enable anisotropic mesh
adaptation, and allow for geometry fitting as the mesh is refined without requiring
higher order finite elements.

Although we focussed on the steady Navier–Stokes equations, we highlight that the
work extends directly to fully implicit time discretisations of the transient case [HR12].
In addition, by allowing for spatially varying viscosity, the ideas could be extended to
the Reynolds-averaged Navier–Stokes equations. This opens up a large new class of
engineering problems for which we do not expect a steady, laminar solution.

167

Thinking more broadly, the augmented Lagrangian approach is also attractive for
many other mixed problems such as those arising in incompressible hyperelasticity,
magnetohydrodynamics, or the modelling of liquid crystals. In all of these cases the
approximation of the Schur complement can be simplified significantly by adding a
singular term corresponding to the constraint to the top-left block. To obtain a fast
solver, one then needs to locally characterise the kernel of the constraint in order to
develop a robust and efficient multigrid scheme.

168

Bibliography

[AFW00] D. N. Arnold, R. S. Falk, and R. Winther. “Multigrid in H(div) and
H(curl)”. In: Numerische Mathematik 85.2 (2000), pp. 197–217. doi:
10.1007/pl00005386.

[AFW06] D. N. Arnold, R. S. Falk, and R. Winther. “Finite element exterior calculus,
homological techniques, and applications”. In: Acta Numerica 15 (2006),
pp. 1–155. doi: 10.1017/S0962492906210018.

[AFW97] D. N. Arnold, R. S. Falk, and R. Winther. “Preconditioning in H(div) and
applications”. In: Mathematics of Computation 66.219 (1997), pp. 957–984.
doi: 10.1090/S0025-5718-97-00826-0.

[AGL05] J. Ahrens, B. Geveci, and C. Law. “Paraview: an end-user tool for large
data visualization”. In: The visualization handbook 717 (2005). doi: 10.
1016/b978-012387582-2/50038-1.

[ALM18] N. Ahmed, A. Linke, and C. Merdon. “Towards pressure-robust mixed
methods for the incompressible Navier Stokes equations”. In: Computa-
tional Methods in Applied Mathematics 18.3 (2018), pp. 353–372. doi:
10.1515/cmam-2017-0047.

[Aln+14] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells.
“Unified Form Language: a domain-specific language for weak formulations
of partial differential equations”. In: ACM Transactions on Mathematical
Software 40.2 (2014), 9:1–9:37. doi: 10.1145/2566630.

[Ame+00] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. “MUMPS:
a general purpose distributed memory sparse solver”. In: International
Workshop on Applied Parallel Computing. Springer. 2000, pp. 121–130.
doi: 10.1007/3-540-70734-4_16.

[And+11] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund.
“Efficient topology optimization in MATLAB using 88 lines of code”. In:
Structural and Multidisciplinary Optimization 43.1 (2011), pp. 1–16. doi:
10.1007/s00158-010-0594-7.

[Arn+02] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. “Unified analysis
of discontinuous Galerkin methods for elliptic problems”. In: SIAM Jour-
nal on Numerical Analysis 39.5 (2002), pp. 1749–1779. doi: 10.1137/
S0036142901384162.

169

https://doi.org/10.1007/pl00005386
https://doi.org/10.1017/S0962492906210018
https://doi.org/10.1090/S0025-5718-97-00826-0
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1515/cmam-2017-0047
https://doi.org/10.1145/2566630
https://doi.org/10.1007/3-540-70734-4_16
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/S0036142901384162

[Att96] H. Attouch. “Viscosity solutions of minimization problems”. In: SIAM
Journal on Optimization 6.3 (1996), pp. 769–806. doi: {10 . 1137 /
S1052623493259616}.

[Bal+16] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L.
Dalcin, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes,
K. Rupp, B. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web
page. 2016. url: http://www.mcs.anl.gov/petsc.

[Bal+18] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley,
D. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan,
B. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Users Manual.
Tech. rep. ANL-95/11 - Revision 3.10. Argonne National Laboratory,
2018. url: http://www.mcs.anl.gov/petsc.

[Bal+97] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. “Efficient
management of parallelism in object oriented numerical software libraries”.
In: Modern Software Tools in Scientific Computing. Birkhäuser Press,
1997, 163–202. doi: 10.1007/978-1-4612-1986-6_8.

[BB04] R. Becker and M. Braack. “A two-level stabilization scheme for the Navier-
Stokes equations”. In: Numerical Mathematics and Advanced Applications.
Springer Berlin Heidelberg, 2004, pp. 123–130. doi: 10.1007/978-3-
642-18775-9_9.

[BB10] S. Börm and S. L. Borne. “H-LU factorization in preconditioners for
augmented Lagrangian and grad-div stabilized saddle point systems”.
In: International Journal for Numerical Methods in Fluids 68.1 (2010),
pp. 83–98. doi: 10.1002/fld.2495.

[BC03] B. Bourdin and A. Chambolle. “Design-dependent loads in topology opti-
mization”. In: ESAIM: Control, Optimisation and Calculus of Variations
9 (2003), pp. 19–48. doi: 10.1051/cocv:2002070.

[Beg05] H. Begehr. “Boundary value problems in complex analysis I”. In: Bol.
Asoc. Mat. Venezolana 12 (2005), pp. 65–85.

[Bel+97] J. A. Bello, E. Fernández-Cara, J. Lemoine, and J. Simon. “The differen-
tiability of the drag with respect to the variations of a Lipschitz domain
in a Navier–Stokes flow”. In: SIAM Journal on Control and Optimization
35.2 (1997), pp. 626–640. doi: 10.1137/S0363012994278213.

[Ben89] M. P. Bendsøe. “Optimal shape design as a material distribution problem”.
In: Structural Optimization 1.4 (1989), pp. 193–202. doi: 10.1007/
BF01650949.

[Ber10] M. Berggren. “A unified discrete–continuous sensitivity analysis method
for shape optimization”. In: Applied and Numerical Partial Differential
Equations. Vol. 15. 2010, pp. 25–39. doi: 10.1007/978-90-481-3239-
3_4.

170

https://doi.org/{10.1137/S1052623493 259616}
https://doi.org/{10.1137/S1052623493 259616}
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/978-3-642-18775-9_9
https://doi.org/10.1007/978-3-642-18775-9_9
https://doi.org/10.1002/fld.2495
https://doi.org/10.1051/cocv:2002070
https://doi.org/10.1137/S0363012994278213
https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/978-90-481-3239-3_4
https://doi.org/10.1007/978-90-481-3239-3_4

[BFH06] E. Burman, M. A. Fernández, and P. Hansbo. “Continuous interior penalty
finite element method for Oseen’s equations”. In: SIAM Journal on Nu-
merical Analysis 44.3 (2006), pp. 1248–1274. doi: 10.1137/040617686.

[BGL05] M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle
point problems”. In: Acta Numerica 14 (2005), pp. 1–137. doi: 10.1017/
S0962492904-000212.

[BH04] E. Burman and P. Hansbo. “Edge stabilization for Galerkin approximations
of convection–diffusion–reaction problems”. In: Computer Methods in
Applied Mechanics and Engineering. Recent Advances in Stabilized and
Multiscale Finite Element Methods 193.15 (2004), pp. 1437–1453. doi:
10.1016/j.cma.2003.12.032.

[BH06] E. Burman and P. Hansbo. “Edge stabilization for the generalized Stokes
problem: A continuous interior penalty method”. In: Computer Methods
in Applied Mechanics and Engineering 195.19 (2006), pp. 2393–2410. doi:
10.1016/j.cma.2005.05.009.

[BH82] A. N. Brooks and T. J. R. Hughes. “Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis
on the incompressible Navier–Stokes equations”. In: Computer Methods
in Applied Mechanics and Engineering 32.1-3 (1982), pp. 199–259. doi:
10.1016/0045-7825(82)90071-8.

[BL08] E. Burman and A. Linke. “Stabilized finite element schemes for incompress-
ible flow using Scott–Vogelius elements”. In: Applied Numerical Mathemat-
ics 58.11 (2008), pp. 1704–1719. doi: 10.1016/j.apnum.2007.11.001.

[BL11] A. Brandt and O. E. Livne. Multigrid techniques: 1984 guide with appli-
cations to fluid dynamics. Rev. ed. Philadelphia: Society for Industrial
and Applied Mathematics, 2011. doi: 10.1137/1.9781611970753.

[BL97] D. Boffi and C. Lovadina. “Analysis of new augmented Lagrangian for-
mulations for mixed finite element schemes”. In: Numerische Mathematik
75.4 (1997), pp. 405–419. doi: 10.1007/s002110050246.

[BO06] M. Benzi and M. A. Olshanskii. “An augmented Lagrangian-based ap-
proach to the Oseen problem”. In: SIAM Journal on Scientific Computing
28.6 (2006), pp. 2095–2113. doi: 10.1137/050646421.

[BO11] M. Benzi and M. A. Olshanskii. “Field-of-values convergence analysis of
augmented Lagrangian preconditioners for the linearized Navier–Stokes
problem”. In: SIAM Journal of Numerical Analysis 49.2 (2011), pp. 770–
788. doi: 10.1137/100806485.

[Bof+08] D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, and M.
Fortin.Mixed Finite Elements, Compatibility Conditions, and Applications.
Vol. 1939. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-78319-0.

171

https://doi.org/10.1137/040617686
https://doi.org/10.1017/S0962492904-000212
https://doi.org/10.1017/S0962492904-000212
https://doi.org/10.1016/j.cma.2003.12.032
https://doi.org/10.1016/j.cma.2005.05.009
https://doi.org/10.1016/0045-7825(82)90071-8
https://doi.org/10.1016/j.apnum.2007.11.001
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1007/s002110050246
https://doi.org/10.1137/050646421
https://doi.org/10.1137/100806485
https://doi.org/10.1007/978-3-540-78319-0

[BOW11] M. Benzi, M. A. Olshanskii, and Z. Wang. “Modified augmented La-
grangian preconditioners for the incompressible Navier-Stokes equations”.
In: International Journal for Numerical Methods in Fluids 66.4 (2011),
pp. 486–508. doi: 10.1002/fld.2267.

[BR85a] C. Bernardi and G. Raugel. “A conforming finite element method for the
time-dependent Navier–Stokes equations”. In: SIAM Journal on Numerical
Analysis 22.3 (1985), pp. 455–473. doi: 10.1137/0722027.

[BR85b] C. Bernardi and G. Raugel. “Analysis of some finite elements for the
Stokes problem”. In: Mathematics of Computation 44.169 (1985), pp. 71–
79. doi: 10.2307/2007793.

[Bra+09] C. Brandenburg, F. Lindemann, M. Ulbrich, and S. Ulbrich. “A continuous
adjoint approach to shape optimization for Navier Stokes flow”. In: Optimal
control of coupled systems of partial differential equations. Springer, 2009,
pp. 35–56. doi: 10.1007/978-3-7643-8923-9_2.

[Bra+12] C. Brandenburg, F. Lindemann, M. Ulbrich, and S. Ulbrich. “Advanced
numerical methods for PDE constrained optimization with application
to optimal design in Navier Stokes flow”. In: Constrained Optimization
and Optimal Control for Partial Differential Equations. Springer, 2012,
pp. 257–275. doi: 10.1007/978-3-0348-0133-1_14.

[Bra82] A. Brandt. “Guide to multigrid development”. In: Multigrid Methods.
Vol. 960. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 220–
312. doi: 10.1007/BFb0069930.

[Bre11] S. C. Brenner. “C0 interior penalty methods”. In: Frontiers in Numerical
Analysis - Durham 2010. Vol. 85. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 79–147. doi: 10.1007/978-3-642-23914-4_2.

[Bro81] P. Brown. “A noninteractive method for the automatic generation of
finite element meshes using the Schwarz-Christoffel transformation”. In:
Computer Methods in Applied Mechanics and Engineering 25.1 (1981),
pp. 101–126. doi: 10.1016/0045-7825(81)90071-2.

[Bru+15] P. R. Brune, M. G. Knepley, B. F. Smith, and X. Tu. “Composing scalable
nonlinear algebraic solvers”. In: SIAM Review 57.4 (2015), pp. 535–565.
doi: 10.1137/130936725.

[BS05] S. C. Brenner and L.-Y. Sung. “C0 interior penalty methods for fourth
order elliptic boundary value problems on polygonal domains”. In: Journal
of Scientific Computing 22-23.1-3 (2005), pp. 83–118. doi: 10.1007/
s10915-004-4135-7.

[BS08] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. Third edition. Vol. 15. Texts in Applied Mathematics. Springer-
Verlag New York, 2008. doi: 10.1007/978-0-387-75934-0.

172

https://doi.org/10.1002/fld.2267
https://doi.org/10.1137/0722027
https://doi.org/10.2307/2007793
https://doi.org/10.1007/978-3-7643-8923-9_2
https://doi.org/10.1007/978-3-0348-0133-1_14
https://doi.org/10.1007/BFb0069930
https://doi.org/10.1007/978-3-642-23914-4_2
https://doi.org/10.1016/0045-7825(81)90071-2
https://doi.org/10.1137/130936725
https://doi.org/10.1007/s10915-004-4135-7
https://doi.org/10.1007/s10915-004-4135-7
https://doi.org/10.1007/978-0-387-75934-0

[BS97] D. Braess and R. Sarazin. “An efficient smoother for the Stokes problem”.
In: Applied Numerical Mathematics 23.1 (1997), pp. 3–19. doi: 10.1016/
S0168-9274(96)00059-1.

[CCS05] J. Carrero, B. Cockburn, and D. Schötzau. “Hybridized globally divergence-
free LDG methods. Part I: the Stokes problem”. In: Mathematics of
Computation 75.254 (2005), pp. 533–564. doi: 10.1090/S0025-5718-05-
01804-1.

[Cho67] A. J. Chorin. “A numerical method for solving incompressible viscous flow
problems”. In: Journal of Computational Physics 2.1 (1967), pp. 12–26.
doi: 10.1016/0021-9991(67)90037-x.

[Cia02] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Vol. 40.
Society for Industrial and Applied Mathematics, 2002. doi: 10.1137/1.
9780898719208.

[CKS04] B. Cockburn, G. Kanschat, and D. Schötzau. “A locally conservative LDG
method for the incompressible Navier-Stokes equations”. In: Mathematics
of Computation 74.251 (2004), pp. 1067–1096. doi: 10.1090/S0025-
5718-04-01718-1.

[CKS06] B. Cockburn, G. Kanschat, and D. Schötzau. “A note on discontinuous
Galerkin divergence-free solutions of the Navier-Stokes equations”. In:
Journal of Scientific Computing 31.1-2 (2006), pp. 61–73. doi: 10.1007/
s10915-006-9107-7.

[CM10] M. Costabel and A. McIntosh. “On Bogovskĭı and regularised Poincaré
integral operators for de Rham complexes on Lipschitz domains”. In:
Mathematische Zeitschrift 265.2 (2010), pp. 297–320. doi: 10.1007/
s00209-009-0517-8.

[Con95] J. B. Conway. Functions of One Complex Variable. 2nd ed. 11. New York:
Springer-Verlag, 1995. doi: 10.1007/978-1-4612-6313-5.

[DD76] J. Douglas and T. Dupont. “Interior penalty procedures for elliptic and
parabolic Galerkin methods”. In: Computing Methods in Applied Sciences.
Vol. 58. Springer Berlin Heidelberg, 1976, pp. 207–216. doi: 10.1007/
BFb0120591.

[Dwi09] R. P. Dwight. “Robust mesh deformation using the linear elasticity equa-
tions”. In: Computational Fluid Dynamics 2006. Springer Berlin Heidel-
berg, 2009, pp. 401–406. doi: 10.1007/978-3-540-92779-2_62.

[DZ11] M. C. Delfour and J.-P. Zolésio. Shapes and Geometries: Metrics, Analysis,
Differential Calculus, and Optimization. Society for Industrial and Applied
Mathematics, 2011. doi: 10.1137/1.9780898719826.

[EE01] M. Eiermann and O. G. Ernst. “Geometric aspects of the theory of
Krylov subspace methods”. In: Acta Numerica 10 (2001). doi: 10.1017/
S096249290100-0046.

173

https://doi.org/10.1016/S0168-9274(96)00059-1
https://doi.org/10.1016/S0168-9274(96)00059-1
https://doi.org/10.1090/S0025-5718-05-01804-1
https://doi.org/10.1090/S0025-5718-05-01804-1
https://doi.org/10.1016/0021-9991(67)90037-x
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1090/S0025-5718-04-01718-1
https://doi.org/10.1090/S0025-5718-04-01718-1
https://doi.org/10.1007/s10915-006-9107-7
https://doi.org/10.1007/s10915-006-9107-7
https://doi.org/10.1007/s00209-009-0517-8
https://doi.org/10.1007/s00209-009-0517-8
https://doi.org/10.1007/978-1-4612-6313-5
https://doi.org/10.1007/BFb0120591
https://doi.org/10.1007/BFb0120591
https://doi.org/10.1007/978-3-540-92779-2_62
https://doi.org/10.1137/1.9780898719826
https://doi.org/10.1017/S096249290100-0046
https://doi.org/10.1017/S096249290100-0046

[EG04] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements.
Vol. 159. Applied Mathematical Sciences. New York, NY: Springer New
York, 2004. doi: 10.1007/978-1-4757-4355-5.

[EG15] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of
Functions. CRC Press, 2015. doi: 10.1201/b18333.

[EH18] T. Etling and R. Herzog. “Optimum experimental design by shape opti-
mization of specimens in linear elasticity”. In: SIAM Journal on Applied
Mathematics 78.3 (2018), pp. 1553–1576. doi: 10.1137/17M1147743.

[Elm+06] H. C. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro.
“Block preconditioners based on approximate commutators”. In: SIAM
Journal on Scientific Computing 27.5 (2006), pp. 1651–1668. doi: 10.
1137/040608817.

[ELW03] H. C. Elman, D. Loghin, and A. J. Wathen. “Preconditioning techniques
for Newton’s method for the incompressible Navier-Stokes equations”. In:
BIT Numerical Mathematics 43.5 (2003), pp. 961–974. doi: 10.1023/b:
bitn.0000014565.86918.df.

[ERS14] H. C. Elman, A. Ramage, and D. J. Silvester. “IFISS: a computational
laboratory for investigating incompressible flow problems”. In: SIAM
Review 56.2 (2014), pp. 261–273. doi: 10.1137/120891393.

[ES18] M. Eigel and K. Sturm. “Reproducing kernel Hilbert spaces and variable
metric algorithms in PDE-constrained shape optimization”. In: Optimiza-
tion Methods and Software 33.2 (2018), pp. 268–296. doi: 10.1080/
10556788.2017.1314471.

[ES96] H. C. Elman and D. Silvester. “Fast nonsymmetric iterations and precon-
ditioning for Navier-Stokes equations”. In: SIAM Journal on Scientific
Computing 17.1 (1996), pp. 33–46. doi: 10.1137/0917004.

[ESW14] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast
Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Ox-
ford University Press, 2014. doi: 10.1093/acprof:oso/9780199678792.
001.0001.

[Etl+18] T. Etling, R. Herzog, E. Loayza, and G. Wachsmuth. “First and second
order shape optimization based on restricted mesh deformations”. In:
arXiv:1810.10313 (2018).

[EW92] R. E. Ewing and J. Wang. “Analysis of the Schwarz algorithm for
mixed finite elements methods”. In: ESAIM: Mathematical Modelling
and Numerical Analysis 26.6 (1992), pp. 739–756. doi: 10.1051/m2an/
1992260607391.

[Far+13] P. E. Farrell, D. A. Ham, S. W. Funke, and M. E. Rognes. “Automated
derivation of the adjoint of high-level transient finite element programs”.
In: SIAM Journal on Scientific Computing 35.4 (2013), pp. C369–C393.
doi: 10.1137/120873558.

174

https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1201/b18333
https://doi.org/10.1137/17M1147743
https://doi.org/10.1137/040608817
https://doi.org/10.1137/040608817
https://doi.org/10.1023/b:bitn.0000014565.86918.df
https://doi.org/10.1023/b:bitn.0000014565.86918.df
https://doi.org/10.1137/120891393
https://doi.org/10.1080/10556788.2017.1314471
https://doi.org/10.1080/10556788.2017.1314471
https://doi.org/10.1137/0917004
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1051/m2an/1992260607391
https://doi.org/10.1051/m2an/1992260607391
https://doi.org/10.1137/120873558

[FG83] M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications
to the Numerical Solution of Boundary-Value Problems. Vol. 15. Studies
in Mathematics and Its Applications. Elsevier Science Ltd, 1983. doi:
10.1002/zamm.19850651211.

[FGN18] G. Fu, J. Guzman, and M. Neilan. “Exact smooth piecewise polynomial
sequences on Alfeld splits”. In: arXiv:1807.05883 [math] (2018). arXiv:
1807.05883.

[Fir19] Firedrake-Zenodo. Software used in ’Shape optimisation examples for
’Shape Optimisation and Robust Solvers for Incompressible Flow”. 2019.
doi: 10.5281/zenodo.3369183. url: https://zenodo.org/record/
3369183.

[FMW19] P. E. Farrell, L. Mitchell, and F. Wechsung. “An augmented Lagrangian
preconditioner for the 3D stationary incompressible Navier-Stokes equa-
tions at high Reynolds number”. In: SIAM Journal on Scientific Comput-
ing (2019). accepted.

[For77] M. Fortin. “An analysis of the convergence of mixed finite element meth-
ods”. In: RAIRO. Analyse numérique 11.4 (1977), pp. 341–354. doi:
10.1051/m2an/1977110403411.

[FP01] L. Formaggia and S. Perotto. “New anisotropic a priori error estimates”.
In: Numerische Mathematik 89.4 (2001), pp. 641–667. doi: 10.1007/
s002110100273.

[FY02] R. D. Falgout and U. M. Yang. “Hypre: A library of high performance
preconditioners”. In: Computational Science — ICCS 2002. Vol. 2331.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 632–641. doi:
10.1007/3-540-47789-6_66.

[Gam01] T. W. Gamelin. Complex Analysis. Undergraduate Texts in Mathematics.
New York, NY: Springer New York, 2001. doi: 10.1007/978-0-387-
21607-2.

[Gar+16] H. Garcke, C. Hecht, M. Hinze, C. Kahle, and K. F. Lam. “Shape opti-
mization for surface functionals in Navier-Stokes flow using a phase field
approach”. In: Interfaces and Free Boundaries 18.2 (2016), pp. 219–261.
issn: 1463-9963. doi: 10.4171/IFB/363.

[Gee+06] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala. ML
5.0 smoothed aggregation user’s guide. Tech. rep. SAND2006-2649, Sandia
National Laboratories, 2006.

[Gel+05] T. Gelhard, G. Lube, M. A. Olshanskii, and J.-H. Starcke. “Stabilized
finite element schemes with LBB-stable elements for incompressible flows”.
In: Journal of Computational and Applied Mathematics 177.2 (2005),
pp. 243–267. doi: 10.1016/j.cam.2004.09.017.

175

https://doi.org/10.1002/zamm.19850651211
https://doi.org/10.5281/zenodo.3369183
https://zenodo.org/record/3369183
https://zenodo.org/record/3369183
https://doi.org/10.1051/m2an/1977110403411
https://doi.org/10.1007/s002110100273
https://doi.org/10.1007/s002110100273
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/978-0-387-21607-2
https://doi.org/10.1007/978-0-387-21607-2
https://doi.org/10.4171/IFB/363
https://doi.org/10.1016/j.cam.2004.09.017

[GGV03] C. Greif, G. H. Golub, and J. M. Varah. “Augmented lagrangian techniques
for solving saddle point linear systems”. In: SIAM Journal on Matrix
Analysis and Applications 27 (2003), pp. 779–792.

[GHS14] A. Günnel, R. Herzog, and E. Sachs. “A note on preconditioners and
scalar products in Krylov subspace methods for self-adjoint problems in
Hilbert space”. In: Electron. Trans. Numer. Anal. 41 (2014), pp. 13–20.

[GLN19] J. Guzman, A. Lischke, and M. Neilan. “Exact sequences on Powell-Sabin
splits”. In: arXiv:1904.05466 (2019).

[GM78] J. D. Gray and S. A. Morris. “When is a function that satisfies the Cauchy-
Riemann equations analytic?” In: The American Mathematical Monthly
85.4 (1978), p. 246. doi: 10.2307/2321164.

[GPS96] A. Greenbaum, V. Pták, and Z. Strakoš. “Any nonincreasing convergence
curve is possible for GMRES”. In: SIAM Journal on Matrix Analysis and
Applications 17.3 (1996), pp. 465–469. doi: 10.1137/S0895479894275030.

[GR09] C. Geuzaine and J.-F. Remacle. “Gmsh: a 3-D finite element mesh gener-
ator with built-in pre- and post-processing facilities”. In: International
Journal for Numerical Methods in Engineering 79.11 (2009), pp. 1309–
1331. doi: 10.1002/nme.2579.

[GR86] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes
Equations: Theory and Algorithms. Vol. 5. Springer Series in Computa-
tional Mathematics. Springer, 1986. doi: 10.1002/zamm.19870671119.

[Gri11] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Society for Indus-
trial and Applied Mathematics, 2011. doi: 10.1137/1.9781611972030.

[GS03] V. Girault and L. R. Scott. “A quasi-local interpolation operator preserving
the discrete divergence”. In: Calcolo 40.1 (2003), pp. 1–19. doi: 10.1007/
s100920300000.

[Hag89] W. W. Hager. “Updating the inverse of a matrix”. In: SIAM Review 31.2
(1989), pp. 221–239. doi: 10.1137/1031049.

[Ham+19] D. A. Ham, L. Mitchell, A. Paganini, and F. Wechsung. “Automated
shape differentiation in the Unified Form Language”. In: Structural and
Multidisciplinary Optimization (2019). accepted.

[HBH10] S. Hamilton, M. Benzi, and E. Haber. “New multigrid smoothers for the
Oseen problem”. In: Numerical Linear Algebra with Applications (2010),
pp. 557–576. doi: 10.1002/nla.707.

[Hel03] B. T. Helenbrook. “Mesh deformation using the biharmonic operator”. In:
International Journal for Numerical Methods in Engineering 56.7 (2003),
pp. 1007–1021. doi: 10.1002/nme.595.

[Hic+13] J. E. Hicken, J. Li, O. Sahni, and A. A. Oberai. “Adjoint consistency
analysis of residual-based variational multiscale methods”. In: Journal of
Computational Physics 255 (2013), pp. 396–406. doi: 10.1016/j.jcp.
2013.07.039.

176

https://doi.org/10.2307/2321164
https://doi.org/10.1137/S0895479894275030
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/zamm.19870671119
https://doi.org/10.1137/1.9781611972030
https://doi.org/10.1007/s100920300000
https://doi.org/10.1007/s100920300000
https://doi.org/10.1137/1031049
https://doi.org/10.1002/nla.707
https://doi.org/10.1002/nme.595
https://doi.org/10.1016/j.jcp.2013.07.039
https://doi.org/10.1016/j.jcp.2013.07.039

[Hin+09] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE
Constraints. Springer, 2009. doi: 10.1007/978-1-4020-8839-1.

[HKT08] P. Hajlasz, P. Koskela, and H. Tuominen. “Sobolev embeddings, extensions
and measure density condition”. In: Journal of Functional Analysis 254.5
(2008), pp. 1217–1234. doi: 10.1016/j.jfa.2007.11.020.

[HL19] R. Hohmann and C. Leithäuser. “Shape optimization of a polymer dis-
tributor using an Eulerian residence time model”. In: SIAM Journal on
Scientific Computing 41.4 (2019), B625–B648. doi: 10.1137/18M1225847.

[HMT07] S. Hofmann, M. Mitrea, and M. Taylor. “Geometric and transformational
properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other
classes of finite perimeter domains”. In: Journal of Geometric Analysis
17.4 (2007), pp. 593–647. doi: 10.1007/BF02937431.

[HNC11] X. He, M. Neytcheva, and S. S. Capizzano. “On an augmented Lagrangian-
based preconditioning of Oseen type problems”. In: BIT Numerical Math-
ematics 51.4 (2011), pp. 865–888. doi: 10.1007/s10543-011-0334-4.

[HP15] R. Hiptmair and A. Paganini. “Shape optimization by pursuing diffeomor-
phisms”. In: Computational Methods in Applied Mathematics 15.3 (2015).
doi: 10.1515/cmam-2015-0013.

[HPS15] R. Hiptmair, A. Paganini, and S. Sargheini. “Comparison of approximate
shape gradients”. In: BIT 55.2 (2015), pp. 459–485. doi: 10.1007/s10543-
014-0515-z.

[HR12] T. Heister and G. Rapin. “Efficient augmented Lagrangian-type precondi-
tioning for the Oseen problem using grad-div stabilization”. In: Interna-
tional Journal for Numerical Methods in Fluids 71.1 (2012), pp. 118–134.
doi: 10.1002/fld.3654.

[HS15] R. Herzog and E. Sachs. “Superlinear convergence of Krylov subspace
methods for self-adjoint problems in Hilbert space”. In: SIAM Journal on
Numerical Analysis 53.3 (2015), pp. 1304–1324. doi: 10.1137/140973050.

[HT74] P. Hood and C. Taylor. “Navier-Stokes equations using mixed interpo-
lation”. In: Finite element methods in flow problems (1974), pp. 121–
132.

[HT97] R. Hiptmair and A. Toselli. “Overlapping Schwarz methods for vector
valued elliptic problems in three dimensions”. In: IMA Volumes in Mathe-
matics and its Applications. 1997. doi: 10.1007/978-1-4612-1176-1_8.

[HVK18] X. He, C. Vuik, and C. M. Klaij. “Combining the augmented Lagrangian
preconditioner with the SIMPLE Schur complement approximation”. In:
SIAM Journal on Scientific Computing 40.3 (2018), A1362–A1385. doi:
10.1137/17M1144775.

[HX07] R. Hiptmair and J. Xu. “Nodal auxiliary space preconditioning in H(curl)
and H(div) spaces”. In: SIAM Journal on Numerical Analysis 45.6 (2007),
pp. 2483–2509. doi: 10.1137/060660588.

177

https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1016/j.jfa.2007.11.020
https://doi.org/10.1137/18M1225847
https://doi.org/10.1007/BF02937431
https://doi.org/10.1007/s10543-011-0334-4
https://doi.org/10.1515/cmam-2015-0013
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1002/fld.3654
https://doi.org/10.1137/140973050
https://doi.org/10.1007/978-1-4612-1176-1_8
https://doi.org/10.1137/17M1144775
https://doi.org/10.1137/060660588

[IKO11] T. Iwaniec, L. V. Kovalev, and J. Onninen. “The Nitsche conjecture”. In:
Journal of the American Mathematical Society 24.2 (2011), pp. 345–345.
doi: 10.1090/S0894-0347-2010-00685-6.

[IM01] T. Iwaniec and G. Martin. Geometric Function Theory and Non-linear
Analysis. Oxford mathematical monographs. Oxford ; New York: Oxford
University Press, 2001. doi: 10.1112/S0024609302241569.

[Ips01] I. C. F. Ipsen. “A note on preconditioning nonsymmetric matrices”. In:
SIAM Journal on Scientific Computing 23.3 (2001), pp. 1050–1051. doi:
10.1137/S1064827500377435.

[ISW18] J. A. Iglesias, K. Sturm, and F. Wechsung. “Two-dimensional shape opti-
mization with nearly conformal transformations”. In: SIAM Journal on Sci-
entific Computing 40.6 (2018), A3807–A3830. doi: 10.1137/17M1152711.

[Ive82] D. C. Ives. “Conformal grid generation”. In: Applied Mathematics and
Computation 10-11 (1982), pp. 107–135. doi: 10.1016/0096-3003(82)
90189-8.

[Joh+17] V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz. “On the diver-
gence constraint in mixed finite element methods for incompressible flows”.
In: SIAM Review 59.3 (2017), pp. 492–544. doi: 10.1137/15m1047696.

[Kar82] O. Karakashian. “On a Galerkin–Lagrange multiplier method for the
stationary Navier–Stokes equations”. In: SIAM Journal on Numerical
Analysis 19.5 (1982), pp. 909–923. doi: 10.1137/0719066.

[Keu15] M. M. Keuthen. “Second Order Shape Optimization with Geometric
Constraints”. PhD thesis. Technische Universität München, 2015.

[KK05] M. G. Knepley and D. A. Karpeev. Flexible representation of compu-
tational meshes. Tech. rep. ANL/MCS-P1295-1005. Argonne National
Laboratory, 2005.

[KK09] M. G. Knepley and D. A. Karpeev. “Mesh algorithms for PDE with Sieve
I: mesh distribution”. In: Scientific Programming 17.3 (2009), pp. 215–230.
doi: 10.1155/2009/948613.

[KLW02] D. Kay, D. Loghin, and A. Wathen. “A preconditioner for the steady-state
Navier–Stokes equations”. In: SIAM Journal on Scientific Computing 24.1
(2002), pp. 237–256. doi: 10.1137/S106482759935808X.

[KM18] R. C. Kirby and L. Mitchell. “Solver composition across the PDE/linear
algebra barrier”. In: SIAM Journal on Scientific Computing 40.1 (2018),
pp. C76–C98. doi: 10.1137/17M1133208.

[Knu07] P. Knupp. “Remarks on mesh quality, in ’45th AIAA Aerospace Sciences
Meeting and Exhibit’”. In: Sandia National Laboratories, New Mexico,
USA (2007).

178

https://doi.org/10.1090/S0894-0347-2010-00685-6
https://doi.org/10.1112/S0024609302241569
https://doi.org/10.1137/S1064827500377435
https://doi.org/10.1137/17M1152711
https://doi.org/10.1016/0096-3003(82)90189-8
https://doi.org/10.1016/0096-3003(82)90189-8
https://doi.org/10.1137/15m1047696
https://doi.org/10.1137/0719066
https://doi.org/10.1155/2009/948613
https://doi.org/10.1137/S106482759935808X
https://doi.org/10.1137/17M1133208

[KO88] V. A. Kondrat’ev and O. A. Oleinik. “Boundary-value problems for the
system of elasticity theory in unbounded domains. Korn’s inequalities”. In:
Russian Mathematical Surveys 43.5 (1988), pp. 65–119. doi: 10.1070/
RM1988v043n-05ABEH001945.

[Kob95] G. M. Kobel’kov. “On solving the Navier–Stokes equations at large
Reynolds numbers”. In: Russian Journal of Numerical Analysis and Math-
ematical Modelling 10.1 (1995). doi: 10.1515/rnam.1995.10.1.33.

[KU14] M. Keuthen and M. Ulbrich. “Moreau-Yosida regularisation in shape
optimization with geometric constraints”. In: Computational Optimization
and Applications 62.1 (2014), pp. 181–216. doi: 10.1007/s10589-014-
9661-0.

[LD03] X. S. Li and J. W. Demmel. “SuperLU_DIST: a scalable distributed-
memory sparse direct solver for unsymmetric linear systems”. In: ACM
Transactions on Mathematical Software 29.2 (2003), pp. 110–140. doi:
10.1145/779359.779361.

[Lee+07] Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov. “Robust subspace correc-
tion methods for nearly singular systems”. In: Mathematical Models and
Methods in Applied Sciences 17.11 (2007), pp. 1937–1963. doi: 10.1142/
s0218202507002522.

[LMW12] A. Logg, K.-A. Mardal, and G. Wells. Automated solution of differential
equations by the finite element method: The FEniCS book. Vol. 84. Springer
Science & Business Media, 2012. doi: 10.1007/978-3-642-23099-8.

[LR19] A. Linke and L. G. Rebholz. “Pressure-induced locking in mixed methods
for time-dependent (Navier–)Stokes equations”. In: Journal of Computa-
tional Physics 388 (2019), pp. 350–356. doi: 10.1016/j.jcp.2019.03.
010.

[LRL08] G. Lube, G. Rapin, and J. Löwe. “Local projection stabilization of finite
element methods for incompressible flows”. In: Numerical Mathematics
and Advanced Applications. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 481–488. doi: 10.1007/978-3-540-69777-0_57.

[LW04] D. Loghin and A. J. Wathen. “Analysis of preconditioners for saddle-
point problems”. In: SIAM Journal on Scientific Computing 25.6 (2004),
pp. 2029–2049. doi: 10.1137/S1064827502418203.

[LWC09] Y.-J. Lee, J. Wu, and J. Chen. “Robust multigrid method for the planar
linear elasticity problems”. In: Numerische Mathematik 113.3 (2009),
pp. 473–496. doi: 10.1007/s00211-009-0232-8.

[May+16] D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith. “Extreme-
scale multigrid components within PETSc”. In: Proceedings of the Platform
for Advanced Scientific Computing Conference. 2016. doi: 10.1145/
2929908.2929913.

179

https://doi.org/10.1070/RM1988v043n-05ABEH001945
https://doi.org/10.1070/RM1988v043n-05ABEH001945
https://doi.org/10.1515/rnam.1995.10.1.33
https://doi.org/10.1007/s10589-014-9661-0
https://doi.org/10.1007/s10589-014-9661-0
https://doi.org/10.1145/779359.779361
https://doi.org/10.1142/s0218202507002522
https://doi.org/10.1142/s0218202507002522
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1016/j.jcp.2019.03.010
https://doi.org/10.1016/j.jcp.2019.03.010
https://doi.org/10.1007/978-3-540-69777-0_57
https://doi.org/10.1137/S1064827502418203
https://doi.org/10.1007/s00211-009-0232-8
https://doi.org/10.1145/2929908.2929913
https://doi.org/10.1145/2929908.2929913

[MFD19] S. Mitusch, S. Funke, and J. Dokken. “Dolfin-adjoint 2018.1: automated
adjoints for FEniCS and Firedrake”. In: Journal of Open Source Software
4.38 (2019), p. 1292. doi: 10.21105/joss.01292.

[MGW00] M. F. Murphy, G. H. Golub, and A. J. Wathen. “A note on preconditioning
for indefinite linear systems”. In: SIAM Journal on Scientific Computing
21.6 (2000), pp. 1969–1972. doi: 10.1137/S1064827599355153.

[Mic72] A. M. Micheletti. “Metrica per familglie di domini limitati a proprietá
generiche degli autovalori”. In: Annali della Scuola Normale Superiore di
Pisa 26.3 (1972), pp. 683–694.

[MM16] L. Mitchell and E. H. Müller. “High level implementation of geometric
multigrid solvers for finite element problems: Applications in atmospheric
modelling”. In: Journal of Computational Physics 327 (2016), pp. 1–18.
doi: 10.1016/j.jcp.2016.09.037.

[Mor+12] P. Morin, R. H. Nochetto, M. S. Pauletti, and M. Verani. “Adaptive
finite element method for shape optimization”. In: ESAIM: Control, Op-
timisation and Calculus of Variations 18.4 (2012), pp. 1122–1149. doi:
10.1051/cocv/2011192.

[MS76] F. Murat and J. Simon. “Etude de problemes d’optimal design”. In:
Optimization Techniques Modeling and Optimization in the Service of Man
Part 2. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1976, pp. 54–62.

[MW11] K.-A. Mardal and R. Winther. “Preconditioning discretizations of sys-
tems of partial differential equations”. In: Numerical Linear Algebra with
Applications 18.1 (2011), pp. 1–40. doi: 10.1002/nla.716.

[Noc80] J. Nocedal. “Updating quasi-Newton matrices with limited storage”. In:
Mathematics of Computation 35.151 (1980), p. 773. doi: 10 . 2307 /
2006193.

[NP02] A. Novruzi and M. Pierre. “Structure of shape derivatives”. In: Journal
of Evolution Equations 2.3 (2002), pp. 365–382. doi: 10.1007/s00028-
002-8093-y.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Berlin: Springer, 2006.
doi: 10.1007/978-0-387-40065-5.

[NW07] A. C. de Niet and F. W. Wubs. “Two preconditioners for saddle point
problems in fluid flows”. In: International Journal for Numerical Methods
in Fluids 54.4 (2007), pp. 355–377. doi: 10.1002/fld.1401.

[OB08] M. A. Olshanskii and M. Benzi. “An augmented Lagrangian approach
to linearized problems in hydrodynamic stability”. In: SIAM Journal
on Scientific Computing 30.3 (2008), pp. 1459–1473. doi: 10.1137/
070691851.

180

https://doi.org/10.21105/joss.01292
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1016/j.jcp.2016.09.037
https://doi.org/10.1051/cocv/2011192
https://doi.org/10.1002/nla.716
https://doi.org/10.2307/2006193
https://doi.org/10.2307/2006193
https://doi.org/10.1007/s00028-002-8093-y
https://doi.org/10.1007/s00028-002-8093-y
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1002/fld.1401
https://doi.org/10.1137/070691851
https://doi.org/10.1137/070691851

[OD09] T. A. Oliver and D. L. Darmofal. “Analysis of dual consistency for discon-
tinuous Galerkin discretizations of source terms”. In: SIAM Journal on
Numerical Analysis 47.5 (2009), pp. 3507–3525. doi: 10.1137/080721467.

[Ols02] M. A. Olshanskii. “A low order Galerkin finite element method for the
Navier-Stokes equations of steady incompressible flow: a stabilization
issue and iterative methods”. In: Computer Methods in Applied Mechanics
and Engineering 191.47-48 (2002), pp. 5515–5536. doi: 10.1016/S0045-
7825(02)00513-3.

[OR03] M. A. Olshanskii and A. Reusken. “Grad-div stablilization for Stokes
equations”. In: Mathematics of Computation 73.248 (2003), pp. 1699–
1719. doi: 10.1090/s0025-5718-03-01629-6.

[OR04] M. A. Olshanskii and A. Reusken. “Convergence analysis of a multigrid
method for a convection-dominated model problem”. In: SIAM Jour-
nal on Numerical Analysis 42.3 (2004), pp. 1261–1291. doi: 10.1137/
s0036142902418679.

[OT14] M. A. Olshanskii and E. E. Tyrtyshnikov. Iterative Methods for Linear
Systems: Theory and Applications. Applied mathematics. Philadelphia:
Society for Industrial and Applied Mathematics, 2014. doi: 10.1137/1.
9781611973464.

[Pat80] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Series in com-
putational methods in mechanics and thermal sciences. New York: Hemi-
sphere Publ. Co, 1980. doi: 10.1201/9781482234213.

[PEA15] F. Palacios, T. D. Economon, and J. J. Alonso. “Large-scale aircraft
design using SU2”. In: 53rd AIAA Aerospace Sciences Meeting. Kissimmee,
Florida: American Institute of Aeronautics and Astronautics, 2015. doi:
10.2514/6.2015-1946.

[PG97] N. A. Pierce and M. B. Giles. “Preconditioned multigrid methods for com-
pressible flow calculations on stretched meshes”. In: Journal of Computa-
tional Physics 136.2 (1997), pp. 425–445. doi: 10.1006/jcph.1997.5772.

[Pir74] O. Pironneau. “On optimum design in fluid mechanics”. In: Journal of Fluid
Mechanics 64.1 (1974), pp. 97–110. doi: 10.1017/S0022112074002023.

[PWF18] A. Paganini, F. Wechsung, and P. E. Farrell. “Higher-order moving mesh
methods for PDE-constrained shape optimization”. In: SIAM Journal
on Scientific Computing 40.4 (2018), A2356–A2382. doi: 10 . 1137 /
17M1133956.

[Qin94] J. Qin. “On the Convergence of Some Low Order Mixed Finite Elements
for Incompressible Fluids”. PhD thesis. Pennsylvania State University,
1994.

[QV08] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differ-
ential Equations. Vol. 23. Springer Series in Computational Mathematics.
Springer, 2008. doi: 10.1007/978-3-540-85268-1.

181

https://doi.org/10.1137/080721467
https://doi.org/10.1016/S0045-7825(02)00513-3
https://doi.org/10.1016/S0045-7825(02)00513-3
https://doi.org/10.1090/s0025-5718-03-01629-6
https://doi.org/10.1137/s0036142902418679
https://doi.org/10.1137/s0036142902418679
https://doi.org/10.1137/1.9781611973464
https://doi.org/10.1137/1.9781611973464
https://doi.org/10.1201/9781482234213
https://doi.org/10.2514/6.2015-1946
https://doi.org/10.1006/jcph.1997.5772
https://doi.org/10.1017/S0022112074002023
https://doi.org/10.1137/17M1133956
https://doi.org/10.1137/17M1133956
https://doi.org/10.1007/978-3-540-85268-1

[Ram99] A. Ramage. “A multigrid preconditioner for stabilised discretisations of
advection-diffusion problems”. In: Journal of Computational and Applied
Mathematics 110.1 (1999), pp. 187–203. doi: 10.1016/s0377-0427(99)
00234-4.

[Rat+16] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.
Mcrae, G.-T. Bercea, G. R. Markall, P. H. J. Kelly, D. A. Ham, and P. H. J.
Kelly. “Firedrake: automating the finite element method by composing
abstractions”. In: ACM Transactions on Mathematical Software 43.24
(2016). doi: 10.1145/2998441.

[Riz81] A. Rizzi. “Computational mesh for transonic airfoils”. In: Numerical
Methods for the Computation of Inviscid Transonic Flows with Shock
Waves. Wiesbaden: Vieweg+Teubner Verlag, 1981, pp. 222–253. doi:
10.1007/978-3-663-14008-5_18.

[RK14] D. Ridzal and D. Kouri. Rapid Optimization Library. 2014. url: https:
//trilinos.org/packages/rol/.

[Rui+19] E. Ruiz-Gironés, A. Gargallo-Peiró, J. Sarrate, and X. Roca. “Auto-
matically imposing incremental boundary displacements for valid mesh
morphing and curving”. In: Computer-Aided Design 112 (2019), pp. 47–62.
doi: 10.1016/j.cad.2019.01.001.

[RVS08] M. ur Rehman, C. Vuik, and G. Segal. “A comparison of preconditioners
for incompressible Navier-Stokes solvers”. In: International Journal for
Numerical Methods in Fluids 57.12 (2008), pp. 1731–1751. doi: 10.1002/
fld.1684.

[Saa93] Y. Saad. “A flexible inner-outer preconditioned GMRES algorithm”. In:
SIAM Journal on Scientific Computing 14.2 (1993), pp. 461–469. doi:
10.1137/0914028.

[Sam04] J. Samareh. “Aerodynamic shape optimization based on free-form deforma-
tion”. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization
conference. 2004. doi: 10.2514/6.2004-4630.

[Sch10] S. Schmidt. “Efficient Large Scale Aerodynamic Design Based on Shape
Calculus”. PhD thesis. University of Trier, Germany, 2010.

[Sch14] S. Schmidt. “A two stage CVT / Eikonal convection mesh deformation
approach for large nodal deformations”. In: (2014). eprint: arXiv:1411.
7663 (cs.NA).

[Sch18] S. Schmidt. “Weak and strong form shape Hessian’s and their auto-
matic generation”. In: SIAM Journal on Scientific Computing 40.2 (2018),
pp. C210–C233. doi: 10.1137/16M1099972.

[Sch77] F. Schottky. “Über die conforme Abbildung mehrfach zusammenhängender
ebener Flächen”. In: Journal für die reine und angewandte Mathematik
83 (1877).

182

https://doi.org/10.1016/s0377-0427(99)00234-4
https://doi.org/10.1016/s0377-0427(99)00234-4
https://doi.org/10.1145/2998441
https://doi.org/10.1007/978-3-663-14008-5_18
https://trilinos.org/packages/rol/
https://trilinos.org/packages/rol/
https://doi.org/10.1016/j.cad.2019.01.001
https://doi.org/10.1002/fld.1684
https://doi.org/10.1002/fld.1684
https://doi.org/10.1137/0914028
https://doi.org/10.2514/6.2004-4630
arXiv:1411.7663
arXiv:1411.7663
https://doi.org/10.1137/16M1099972

[Sch98] J. Schöberl. “Robust multigrid preconditioning for parameter-dependent
problems I: the Stokes-type case”. In: Multigrid Methods V. Lecture Notes
in Computational Science and Engineering. Springer Berlin Heidelberg,
1998, pp. 260–275. doi: 10.1007/978-3-642-58734-4_15.

[Sch99a] J. Schöberl. “Multigrid methods for a parameter dependent problem in
primal variables”. In: Numerische Mathematik 84.1 (1999), pp. 97–119.
doi: 10.1007/s002110050465.

[Sch99b] J. Schöberl. “Robust Multigrid Methods for Parameter Dependent Prob-
lems”. PhD thesis. Linz, Austria: Johannes Kepler Universität Linz, 1999.

[SHJ91] F. Shakib, T. J. R. Hughes, and Z. Johan. “A new finite element for-
mulation for computational fluid dynamics: X. The compressible Euler
and Navier-Stokes equations”. In: Computer Methods in Applied Mechan-
ics and Engineering 89.1-3 (1991), pp. 141–219. doi: 10.1016/0045-
7825(91)90041-4.

[Sig01] O. Sigmund. “A 99 line topology optimization code written in MATLAB”.
In: Structural and Multidisciplinary Optimization 21.2 (2001), pp. 120–
127. doi: 10.1007/s001580050176.

[Sim80] J. Simon. “Differentiation with respect to the domain in boundary value
problems”. In: Numerical Functional Analysis and Optimization 2.7-8
(1980), pp. 649–687. doi: 10.1080/01630563.1980.10120631.

[SP98] O. Sigmund and J. Petersson. “Numerical instabilities in topology op-
timization: A survey on procedures dealing with checkerboards, mesh-
dependencies and local minima”. In: Structural and Multidisciplinary
Optimization 16.1 (1998), pp. 68–75. doi: 10.1007/BF01214002.

[SS16] V. Schulz and M. Siebenborn. “Computational comparison of surface
metrics for PDE constrained shape optimization”. In: Computational
Methods in Applied Mathematics 16.3 (2016), pp. 485–496. doi: 10.1515/
cmam-2016-0009.

[SSW18] S. Schmidt, M. Schütte, and A. Walther. “Efficient numerical solution of
geometric inverse problems involving Maxwell’s equations using shape
derivatives and automatic code generation”. In: SIAM Journal on Scientific
Computing 40.2 (2018), B405–B428. doi: 10.1137/16M110602X.

[Sta97] G. Starke. “Field-of-values analysis of preconditioned iterative methods
for nonsymmetric elliptic problems”. In: Numerische Mathematik 78.1
(1997), pp. 103–117. doi: 10.1007/s002110050306.

[STH89] T. Shih, C. Tan, and B. Hwang. “Effects of grid staggering on numerical
schemes”. In: International Journal for Numerical Methods in Fluids 9.2
(1989), pp. 193–212. doi: https://doi.org/10.1002/fld.1650090206.

[Stu16] K. Sturm. “Convergence of Newton’s method in shape optimisation via
approximate normal functions”. In: (2016). arXiv: 1608.02699.

183

https://doi.org/10.1007/978-3-642-58734-4_15
https://doi.org/10.1007/s002110050465
https://doi.org/10.1016/0045-7825(91)90041-4
https://doi.org/10.1016/0045-7825(91)90041-4
https://doi.org/10.1007/s001580050176
https://doi.org/10.1080/01630563.1980.10120631
https://doi.org/10.1007/BF01214002
https://doi.org/10.1515/cmam-2016-0009
https://doi.org/10.1515/cmam-2016-0009
https://doi.org/10.1137/16M110602X
https://doi.org/10.1007/s002110050306
https://doi.org/https://doi.org/10.1002/fld.1650090206
https://arxiv.org/abs/1608.02699

[SV85] L. R. Scott and M. Vogelius. “Norm estimates for a maximal right inverse
of the divergence operator in spaces of piecewise polynomials”. In: ESAIM:
Mathematical Modelling and Numerical Analysis 19.1 (1985), pp. 111–143.
doi: 10.1051/m2an/1985190101111.

[SW17] M. Siebenborn and K. Welker. “Algorithmic aspects of multigrid meth-
ods for optimization in shape spaces”. In: SIAM Journal on Scientific
Computing 39.6 (2017), B1156–B1177. doi: 10.1137/16M1104561.

[SW94] D. Silvester and A. J. Wathen. “Fast iterative solution of stabilised
Stokes systems. Part II: Using general block preconditioners”. In: SIAM
Journal on Numerical Analysis 31.5 (1994), pp. 1352–1367. doi: 10.1137/
0731070.

[SZ90] L. R. Scott and S. Zhang. “Finite element interpolation of nonsmooth
functions satisfying boundary conditions”. In: Mathematics of Compu-
tation 54.190 (1990), pp. 483–493. doi: 10.1090/S0025-5718-1990-
1011446-7.

[Tem68] R. Temam. “Une méthode d’approximation de la solution des équations
de Navier–Stokes”. In: Bulletin de la Société Mathématique de France 98.4
(1968), pp. 115–152. doi: 10.24033/bsmf.1662.

[Tur99] S. Turek. Efficient Solvers for Incompressible Flow Problems: an Algo-
rithmic and Computational Approach. Springer Berlin Heidelberg, 1999.
doi: 10.1007/978-3-642-58393-3.

[Van86] S. P. Vanka. “Block-implicit multigrid solution of Navier-Stokes equations
in primitive variables”. In: Journal of Computational Physics 65.1 (1986),
pp. 138–158. doi: 10.1016/0021-9991(86)90008-2.

[VW92] P. S. Vassilevski and J. Wang. “Multilevel iterative methods for mixed finite
element discretizations of elliptic problems”. In: Numerische Mathematik
63.1 (1992), pp. 503–520. doi: 10.1007/BF01385872.

[Wat15] A. J. Wathen. “Preconditioning”. In: Acta Numerica 24 (2015), pp. 329–
376. doi: 10.1017/S0962492915000021.

[WE06] C.-T. Wu and H. C. Elman. “Analysis and comparison of geometric and
algebraic multigrid for convection-diffusion equations”. In: SIAM Journal
on Scientific Computing 28.6 (2006), pp. 2208–2228. doi: 10.1137/
060662940.

[Wec19a] F. Wechsung. Fireshape/fireshape: thesis florian wechsung. 2019. doi:
10.5281/zenodo.3461013. url: https://doi.org/10.5281/zenodo.
3461013.

[Wec19b] F. Wechsung. Florianwechsung/alfi: thesis submission. 2019. doi: 10.
5281/zenodo.3369207. url: https://doi.org/10.5281/zenodo.
3369207.

184

https://doi.org/10.1051/m2an/1985190101111
https://doi.org/10.1137/16M1104561
https://doi.org/10.1137/0731070
https://doi.org/10.1137/0731070
https://doi.org/10.1090/S0025-5718-1990-1011446-7
https://doi.org/10.1090/S0025-5718-1990-1011446-7
https://doi.org/10.24033/bsmf.1662
https://doi.org/10.1007/978-3-642-58393-3
https://doi.org/10.1016/0021-9991(86)90008-2
https://doi.org/10.1007/BF01385872
https://doi.org/10.1017/S0962492915000021
https://doi.org/10.1137/060662940
https://doi.org/10.1137/060662940
https://doi.org/10.5281/zenodo.3461013
https://doi.org/10.5281/zenodo.3461013
https://doi.org/10.5281/zenodo.3461013
https://doi.org/10.5281/zenodo.3369207
https://doi.org/10.5281/zenodo.3369207
https://doi.org/10.5281/zenodo.3369207
https://doi.org/10.5281/zenodo.3369207

[Wec19c] F. Wechsung. Florianwechsung/thesisnumerics: thesis. 2019. doi: 10.
5281/zenodo.3463176. url: https://doi.org/10.5281/zenodo.
3463176.

[Wes04] P. Wesseling. An Introduction to Multigrid Methods. Corr. reprint. Philadel-
phia: R.T. Edwards, 2004.

[WKG06] G. N. Wells, E. Kuhl, and K. Garikipati. “A discontinuous Galerkin
method for the Cahn–Hilliard equation”. In: Journal of Computational
Physics 218.2 (2006), pp. 860–877. doi: 10.1016/j.jcp.2006.03.010.

[WR] F. Wechsung and C. Richardson. PyROL. url: https://bitbucket.
org/pyrol/pyrol/.

[WY07] J. Wang and X. Ye. “New finite element methods in computational fluid
dynamics by H(div) elements”. In: SIAM Journal on Numerical Analysis
45.3 (2007), pp. 1269–1286. issn: 0036-1429, 1095-7170. doi: 10.1137/
060649227.

[WZ14] J. Wu and H. Zheng. “Parallel subspace correction methods for nearly
singular systems”. In: Journal of Computational and Applied Mathematics
271 (2014), pp. 180–194. doi: 10.1016/j.cam.2014.04.012.

[Xu01] J. Xu. “The method of subspace corrections”. In: Journal of Computational
and Applied Mathematics 128.1-2 (2001), pp. 335–362. doi: 10.1016/
S0377-0427(00)00518-5.

[Xu92] J. Xu. “Iterative methods by space decomposition and subspace correction”.
In: SIAM Review 34.4 (1992), pp. 581–613. doi: 10.1137/1034116.

[XZ10] X. Xu and S. Zhang. “A new divergence-free interpolation operator with ap-
plications to the Darcy–Stokes–Brinkman equations”. In: SIAM Journal on
Scientific Computing 32.2 (2010), pp. 855–874. doi: 10.1137/090751049.

[Zha04] S. Zhang. “A new family of stable mixed finite elements for the 3D Stokes
equations”. In: Mathematics of Computation 74.250 (2004), pp. 543–555.
doi: 10.1090/s0025-5718-04-01711-9.

[Zha08] S. Zhang. “On the P1 Powell-Sabin divergence-free finite element for the
Stokes equations”. In: Journal of Computational Mathematics 26.3 (2008),
pp. 456–470.

[Zha11a] S. Zhang. “Divergence-free finite elements on tetrahedral grids for k ≥ 6”.
In: Mathematics of Computation 80.274 (2011), pp. 669–669. doi: 10.
1090/S0025-5718-2010-02412-3.

[Zha11b] S. Zhang. “Quadratic divergence-free finite elements on Powell–Sabin
tetrahedral grids”. In: Calcolo 48.3 (2011), pp. 211–244. doi: 10.1007/
s10092-010-0035-4.

[Zha90] S. Zhang. “Optimal-order nonnested multigrid methods for solving fi-
nite element equations I: on quasi-uniform meshes”. In: Mathematics of
Computation 55.191 (1990), p. 23. doi: 10.2307/2008790.

185

https://doi.org/10.5281/zenodo.3463176
https://doi.org/10.5281/zenodo.3463176
https://doi.org/10.5281/zenodo.3463176
https://doi.org/10.5281/zenodo.3463176
https://doi.org/10.1016/j.jcp.2006.03.010
https://bitbucket.org/pyrol/pyrol/
https://bitbucket.org/pyrol/pyrol/
https://doi.org/10.1137/060649227
https://doi.org/10.1137/060649227
https://doi.org/10.1016/j.cam.2014.04.012
https://doi.org/10.1016/S0377-0427(00)00518-5
https://doi.org/10.1016/S0377-0427(00)00518-5
https://doi.org/10.1137/1034116
https://doi.org/10.1137/090751049
https://doi.org/10.1090/s0025-5718-04-01711-9
https://doi.org/10.1090/S0025-5718-2010-02412-3
https://doi.org/10.1090/S0025-5718-2010-02412-3
https://doi.org/10.1007/s10092-010-0035-4
https://doi.org/10.1007/s10092-010-0035-4
https://doi.org/10.2307/2008790

	Introduction
	Mathematical formulations of optimisation over shapes
	Structure and contributions of this thesis
	Shape optimisation
	Fast solvers for the incompressible Navier–Stokes equations
	Shape optimisation with multigrid solvers

	Software

	I Shape optimisation
	Shape optimisation and shape calculus
	General spaces of deformations
	Discussion of the necessary regularity of deformations
	Reduction of PDE constraints via adjoint solutions
	Structure of Shape Derivatives
	Numerical shape optimisation
	Optimisation
	Discretisation
	Software

	Automated calculation of shape derivatives
	Shape differentiation on the reference element
	Examples
	Code validation
	Shape optimisation of a pipe

	Nearly conformal mesh deformation methods for shape optimisation in two dimensions
	Discussion of deformations and mesh quality
	Conformal mappings in two dimensions
	Nearly conformal shape gradients
	CR(alpha)+H1 shape gradient
	Nearly conformal shape gradients with mixed boundary conditions
	CR(alpha)+H(sym) shape gradients

	Numerical experiments
	Levelset example
	A negative example: Annulus deformation
	Energy minimisation in slow flow

	Discussion of the three dimensional case

	II Large scale solvers for the Navier–Stokes equations
	Augmented Lagrangian preconditioning for the stationary incompressible Navier–Stokes equations
	Preconditioning Strategies
	Augmented Lagrangian preconditioning
	Solving the top-left block
	Subspace correction methods for nearly singular problems

	Augmented Lagrangian preconditioning for a low order discretisation
	Robust smoothing and prolongation in two dimensions
	Prolongation
	Relaxation

	Robust smoothing and prolongation in three dimensions
	Prolongation
	Smoothing

	Including the advection term
	Numerical Results
	Algorithm details
	Solving the top-left block only: nearly incompressible elasticity
	Solver verification with the method of manufactured solutions
	Two-dimensional experiments
	Three-dimensional experiments
	Computational performance

	Augmented Lagrangian preconditioning for divergence-free finite element pairs
	Stability of the Scott-Vogelius element
	Solving the top-left block
	Robust prolongation
	Robust smoothing

	Stabilisation for the advection terms
	Numerical results
	Solving the top-left block only: nearly incompressible elasticity
	Verification and pressure robustness
	Algorithmic performance in two and three dimensions

	III Combination and conclusions
	Shape optimisation with geometric multigrid solvers
	Nestedness preserving high-order deformations
	Regularisation
	Drag minimisation of an immersed object
	Optimisation of a pipe

	Conclusions and outlook
	Shape Optimisation
	Robust large-scale solvers for the incompressible Navier–Stokes equations

