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Abstract

Liquid crystals are widely used in display devices and their indispensable applications
have driven more than a century of scientific investigations. They are of great
interest in physics, for their striking defect structures, e.g., defect walls and focal
conics in smectics; and in mathematics, for the questions arising in their modelling
and analysis. Two successful mathematical theories are the Oseen–Frank (vector-
based) and Landau–de Gennes (tensor-based) theories for nematics. In the former,
the order parameter is simple but a nonlinear constraint must be enforced in
the optimisation. The latter theory becomes more appealing in characterising
complex defects, as it supports defects (e.g., half charge defects) that Oseen–Frank
does not. However, when it comes to the phenomenological modelling of other
phases of liquid crystals such as smectics, mathematical theories have not been
extensively studied. This thesis takes a step forward in understanding several
modelling and implementation issues related to three phases of liquid crystals:
cholesterics, ferronematics and smectics.

In the first part of this thesis, we propose an augmented Lagrangian-type
preconditioner to construct efficient solvers for Oseen–Frank problems arising in
cholesterics. We analyse two advantages of the augmented Lagrangian formulation:
(i) it helps in controlling the Schur complement matrix, enabling the development
of block preconditioners; (ii) it improves the discrete enforcement of the unit-
length constraint of the director. Since the augmentation makes the director
block harder to solve, we develop a robust multigrid algorithm for the augmented
block. The resulting preconditioner is an efficient and robust approach for solving
director-based models of liquid crystals.

The second part is devoted to investigating defect structures (e.g., jumps of the
director and magnetisation vector) in ferronematics, through numerical bifurcation
analysis. Novel bifurcations of the ferronematic problem of interest are studied to
give a more complete picture of solution landscapes as the parameter space varies.
The reported numerical results validate the corresponding theoretical analysis of
Dalby & Majumdar [Dal+21], and show us the potential of the Landau–de Gennes
theory in characterising complicated defects.

Convinced by the successful application of the Landau–de Gennes model in
ferronematics, we move to developing effective models of smectic-A liquid crystals



in the last part of this thesis. We propose a new continuum model, solving for a
real-valued smectic order parameter for the density variation and a tensor-valued
nematic order parameter for the director orientation. This expands on an idea
mentioned by Ball & Bedford [BB15]. The model is challenging to discretise
due to the high regularity of the density variation; to address this, a continuous
interior penalty discretisation is employed. Numerical analysis and experiments are
performed to confirm the effectiveness of the proposed model and discretisation.
The model numerically captures important defect structures in focal conic domains
and oily streaks for the first time.
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1
Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Some common notation . . . . . . . . . . . . . . . . . . . 5
1.3 Common solver details . . . . . . . . . . . . . . . . . . . 6

1.1 Background

Liquid crystals (LC), first discovered by Reinitzer in 1888 [Rei88], are materials

that can exist in an intermediate mesophase between isotropic (i.e., the physical

properties are uniform in all directions) liquids and solid crystals. That is to say,

LC can flow like liquids while also possessing long-range orientational order. Based

on different ordering symmetries, Friedel [Fri22] proposed to classify them into

three broad categories: nematic, smectic and cholesteric, as shown in Figure 1.1.

In the following, we briefly summarise the characteristics of these phases (refer

to [Ste04; Cha92] for further details).

Nematic phase This is the simplest and most extensively studied form of LC

phase where the molecules are not layered but tend to point in the same

direction. The molecules are free to move (rotate or slide) in this phase

1



1. Introduction 2

and align approximately parallel to each other, thus giving a long-range

orientational ordering.

Smectic phase The molecules have similar orientation and point in the same

direction as the molecules in nematic LC do but they also tend to line up into

layers. Depending on the angles formed between the molecular axes and the

planes of molecules, there are a number of different smectic phases. Figure 1.1

depicts the simplest smectic structure, the so-called smectic-A phase.

Cholesteric phase This is also known as chiral nematic phase and is characterised

by the molecules being aligned and stacked in a helical pattern, with each

layer rotated at an angle to the ones above and below it. It has a fixed pitch

in its helical structure and is the last phase before the substance becomes a

crystal or solid by decreasing the temperature.

Figure 1.1: Three types of molecular orientations in LC. As the temperature is increased,
the material goes from solid or crystal through the cholesteric, smectic, nematic and liquid
phases. Source: [AE11, Figure 11.26, Section 8]. For example, 8CB melts from crystal at
22◦C to the smectic phase, then transitions to the nematic phase at 34◦C and becomes a
conventional liquid above 42◦C [Sci18].

Since the orientational properties of LC can be manipulated by imposing electric

fields, they are often used to control light and have formed the basis of several

important technologies in the area of electric display devices, e.g., digital screens.

This has substantially increased interest in the scientific study of liquid crystals.
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Some examples of thorough overviews on LC modelling and its history can be

found in [Bal17; Ste04; Cha92]. More relevant to this thesis, there are two main

continuum theories for modelling nematic LC: the Oseen–Frank and Landau–de

Gennes theories, differing in the order parameters they use to describe the system.

They both postulate a free energy, the minimisation of which gives the state of the

LC. We include the detailed introduction of each theory later in the relevant

part of this thesis.

The working flow of this thesis is as follows. We start with the director-based

Oseen–Frank model for cholesteric liquid crystals in Part I. The presence of the unit-

length constraint on the director in this model stimulates the need for an efficient

and robust solver for the saddle point systems arising in finite element discretisations

of the equations. This is inspired by the work [BO06; FMW19] for enforcing the

divergence-free constraint in the stationary Navier–Stokes equations by applying the

discrete augmented Lagrangian formulation. We propose an augmented-Lagrangian-

type preconditioner and derive some robustness estimates in this part.

With this first experience of the Oseen–Frank model, its limitations in charac-

terising more complicated defects (such as half-charge defects) become apparent,

since it does not respect the head-to-tail symmetry of LC molecules. To explore

and understand the typical defect structures, e.g., oily streaks and focal conics

(see Figures 1.2 and 1.3) in smectics, we begin considering the Landau–de Gennes

model employing a Q-tensor as the state variable. As a step in this direction,

Part II explores the effectiveness of the Q-tensor model in characterising defects

by considering a model problem of ferronematics, where magnetic nanoparticles

(MNPs) are suspended in a nematic LC and thus induce a spontaneous magnetisation

response without any external magnetic fields. In this part, we study the solution

landscapes of the ferronematic problem for different parameter spaces and focus

on the numerical validations of some theoretical analyses proven by Dalby &

Majumdar in [Dal+21].

This substantial success in observing some interesting defect structures in ferrone-

matics stimulates our interest in investigating more sophisticated defects in smectics
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Figure 1.2: Schematic illustration of flattened hemicylinders (left) and curvature wall
(right) in smectic-A thin films. Source: [Mic+04, Fig. 9 & Fig. 16].

Figure 1.3: Schematic representation of toroidal focal conic domains (left) and focal
conic domains (right) in smectic-A thin films. Here, Γ1 and Γ2 are two singularities
resulting from keeping equidistant layer spacing. We can notice that the ellipse collapses
to a circle and hyperbola into a straight line in the toroidal case. Source: [WK75, Fig. 1].

and thereby leads to our work in Part III. We propose a new mathematical model

for smectic-A LC in this last part, which successfully captures typical structures of

oily streaks and focal conic domains. We believe it can be applied to many other

smectic scenarios that require an effective and efficient mathematical model.

Following this working flow, we divide the remainder of this thesis into three parts

regarding different applications in liquid crystals, i.e., cholesterics, ferronematics

and smectics, and close with some conclusions and potential directions for future

work. Each part expands upon a relevant publication, as detailed below.

• Part I: Xia, Farrell and Wechsung (2021) [XFW21], published in BIT Numer-

ical Mathematics.

• Part II: Dalby, Farrell, Majumdar and Xia (2021) [Dal+21], in review in

SIAM Journal on Applied Mathematics.

• Part III: Xia, MacLachlan, Atherton and Farrell (2021) [Xia+21], published

in Physical Review Letters.
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1.2 Some common notation

d spatial dimension, d ∈ {1, 2, 3}

Ω open, bounded d-dimensional domain with Lipschitz boundary ∂Ω

x, y, z coordinates of domain Ω

C generic constant that may not be the same constant for each appearance

h mesh size

Th mesh of Ω

T element of Th
EI set of all interior edges/faces of the mesh T

EB set of all boundary edges/faces of the mesh T

E set of all edges/faces of the mesh T ; E = EI ∪ EB
S0 space of symmetric, traceless d× d matrices

Sd−1 (d ∈ {2, 3}) surface of the unit ball in Rd centered at the origin

Md×d space of all d× d matrices

Id identity matrix in Md×d, I general identity matrix

A admissible space of a minimisation problem

Pk piecewise continuous polynomials of degree k ≥ 0 on a simplicial mesh (intervals,

triangles and tetrahedra)

Qk piecewise continuous polynomials of degree k ≥ 0 on a mesh of quadrilaterals or

hexahedra

ν outward unit normal to the boundary ∂Ω

Hk Sobolev space of square-integrable functionals with square-integrable weak

derivatives up to k order with standard Hk-norm ‖ · ‖k on Ω

Hk vector-valued version of Hk

Hk
b , Hk

b Sobolev spaces Hk, Hk with an addition of the trace

‖ · ‖0, ‖ · ‖∞ standard L2- and L∞-norm on Ω

(·, ·)0 inner product in L2(Ω)

∆ = ∇ · ∇ Laplace operator

D2 Hessian operator
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In order to avoid the proliferation of constants throughout this thesis, we use the

notation a . b (respectively, b & a) to represent the relation a ≤ Cb (respectively,

b ≥ Ca) for some generic constant C independent of the mesh.

1.3 Common solver details

Since the problems to be solved in this thesis are all nonlinear, we always use

Newton’s method with L2 linesearch [Bru+15, Algorithm 2] as the outer nonlinear

solver. The solver is implemented in the Firedrake [Rat+17] library, which relies

on PETSc [Bal+18] for solving the linear systems resulted from linearising the

nonlinear problem.

In addition, for those problems (e.g., in Parts II and III) where we are interested in

multiple solutions or bifurcation diagrams, we use the so-called deflation technique as

described in [FBF15] to compute multiple solutions. This technique is implemented

in the Defcon library [Far17].

Further details of each solver used for the numerical experiments in Chapters 4,

6 and 9 will be specified later. For reproducibility, the exact versions of the

implementation codes used have been archived on Zenodo; the appropriate archived

code will be cited in the corresponding chapter.



Part I

Cholesteric Liquid Crystals

This work expands upon Xia, Farrell and Wechsung (2021) [XFW21].
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2
A mathematical model of cholesterics

Contents
2.1 The Oseen–Frank model . . . . . . . . . . . . . . . . . . 8
2.2 Lagrange multiplier and Newton linearisation . . . . . 13
2.3 Augmented Lagrangian form . . . . . . . . . . . . . . . . 19

2.3.1 Penalising the constraint . . . . . . . . . . . . . . . . . . 20
2.3.2 Approximation to the Schur complement . . . . . . . . 22
2.3.3 Improvement of the constraint . . . . . . . . . . . . . . 29

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

As mentioned in the previous chapter, one of the commonly used mathematical

models for nematic and cholesteric liquid crystals is the Oseen–Frank theory [Ose33;

Fra58], which takes a unit-length vector field as the state variable. We therefore

introduce the form of the Oseen–Frank model that we will subsequently consider.

2.1 The Oseen–Frank model

Let Ω ⊂ Rd, d ∈ {2, 3} be an open, bounded domain with Lipschitz boundary

∂Ω. We triangulate the domain Ω and denote the mesh by Th with each element

represented by T and h is the mesh size. Denote H1
b(Ω) = {v ∈ H1(Ω,R3) :

v|∂Ω = nb} for a given vector field nb ∈ H1/2(∂Ω,S2) with H1
0 given by zero trace

nb = 0 /∈ S2. Assume that the (nematic or) cholesteric LC occupying the domain Ω

8



2. A mathematical model of cholesterics 9

is equipped with a rigid anchoring (Dirichlet) boundary condition n|∂Ω = nb1. The

Oseen–Frank model [Fra58] considers the following minimisation problem:

min
n∈H1

b
(Ω)
J OF (n) =

∫
Ω
WOF (n),

subject to n · n = 1 a.e.,
(2.1.0.1)

where the Frank energy density WOF (n) is of the form

WOF (n) = K1

2 (∇ · n)2 + K2

2 (n · (∇× n) + q0)2 + K3

2 |n× (∇× n)|2

+ K2 +K4

2 [tr((∇n)2)− (∇ · n)2],
(2.1.0.2)

with tr(·) the trace of a matrix, Ki ∈ R (i = 1, 2, 3, 4) elastic constants (called Frank

constants) and q0 ≥ 0 the preferred pitch for the cholesteric. K1, K2, K3, and K4

are referred to as the splay, twist, bend, and saddle-splay constants, respectively.

Note here ∇n is matrix-valued and (∇n)2 denotes the matrix multiplication of

the matrix ∇n and itself.

If K1 = K2 = K3 = Kc > 0 and K4 = 0, the energy density (2.1.0.2) reduces

to the so-called equal-constant approximation, with energy density

WOF (n) = Kc

2
[
|∇n|2 + 2q0n · (∇× n) + q2

0

]
,

which is a useful simplification to help us gain qualitative insight into more

complex situations.

Remark 2.1. When q0 = 0, the energy density (2.1.0.2) corresponds to the nematic

case. Furthermore, when combined with the equal-constant approximation, (2.1.0.2)

reduces to

WOF (n) = Kc

2 |∇n|2.

With this free energy density, the solution to the minimisation problem (2.1.0.1) is

unique and is known as the harmonic map from a two- or three-dimensional compact

manifold to S2 [Lin89]. Some fast numerical algorithms for this equal-constant

approximation case have been proposed and tested in [HTW09].
1The following theory also applies with mixed periodic and Dirichlet boundary conditions

[Adl+15b; Bed14], which we shall use in some numerical examples in Chapter 4.
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Using the fact that

tr((∇n)2)− (∇ · n)2 = ∇ · ((n · ∇)n− (∇ · n)n) ,

the last term (the saddle-splay term or the null Lagrangian) in (2.1.0.2) can be

dropped as its integral reduces to a surface integral, which is essentially a constant

if applying Dirichlet boundary conditions to the model, via the divergence theorem.

For mixed periodic and Dirichlet boundary conditions considered in Section 4.2.1,

we can verify directly that this saddle-splay energy vanishes. Hence, for simplicity,

it suffices to consider the following Frank energy density

WOF (n) = K1

2 (∇ · n)2 + K2

2 (n · (∇× n) + q0)2 + K3

2 |n× (∇× n)|2. (2.1.0.3)

In this chapter, we use a more compact form of the free energy (2.1.0.1) as in

[Adl+15b; Adl+16] by introducing a symmetric dimensionless tensor

Z = κn⊗ n + (I3 − n⊗ n) = I3 + (κ− 1)n⊗ n,

where κ = K2/K3. By the classical equality

|∇ × n|2 = (n · (∇× n))2 + |n× (∇× n)|2, (2.1.0.4)

the original energy functional J OF (n) can be rewritten as

J OF (n) = 1
2 (K1 (∇ · n,∇ · n)0 +K3 (Z∇× n,∇× n)0

+2K2q0 (n,∇× n)0 +K2 (q0, q0)0) .
(2.1.0.5)

It can be observed that the auxiliary tensor Z contributes to the nonlinearity

of J OF (n) in (2.1.0.5).

Remark 2.2. There is another widely used simplification of the energy density

(2.1.0.2), where q0 = 0 and K2 = K3 = K1 + Kp, K4 = −Kp [GLP03; LR07]. In

this case, (2.1.0.2) becomes

WOF (n) = 1
2[K1|∇n|2 +Kp|∇ × n|2],

and it is expected that as Kp →∞, the asymptotic behavior of minimisers provides

a description of the phase transition process of LC from the nematic phase to the

smectic-A phase [GLP03; LR07; LT14].
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Furthermore, it is proven in [Adl+15b, Section 2.3] that Z is uniformly (with

respect to x ∈ Ω) symmetric positive definite (USPD) as long as sufficient control

is maintained on |n|2. This property of Z plays an essential role in proving the

well-posedness of the saddle-point problem in the nematic case. We restate the

result of Z being USPD in the following, as it is important later:

Lemma 2.1. [Adl+15b, Section 2.3] Assume α ≤ |n|2 ≤ β ∀x ∈ Ω with 0 < α ≤

1 ≤ β. If κ > 1, then Z is USPD on Ω; for 0 < κ < 1, then Z is USPD on Ω if

β < 1
1−κ .

Remark 2.3. Notice that the regularity of n ∈ H1(Ω) is enough for the functional

J OF (n) of (2.1.0.5) to be well defined. In fact, n ∈ H1(Ω) implies ∇ · n ∈ L2(Ω)

and ∇× n ∈ L2(Ω). By (2.1.0.4), we have n · (∇× n) ∈ L2(Ω). This ensures that

the term (q0,n · (∇× n))0 in (2.1.0.5) is defined. Furthermore, Lemma 2.1 gives

the boundedness of Z, which guarantees the L2-regularity of the term Z∇× n in

(2.1.0.5).

Naturally, the values of elastic constants and the cholesteric pitch will be an

important factor in determining the minimisers. In particular, the free energy

density should be bounded from below so to ensure the existence of minimisers.

With an addition of arbitrary constant, we thus need additional assumptions on

the parameters to satisfy non-negativity of the energy density, i.e.,

WOF (n) ≥ 0 ∀n ∈ H1
b(Ω).

This gives rise to Ericksen’s inequalities (see [Bal17; Bed14] and references therein):

K1, K2, K3 ≥ 0, K2 +K4 = 0 if q0 6= 0,

2K1 ≥ K2 +K4, K2 ≥ |K4|, K3 ≥ 0 if q0 = 0.

Remark 2.4. We have included the inequalities with regard to constant K4 here

for generality, though they are not necessary in our work as we have eliminated the

K4-related term in the free energy. In this part, we will simply consider Ki > 0

(i = 1, 2, 3) to avoid any technical issues.
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For the minimisation problem (2.1.0.1) arising in (nematic or cholesteric) liquid

crystals, it has been proven in [Lin89, Theorem 2.1] that there exists a solution.

Theorem 2.2. [Lin89, Theorem 2.1] Let Ω be a bounded Lipschitz domain and

assume the Dirichlet boundary data nb ∈ H1/2(∂Ω,S2). If K1, K2, K3 > 0, then

there exists an n ∈ H1
b (Ω,S2) := {n ∈ H1(Ω,S2) : n = nb on ∂Ω} such that

J OF (n) = inf
u∈H1

b
(Ω,S2)

J OF (u).

The main difficulty in numerically solving the Oseen–Frank model (2.1.0.1) is

the enforcement of the unit-length constraint. There are several existing approaches

to handling constraints, e.g., projection [LT14], Lagrange multipliers, and penalty

methods [NW99, Section 12.3 & 17].

The projection method is numerically simple but the value of the energy

functional may go up and down dramatically after each projection, making it

difficult to control in the optimisation procedure [LT14]. A Lagrange multiplier is

often used to replace constrained optimisation problems with unconstrained ones, but

an important disadvantage of this approach is that it introduces another unknown

(i.e., the Lagrange multiplier) and leads to a saddle-point structure which can be

difficult to solve [BGL05]. On the other hand, the penalty method has the favorable

property that the resulting system has an energy decay property [LR07] which

may result in an easier theoretical and numerical study of the solution. However,

the penalty parameter has to be very large for the accuracy of approximating

the constraints, leading to an ill-conditioned system. Some works based on either

projection or pure penalty methods for nematic phases can be found in [GLP03;

LR07; GL89] and the references therein.

Fortunately, it is possible to amend the ill-conditioning effects with large penalty

parameters that are inherent in the pure penalty method by combining it with a

Lagrange multiplier. This is the augmented Lagrangian algorithm [FG83]. This

strategy combines the advantages of both schemes: the penalty parameter can

be relatively small due to the presence of the Lagrange multiplier, and the Schur

complement of the saddle-point system is easier to solve due to the presence of
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the penalty term [GLP03; GL89; Ols02; BO06; FMW19]. Since the concept of the

Schur complement is closely related to this part of the thesis, we briefly summarise

the approach of Schur complement reduction here. Consider a saddle-point system

(that is, it has both positive and negative eigenvalues) of form

D
[
x
y

]
:=
[
A1 B>1
B2 C1

] [
x
y

]
=
[
c
d

]
. (2.1.0.6)

Assuming that both A1 and D are nonsingular, it implies that S1 = C1−B2A−1
1 B>1

is also nonsingular [BGL05]. Here, S1 is the so-called Schur complement. Block

Gaussian elimination then reduces the system (2.1.0.6) to[
A1 B>1
0 S1

] [
x
y

]
=
[

c
d−B2A−1

1 c

]
. (2.1.0.7)

If it is possible to solve linear systems involving A1 and S1, we can solve the

coupled linear system.

In what follows, we first consider the method of Lagrange multipliers and then

add the augmented Lagrangian term to control the Schur complement of the system.

2.2 Lagrange multiplier and Newton linearisation

By introducing the Lagrange multiplier λ ∈ L2(Ω), the associated Lagrangian of

the minimisation problem (2.1.0.1) is then defined as

L(n, λ) = J OF (n) + (λ,n · n− 1)0 , (2.2.0.1)

and its first-order optimality conditions are: find (n, λ) ∈ H1
b(Ω)× L2(Ω) such that

Ln[v] = J OF
n [v] + (λ, 2n · v)0

= K1 (∇ · n,∇ · v)0 +K3 (Z∇× n,∇× v)0

+ (K2 −K3) (n · ∇ × n,v · ∇ × n)0

+K2q0 (v,∇× n)0 +K2q0 (n,∇× v)0 + (λ, 2n · v)0

= 0 ∀v ∈ H1
0(Ω),

Lλ[µ] = (µ,n · n− 1)0 = 0 ∀µ ∈ L2(Ω).

(2.2.0.2)



2. A mathematical model of cholesterics 14

As (2.2.0.2) is nonlinear, Newton linearisation is employed. Let nj and λj

be the current approximations for n and λ, respectively, and denote the corre-

sponding updates to these approximations as δn = nj+1 − nj and δλ = λj+1 − λj.

Then the Newton iteration at (nj, λj) in block form is given by: find (δn, δλ) ∈

H1
0(Ω) × L2(Ω) such that

[
Lnn Lnλ
Lλn 0

] [
δn
δλ

]
= −

[
Ln
Lλ

]
, (2.2.0.3)

where

Lnn[v, δn] = Jnn[v, δn] + (λj, 2δn · v)0

= K1 (∇ · δn,∇ · v)0 +K3 (Z(nj)∇× δn,∇× v)0

+ (K2 −K3)
(

(δn · ∇ × nj,nj · ∇ × v)0 + (nj · ∇ × nj, δn · ∇ × v)0

+ (v · ∇ × nj,nj · ∇ × δn)0 + (nj · ∇ × nj,v · ∇ × δn)0

+ (δn · ∇ × nj,v · ∇ × nj)0

)
+K2q0 (v,∇× δn)0 +K2q0 (δn,∇× v)0 + (λj, 2δn · v)0 ,

(2.2.0.4)

and
Lnλ[v, δλ] = (δλ, 2nj · v)0 ,

Lλn[µ, δn] = (µ, 2nj · δn)0 .

Since L(n, λ) is linear in λ, Lλλ = 0. This results in (2.2.0.3) being a saddle-

point problem.

With a suitable spatial discretisation (we only consider conforming finite elements

throughout this part of the thesis, i.e., the finite dimensional space Vh ⊂ H1
0(Ω) that

the finite element approximation nh of n belongs to, and the finite dimensional space

Qh ⊂ L2(Ω) that the approximation λh of λ belongs to), a symmetric saddle-point

system must be solved at each Newton iteration:
[
A B>
B 0

] [
U
X

]
=
[
f
g

]
, (2.2.0.5)

where U and X represent the coefficient vectors of δn and δλ in terms of the

basis functions of Vh and Qh, respectively.
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We can accordingly write the discrete variational problem as: find δnh ∈

Vh and δλh ∈ Qh such that

a(δnh,vh) + b(vh, δλh) = f(vh) ∀vh ∈ Vh,

b(δnh, µh) = g(µh) ∀µh ∈ Qh,
(2.2.0.6)

where a(·, ·) and b(·, ·) are bilinear forms given by

a(u,v) =K1 (∇ · u,∇ · v)0 +K3 (Z(nj)∇× u,∇× v)0

+ (K2 −K3)
(

(u · ∇ × nj,nj · ∇ × v)0 + (nj · ∇ × nj,u · ∇ × v)0

+ (v · ∇ × nj,nj · ∇ × u)0 + (nj · ∇ × nj,v · ∇ × u)0

+ (u · ∇ × nj,v · ∇ × nj)0

)
+K2q0 (v,∇× u)0 +K2q0 (u,∇× v)0 + (λj, 2u · v)0 ,

and

b(v, p) = (p, 2nj · v)0 ,

and f and g are linear functionals given by

f(v) =−
(
K1 (∇ · nj,∇ · v)0 +K3 (Z(nj)∇× nj,∇× v)0

+ (K2 −K3) (nj · ∇ × nj,v · ∇ · nj)0

+K2q0 (v,∇× nj)0 +K2q0 (nj,∇× v)0

+ (λj, 2nj · v)0

)
,

and

g(µ) = − (µ,nj · nj − 1)0 .

Remark 2.5. The well-posedness of the continuous and discretised Newton system

(with the ([Qk]d ⊕ BF )-Q0 finite element pair, k ≥ 1) for a generalised nematic

LC problem is discussed in [Adl+15b], where BF := {v ∈ [Cc(Ω)]d : v|T =

aT bTnj|T ∀T ∈ Th} denotes the bubble space. Here, Cc(Ω) includes compactly

supported continuous functions, bT represents biquadratic bubble function that

vanishes on ∂T ∈ Th and satisfies
∫
T bT = 1 ∀T ∈ Th,
bT (x) > 0 ∀x ∈ T,
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and aT is a constant associated with bT . Moreover, the authors of [Adl+16]

considered the pure penalty approach for nematic LC and obtained a well-posedness

result of the penalised Newton iteration through similar techniques. We will follow

these analysis strategies in this section.

It is straightforward to deduce the well-posedness of the discrete Newton iteration

(2.2.0.6) for cholesteric problems under some proper assumptions on the problem-

dependent constants. In fact, two additional q0-related terms in Lnn from (2.2.0.4)

compared to the nematic energy density from [Adl+15b] are simply L2 inner

products, which can be easily bounded above using the Cauchy–Schwarz and

triangle inequalities. We start with the assumptions and subsequently prove some

necessary ingredients, e.g., the coercivity and boundedness of a(·, ·) and the discrete

inf-sup condition for b(·, ·), of the well-posedness result.

Assumption 2.3. Assume that there exist constants 0 < α ≤ 1 ≤ β such that

α ≤ |nj|2 ≤ β. For 0 < κ < 1, assume further that β < 1
1−κ . By Lemma 2.1, Z(nj)

remains USPD with lower bound Λl and upper bound Λu, i.e.,

Λl ≤
x>Z(nj)x

x>x
≤ Λu ∀x ∈ Rd\{0}.

Lemma 2.4. (Continuous coercivity) With Assumption 2.3, we assume further that

the current Lagrange multiplier approximation λj is pointwise non-negative almost

everywhere. Let K1 > K2q0C4 and K3Λl > K2q0(C4 + 1) with C4 to be defined.

Then there exists an α0 > 0 such that

α0‖v‖2
1 ≤ a(v,v) ∀v ∈ H1

0(Ω). (2.2.0.7)

Moreover, when κ = 1, i.e., K2 = K3, if K1 > K2q0C4 and 1 > q0(C4 + 1), then the

coercivity result (2.2.0.7) also holds.

Remark 2.6. One may wonder how realistic that λj can be pointwise non-negative

almost everywhere during each nonlinear iteration. However, we do not observe

any ill-posed problems during our numerical experiments that are illustrated in

Chapter 4.
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Proof. With the lower bound Λl of Z, we compute:

a(v,v) ≥ K1‖∇ · v‖2
0 +K3Λl‖∇ × v‖2

0 + 2K2q0 (v,∇× v)0 + 2 (λj,v · v)0

≥ K1‖∇ · v‖2
0 +K3Λl‖∇ × v‖2

0 − 2K2q0| (v,∇× v)0 |

≥ K1‖∇ · v‖2
0 +K3Λl‖∇ × v‖2

0 − 2K2q0‖v‖0‖∇ × v‖0

≥ K1‖∇ · v‖2
0 +K3Λl‖∇ × v‖2

0 −K2q0(‖v‖2
0 + ‖∇ × v‖2

0),

where the first inequality comes from the assumption that λj is non-negative

pointwise and the last two inequalities are derived by Cauchy–Schwarz and Hölder

inequalities, respectively.

By [GR11, Remark 2.7], for a bounded Lipschitz domain, there exists C1 > 0

such that

‖∇v‖2
0 ≤ C1(‖∇ · v‖2

0 + ‖∇ × v‖2
0),

for all v ∈ H0(div,Ω) ∩H0(curl,Ω)2. Here, we denote

H0(div,Ω) = {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω), ν · v = 0 on ∂Ω},

H0(curl,Ω) = {v ∈ L2(Ω) : ∇× v ∈ L2(Ω), ν × v = 0 on ∂Ω}.

Then using the classical Poincaré inequality, ‖v‖2
0 ≤ C3‖∇v‖2

0 for all v ∈ H1
0(Ω),

and defining C4 = C1C3 > 0, we have

‖v‖2
0 ≤ C4(‖∇ · v‖2

0 + ‖∇ × v‖2
0).

Furthermore, there exists C2 = C4 + C1 > 0 such that

‖v‖2
1 ≤ C2(‖∇ · v‖2

0 + ‖∇ × v‖2
0).

It follows that

a(v,v) ≥ K1‖∇ · v‖2
0 +K3Λl‖∇ × v‖2

0 −K2q0
[
C4
(
‖∇ · v‖2

0 + ‖∇ × v‖2
0

)
− ‖∇× v‖2

0

]
= (K1 −K2q0C4)‖∇ · v‖2

0 + (K3Λl −K2q0C4 −K2q0)‖∇ × v‖2
0.

Choosing C5 = min{K1 − K2q0C4, K3Λl − K2q0C4 − K2q0} > 0 (the positivity

follows from the assumptions) and α0 = C5/C2, we find that the coercivity (2.2.0.7)

holds.
2In fact, H1

0(Ω) = H0(div,Ω) ∩H0(curl,Ω) holds for any bounded Lipschitz domain Ω [GR11,
Lemma 2.5].
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In particular, when κ = 1 (i.e., K2 = K3), we have Z = I3 and thus Λl = 1.

Then, the bilinear form becomes

a(v,v) = K1‖∇ · v‖2
0 +K2‖∇ × v‖2

0 + 2K2q0 (v,∇× v)0 + 2 (λj,v · v)0

≥ K1‖∇ · v‖2
0 +K2‖∇ × v‖2

0 − 2K2q0| (v,∇× v)0 |

≥ K1‖∇ · v‖2
0 +K2‖∇ × v‖2

0 − 2K2q0‖v‖0‖∇ × v‖0

≥ K1‖∇ · v‖2
0 +K2‖∇ × v‖2

0 −K2q0(‖v‖2
0 + ‖∇ × v‖2

0).

By choosing C6 = min{K1 −K2q0C4, K2(1− q0C4 − q0)} > 0 (the positivity comes

from the assumptions) and α0 = C6/C2, we obtain the desired coercivity

a(v,v) ≥ α0‖v‖2
1 ∀v ∈ H1

0(Ω),

as stated in (2.2.0.7).

So far, the coercivity of the bilinear form a(·, ·) has been shown for all functions

in H1
0(Ω). Discrete coercivity follows if a conforming finite element for the director

space is chosen.

The boundedness of the bilinear form a(·, ·) and the right-hand side functionals

f(·) and g(·) can be obtained directly by following the proofs in [Adl+15b]. Hence,

we omit the details here.

It remains to consider the discrete inf-sup condition of the bilinear form b(·, ·)

for a finite element pair Vh-Qh, i.e., whether there exists a constant C such that

sup
uh∈Vh\{0}

b(uh, µh)
‖uh‖

≥ C‖µh‖ ∀µh ∈ Qh.

The continuous inf-sup condition was shown in [Eme15, Appendix B] and [HTW09,

Theorem 3.1]. However, the discrete inf-sup condition is not inherited from the

continuous problem. Some previous works have succeeded in obtaining a discrete

inf-sup condition for some specific discretisations. A discrete inf-sup condition

was proven for the ([Qk]d ⊕ BF )-Q0 element on quadrilaterals in [Eme15, Lemma

2.5.14] and [Adl+15b, Lemma 3.12]. The discrete inf-sup condition for the [P1]2-P1

discretisation is shown in [HTW09, Theorem 4.5], where the analysis is only valid

for the two-dimensional case due to the use of some special inverse inequalities. It
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is straightforward to deduce that an enrichment of Vh still guarantees the stability

of the discretisation, and thus [P2]2-P1 is inf-sup stable under the same conditions.

In three dimensions, there is not yet a discussion about the inf-sup stability of the

finite element pair [P2]3-P1 for the bilinear form b(·, ·), however, we can observe

that it is inf-sup stable at least in our numerical experiments in Chapter 4.

We now consider the matrix form of the saddle-point system (2.2.0.5) after

discretisation. The coercivity of the bilinear form a(·, ·) implies the invertibility of

the coefficient matrix A and the discrete inf-sup condition indicates that B has

full row rank. We use the full block factorisation preconditioner

Q−1 =
[
I −Ã−1B>
0 I

] [
Ã−1 0

0 S̃−1

] [
I 0

−BÃ−1 I

]

with approximate inner solves Ã−1 and S̃−1 for the director block and the Schur

complement S = −BA−1B>, respectively, for solving the saddle-point problem

(2.2.0.5). With exact inner solves, this is an exact inverse. With this strategy,

solving the original saddle-point problem (2.2.0.5) reduces to solving two smaller

linear systems involving A and S. Even though A is sparse, its inverse is generally

dense, making it impractical to store S explicitly. In this situation, developing a

fast solver for A is tractable while approximating S becomes difficult. We will

return to this issue in Section 2.3.2 and Chapter 3.

2.3 Augmented Lagrangian form

In the previous section, we have considered the method of Lagrange multipli-

ers to enforce the unit-length constraint. We now introduce one of the most

famous and successful algorithms, as described in many text books, e.g., [FG83;

NW99], for solving constrained optimisation problems: the augmented Lagrangian

method. It can be interpreted as the combination of the pure penalty method

and the method of Lagrange multipliers. The AL procedure is to transform the

constrained minimisation problem into an unconstrained one by introducing a

Lagrange multiplier λ ∈ L2(Ω) and adding a term (to its Lagrangian) that penalises

the constraint. Instead of solving the constrained problem, we seek the equilibrium
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of the unconstrained minimisation problem. In this section, we utilise the AL

stabilisation strategy and accordingly modify the discrete Newton-linearised system

to control the Schur complement.

2.3.1 Penalising the constraint

Consider penalising the continuous form of the nonlinear constraint n · n = 1 in

the AL algorithm, then we obtain the associated Lagrangian

L̃(n, λ) = L(n, λ) + γ

2 (n · n− 1,n · n− 1)0 (2.3.1.1)

with penalty parameter γ ≥ 0. The weak form of the associated first-order optimality

conditions is to find (n, λ) ∈ H1
b(Ω) × L2(Ω) such that

L̃n[v] = Ln[v] + 2γ (n · n− 1,n · v)0 = 0 ∀v ∈ H1
0(Ω),

L̃λ[µ] = Lλ[µ] = (µ,n · n− 1)0 = 0 ∀µ ∈ L2(Ω).

The Newton linearisation at a given approximation (nj, λj) yields a system of the

form: [
L̃nn Lnλ
Lλn 0

] [
δn
δλ

]
= −

[
L̃n
Lλ

]
.

Thus, we have to solve the augmented discrete variational problem:

ac(δnh,vh) + b(vh, δλh) = fc(vh) ∀vh ∈ Vh,

b(δnh, µh) = g(µh) ∀µh ∈ Qh,
(2.3.1.2)

where

ac(u,v) = a(u,v) + 4γ (nj · u,nj · v)0 + 2γ (nj · nj − 1,u · v)0 ,

and

fc(v) = f(v)− 2γ (nj · nj − 1,nj · v)0 .

Comparing (2.3.1.2) to the original system (2.2.0.6), only the bilinear form a(·, ·)

and the right-hand side functional f(·) have changed. The boundedness of fc(·)

follows straightforwardly via the Cauchy–Schwarz inequality. As for the coercivity

of ac(·, ·), an additional assumption on the penalty parameter γ is needed.
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Lemma 2.5. (Continuous coercivity) Let α0 > 0 be the coercivity constant of a(·, ·).

If α0 > 2γ|α− 1| with 0 < α ≤ 1 ≤ β satisfying α ≤ |nj|2 ≤ β, there exists a β0 > 0

such that

ac(v,v) ≥ β0‖v‖2
1 ∀v ∈ H1

0(Ω).

Proof. Note that

ac(v,v) = a(v,v) + 4γ‖nj · v‖2
0 + 2γ (nj · nj − 1,v · v)0

≥ a(v,v) + 2γ (nj · nj − 1,v · v)0 .

By the assumption that a(v,v) ≥ α0‖v‖2
1 for some α0 > 0, we have

ac(v,v) ≥ α0‖v‖2
1 + 2γ (nj · nj − 1,v · v)0 .

Moreover, since nj · nj ≥ α and α− 1 ≤ 0, we get

2γ (nj · nj − 1,v · v)0 ≥ 2γ(α− 1)‖v‖2
0 ≥ 2γ(α− 1)‖v‖2

1.

Thus, by taking β0 = α0 − 2γ|α− 1| > 0, we obtain the desired coercivity property.

The condition α0 > 2γ|α− 1| in Lemma 2.5 indicates a limit on the value of γ

to ensure the solvability of the augmented system (2.3.1.2). However, it is desirable

to use large values of γ to achieve better control of the Schur complement as we

shall see in Chapter 4. We therefore choose to employ a Picard iteration to solve

the nonlinear problem, omitting the term 2γ (nj · nj − 1,v · v)0 from the linearised

equations. This yields the linearised problem: find (δnh, δλh) ∈ Vh ×Qh such that

am(δnh,vh) + b(vh, δλh) = fc(vh) ∀vh ∈ Vh,

b(δnh, µh) = g(µh) ∀µh ∈ Qh,
(2.3.1.3)

with the modified bilinear form

am(u,v) = a(u,v) + 4γ (nj · u,nj · v)0 (2.3.1.4)

to be solved at each nonlinear iteration. This ensures that the (1, 1)-block is coercive

with a coercivity constant independent of γ. Moreover, in contrast to the situation

with the Navier–Stokes equations, numerical experiments indicate that the use
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of this Picard iteration requires fewer nonlinear iterations to converge to a given

tolerance than using the full Newton linearisation (see Section 4.2.1).

The corresponding matrix form of the variational problem (2.3.1.3) becomes[
A + γA∗ B>

B 0

] [
U
X

]
=
[
f + γl

g

]
, (2.3.1.5)

where A∗ is the assembly of 4 (nj · u,nj · v)0 and l denotes the assembly of

−2 (nj · nj − 1,nj · v)0. Note that compared to the non-augmented version (2.2.0.5),

the (1, 1) block in (2.3.1.5) has an additional semi-definite term γA∗ with a large

coefficient γ. Its sparsity pattern remains unchanged. We will construct a robust

multigrid method to solve this top-left block in Chapter 3.

Since the unit-length constraint is enforced exactly in (2.3.1.1), the continuous

solutions to minimising both (2.3.1.1) and (2.2.0.1) are the same. However, the

unit-length constraint is not enforced exactly in our finite element discretisation,

and hence this AL stabilisation does change the computed discrete solution.

Remark 2.7. When utilising the augmented Lagrangian strategy, one can apply it

before discretisation or afterwards. In this part of work we consider the continuous

penalisation, as it improves the enforcement of the nonlinear constraint, as shown

later in Section 2.3.3. This is different to the approach considered in [BO06; FMW19]

for the stationary Navier–Stokes equations, where the discrete AL stabilisation was

used to yield a system that has the same discrete solution but a better Schur

complement.

2.3.2 Approximation to the Schur complement

The Schur complement of the augmented director block in (2.3.1.5) is given by

Sγ = −BA−1
γ B> =: −B(A + γA∗)−1B>.

We now proceed to analyse this Schur complement by following similar techniques

to those of [HR12, §4]. We will show that A∗ is equal to the matrix arising from the

discrete AL stabilisation (which controls the Schur complement) plus a perturbation

that vanishes as the mesh is refined.
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Let ΠQh : L2(Ω)→ Qh (Qh is a finite dimensional approximation space of L2(Ω))

be the orthogonal L2 projection operator, i.e., there holds for p ∈ L2(Omega) that

(p− ΠQhp, q)0 = 0 ∀q ∈ Qh.

We define the fluctuation operator F := I − ΠQh where I : L2(Ω) → L2(Ω) is

the identity mapping. Therefore, one has

(F(p), q)0 = 0 ∀q ∈ Qh.

For uh,vh ∈ Vh, one can split the term 4 (nj · uh,nj · v)0 into the following terms

using the properties of F and ΠQh :

4 (nj · u,nj · v)0 = (ΠQh(2nj · n), 2nj · v)0 + (F(2nj · u), 2nj · v)0

= (ΠQh(2nj · n), (ΠQh + F)(2nj · v))0 + (F(2nj · u), (ΠQh + F)(2nj · v))0

= (ΠQh(2nj · u),ΠQh(2nj · v))0 + (F(2nj · u),F(2nj · v))0 .

Note here that the assembly of the first term is B>M−1
λ B, where Mλ is the mass

matrix associated with the finite element space Qh for the multiplier. This can then

be readily used with the Sherman–Morrison–Woodbury formula to derive an approxi-

mation of the Schur complement. Moreover, the second term (F(2nj · u),F(2nj · v))0

in fact characterises the difference between A∗ and B>M−1
λ B, since the assembly

of 4 (nj · u,nj · v)0 is A∗. The next result (see Theorem 2.6) shows that such

difference vanishes as the mesh size h → 0 and thus, in this limit, the tractable

term B>M−1
λ B dominates A∗.

Theorem 2.6. Let (δnh, δλh) ∈ Vh ×Qh be the solution of the augmented discrete

system (2.3.1.3) with corresponding degrees of freedom (U,X) ∈ Rn × Rm. Assume

that ‖δnh‖1 is bounded as h → 0. Then, for the Newton linearisation at a given

approximation (nj, λj) satisfying α ≤ |nj|2 ≤ β with 0 < α ≤ 1 ≤ β and |∇nj|

bounded pointwise a.e., we have

∥∥∥(A∗ −B>M−1
λ B

)
U
∥∥∥
Rn

. h1+ d
2‖δnh‖1,

where ‖ · ‖Rn denotes the Euclidean norm.
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Proof. Assuming vh ∈ Vh and using the basis representations in Vh = span{ϕi} for

δnh and vh:

δnh =
n∑
i=1

Uiϕi, vh =
n∑
i=1

Yiϕi,

we obtain∥∥∥(A∗ −B>M−1
λ B

)
U
∥∥∥
Rn

= sup
‖Y ‖Rn=1

Y >
(
A∗ −B>M−1

λ B
)
U

= sup
vh=

∑n

i=1 Yiϕi
‖Y ‖Rn=1

(F(2nj · δnh),F(2nj · vh))0

≤ sup
vh=

∑n

i=1 Yiϕi
‖Y ‖Rn=1

‖F(2nj · δnh)‖0‖F(2nj · vh)‖0

≤ ‖F‖︸︷︷︸
G1

sup
vh=

∑n

i=1 Yiϕi
‖Y ‖Rn=1

‖2nj · vh‖0

︸ ︷︷ ︸
G2

‖F(2nj · δnh)‖0︸ ︷︷ ︸
G3

by applying the Cauchy–Schwarz inequality.

One readily sees that G1 ≤ C1 for a certain constant C1 from the continuity of

F. Furthermore, we write

G2 = sup
vh=

∑n

i=1 Yiϕi

‖2nj · vh‖0

‖Y ‖Rn
.

Note that [KA00, Theorem 3.43] as used in [HR12] gives the relation between the

discrete vector Y and its associated continuous function vh:

‖Y ‖Rn ≥ Crh
− d2‖vh‖0,

for some Cr > 0. Then with the fact that nj is bounded we have

G2 ≤ sup
vh

‖2nj · vh‖0

Crh
− d2‖vh‖0

≤ C2h
d
2 .

Moreover, [Clé75, Theorem 1] implies

‖F(p)‖0 = ‖p− ΠQhp‖0 ≤ C4h‖p‖1 ∀p ∈ H1(Ω),

and we can deduce the following L2-projection error estimate

G3 = ‖F(2nj · δnh)‖0 ≤ C4h‖2nj · δnh‖1 ≤ C3h‖δnh‖1.
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Note here we have used the pointwise boundedness of nj,∇nj a.e. and the fact that

δnh ∈ Vh ⊂ H1(Ω).

Combining these estimates regarding G1, G2, G3, we find

∥∥∥(A∗ −B>M−1
λ B

)
U
∥∥∥
Rn

. h1+ d
2‖δnh‖1 → 0 as h→ 0.

The proof is complete.

This result suggests the use of the algebraic approximation

Sγ ≈ −B
(
A + γB>M−1

λ B
)−1

B>. (2.3.2.1)

The reason for doing so is that we can straightforwardly calculate the inverse

(note the solver requires the action of S−1
γ , i.e., solving linear systems involving

Sγ) of this approximation (2.3.2.1) by the Sherman–Morrison–Woodbury formula

as shown in the following Lemma 2.7.

Lemma 2.7. The Schur complement approximation satisfies

S−1
γ = S−1 − γM−1

λ . (2.3.2.2)

Proof. Recalling the Sherman–Morrison–Woodbury formula [Hag89]: for matrices

E, U1, P and U2 where E, P and P−1 + U2E−1U1 are invertible, it holds that

(E + U1PU2)−1 = E−1 − E−1U1
(
P−1 + U2E−1U1

)−1
U2E−1. (2.3.2.3)

We now apply this formula twice to obtain

S−1
γ =

(
−B

(
A + γB>M−1

λ B
)−1

B>
)−1

= −
B

A−1 −A−1B>
(

1
γ

Mλ + BA−1B>
)−1

BA−1

B>
−1

by (2.3.2.3),

= −

BA−1B>︸ ︷︷ ︸
−S

−BA−1B>︸ ︷︷ ︸
−S

1
γ

Mλ + BA−1B>︸ ︷︷ ︸
−S

−1

BA−1B>︸ ︷︷ ︸
−S


−1

=
S + S

(
1
γ

Mλ − S
)−1

S

−1
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= S−1 − S−1S
(

1
γ

Mλ − S + SS−1S
)−1

SS−1 by (2.3.2.3),

= S−1 − γM−1
λ .

This completes the proof.

Induced from the above result (2.3.2.2) for the inverse of the Schur comple-

ment approximation, a simple and effective approach for large γ is to employ

the approximation

S−1
γ ≈ −γM−1

λ . (2.3.2.4)

On the infinite-dimensional level, the effect of the augmented Lagrangian term

is to make −γ−1I (I the identity operator on the multiplier space) an effective

approximation for the Schur complement [PT74, Lemma 3]. When discretised, this

indicates that the weighted multiplier mass matrix −γ−1Mλ will be an effective

approximation for Sγ, with the approximation improving as γ → ∞.

In fact, the approximation of the inverse of the discretely augmented Schur

complement (2.3.2.4) can be improved further by combining −γM−1
λ with a good

approximation of the unaugmented Schur complement S [HVK18]. Given an

approximation S̃ of S, we employ

S−1
γ ≈ S̃−1

γ = S̃−1 − γM−1
λ . (2.3.2.5)

It is therefore of interest to consider the Schur complement of the unaugmented

problem. In the context of the Stokes equations, the Schur complement is spectrally

equivalent to the viscosity-weighted pressure mass matrix [SW94; WS91; ESW14].

Following similar techniques, an approximation can be obtained by proving that

BA−1B> is spectrally equivalent to Mλ for the equal-constant nematic case. This

gives us good insight into the choice of S̃−1.

Theorem 2.8. Assume that the finite dimensional spaces Vh ⊂ H1
0(Ω) and Qh ⊂

L2(Ω) are inf-sup stable. For equal-constant nematic LC problems without augmented

Lagrangian stabilisation, the matrix BA−1B> arising from the Newton-linearised
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system is spectrally equivalent to the multiplier mass matrix Mλ, under the same

assumptions as in Lemma 2.4.

Proof. For the equal-constant model with Dirichlet boundary conditions n = nb ∈

H1/2(∂Ω,S2), its corresponding Lagrangian is

L(n, λ) = Kc

2 (∇n,∇n)0 + (λ,n · n− 1)0 .

After Newton linearisation and due to the inf-sup stability of the finite element pair

Vh-Qh, the discrete variational problem is to find δnh ∈ Vh, δλh ∈ Qh satisfying

Kc (∇δnh,∇vh)0 +2 (λj, δnh · vh)0 + 2 (δλh,nj · vh)0

= −Kc (∇nj · ∇vh)0 − 2 (λj,nj · vh)0 ∀vh ∈ Vh,

2 (µh,nj · δnh)0 = − (µh,nj · nj − 1)0 ∀µh ∈ Qh,

where nj and λj represent the current approximations to n and λ, respectively.

This can be rewritten in block matrix form as

R
[
U
X

]
:=
[
A B>
B 0

] [
U
X

]
=
[
f
g

]
,

where as before U ∈ Rn and X ∈ Rm are the unknown coefficients of the discrete

director update and the discrete Lagrange multiplier update with respect to the

basis functions in Vh and Qh, and A denotes the symmetric form Kc (∇δnh,∇vh)0 +

2 (λj, δnh · vh)0. The coercivity property of the bilinear form from Lemma 2.4

ensures that A is positive definite.

The coefficient matrix R is symmetric and indefinite (resulting in R possessing

both positive and negative eigenvalues). Moreover, R is non-singular if and only if

B has full row rank, which can be deduced from the discrete inf-sup condition.

Denote
‖uh‖2

lc = Kc (∇uh,∇uh)0 + (λj, 2uh · uh)0 ,

‖µh‖2
0 = (µh, µh)0 .

Notice that the validity of the first norm follows from the assumed pointwise

non-negativity of λj.
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For a stable mixed finite element, from the inf-sup condition, there exists a

positive constant C independent of the mesh size h such that

sup
uh∈Vh\{0}

(µh, 2nj · uh)0
‖uh‖lc

≥ C‖µh‖0 ∀µh ∈ Qh,

leading to its matrix form

max
U∈Rn\{0}

X>BU
[U>AU ]1/2 ≥ C[X>MλX]1/2 ∀X ∈ Rm.

Thus, we have

C[X>MλX]1/2 ≤ max
U∈Rn\{0}

X>BU
[U>AU ]1/2

= max
z=A1/2U 6=0

X>BA−1/2z
[z>z]1/2

= (X>BA−1B>X)1/2 ∀X ∈ Rm,

where the maximum is attained at z = (X>BA−1/2)>. It yields

C2X
>MλX

X>X
≤ X>BA−1B>X

X>X
∀X ∈ Rm\{0}. (2.3.2.6)

Regardless of the stability of the finite element pair, we can deduce from the

boundedness of b(·, ·) that there exists a positive constant C1 such that

X>BU ≤ C1[X>MλX]1/2[U>AU ]1/2 ∀U ∈ Rn,∀X ∈ Rm.

Hence,

C1[X>MλX]1/2 ≥ max
U∈Rn\{0}

X>BU
[U>AU ]1/2

= max
z=A1/2U 6=0

X>BA−1/2z
[z>z]1/2

= (X>BA−1B>X)1/2 ∀X ∈ Rm,

where again the maximum is attained at z = (X>BA−1/2)>. This gives rise to

X>BA−1B>X
X>MλX

≤ C2
1 ∀X ∈ Rm\{0}. (2.3.2.7)

Therefore for inf-sup stable finite element pairs, we have by (2.3.2.6) and (2.3.2.7)

C2 ≤ X>BA−1B>X
X>MλX

≤ C2
1 ∀X ∈ Rm\{0}.

This indicates that BA−1B> is spectrally equivalent to Mλ.
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Remark 2.8. It follows from Theorem 2.8 that γ = 0 should show mesh-independence

(i.e., the average number of Flexible GMRES (abbreviated as FGMRES in the

following; this allows for the use of different preconditioner in each iteration step)

iterations per nonlinear iteration does not deteriorate as one refines the mesh) in the

case of equal-constant nematic LC. This can be observed in subsequent numerical

experiments reported in Table 4.6 (see the column where γ = 0). One should also

notice that such mesh-independence for γ = 0 is also shown in Table 4.2 for the

non-equal-constant case, suggesting it has use outside the context of augmented

Lagrangian methods also.

Combining Theorem 2.8 with (2.3.2.5), our final approximation for S−1
γ is given by

S−1
γ ≈ S̃−1

γ = −(1 + γ)M−1
λ . (2.3.2.8)

2.3.3 Improvement of the constraint

We have now observed that the continuous AL form introduced in Section 2.3.2 can

help control the Schur complement. Another contribution of this AL stabilisation is

that it improves the discrete enforcement of the constraint as we increase the value

of the penalty parameter γ. An example of improving the linear divergence-free

constraint in the Stokes system can be found in [Joh+17, Section 5.1]. In this

section, we will use a similar strategy to show the improvement of the discrete

constraint as γ increases.

We restrict ourselves to the equal-constant case with constant Dirichlet boundary

conditions. That is to say, we consider the Oseen–Frank model with Dirichlet bound-

ary condition n|∂Ω = nb, where nb is a nonzero constant vector satisfying |nb| = 1.

Remark 2.9. One may wonder whether the solution under this assumption of

boundary conditions is the constant boundary data itself, i.e., nh = nb in the domain

Ω, and thus the unit-length constraint is actually satisfied exactly. In fact, nh = nb

is indeed an equilibrium of the energy minimisation problem (2.1.0.1), however, it

is not the only one and not in general the one with the lowest energy value. An

example supports this fact can be seen in [Eme+18], where n = (0, 0, 1) is strongly
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enforced on the boundary while many computed solutions are not (0, 0, 1) everywhere

in the domain Ω.

We use the [P1]d-P1 finite element pair in this section, so both the director n

and the Lagrange multiplier λ are approximated by continuous piecewise-linear

polynomials. For this section, we denote finite element spaces for the director

and the Lagrange multiplier by Vh,b := Vh ∩H1
b(Ω) and Qh ⊂ L2(Ω), respectively,

and denote Vh,0 = Vh ∩ H1
0(Ω).

We restate the associated nonlinear discrete variational problem as follows:

find (nh, λh) ∈ Vh,b × Qh such that

Kc (∇nh,∇vh)0 +Kcq0 (vh,∇× nh)0 +Kcq0 (nh,∇× vh)0

+ 2 (λh,nh · vh)0 + 2γ (nh · nh − 1,nh · vh)0 = 0 ∀vh ∈ Vh,0,
(2.3.3.1a)

(µh,nh · nh − 1)0 = 0 ∀µh ∈ Qh. (2.3.3.1b)

Take the test function vh = nh − nb ∈ Vh,0 in (2.3.3.1a) to obtain

Kc‖∇nh‖2
0 + 2Kcq0 (nh,∇× nh)0 + 2 (λh,nh · nh)0 + 2γ (nh · nh − 1,nh · nh)0

= Kcq0 (nb,∇× nh)0 + 2 (λh,nh · nb)0 + 2γ (nh · nh − 1,nh · nb)0 .
(2.3.3.2)

Note that in this step we have used the fact that since nb is a constant vector,

its derivative is zero.

As (2.3.3.1b) is valid for arbitrary µh ∈ Qh and one can easily verify that

nh · nb ∈ Qh, we have

(nh · nb,nh · nh − 1)0 = 0.

Then taking µh = 1 and µh = λh leads to

(1,nh · nh − 1)0 = 0 and (λh,nh · nh − 1)0 = 0,

respectively. Thus, (2.3.3.2) collapses to

Kc‖∇nh‖2
0+2Kcq0 (nh,∇× nh)0 + 2 (λh, 1)0 + 2γ‖nh · nh − 1‖2

0

= Kcq0 (nb,∇× nh)0 + 2 (λh,nh · nb)0 .
(2.3.3.3)
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By the Cauchy–Schwarz and Hölder inequalities, we observe an upper bound for

the right-hand side of (2.3.3.3):

Kcq0 (nb,∇× nh)0 + 2 (λh,nh · nb)0 ≤ Kcq0‖∇ × nh‖0 + 2‖λh‖0‖nh‖0

≤ Kcq0

2 + Kcq0

2 ‖∇ × nh‖2
0 + ‖λh‖2

0 + ‖nh‖2
0.

(2.3.3.4)

Meanwhile, the left-hand side of (2.3.3.3) can be bounded from below:

Kc‖∇nh‖2
0 + 2Kcq0 (nh,∇× nh)0 + 2 (λh, 1)0 + 2γ‖nh · nh − 1‖2

0

≥ Kc‖∇nh‖2
0 − 2Kcq0| (nh,∇× nh)0 | − 2| (λh, 1)0 |+ 2γ‖nh · nh − 1‖2

0

≥ Kc‖∇nh‖2
0 −Kcq0‖nh‖2

0 −Kcq0‖∇ × nh‖2
0 − ‖λh‖2

0 − |Ω|+ 2γ‖nh · nh − 1‖2
0,

(2.3.3.5)

where |Ω| denotes the measure of the domain Ω.

Hence, by combining (2.3.3.4) and (2.3.3.5), we have

Kc‖∇nh‖2
0−(Kcq0 + 1)‖nh‖2

0 −
3
2Kcq0‖∇ × nh‖2

0

− ‖λh‖2
0 + 2γ‖nh · nh − 1‖2

0 ≤
Kcq0

2 + |Ω|.
(2.3.3.6)

Note that the right-hand side of (2.3.3.6) is a fixed constant independent of γ

and those negative terms on the left-hand side actually depends on γ since both

nh and λh depends on γ. Therefore, taking γ larger value does not directly force

the constraint approximation error ‖nh · nh − 1‖0 to become smaller. That is

to say, (2.3.3.6) does not imply that ‖nh · nh − 1‖0 ≤ O(γ−1/2). However, this

improvement of the discrete constraint as γ increases can be observed in our

numerical experiments illustrated in Chapter 4.

Remark 2.10. The technique shown in this section can be extended in a similar

way to the multi-constant case; we omit the details here for brevity.

2.4 Summary

In this chapter, we considered the Oseen–Frank model of cholesteric LC, which

demands a unit-length constraint be enforced. We then applied the continuous

augmented Lagrangian form for constraint penalisation and illustrated its two major
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effects: the improvement of the discrete constraint nh · nh = 1, and a better control

on the Schur complement using a weighted mass matrix approximation. However,

this results in a more complicated top-left block to be solved, which we will tackle

by means of a robust multigrid method in the next chapter.
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As discussed in the previous chapter, the addition of the augmented Lagrangian

term gives a better approximation to the Schur complement (we will see this in

Tables 4.2 and 4.6). However, the tradeoff is that it complicates the solution of

the top-left block Aγ, as it adds a semi-definite term with a large coefficient. We

demonstrate this effect in Table 3.1 where we apply the block preconditioner with

the Schur complement approximation S̃−1
γ as given by (2.3.2.8) and Aγ = A + γA∗

solved approximately with one V-cycle of standard geometric multigrid with Jacobi

relaxation. Table 3.1 shows that the solver is neither γ- or h-robust. Thus, for

the augmented Lagrangian strategy to be successful, we require a parameter-

independent solver for the top-left block.

Fortunately, a rich literature is available to guide the development of multigrid

solvers for nearly singular systems with the presence of a semi-definite term; see for

33
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γ

#refs #dofs 101 102 103 104 105 106

1 5,340 33.75(4) 14.80(5) 6.20(5) 4.38(8) 7.18(11) 32.53(19)
2 21,080 75.00(5) 31.80(5) 11.60(5) 4.86(7) 5.83(12) 16.53(15)
3 83,760 >100 57.60(5) 24.60(5) 10.17(6) 46.75(8) >100
4 333,920 >100 >100 90.80(5) 19.67(6) >100 >100

Table 3.1: The average number of FGMRES iterations per Newton iteration (total
number of Newton iterations) for a nematic LC problem in a square slab. See the detailed
problem description in Chapter 4.

instance [Sch99a; Sch99b; Lee+07]. Particularly, Schöberl’s seminal paper [Sch99a]

on the construction of parameter-robust multigrid schemes lists two requirements

that must be satisfied for the top-left solve to be robust. The first requirement

is a parameter-robust relaxation method; this is achieved by developing a space

decomposition that stably captures the kernel of the semi-definite terms. The second

requirement is a parameter-robust prolongation operator, i.e., one whose continuity

constant is independent of the parameters. This is achieved by (approximately)

mapping kernel functions on coarse grids to kernel functions on fine grids. We

separately discuss both of these requirements below.

In this chapter, we will construct a parameter-robust multigrid algorithm based

on these works [Sch99a; Sch99b; Lee+07]. Some extensions of the analysis from

Schöberl’s work [Sch99b] are given for the LC case. Then in order to verify the

two aforementioned requirements of constructing the robust multigrid algorithm, a

detailed example using the point-block Jacobi or star relaxation and the natural

prolongation is illustrated for two-dimensional cholesteric problems.

For ease of notation, we consider the two-grid method applied to the equal-

constant nematic case, and use subscripts h and H to distinguish fine and coarse

mesh levels respectively. That is to say, VH represents the coarse-grid function

space and we denote the associated operator AH,γ : VH → V ∗H

(AH,γuH ,vH)0 := am(uH ,vH)
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with approximations uH ,vH on VH . The analysis in this chapter can be extended

to more complicated cases, e.g., with non-equal constants and more than two

levels of grids.

For the domain Ω, we consider a non-overlapping triangulation TH , i.e.,

∪T∈THT = Ω̄ and int(Ti) ∩ int(Tj) = ∅ ∀Ti 6= Tj, Ti, Tj ∈ TH .

The fine grid Th with h = H/2 is obtained by a regular refinement of the simplices

in TH . In what follows we consider both the [P1]d-P1 and [P2]d-P1 discretisations.

3.1 Relaxation

After applying the AL method introduced in Section 2.3.1, the discrete linear

variational form corresponding to the top-left block Aγ = A + γA∗ is given by

am(uh,vh) = Kc (∇uh,∇vh)0 + 2 (λj,uh · vh)0 + 4γ (nj · uh,nj · vh)0 , (3.1.0.1)

with uh ∈ Vh ⊂ H1
0(Ω) being the trial function and vh ∈ Vh the test function.

Note that nj and λj are the current approximations to the director n and the

Lagrange multiplier λ, respectively, in the Newton iteration. The first two terms

of am are symmetric and coercive because of the running assumption of uniform

non-negativity of λj. The kernel of the semi-definite term involving γ is

Nh = {uh ∈ Vh : nj · uh = 0 a.e.}. (3.1.0.2)

In the case of γ being very large, the variational problem involving (3.1.0.1) is

nearly singular and common relaxation methods like Jacobi and Gauss–Seidel will

not yield effective multigrid cycles, as we explain below.

Relaxation schemes can be devised in a generic way by considering space

decompositions

Vh =
M∑
i=1

Vi, (3.1.0.3)
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where the sum of vector spaces on the right is not necessarily a direct sum [Xu92].

For example, if Vh = span(ϕ1, . . . , ϕM), Jacobi and Gauss–Seidel iterations are

induced by the space decomposition

Vi = span(ϕi), (3.1.0.4)

where the updates are performed additively for Jacobi and multiplicatively for Gauss–

Seidel. One of the key insights of [Sch99a; Lee+07] was that the key requirement

for parameter-robustness when applied to nearly singular problems is that the space

decomposition must satisfy the kernel-capturing property

Nh =
M∑
i=1

(Vi ∩Nh), (3.1.0.5)

that is, any kernel function can be written as a sum of kernel functions drawn from

the subspaces. In particular, each subspace Vi must be rich enough to support kernel

functions; in our context, this is not satisfied by the choice (3.1.0.4), accounting

for its poor behaviour shown in Table 3.1 as γ → ∞.

In the mesh triangulation Th, we denote the star of a vertex vi as the patch

of elements sharing vi, i.e.,

star(vi) :=
⋃

T∈Th:vi∈T
T.

This induces an associated space decomposition, called the star patch, by

Vi := {uh ∈ Vh : supp(uh) ⊂ star(vi)}.

This is illustrated in Figure 3.1 (left). We call the induced relaxation method a

star iteration. In effect, each subspace solve solves for the degrees of freedom in the

interior of the patch of cells, with homogeneous Dirichlet conditions on the boundary

of the patch. Given a vertex or edge midpoint vi, we denote the point-block patch Vi
as the span of the basis functions associated with degrees of freedom that evaluate

a function at vi (see Figure 3.1, middle). The induced relaxation method solves for

all colocated degrees of freedom simultaneously. These two space decompositions

coincide for the [P1]d-P1 discretisation (see Figure 3.1, right).
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Figure 3.1: Illustrations of the star patch of the center vertex (left) and the point-block
patch (middle) for the finite element pair [P2]2-P1. Note that these two patches are the
same for [P1]2-P1 discretisation (right). Here, black dots represent the degrees of freedom,
and the blue lines gather degrees of freedom solved for simultaneously in the relaxation.

We now briefly explain why these two decompositions approximately satisfy

the kernel-capturing condition (3.1.0.5) for the finite element pair [P1]d-P1. First,

we define an approximate kernel

Ñh = {uh ∈ Vh : nj · uh = 0 on each vertex}. (3.1.0.6)

Since nj is the current approximation to the director n, we have nj ∈ Vh = ∑
i Vi.

We are therefore able to express nj as nj = ∑
i nij, where nij ∈ Vi describes the

function at the vertex vi. Similarly, we split uh into uh = ∑
i uih with uih ∈ Vi.

For each vertex vi, the requirement uh ∈ Ñh yields

nij · uih = 0 ∀i. (3.1.0.7)

The definition of Vi ensures that uih and nij are only supported on the interior of

the star of vi. We deduce that on each vertex

nkj · uih = 0 ∀i 6= k,

which yields ∑k nkj · uih = nj · uih = 0. Hence, uih ∈ Ñh∀i and we obtain the

kernel-capturing condition (3.1.0.5) for the approximate kernel Ñh.

For the [P2]d-P1 finite element pair, the satisfaction of the kernel-capturing

property for the approximate kernel follows along similar lines. For the point-block

patch, (3.1.0.7) still holds. The star patch uses larger subspaces, each one including

multiple point-block patches, but it can be easily verified that (3.1.0.7) is still fulfilled.
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3.1.1 Robustness analysis of the approximate kernel

While we are not able to prove the kernel capturing property for the exact kernel

(3.1.0.2), we can still obtain the spectral inequalities

c1Dh,γ ≤ Ah,γ ≤ c2Dh,γ, (3.1.1.1)

when using the approximate kernel (3.1.0.6). Here, Dh,γ is the preconditioner to be

specified later for the operator Ah,γ and C ≤ D represents ‖u‖C ≤ ‖u‖D for all u.

We prove that c1 depends on γ, but the dependence can be well controlled so that

the preconditioner is not badly affected by varying γ, while c2 is always independent

of γ. For simplicity, we prove the case for the equal-constant nematic case with

the [P1]d-P1 discretisation; extensions to the non-equal-constant cholesteric case

and to the [P2]d-P1 discretisation are possible.

We define the operator associated to am, Ah,γ : Vh → V ∗h , by

(Ah,γuh,vh)0 := am(uh,vh).

For the space decomposition Vh = ∑
i Vi, we denote the lifting operator (the

natural inclusion) by Ii : Vi → Vh and choose the Galerkin subspace operator

Ai : Vi → Vi to satisfy

(Aiui,vi)0 := (Ah,γIiui, Iivi)0 ∀ui,vi ∈ Vi.

This implies that Ai = I∗i Ah,γIi.

The additive Schwarz preconditioner Dh,γ for a problem Ah,γwh = dh associated

with the space decomposition (3.1.0.3) is defined by the action of its inverse [Xu92]:

wh = D−1
h,γdh

given by

wh =
M∑
i=1

Iiwi,

with wi ∈ Vi being the unique solution of

(Aiwi, vi)0 = (dh, Iivi)0 ∀vi ∈ Vi.
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Hence, we can rewrite the preconditioning operator D−1
h,γ in operator form as

D−1
h,γ =

M∑
i=1

IiA
−1
i I∗i .

We now state for completeness a classical result in the analysis of additive

Schwarz preconditioners, see e.g. [Sch99b, Theorem 3.1] and the references therein.

Theorem 3.1. Define the splitting norm for uh ∈ Vh as

|||uh|||2 := inf
uh=

∑
i
Iiui

ui∈Vi

M∑
i=1
‖ui‖2

Ai
.

This splitting norm is equal to the norm ‖uh‖Dh,γ := (Dh,γuh,uh)1/2
0 generated by

the additive Schwarz preconditioner, i.e. it holds that

|||uh|||2 = ‖uh‖2
Dh,γ

∀uh ∈ Vh.

To build intuition, let us examine why Jacobi relaxation defined by the space

decomposition (3.1.0.4) is not robust as γ →∞. With (3.1.0.4), the decomposition

uh = ∑M
i ui,ui ∈ Vi is unique. It yields that

‖uh‖2
Dh,γ

= |||uh|||2 =
∑
i

(Aiui,ui)0 =
∑
i

(Ah,γui,ui)0

. (1 + γ)
∑
i

‖ui‖2
1 .

1 + γ

h2

∑
i

‖ui‖2
0 .

1 + γ

h2 ‖uh‖
2
0

.
1 + γ

h2 ‖uh‖
2
Ah,γ

. (3.1.1.2)

Note that the bound in (3.1.1.2) is parameter-dependent and deteriorates as

γ → ∞ or h → 0.

In order to deduce the robustness result for our approximate kernel (3.1.0.6),

we first derive the following lemma.

Lemma 3.2. Let u0 = ∑M
i ui0 ∈ Ñh and assume nj ∈ [P1]d. Then it holds that

M∑
i

‖ui0 · nj‖2
L2(Ω) . h2‖Dnj‖2

L∞(Ω)‖u0‖2
L2(Ω),

where Dnj denotes the Jacobian matrix of nj.
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Proof. Consider the vertex vi on the boundary of an element T . As nj ∈ [P1]d, we

have

(ui0 · nj)(x) = ui0(x) · nj(vi) + ui0(x) · [Dnj(vi)(x− vi)] ∀x ∈ T.

Note that ui0 · nj vanishes at the vertex vi as u0 ∈ Ñh. Moreover, we know

ui0(x)/‖ui0(x)‖ is constant on the interior of the patch around vi, and ui0(x) is zero

on the boundary of the patch, since we can write ui0(x) = u0(vi)ψi(x) with ψi

denoting the scalar piecewise linear basis function (vanishing outside the patch)

associated with vi. Therefore, we can deduce ui0(x) · nj(vi) = 0 on T . In addition,

we have ‖x− vi‖ . h on the element T . We thus conclude that

‖ui0 · nj‖L2(T ) . h‖Dnj‖L∞(T )‖ui0‖L2(T ).

From this we are able to show that for both the star and point-block patches around

vi, ∑
i

‖ui0 · nj‖2
L2(patch(vi)) .

∑
i

h2‖Dnj‖2
L∞(patch(vi))‖u

i
0‖2
L2(patch(vi))

. h2‖Dnj‖2
L∞(Ω)

∑
i

‖ui0‖2
L2(Ω)

. h2‖Dnj‖2
L∞(Ω)‖u0‖2

L2(Ω).

Therefore, with the local support of ui0 we have

∑
i

‖ui0 · nj‖2
L2(Ω) =

∑
i

‖ui0 · nj‖2
L2(patch(vi)) . h2‖Dnj‖2

L∞(Ω)‖u0‖2
L2(Ω).

We now derive the general form of the spectral bounds in (3.1.1.1). This follows

a similar approach to [Sch99b, Theorem 4.1], but with a different assumption

on the splitting approximation, to allow for a dependence on γ. Given a space

decomposition Vh = ∑M
i Vi, we define its overlap NO as

NO := max
1≤i≤M

M∑
j=1

gij,

where

gij =
1 if ∃vi ∈ Vi,vj ∈ Vj : |supp(vi) ∩ supp(vj)| > 0,

0 otherwise
measures the interaction between each subspace.
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Theorem 3.3. Let {Vi} be a subspace decomposition of Vh with overlap NO. Assume

that the finite element pair Vh-Qh for (u, λ) is inf-sup stable for the mixed problem

B((u, λ); (v, µ)) := Kc (∇u,∇v)0 + 2 (λ,nj · v)0 + 2 (µ,nj · u)0

= F(v, µ) ∀(v, µ) ∈ Vh ×Qh,

where F is a known functional. Furthermore, assume that the function uh ∈ Vh

and the kernel function u0 ∈ Nh can be split locally with estimates depending on the

mesh size h and possibly on γ if the kernel-capturing property is not satisfied:

inf
uh=

∑
i

uih
uih∈Vi

∑
i

‖uih‖2
1 ≤ c1(h)‖uh‖2

0,

inf
u0=

∑
i

ui0
ui0∈Vi

∑
i

‖ui0‖2
Ah,γ
≤ (c2(h) + c3(h, γ)) ‖u0‖2

0.

Then the additive Schwarz preconditioner Dh,γ built on the decomposition {Vi}

satisfies

(c1(h) + c2(h) + c3(h, γ))−1Dh,γ ≤ Ah,γ ≤ NODh,γ, (3.1.1.3)

with constants c1 and c2 independent of γ.

Proof. The upper bound can be directly given by [Sch99b, Lemma 3.2] independent

of the form of partial differential equations.

For the lower bound, choose uh ∈ Vh and split it into uh = u0 + u1, by solving

B((u1, λ1), (vh, µh)) = 2 (µh,nj · uh)0 ∀(vh, µh) ∈ Vh ×Qh. (3.1.1.4)

Testing with vh = 0 in (3.1.1.4), we obtain that

(µh,nj · u1)0 = (µh,nj · uh)0 ∀µh ∈ Qh.

Furthermore, since the current approximation nj is well-controlled as from As-

sumption 2.3, nj · u belongs to L2(Ω). Hence, nj · u0 = 0 a.e., that is to say

u0 ∈ Nh.
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By stability of the finite element pair Vh-Qh, we have

‖u1‖1 . sup
vh∈Vh
µh∈Qh

B((u1, λ1), (vh, µh))
‖(vh, µh)‖

. sup
vh∈Vh
µh∈Qh

‖nj · uh‖0‖µh‖0

‖(vh, µh)‖

≤ ‖nj · uh‖0.

It follows that

‖u1‖1 . ‖uh‖0

by the boundedness of nj and

‖u1‖1 . γ−1/2‖uh‖Ah,γ

by the form of the operator Ah,γ, respectively. Using u0 = uh − u1, we have in

addition that

‖u0‖1 . ‖uh‖1.

We now calculate

‖uh‖2
Dh,γ

= |||uh|||2

≤ inf
u1=

∑
i

ui1
ui1∈Vi

∑
i

‖ui1‖2
Ah,γ

+ inf
u0=

∑
i

ui0
ui0∈Vi

∑
i

‖ui0‖2
Ah,γ

. (1 + γ) inf
u1=

∑
i

ui1
ui1∈Vi

∑
i

‖ui1‖2
1 + (c2(h) + c3(h, γ)) ‖u0‖2

0

. (1 + γ)c1(h)‖u1‖2
0 + (c2(h) + c3(h, γ)) ‖u0‖2

1

. (1 + γ)c1(h)‖u1‖2
1 + (c2(h) + c3(h, γ)) ‖uh‖2

1

. (c1(h) + c2(h) + c3(h, γ)) ‖uh‖2
Ah,γ

, (3.1.1.5)

completing the proof of the spectral estimates (3.1.1.3).

Remark 3.1. Note that in Theorem 3.3, if the kernel-capturing property (3.1.0.5)

is satisfied, then c3 will be zero. Hence, we will instead get a parameter-independent

result.
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Corollary 3.4. In Theorem 3.3, if we take Vh-Qh to be constructed by the [P1]d-P1

element, it holds that

(
c1(h) + c2(h) + γh2‖Dnj‖2

∞

)−1
Dh,γ ≤ Ah,γ ≤ NODh,γ,

with constants c1(h), c2(h) ∼ O(h−2).

Proof. We follow the main argument of Theorem 3.3. We have only proven the

kernel-capturing property for the approximate kernel (3.1.0.6) rather than (3.1.0.2),

and need to account for this in the estimates. From Lemma 3.2 and the definition

of Ah,γ we have that

c3(h, γ) = γh2‖Dnj‖2
∞.

With the choice of Vh = [P1]d, we will use the so-called inverse inequality (its

proof can be found in any finite element book, e.g., [Cia78]) which states that

‖vh‖1 . h−1‖vh‖0 ∀vh ∈ Vh.

Therefore, it is straightforward to obtain that c1 and c2 are actually O(h−2). Notice

here we have also used the form of ‖ · ‖Ah,γ in estimating c2(h).

Finally, substituting the form of c3 in (3.1.1.5), we derive

‖uh‖2
Dh,γ

.
(
c1(h) + c2(h) + γh2‖Dnj‖2

∞

)
‖uh‖2

Ah,γ
,

with constants c1(h), c2(h) ∼ O(h−2).

The above Corollary 3.4 implies that we cannot entirely get rid of parameter γ

in the spectral estimates if the kernel-capturing property for the kernel (3.1.0.2)

is not satisfied and instead we get an additional factor of γh2‖Dnj‖2
∞. However,

this γ-dependence can be well controlled and does not impinge on the effectiveness

of our smoother; the dependence improves as the mesh becomes finer or as nj

becomes smoother.
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3.2 Prolongation

To construct a parameter-robust multigrid method, the prolongation operator is

also required to be continuous (in the energy norm associated with the PDE) with

the continuity constant independent of the penalty parameter γ [Sch99b, Theorem

4.2]. In the context of the Oseen, Navier–Stokes, and linear elasticity equations,

the prolongation operator was modified in order to guarantee that the continuity

constant is γ-independent [Sch99b; BO06; FMW19]. However, in our experiments

with the Oseen–Frank system, we observe robust convergence with respect to γ,

even when using the (cheaper) standard prolongation. This can be seen in Tables 4.7

and 4.8 of Chapter 4, for example. Hence, we will use the standard prolongation

with no modification in this part of work.

Remark 3.2. Since both discretisations [P1]d-P1 and [P2]d-P1 are nested, i.e.,

VH ⊂ Vh, the standard prolongation is actually a continuous (in the H1-norm)

natural inclusion.

3.3 Summary

In this chapter, we discussed constructing a robust multigrid algorithm for solving

the augmented top-left block in the derived saddle point system (2.3.1.5) of LC

problems. Two essential ingredients for the guarantee of robustness were examined:

a relaxation that captures the kernel of the augmentation term and a prolongation

operator that possesses a parameter-independent continuity constant. We will

present some numerical results to verify the effectiveness of our constructed AL

preconditioner in the next chapter.
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4.1 Algorithm details

In the following numerical experiments, we use the [P2]3-P1 element pair and use

flexible GMRES [Saa93] as the outermost linear solver, since GMRES [SS86] is

applied in the multigrid relaxation. An absolute tolerance of 10−8 was used for

the nonlinear solver, except for the convergence rate tests in Figure 4.4, which

used 10−10. A relative tolerance of 10−4 was used for the inner linear solver. We

use the full block factorisation preconditioner

Q−1 =
[
I −Ã−1

γ B>
0 I

] [
Ã−1
γ 0
0 S̃−1

γ

] [
I 0

−BÃ−1
γ I

]
,

where I is the identity matrix and Ã−1
γ represents solving the top-left block Aγ

inexactly by our specialised multigrid algorithm described in the previous chapter

45
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and the Schur complement approximation S̃−1
γ is given by (2.3.2.8). The multiplier

mass matrix inverse M−1
λ is solved using Cholesky factorisation.

For Ã−1
γ , we perform a multigrid V-cycle, where the problem on the coarsest

grid is solved exactly by Cholesky decomposition. On each finer level, as relaxation

we perform 3 GMRES iterations preconditioned by the additive star (denoted as

ALMG-STAR) iteration or additive point-block Jacobi (denoted as ALMG-PBJ)

iteration. In order to achieve convergence results independent of the number of

cores used in parallel, we only report iteration counts using additive relaxation,

although multiplicative ones generally give better convergence. The star and Vanka

relaxation methods are implemented using the PCPATCH preconditioner recently

included in PETSc [Far+21].

Code availability. For reproducibility, both the solver code [Xia20] and the

exact version of Firedrake [Fir20] used to produce the numerical results of this

chapter have been archived on Zenodo. An installation of Firedrake with components

matching those used in this chapter can be obtained by following the instructions

at https://www.firedrakeproject.org/download.html with

python3 firedrake-install --doi 10.5281/zenodo.4249051

4.2 Numerical results

We denote #refs and #dofs as the number of mesh refinements and degrees of

freedom, respectively, in the following experiments. The test problems in this

section assume that the domain represents a uniform slab in the xy-plane, i.e.,

n may have a nonzero z-component but ∂n
∂z

= 0. Hence, though the domain

is in two dimensions, we use the Cartesian representation of the director n =

(nx, ny, nz) throughout this chapter.

4.2.1 Periodic boundary condition in a square slab

Following the nematic benchmarks in [Adl+16, Section 5.1], we consider a generalised

twist equilibrium configuration in a square Ω = [0, 1]× [0, 1], which has an analytical

https://www.firedrakeproject.org/download.html
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solution [Ste04]. We will investigate the robustness of the solver when applied to

unequal Frank constants and nonzero cholesteric pitch.

We impose periodic boundary conditions in the x-direction and Dirichlet bound-

ary conditions in the y-direction, with values

n = [cosϑ0, 0,− sinϑ0]> on y = 0,

n = [cosϑ0, 0, sinϑ0]> on y = 1,

where ϑ0 = π/8.

We first consider parameter values K1 = 1.0, K2 = 1.2, K3 = 1.0, q0 = 0 when

solving the minimisation problem (2.1.0.1). The exact solution is given by

n = [cos(ϑ0(2y − 1)), 0, sin(ϑ0(2y − 1))]>,

with true free energy 2K2ϑ
2
0 ≈ 0.37011. An example of the pure twist configuration

is illustrated in Figure 4.1.

We use an initial guess of n0 = [1, 0, 0]> in the Newton iteration and a 10× 10

mesh of triangles of negative slope as the coarse grid.

Figure 4.1: A sample solution of the twist configuration. Colours represent the magnitude
of directors.

We first compare in Table 4.1 the nonlinear convergence of the Newton lin-

earisation (2.3.1.2) against that of the Picard iteration (2.3.1.3) we propose. For

these experiments we use the augmented Lagrangian preconditioner with ideal

inner solvers (denoted as ALLU), i.e. where the top-left block is solved exactly

by LU factorisation. The Picard iteration requires substantially fewer nonlinear

iterations for large γ. We expect that this relates to the degradation of the coercivity

estimate given in Lemma 2.5. Similar results were obtained on other test cases

and we adopt the Picard iteration henceforth.
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γ

#refs #dofs 103 104 105 106

Newton

1 5,340 2.20 (5) 1.14 (7) 1.00 (10) 1.00 (19)
2 21,080 3.20 (5) 1.14 (7) 1.00 (12) 1.00 (15)
3 83,760 3.83 (6) 1.57 (7) 1.11 (9) 1.00 (14)
4 333,920 4.67 (6) 2.14 (7) 1.00 (7) 1.00 (11)
5 1,333,440 5.17 (6) 2.43 (7) 1.57 (7) 1.00 (10)

Picard

1 5,340 2.00 (5) 1.20 (5) 1.14 (7) 1.11 (9)
2 21,080 3.00 (5) 1.40 (5) 1.17 (6) 1.12 (8)
3 83,760 3.83 (6) 2.00 (5) 1.17 (6) 1.14 (7)
4 333,920 4.67 (6) 2.29 (7) 1.14 (7) 1.17 (6)
5 1,333,440 5.17 (6) 2.57 (7) 1.50 (8) 1.17 (6)

Table 4.1: A comparison of the nonlinear convergence of the Newton linearisation
(2.3.1.2) and the Picard iteration (2.3.1.3) using ideal inner solvers for a nematic LC
problem in a square slab. The table shows the average number of outer FGMRES
iterations per nonlinear iteration and the total nonlinear iterations in brackets.

To see the efficiency of the Schur complement approximation (2.3.2.8) we used in

Section 2.3.2, we give the number of Krylov iterations for ALLU in Table 4.2. It can

be observed that as γ increases, the preconditioner becomes a better approximation

to the real Jacobian inverse and the preconditioner is mesh-independent.

Remark 4.1. It can be noted from Table 4.2 that ALLU seems to give a rather

reasonable solver for γ = 0 (and thus with no penalisation of the unit-length

constraint). One may wonder whether the example illustrated in this subsection is a

good one for testing the application of augmented Lagrangian methods. Indeed, this

is a simpler case but with a known exact solution and it is intended for showing the

efficiency and convergence rate of our proposed AL preconditioner. More complicated

cases will be given later.

The performance of ALMG-STAR (utilising the augmented Lagrangian precondi-

tioner with star patch as the relaxation in the multigrid algorithm) and ALMG-PBJ

(utilising the augmented Lagrangian preconditioner with the point-block Jacobian re-

laxation in the multigrid algorithm) are illustrated in Tables 4.3 and 4.4, respectively,

where both mesh-independence for γ = 106 and γ-robustness are observed.
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γ

#refs #dofs 0 1 10 102 103 104 105 106

1 5,340 10.40 9.20 8.00 5.40 2.00 1.20 1.14 1.11
2 21,080 14.20 13.20 9.20 5.80 3.00 1.40 1.17 1.12
3 83,760 4.75 4.75 6.75 6.40 3.83 2.00 1.17 1.14
4 333,920 5.50 4.50 7.25 7.20 4.67 2.29 1.14 1.17
5 1,333,440 5.25 3.75 5.75 7.00 5.17 2.57 1.50 1.17

Table 4.2: ALLU: The average number of FGMRES iterations per nonlinear iteration
for a nematic LC problem in a square slab using [P2]3-P1 discretisation. Note here the
last four columns are excerpted from Table 4.1 using the Picard iteration.

γ

#refs #dofs 103 104 105 106

1 5,340 2.60 (5) 2.40 (5) 2.29 (7) 2.29 (7)
2 21,080 4.20 (5) 2.20 (5) 2.50 (6) 3.29 (7)
3 83,760 8.00 (5) 3.00 (5) 2.33 (6) 3.33 (6)
4 333,920 11.60 (5) 5.17 (6) 2.17 (6) 2.29 (7)
5 1,333,440 15.20 (5) 8.43 (7) 3.14 (7) 1.78 (9)

Table 4.3: ALMG-STAR: the average number of FGMRES iterations per nonlinear
iteration (total Newton iterations) for the nematic LC problem in a square slab.

γ

#refs #dofs 103 104 105 106

1 5,340 3.20 (5) 2.60 (5) 3.00 (6) 3.57 (7)
2 21,080 5.60 (5) 2.60 (5) 2.83 (6) 3.71 (7)
3 83,760 10.00 (5) 3.80 (5) 2.80 (5) 3.00 (6)
4 333,920 15.40 (5) 7.00 (5) 2.50 (6) 2.83 (6)
5 1,333,440 >100 11.83 (6) 5.00 (5) 2.83 (6)

Table 4.4: ALMG-PBJ: the average number of FGMRES iterations per nonlinear
iteration (total Newton iterations) for the nematic LC problem in a square slab.

We also test the robustness of ALMG-STAR and ALMG-PBJ on other problem

parameters, e.g., the twist elastic constant K2 > 0 and the cholesteric pitch q0. To

this end, we continue K2 ∈ [0.2, 8] and q0 ∈ [0, 8] with step 0.1. We fix γ = 106,

since it gives the best performance in Tables 4.3 and 4.4. The numerical results of

ALMG-STAR and ALMG-PBJ in K2- and q0-continuation are shown in Figures 4.2

and 4.3, respectively. Clearly, a stable number of linear iterations is shown for
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both continuation experiments.
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Figure 4.2: Average number of FGMRES iterations per nonlinear iteration when
continuing in K2 for the LC problem in a square slab.
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Figure 4.3: Average number of FGMRES iterations per nonlinear iteration when
continuing in q0 for the LC problem in a square slab.

To examine the convergence order of the discretisation as a function of γ, we

apply the ALMG-PBJ solver for γ = 104, 105 and 106. Note that the convergence

result does not rely on the solver used. Figure 4.4 shows the L2- and H1-error

between the computed director and the known analytical solution. We observe third

order convergence of the director in the L2 norm and second order convergence

in the H1 norm for all values of γ considered.

To investigate the computational efficiency of the AL approach, we compare

our proposed AL-based solvers (ALMG-PBJ and ALMG-STAR) with a monolithic

multigrid preconditioner using Vanka relaxation [Adl+15a; Van86] on each level
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Figure 4.4: The convergence of the computed director as the mesh is refined for the
nematic LC problem in a square slab.

(denoted as MGVANKA) in Table 4.5. Essentially, MGVANKA applies multigrid

to the coupled director-multiplier problem, with an additive Schwarz relaxation

organised around gathering all director dofs coupled to a given multiplier dof. All

results are computed in serial. In our experiments, these two AL-based solvers

outperform MGVANKA even for small problems of about five thousand dofs. In

particular, ALMG-PBJ is the fastest method considered and is approximately five

times faster than MGVANKA for a problem with about five million dofs. We

also notice that ALMG-STAR is slower than ALMG-PBJ, which is caused by the

size of the star patch being larger than that of the point-block patch, requiring

more work in the multigrid relaxation.
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Computing time (in minutes)
#refs 1 2 3 4 5 6
#dofs 5,340 21,080 83,760 333,920 1,333,440 5,329,280
ALMG-PBJ 0.02 0.04 0.09 0.32 1.17 5.53
ALMG-STAR 0.02 0.07 0.23 0.79 2.95 12.86
MGVANKA 0.04 0.15 0.38 1.44 5.91 25.09

Table 4.5: The computing time of ALMG-PBJ, ALMG-STAR and MGVANKA as a
function of mesh refinement for the nematic LC problem in a square slab.

4.2.2 Equal-constant nematic case in an ellipse

Consider an ellipse of aspect ratio 3/2 with strong anchoring boundary condition

n = [0, 0, 1]> imposed on the entire boundary. We consider the equal-constant

nematic case K1 = K2 = K3 = 1, q0 = 0 in the minimisation problem (2.1.0.1)

to verify the theoretical results presented in previous sections with corresponding

discretisations. We use the initial guess n0 = [0, 0, 0.8]> in the nonlinear iteration.

The coarsest triangulation, generated in Gmsh [GR09], is illustrated in Figure 4.5.

Figure 4.5: The coarse mesh of the ellipse.

To verify our theoretical results about the improvement of the discrete enforce-

ment of the constraint in Section 2.3.3, we vary the penalty parameter γ, use one

refinement for the fine mesh, and employ the [P1]3-P1 element. The data is plotted

in Figure 4.6. The L2-norm ‖n · n− 1‖0 of the residual of the constraint decreases

as γ grows, and scales like O(γ−1/2) as expected.

The efficiency of the Schur complement approximation of Section 2.3.2 for the

[P2]3-P1 element can be observed in Table 4.6.

Tables 4.7 and 4.8 demonstrate the robustness of ALMG-STAR and ALMG-PBJ

with respect to γ and mesh refinement for the [P2]3-P1 element. It can be seen
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Figure 4.6: Comparison of the computed constraint ‖n · n− 1‖0 and the reference line
O(γ−1/2) using the [P1]3-P1 finite element pair for equal-constant nematic LC problems
in an ellipse.

γ

#refs #dofs 0 1 10 102 103 104 105 106

1 19,933 29.20 25.60 16.40 5.20 2.60 1.60 1.33 1.14
2 78,810 32.50 26.00 14.00 6.80 3.40 1.80 1.33 1.17
3 313,408 12.50 15.50 16.25 7.60 4.20 2.20 1.33 1.17
4 1,249,980 11.00 12.25 14.75 8.40 4.80 2.60 1.40 1.17
5 4,992,628 12.33 13.33 11.75 8.00 5.20 3.00 1.50 1.14

Table 4.6: ALLU: The average number of FGMRES iterations per nonlinear iteration
for an equal-constant nematic problem in an ellipse using [P2]3-P1 discretisation.

that both solvers are robust with respect to the penalty parameter γ, and with

respect to the mesh size h for γ = 106. The number of nonlinear iterations and

the number of FGMRES iterations per nonlinear step remain stable.

γ

#refs #dofs 103 104 105 106

1 19,933 2.60 (5) 1.60 (5) 1.80 (5) 1.67 (6)
2 78,810 4.40 (5) 1.80 (5) 1.60 (5) 1.50 (6)
3 313,408 6.80 (5) 3.20 (5) 1.50 (6) 1.50 (6)
4 1,249,980 10.00 (5) 4.67 (6) 1.80 (5) 1.50 (6)
5 4,992,628 14.40 (5) 7.50 (6) 4.20 (5) 1.33 (6)

Table 4.7: ALMG-STAR: the average number of FGMRES iterations per nonlinear
iteration (total nonlinear iterations) for equal-constant nematic problem in an ellipse
using [P2]3-P1 discretisation.
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γ

#refs #dofs 103 104 105 106

1 19,933 3.80 (5) 2.60 (5) 2.60 (5) 2.80 (5)
2 78,810 6.80 (5) 3.20 (5) 2.60 (5) 2.60 (5)
3 313,408 9.00 (5) 5.00 (5) 2.60 (5) 2.60 (5)
4 1,249,980 14.80 (5) 8.20 (5) 3.80 (5) 2.40 (5)
5 4,992,628 19.00 (5) 11.60 (5) 6.80 (5) 2.50 (6)

Table 4.8: ALMG-PBJ: the average number of FGMRES iterations per Newton iteration
(total Newton iterations) for equal-constant nematic problem in an ellipse using [P2]3-P1
discretisation.

4.3 Summary

In this chapter, we presented numerical results of our proposed AL preconditioner

for two examples of LC problems in two dimensions (an ellipse and a square slab).

We demonstrated the effectiveness and robustness (regarding to problem-related

parameters, the elastic constant K2 and the cholesteric pitch q0, and the mesh size

h) of the preconditioner. We also tested the efficiency of preconditioners with star

and point block patches and gave the numerical verification of the improvement

of the constraint proven in Section 2.3.3.

This part of the thesis (from Chapter 2 to Chapter 4) resolves the difficulty of

solving a unit-length constrained minimisation problem of the Oseen–Frank model

for LC by applying augmented Lagrangian methods. It provides a viable approach

to construct efficient and robust solvers for liquid crystal problems involving Oseen–

Frank models, although the complexity can rapidly increase when it comes to more

sophisticated phases requiring the coupling with other order parameters, e.g., in

ferronematics and smectics. In the remainder of this thesis, we consider another

modelling theory which avoids the imposition of unit-length constraint for a vector

field, and instead turn to the so-called Q-tensor theory.



Part II

Ferronematic Liquid Crystals

This work is derived from Dalby, Farrell, Majumdar and Xia (2021)
[Dal+21].

55



5
A mathematical model of ferronematics

Contents
5.1 The Landau–de Gennes model . . . . . . . . . . . . . . 57
5.2 Full model of ferronematics . . . . . . . . . . . . . . . . 58
5.3 Reduced model: order reconstruction . . . . . . . . . . 65
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

In the previous part, we considered the Oseen–Frank model for cholesteric and

nematic liquid crystals. This model uses a vector-valued order parameter and only

applies to uniaxial LC, i.e., where only one direction of molecular alignment is

preferred. In fact, the Oseen–Frank formulation is known to be limited, in the

sense that it can only account for point defects, but not the more complicated

line or surface defects that are observed experimentally [MZ10]. One can simply

check this by observing that the Oseen–Frank free energy J OF (n) (2.1.0.1), with

equal Frank constants and zero cholesteric pitch q0, blows up for the line defect

n = [x, y, 0]>/
√
x2 + y2, while the energy functional is well-defined for the point

defect n = [x, y, z]>/
√
x2 + y2 + z2. Another potential drawback of this theory

is its inability of representing half-charge defects, due to the presence of director

discontinuities in these defects [Bal17], which cannot be characterised by a continuous

vector field. For example, around a ±1/2 defect where n rotates by ±π degrees, a
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discontinuity line (i.e., branch cut in [BZ08]) where n reverses sign must exist.

Hence, to better characterise the defect structure, particularly in more complex

liquid crystal phases and applications, we instead use a more complete phenomeno-

logical description for LC: the Landau–de Gennes (LdG) theory [Gen69; Gen74],

which can account for both uniaxial and biaxial (having more than one preferred

direction of molecular alignment) phases. The LdG theory is widely used in the

modelling of phase transitions in liquid crystals [BCT07; Gen69] and we thus adopt

it for ferronematics and smectics in the remainder of this thesis. In this part, we

consider the case of ferronematics and we first give an introduction on some details

of the LdG theory to prepare ourselves for modelling ferronematics.

5.1 The Landau–de Gennes model

In this framework, the state of nematic LC is modelled by a symmetric, traceless

tensor field Q : Ω → S0, known as the tensor order parameter. Here, S0 denotes

the set of all symmetric, traceless d× d matrices. We consider a three-dimensional

domain Ω ⊂ R3 (i.e., d = 3) filled with liquid crystal as an example in this

subsection; the two dimensional case is analogous. The eigenvectors e1, e2 and e3

of Q ∈ S0 are the directions of the preferred molecular orientations and their

associated eigenvalues λ1, λ2 and λ3 represent the degree of order along each

corresponding direction [MN14].

We say that liquid crystals are (a) isotropic if Q has three equal eigenvalues,

i.e., λ1 = λ2 = λ3 (and hence, Q = 0). They are (b) uniaxial when Q has two equal

nonzero eigenvalues (say, 2|λ1| = 2|λ2| = |λ3|, thus λ3 is the major eigenvalue).

Such uniaxial Q-tensors can be written in the special form

Q = s
(

n⊗ n− I3

3

)
, s : Ω→ R, n : Ω→ S2,

where s = 3
2λ3. Finally, they are (c) biaxial when Q has three distinct eigenvalues.

A biaxial Q-tensor can always be represented by

Q = s
(

n⊗ n− 1
3I3

)
+ t

(
r⊗ r− 1

3I3

)
, s, t : Ω→ R,n, r : Ω→ S2. (5.1.0.1)
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The Landau–de Gennes energy for nematic LC is of the form

J LdG(Q) =
∫

Ω

{
f en(∇Q) + f bn(Q)

}
,

where f en and f bn correspond to the nematic elastic and bulk energy densities to be

defined in the following. Note that the minimisation problem with functional J LdG

is unconstrained, as opposed to the constrained minimisation problem (2.1.0.1)

in the Oseen–Frank theory.

The elastic part consists of three independent quadratic terms with respect to

the first partial derivatives of components of Q. Specifically, we take the form

f en(∇Q) = 1
2{KaQij,nQij,n +KbQij,jQin,n +KcQij,nQin,j}, (5.1.0.2)

where Ka, Kb and Kc are elastic constants depending on the material. Here, we

adopted the Einstein summation convention for repeated indices.

The bulk energy density is typically a truncated expansion in the scalar invariants

of Q and accounts for bulk effects. One commonly used form [Gen74; MN14] is

f bn(Q) = la
2 tr

(
Q2
)
− lb

3 tr
(
Q3
)

+ lc
4
(
tr
(
Q2
))2

. (5.1.0.3)

Here, lb, lc > 0 are material-dependent bulk constants, independent of temperature,

whereas la < 0 depends on the temperature.

Taking Ka = KLdG, Kb = Kc = 0 in (5.1.0.2), we obtain the one-constant

form of the LdG energy for nematic LC:

J LdG(Q) =
∫

Ω

{
KLdG

2 |∇Q|2 + la
2 tr

(
Q2
)
− lb

3 tr
(
Q3
)

+ lc
4
(
tr
(
Q2
))2

}
,

(5.1.0.4)

which will be employed in several places, e.g., (5.2.0.2) in ferronematics and our

new proposed smectic model (7.3.1.2).

5.2 Full model of ferronematics

To start with the first application of the LdG theory in this thesis, we now briefly

introduce ferronematic materials and their modelling.
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Nematic LC are anisotropic materials that can respond to applied external

fields and are thus suitable for a wide range of electro-optic devices, especially

liquid crystal displays. One immediate example is the twisted nematic display

[DS11, Technical Box 10.1] where the display is switched on and off by activating or

deactivating an electric field applied to the nematic LC. In fact, this response relies

on the dielectric anisotropy of nematics, that is to say, the directional response to

external electric fields [LS12]. In contrast, when exposed to magnetic fields, their

responses are much weaker (perhaps seven orders of magnitude smaller) than that of

electric fields [Ste04]. Consequently, nemato-magnetic coupling effect has not been

extensively exploited for nematic applications, e.g., sensors, displays, microfluidics

etc. One pioneering work dating back to 1970 by Brochard & de Gennes [BG70]

found that a suspension of magnetic nanoparticles (MNPs) in a nematic phase can

induce a spontaneous magnetisation in the absence of an external magnetic field,

and substantially enhance the nemato-magnetic response. They referred to this new

class of materials as ferronematics, possessing the useful feature that the nematic

and magnetic order parameters are strongly coupled. Subsequently, there were some

notable theoretical contributions regarding ferronematic modelling made by Burylov

& Raikher [BR95] and Calderer et al. [Cal+14], where continuum models were

discussed and analysed. Meanwhile, some experiments about ferronematics were

also realised by Rauly, Cladis and Burger [RCB70], and more recently by Mertelj et

al. [Mer+13]. Due to their special responses in the absence of any external magnetic

fields, ferronematics may find potential use in magneto-optic devices.

In this chapter, we study a dilute suspension of MNPs in a three-dimensional

nematic-filled channel, Ω̃ = [−L,L]× [−D,D]× [0, G], where L� D is the length

of the channel, D is the width and G is the height. Since L� D, it is reasonable

to assume that molecules are uniform along the length and across the height of the

channel, and there are no boundary constraints imposed at the two ends x = ±L.

Thus, we can restrict ourselves to a one-dimensional geometry: Ω̄ = [−D,D]. We

then rescale this domain to Ω = [−1, 1] for simplicity, similarly to [Bis+19].



5. A mathematical model of ferronematics 60

The suspended MNPs generate a spontaneous magnetisation (in the absence of

any external magnetic fields) by means of the nemato-magnetic coupling. In this

system, there are two order parameters: (i) a nematic tensor parameter Q : Ω→ S0

(symmetric, traceless 2× 2 matrices), indicating the preferred molecular alignment

of the director in the nematic host and (ii) a vector-valued magnetic order parameter

M : Ω → R2, M = (M1,M2)>, generated by the suspended MNPs.

In the uniaxial case, as discussed above the nematic order parameter Q can be

written as

Q = s(2n⊗ n− I2), (5.2.0.1)

where s is a scalar order parameter and n is the nematic director. Here, s can

be interpreted as a measure of the degree of the orientational order for director

n, so that the nodal set of s (i.e., where s = 0) indicates the presence of nematic

defects (where an orientation is not well-defined). We denote the two independent

components of Q by Q11 and Q12 such that

Q11 = s cos 2ϑ, Q12 = s sin 2ϑ,

where n = (cosϑ, sinϑ) and ϑ denotes the angle between n and the horizontal

axis. To avoid writing Q in the matrix form
[
Q11 Q12
Q12 −Q11

]
, we henceforth label Q in

terms of its two independent components (Q11, Q12), when this causes no confusions.

Consequently, we use the vector norm |Q| =
√
Q2

11 +Q2
12, as opposed to the usual

matrix norm. The conventional definition of the vector norm is adopted for the

magnetisation vector M, that is to say, |M| =
√
M2

1 +M2
2 .

By following the methods in [Mer+13; Bis+19], we use the total rescaled and

dimensionless ferronematic energy of the form

J fer(Q11, Q12,M1,M2) :=
∫

Ω

k1

2

(dQ11

dy

)2

+
(

dQ12

dy

)2
+

(
Q2

11 +Q2
12 − 1

)2

+ ξk2

2

(dM1

dy

)2

+
(

dM2

dy

)2
+ ξ

4
(
M2

1 +M2
2 − 1

)2

− cQ11
(
M2

1 −M2
2

)
− 2cQ12M1M2

 dy,

(5.2.0.2)
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and the associated minimisation problem is

minJ fer(Q11, Q12,M1,M2). (5.2.0.3)

Here, k1 > 0 and k2 > 0 are scaled elastic constants (in practice, k1 > k2 since

the nematic effect dominates in ferronematics), ξ > 0 is a parameter that weighs

the relative strength of the nematic and magnetic energies, and c is a coupling

parameter. Since we consider a dilute suspension of MNPs, there are only “small”

interactions between MNPs while the nemato-magnetic interactions are taken into

account through the coupling energy term. Therefore, we can see that the magnetic

energy part is not dominating and it is reasonable that ξ ≤ 1 [Cal+14].

The ferronematic free energy is a sum of three energetic contributions: a

LdG-type nematic energy of Q, a magnetisation energy of M, and a coupling

energy between Q and M. Substituting the uniaxial expression (5.2.0.1) into the

coupling energy, we observe that

−cQ11
(
M2

1 −M2
2

)
− 2cQ12M1M2 ∝ −c (n ·M)2 .

In this part of work, we only focus on positive coupling (c > 0) so that the coupling

energy favours co-alignment between the nematic director n and magnetic vector M.

Furthermore, we consider imposing Dirichlet boundary conditions for both Q

and M on the ends y = ±1:

Q11 (−1) = M1 (−1) = 1, (5.2.0.4a)

Q12(−1) = Q12(1) = M2(−1) = M2(1) = 0, (5.2.0.4b)

Q11 (1) = M1 (1) = −1. (5.2.0.4c)

Here, the boundary conditions for Q correspond to n = (1, 0) on y = −1 and

n = (0, 1) on y = 1, that is to say, we are essentially enforcing planar boundary

conditions for Q at y = −1 and homeotropic boundary conditions at the other

end y = +1. Meanwhile, the boundary conditions for M describe a π-rotation of

magnetic orientation between the bounding plates y = ±1. Then, the admissible

space of the minimisation problem (5.2.0.3) is given by
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Af =
{
Q ∈ H1 (Ω, S0) ,M ∈ H1

(
Ω,R2

)
,

Q and M satisfy the boundary conditions (5.2.0.4)} . (5.2.0.5)

We are interested in the local or global energy minimisers (Q,M), being stable

and potentially observable, of the ferronematic free energy (5.2.0.2) in the admissible

space Af . In fact, they are classical solutions (which can be verified by elliptic

regularity, suitable Sobolev embeddings and bootstrapping arguments) of the

associated Euler–Lagrange equations

k1
d2Q11

dy2 = 4Q11(Q2
11 +Q2

12 − 1)− c
(
M2

1 −M2
2

)
, (5.2.0.6a)

k1
d2Q12

dy2 = 4Q12(Q2
11 +Q2

12 − 1)− 2cM1M2, (5.2.0.6b)

ξk2
d2M1

dy2 = ξM1
(
M2

1 +M2
2 − 1

)
− 2cQ11M1 − 2cQ12M2, (5.2.0.6c)

ξk2
d2M2

dy2 = ξM2
(
M2

1 +M2
2 − 1

)
+ 2cQ11M2 − 2cQ12M1. (5.2.0.6d)

Remark 5.1. For simplicity and brevity, we take k1 = k2 = k and ξ = 1 hereafter.

One can tackle the cases of k1 6= k2 and ξ 6= 1 using similar mathematical methods.

An immediate question arises regarding the existence and uniqueness of min-

imisers of the problem (5.2.0.3) in the admissible space Af . The existence result is

proven in [Dal+21] via the direct method of the calculus of variations. Uniqueness

holds for sufficiently large k. We quote the theorem below for self-containment.

Theorem 5.1. [Dal+21] (Uniqueness of minimisers for sufficiently large k) For a

fixed c and for k sufficiently large, there exists a unique critical point (and hence

global minimiser) of the ferronematic free energy (5.2.0.2) in the admissible space

(5.2.0.5).

Moreover, a maximum principle for the solutions (Q11, Q12,M1,M2) of the

system (5.2.0.6a)-(5.2.0.6d) is obtained in [Dal+21] and we include this result in

the following so that we can numerically verify it later in Chapter 6.
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Theorem 5.2. [Dal+21] (Maximum principle) There exists an L∞ bound for

the solutions (Q11, Q12,M1,M2) of the system (5.2.0.6a)-(5.2.0.6d) subject to the

boundary conditions (5.2.0.4). Specifically,

Q2
11(y) +Q2

12(y) ≤ (ρ∗)2, M2
1 (y) +M2

2 (y) ≤ 1 + 2cρ∗ ∀y ∈ [−1, 1], (5.2.0.7)

where ρ∗ is given by

ρ∗ =

 c8 +

√√√√ c2

64 −
1
27

(
1 + c2

2

)3


1
3

+

 c8 −
√√√√ c2

64 −
1
27

(
1 + c2

2

)3


1
3

. (5.2.0.8)

Remark 5.2. We will verify the L∞ bound (5.2.0.7) numerically for each solution

in Chapter 6.

With the uniqueness and maximum principle results at hand, we can notice

that in the k → ∞ limit, it is theoretically expected to have only one minimiser

of the ferronematic free energy (5.2.0.2) and there is a k-independent L∞ bound

(given by (5.2.0.7)) for Q,M. Moreover, in this limit, one can easily see that the

Euler–Lagrange equations (5.2.0.6a)-(5.2.0.6d) reduce to the Laplace equations

d2Q11

dy2 = 0, d2Q12

dy2 = 0,

d2M1

dy2 = 0, d2M2

dy2 = 0,
(5.2.0.9)

subject to the boundary conditions (5.2.0.4). This Laplace system then admits

a unique solution:

(Q∞,M∞) = (Q∞11, Q
∞
12,M

∞
1 ,M∞

2 ) = (−y, 0,−y, 0), (5.2.0.10)

where Q12,M2 are zero-valued and Q11,M1 are linear profiles. The solution (5.2.0.10)

is also referred to as an order reconstruction solution, with only two degrees of

freedom (Q11,M1) reduced from the full four degrees of freedom (Q11, Q12,M1,M2).

We will discuss this reduced system further in Section 5.3. The convergence result

regarding the limit regime k →∞ is proven in [Dal+21] using the method of sub-

and super-solutions and we quote the theorem below, which is to be numerically

validated as well in Chapter 6.
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Theorem 5.3. [Dal+21] (Convergence result of k →∞) Assume k is sufficiently

large so that the uniqueness result Theorem 5.1 holds. Let (Qk,Mk) be the unique

solution of the Euler–Lagrange equations (5.2.0.6a)-(5.2.0.6d) in the admissible space

(5.2.0.5), subject to the boundary conditions (5.2.0.4). Then (Qk,Mk) converge to

(Q∞,M∞) as k →∞ with the following estimates:

∀j = 1, 2, ‖Qk
1j −Q∞1j‖∞ ≤ α1k

−1, ‖Mk
j −M∞

j ‖∞ ≤ α2l
−1,

for positive constants α1, α2 independent of k.

Remark 5.3. It implies that when k is sufficiently large, there is only one unique

minimiser of the form (5.2.0.10) which gives a linear order reconstruction profile.

The case of k → 0 is more complicated due to the non-uniqueness of solutions

and in fact its convergence information requires more delicate Γ-convergence analysis.

However, some preliminary properties about the limiting profile for k → 0 can be

obtained by examining the so-called bulk minimisers that minimise the bulk energy

(i.e., eliminating all gradient terms in the ferroenematic full energy (5.2.0.2)):

Fb(Q11, Q12,M1,M2) :=
(
Q2

11 +Q2
12 − 1

)2
+ 1

4
(
M2

1 +M2
2 − 1

)2

− cQ11
(
M2

1 −M2
2

)
− 2cQ12M1M2.

(5.2.0.11)

Substituting the parametrisation

Q11 = ρ cos(θ), Q12 = ρ sin(θ),

M1 = σ cos(φ),M2 = σ sin(φ),
(5.2.0.12)

into (5.2.0.11), we can deduce that the minimisers of Fb belong to the set

Mmin := {(Q11, Q12,M1,M2) = (ρ∗ cos(θ), ρ∗ sin(θ),
√

1 + 2cρ∗ cos(φ),
√

1 + 2cρ∗ sin(φ)) :

θ = 2φ+ 2zπ, for z ∈ Z},

where ρ∗ is given by (5.2.0.8). Thus, we can define the limiting minimisers

for k → 0 as

Qf (c, y) = ρ∗(cos(2φ(y)), sin(2φ(y))),

Mf (c, y) =
√

1 + 2cρ∗ (cos(φ(y)), sin(φ(y))) ,
(5.2.0.13)
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where there are two choices of φ due to the imposed boundary conditions for Mf :

d2φ

dy2 = 0, (5.2.0.14a)

φ(−1) = 0, φ(1) = π or φ(−1) = 0, φ(1) = −π, (5.2.0.14b)

θ − 2φ = 2zπ. (5.2.0.14c)

Remark 5.4. It is obvious from the definition (5.2.0.13) of the limiting minimisers

for k → 0 that neither Q nor M vanishes since ρ∗ is nonzero.

Therefore, we expect that the energy minimisers (Qf ,Mf) of the full energy

(5.2.0.2) should converge to one of the defined limiting minimisers in (5.2.0.13)

almost everywhere as k → 0. The exception happens close to the boundary end

points y = ±1 (due to the incompatible boundary conditions with the limiting

minimisers) or at interior points that are associated with jumps in (2φ− θ) (since

(2φ− θ) is only constrained to be an even multiple of 2π in the k → 0 limit). The

numerical verification of this hypothesis is illustrated in Section 6.2.

5.3 Reduced model: order reconstruction

The previous section concerns the full ferronematic problem (5.2.0.6a)-(5.2.0.6d)

with four degrees of freedom (Q,M) = (Q11, Q12,M1,M2), i.e., four scalar unknowns.

One can observe that profiles with Q12 = M2 = 0 can always contribute to a branch

of solutions of the Euler–Lagrange equations (5.2.0.6a)-(5.2.0.6d). We refer to

these solutions with only two degrees of freedom, (Q,M) = (Q11, 0,M1, 0) as order

reconstruction (OR) solutions. This leads to the following reduced functional,

denoted as the OR energy, from the full energy (5.2.0.2):

E(Q11,M1) :=
∫ 1

−1

k2
(

dQ11

dy

)2

+ k

2

(
dM1

dy

)2

+ (Q2
11 − 1)2

+ 1
4
(
M2

1 − 1
)2
− cQ11M

2
1

 dy,
(5.3.0.1)

subject to the boundary conditions

Q11 (−1) = M1 (−1) = 1,

Q11 (1) = M1 (1) = −1,
(5.3.0.2)
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in the admissible space

A′f =
{
Q11,M1 ∈ H1 (Ω,R) , Q11 and M1 satisfy the boundary conditions (5.3.0.2)

}
.

(5.3.0.3)

Consequently, OR solutions are classical solutions of the following coupled ordinary

differential equations,

k1
d2Q11

dy2 = 4Q11(Q2
11 − 1)− cM2

1 ,

k2
d2M1

dy2 = M1(M2
1 − 1)− 2cQ11M1.

(5.3.0.4)

Remark 5.5. The reason why we are interested in the OR solutions is not only due

to a reduction of unknowns that benefits our subsequent analysis, but also due to one

of their special solutions, the so-called domain wall (i.e., Q = M = 0) profiles that

separate polydomains, i.e., distinctly ordered domains. A nematic (resp. magnetic)

domain wall is a point y = y∗ ∈ (−1, 1) such that Q(y∗) = (Q11(y∗), Q12(y∗)) = 0

(resp. M(y∗) = 0).

One can note from our applied inhomogeneous boundary conditions (5.3.0.2)

for Q11 (resp. M1) that there must exist an interior point, y∗ ∈ (−1, 1) such that

Q11(y∗) = 0 (resp.M1(y∗) = 0) since Q11(−1) = M1(−1) = 1 and Q11(1) = M1(1) =

−1. That is to say, we expect to see nematic and magnetic interior domain walls for

the solutions (Q,M). Moreover, these domain walls can occur at different points

(which we shall demonstrate in Chapter 6). In fact, using the parameterisation

Q11 = ρ cos(θ), Q12 = ρ sin(θ),

M1 = σ cos(φ),M2 = σ sin(φ),
(5.3.0.5)

we can notice that Q12 = M2 = 0 implies θ = z1π and φ = z2π for some integers

z1, z2. Furthermore, due to the imposed inhomogeneous boundary conditions, there

is necessarily a domain wall in Q such that θ = 2z1π on one side of the domain

wall containing the end point y = −1, and θ = (2z2 + 1)π (for some integers z1, z2)

on the other side of the domain wall containing the end point y = 1; analogously,

there is a domain wall in M that separates two polydomains, with φ = 2z1π and

φ = (2z2 + 1)π for some integers z1 and z2 respectively.
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Similarly, there are some qualitative results regarding the existence, uniqueness,

maximum principle and instability of the OR solutions, proven in detail by Dalby

& Majumdar [Dal+21]. We again quote the following result so that we can

numerically verify it in Chapter 6.

Theorem 5.4. [Dal+21] (Uniqueness and maximum principle) For sufficiently

large k and a fixed positive c, the OR solution (QOR,MOR) := (Q∗11, 0,M∗
1 , 0) is

the unique critical point, and hence, global minimiser of the energy (5.2.0.2), as in

Theorem 5.1. Moreover, we have the L∞ bound

|Q11(y)| ≤ ρ∗, M2
1 (y) ≤ 1 + 2cρ∗ ∀y ∈ [−1, 1], (5.3.0.6)

where ρ∗ is given by (5.2.0.8).

It follows from Theorem 5.4 that the OR solution is the global minimiser for

sufficiently large k and there is an L∞ bound for Q11,M1. However, the OR solution

loses its stability as k decreases, similarly to the study of the pure nematic case

(i.e., c = 0) in [Lam14; CMS19]. We include the result below for self containment.

Theorem 5.5. [Dal+21] (Instability of the OR solution) For sufficiently small

k and a fixed positive c, the OR energy minimiser, (QOR,MOR), is an unstable

critical point of the full energy (5.2.0.2), in the full admissible space (5.2.0.5).

The convergence result for k → 0 limiting regime is given by Dalby & Majumdar

in [Dal+21] using Γ-convergence methods by directly following [WCM19, Proposition

4.1]. More precisely, when k is very small, the minimisers to the OR energy (5.3.0.1)

is closely related to the OR bulk minimisers:

p∗ = (Q11,M1) =
(
ρ∗,
√

1 + 2cρ∗
)
, or p∗∗(Q11,M1) =

(
ρ∗,−

√
1 + 2cρ∗

)
.

(5.3.0.7)

Remark 5.6. Note that these profiles in (5.3.0.7) are not compatible with the

boundary conditions (5.3.0.2). Thus, there are necessarily boundary layers close to

y = ±1 in the OR energy minimisers as k → 0.
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We do not include a detailed description of the convergence results as k → 0,

however, we can numerically demonstrate that the OR energy minimiser converges

to p∗ almost everywhere as it has the least transition costs. To see this, we need

to define the non-negative OR bulk energy:

f̃(Q11,M1) :=
(
Q2

11 − 1
)2

+ 1
4
(
M2

1 − 1
)2
− cQ11M

2
1 − β(c) ≥ 0, (5.3.0.8)

where the c-dependent constant β(c) is the minimum value of the OR bulk potential.

Following [Bra06] and [WCM19], we let p = (Q11,M1) and define the following

metric ω (which is in fact the geodesic distance associated with the Riemannian

metric f̃ 1/2 [WCM19]) in the p-plane, for any two points p0,p1 ∈ R2:

ω (p0,p1) = inf
{∫ 1

−1
f̃ 1/2 (p(t))

∣∣∣∣∣dp(t)
dt

∣∣∣∣∣ dt : p(t) ∈ C1
(
[−1, 1];R2

)
,

p(−1) = p0,p(1) = p1

}
.

(5.3.0.9)

Remark 5.7. It is obvious to see that this metric is degenerate (i.e., zero-valued)

as f̃(p) = 0 for p = p∗ = (ρ∗,
√

1 + 2cρ∗) and p = p∗∗ = (ρ∗,−
√

1 + 2cρ∗). Despite

such degeneracy, the infimum in (5.3.0.9) can be attained for arbitrary p0 and p1

(see [Bra06, Lemma 9] and [WCM19]).

In fact, the metric ω(p1,p2) accounts for the transition costs between the

profiles p1 and p2. Thus, one can deduce the energetically preferable minimisers,

say pk = (Qk
11,M

k
1 ) by minimising the total transition costs that is a sum of

ω(pk,pb(1)), ω(pk,pb(−1)). Here, pb(1) = (−1,−1) and pb(−1) = (1, 1) denote

the boundary profiles of (Q11,M1).

According to [WCM19, Section 5.1], the distance ω(·, ·) can be calculated

alternatively by

ω(p∗,p∗∗), ω(p∗,pb(1)), ω(p∗∗,pb(−1)), ω(p∗,pb(−1)), ω(p∗∗,pb(1)). (5.3.0.10)

ω (p0,p1) = inf

∫ 1

−1
f̃ (p(t))

∣∣∣∣∣dp(t)
dt

∣∣∣∣∣
2

dt
1/2

:p(t) ∈ C1
(
[−1, 1];R2

)
,

p(−1) = p0,p(1) = p1

.
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ω(p∗,p∗∗) ≈ 3.008. ω(p∗,pb(1)) ≈ 3.967. ω(p∗∗,pb(−1)) ≈ 2.577.

ω(p∗,pb(−1)) ≈ 0.455. ω(p∗∗,pb(1)) ≈ 2.591.

Figure 5.1: The profiles of p and their corresponding transition costs in (5.3.0.10).

The profiles of p = (Q11,M1) for each case in (5.3.0.10) are shown in Figure 5.1

which indicates that

ω(p∗,pb(−1)) < ω(p∗∗,pb(−1)) < ω(p∗∗,pb(1)) < ω(p∗,p∗∗) < ω(p∗,pb(1)).

Using the computed values of those transition costs, it is clear that the OR

energy minimiser converges to p∗ almost everywhere, except close to the boundary

end points y = ±1. Moreover, no interior jumps are expected in the OR minimiser.

5.4 Summary

In this chapter, we used the LdG Q-tensor theory to investigate the solution

structure of a ferronematic problem. We introduced both the full and reduced

models of ferronematics and quoted some theoretical results proven in [Dal+21].

Our aim in the next chapter is twofold: first, verify these theoretical results

computationally, and second, provide more information on the solution landscapes

via numerical experiments.
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In this chapter, we perform numerical experiments to validate the theoretical

results proven in [Dal+21] and quoted in the previous chapter, and understand

the interplay between the elastic constant k and the coupling parameter c for the

solution landscapes. For simplicity, we fix the scaling ξ = 1 throughout this chapter.

For the visualisation, we plot the (headless) director n with rods and the

normalised magnetisation vector field m = M
|M| with arrows.

6.1 Solver details

The nonlinear solver is deemed to have converged when the Euclidean norm of

the residual falls below 10−8, or reduces from its initial value by a factor of 10−6,

whichever comes first. For the inner solver, the linearised systems are solved using

the sparse LU factorisation library MUMPS [ADL00]. We partition the whole

70
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interval [−1, 1] into 1000 equi-distant subintervals and numerically approximate

the solutions using P1 finite elements.

Code availability. For reproducibility and more details of the implementation,

we have archived the solver code [Xia21b] and the exact version of Firedrake [Fir21a]

used to produce the numerical results of this work. An installation of Firedrake

with components matching those used in this chapter can be obtained by following

the instructions at https://www.firedrakeproject.org/download.html with

python3 firedrake-install --doi 10.5281/zenodo.4449535

Defcon version #aaa4ef should then be installed, as described in https://bitbucket.

org/pefarrell/defcon/.

6.2 Solutions of the full problem

In this section, we focus on the full problem (5.2.0.6a)-(5.2.0.6d) with four scalar-

valued solution variables (Q11, Q12,M1,M2). We only present the result with small

k1 = k2 = k = 0.01 (while varying the coupling c) here, since Theorem 5.4 implies

that the OR solution branch remains as the unique minimiser of the full problem

for a sufficiently large k and the OR solution will be reported later in Section 6.3.

In fact, we shall see the uniqueness of solution for large k in the next section.

We first take the coupling parameter c = 1 and present four examples of stable

stationary profiles (Q11, Q12,M1,M2) in Figure 6.1. One can compare the L∞

bound (5.2.0.7) with the computed values of vector norms |Q| =
√
Q2

11 +Q2
12

and |M| =
√
M2

1 +M2
2 , and note that the pointwise maximum principle given by

Theorem 5.2 is respected. By Remark 5.4, we expect that there is no interior domain

wall with |Q| = |M| = 0, for small k, which is indeed noticeable from the presented

solution profiles. Moreover, we can see that Solutions 1, 2 and 3 in Figure 6.1 only

have boundary layers with constant |Q|, |M|-profiles in the interior domain, whereas

Solution 4 has an interior non-zero local minimum (thus an interior jump) in |Q|

and |M|. In addition, Solutions 1 and 2 only differ in their orientational m-patterns

(more precisely, possessing opposite signs of M2) and they are the energy minimisers

https://www.firedrakeproject.org/download.html
https://bitbucket.org/pefarrell/defcon/
https://bitbucket.org/pefarrell/defcon/
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having the same energy value, while Solutions 3 and 4 are non-minimising stable

critical points of the full energy (5.2.0.2).

Moreover, we compute the values of orientational angles θ and φ, defined as

θ = arctan
(
Q12

Q11

)
, φ = arctan

(
M2

M1

)
(6.2.0.1)

for each numerical solution profile (Q11, Q12,M1,M2), so to verify the relation

(5.2.0.14), in particular the constraint (5.2.0.14c). It can be seen from Figure 6.1

that |Q| → ρ∗, |M| → 1 + 2cρ∗ for the energy minimisers (Solutions 1 and 2),

whereas (2φ − θ) tends to be an even multiple of π almost everywhere, except

close to the end point y = 1. Furthermore, we plot the separate values of θ and

φ to demonstrate the linear behaviour consistent with (5.2.0.14) for φ and thus

θ as k → 0. This linearity of θ and φ can be seen in Figure 6.1 except around

the local minima and boundary layers.

Now, we repeat the simulations for c = 5. Two stable stationary profiles are

illustrated in Figure 6.2. Again, we observe that |Q| → ρ∗ and |M|2 → 1 + 2cρ∗

almost everywhere, as expected from the maximum principle Theorem 5.2. Here,

Solution 2 has lower energy than Solution 1, since Solution 1 has more jumps in |Q|

and |M| than Solution 2. Further, (2φ−θ) is an even multiple of π almost everywhere,

with the jumps being associated with the jumps in |Q| and |M|, thus verifying the

constraint (5.2.0.14c). Additionally, we plot φ and θ in Figure 6.2, and observe almost

linear profiles of θ and φ, except around the local minima and the boundary layers.

To summarise, the numerical experiments in this section and the theoretical

heuristics in (5.2.0.14) suggest that there are at least two energy minimisers,

characterised by (ρ1, σ1, θ1, φ1) and (ρ2, σ2, θ2, φ2) of the full ferronematic energy

(5.2.0.2) in the k → 0 limit, such that ρ1, ρ2 → ρ∗, σ2
1, σ

2
2 → 1 + 2cρ∗ almost

everywhere away from the boundary plates y = ±1. Moreover, it holds that

θ2 = −θ1, φ2 = −φ1 and 2φ1,2 − θ1,2 an even multiple of π except near y = 1 or

close to some local jumps of Q and M. The two energy minimisers only differ in

the sense of rotation, in n and m, between y = −1 and y = 1.
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(Solution 1; stable) (Solution 2; stable)

(Solution 3; stable) (Solution 4; stable)

Figure 6.1: Four stable stationary profiles, (Q11, Q12,M1,M2), of (5.2.0.2) with k = 0.01
and c = ξ = 1, along with plots of (2φ − θ), θ, and φ to verify the relation (5.2.0.14).
Solutions 1 and 2 have the lowest full energy value (5.2.0.2).
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(Solution 1; stable) (Solution 2; stable)

Figure 6.2: Two examples of stable stationary profiles (Q11, Q12,M1,M2) of the full
energy (5.2.0.2) with k = 0.01, c = 5 and ξ = 1, along with plots of (2φ− θ), θ, and φ to
verify the relation (5.2.0.14). Solution 2 has lower energy than Solution 1.

6.3 Solutions of the reduced problem

By the definition of the OR solution in Section 5.3, we know it is fully characterised

by two degrees of freedom (Q11,M1) of the boundary-value problem (5.3.0.4) while

Q12 = M2 = 0 always holds. We now numerically investigate the limiting behaviours

of the OR solution for k → 0 and k → ∞ illustrated in Section 5.3.

As k → ∞, recall Theorem 5.1 to deduce that the OR solution branch is

approximately given by
(
QOR,MOR

)
≈ (−y, 0,−y, 0), for a fixed c, and that(

QOR,MOR
)
is the unique minimiser of both the OR energy (5.3.0.1) and the full

energy (5.2.0.2). In Figure 6.3, we plot the OR solution of (5.3.0.4) for c = 1 and

k = 10. The profile is indeed linear, and we do not numerically obtain any other

solutions, supporting the uniqueness result in this regime. We notice that the OR

solution vanishes at the channel centre y = 0, i.e., Q11(0) = M1(0) = 0, and thus

both the nematic and magnetic domain walls coincide at y = 0. Therefore, the

normalised magnetisation vector m and director n have a jump discontinuity at
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y = 0. In fact, m jumps from m = (1, 0) for y < 0 to m = (−1, 0) for y > 0, while

n jumps from n = (1, 0) (modulo a sign) for y < 0 to n = (0, 1) (modulo a sign) for

y > 0. Hence, the nematic and magnetic domain walls at y = 0 separate two distinct

polydomains in n and m, respectively. We also plot the pointwise L∞ bound (5.3.0.6)

as blue solid lines in Figure 6.3, and as expected, this bound is indeed respected.

Figure 6.3: The only (stable) solution of (5.3.0.1) for c = ξ = 1, and k = 10.

As k → 0 with fixed positive c, the OR solution is not unique anymore and

we expect to see that (Q11,M
2
1 )→ (ρ∗, 1 + 2cρ∗) uniformly everywhere away from

the edges y = ±1, for the minimiser of the OR energy (5.3.0.1). Of course, all

OR solutions are unstable critical points of the full energy (5.2.0.2) in the k → 0

limit, as shown in Theorem 5.5. We now numerically corroborate these theoretical

results with fixed k = 0.01 and ξ = 1.

In Figure 6.4, we present four example solutions by taking c = 1. In fact, they

are all unstable critical points of the full energy (5.2.0.2) whilst being stable critical

points of the OR energy (5.3.0.1) (in the sense that the Hessian of second variation of

the OR energy about these critical points has only positive eigenvalues). Consistent

with the discussion of the convergence regime for k → 0 in Section 5.3, these solution

profiles (Q11,M1) have a domain wall in Q near the end point y = 1, where Q11

jumps from Q11 = ρ∗ > 1 to the boundary value Q11)(1) = −1. Analogously, we

can see that all solution profiles illustrated in Figure 6.4 have a boundary layer

close the other end point y = −1, within which Q11 jumps from Q11(−1) = 1 to

Q11 = ρ∗ > 1. However, we should note that this boundary layer does not contain

a domain wall with Q11 = 0. An additional observation is the presence of interior
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transition layers in M1 (near the center y = 0) in Solutions 3 and 4 of Figure 6.4.

The L∞ bounds (5.3.0.6) (blue solid line) for |Q11| and |M1| are also satisfied.

(Solution 1) (Solution 2)

(Solution 3) (Solution 4)

Figure 6.4: Four OR solution profiles with c = ξ = 1 and k = 0.01. Solution 1 is the
OR energy minimiser. (5.3.0.1).

In Figure 6.5, we plot the stable stationary profiles of the OR energy (5.3.0.1)

for a larger value c = 5, whereas they are unstable critical points of the full energy

(5.2.0.2). Indeed, each of the solutions in Figure 6.5 has one unstable eigendirection,

in the context of the full energy (5.2.0.2). The two profiles in Figure 6.5, have

boundary layers near y = ±1, and essentially differ in the sign of M1 in the interior;

Q11 only vanishes near y = 1, so that we have a nematic domain wall close to the end

point y = 1. On the other hand, M1 can vanish either near y = −1 or near y = 1,

so that the corresponding magnetic domain wall can occur near either boundary.

We also note that Solution 2 in Figure 6.5 is the OR energy minimiser which indeed

converges to p∗ almost everywhere except close to the boundary plates y = ±1.

This verifies the heuristics explained by computing the transition costs in Figure 5.1.
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Additionally, we present two more solution examples with interior transition

layers for M1 in Figure 6.6 with c = 5, where single and multiple interior transition

layers in M1 are observed. They are also stable critical points of the OR energy

(5.3.0.1), and unstable critical points of the full energy (5.2.0.2). The transition

layers in M1 necessarily contain a magnetic domain wall with M1 = 0, and these

interior magnetic domain walls are not accompanied by associated nematic domain

walls. Moreover, solutions with interior transition layers have higher OR energy

(5.3.0.1) than solutions without interior transition layers in Figure 6.5, since each

transition layer requires an energetic cost of ω(p∗, p∗∗). Again, the L∞ bound

(5.3.0.6) is satisfied for the solutions illustrated in Figure 6.6.

Solution 1 Solution 2
Figure 6.5: Two stable OR critical points of (5.3.0.1), for c = 5, ξ = 1 and k = 0.01.
The right profile has lower OR energy than the left profile and the solutions in Figure 6.6.

Figure 6.6: Two stable OR solutions with single (left) and multiple (right) interior
transition layers for c = 5, ξ = 1 and k = 0.01. The left profile has lower OR energy than
the right profile.
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All above numerical experiments show that the domain walls in the OR energy

minimisers migrate from the channel centre to the channel boundaries at y = ±1, as

k decreases. Therefore, we can manipulate the location and multiplicity of nematic

and magnetic domain walls in the OR solutions by varying k.

6.4 Asymptotics checking for k → ∞

We then theoretically and numerically illustrate the asymptotic behaviour as k →

∞ in this section, to investigate the convergence to the unique OR minimiser

(QOR,MOR) = (−y, 0,−y, 0) in this limit regime.

As k →∞, we can compute useful asymptotic expansions of the OR solution

branch for large k and small c, by setting k = 1
c
in the Euler–Lagrange equations

(5.2.0.6a)-(5.2.0.6d) and expanding around (Q∞,M∞) as shown below:

Q11(y) = −y+ cf2(y) + c2f3(y) +O(c3), M1(y) = −y+ cf ∗2 (y) + c2f ∗3 (y) +O(c3).

Substituting the above into (5.2.0.6a) and (5.2.0.6d) (with k = 1
c
) yields

d2f1

dy2 +cd
2f2

dy2 +c2d
2f3

dy2 = 4c
(
f 3

1 − f1
)
+c2

(
12f 2

1 f2 − 4f2 − (f ∗1 )2
)
+O(c3) (6.4.0.1a)

d2f ∗1
dy2 + c

d2f ∗2
dy2 + c2d

2f ∗3
dy2 = c

(
(f ∗1 )3 − f ∗1

)
+ c2

(
3(f ∗1 )2f ∗2 − f ∗2 −

2
ξ
f1f

∗
1

)
+O(c3).

(6.4.0.1b)

By equating powers of c, we solve the computed second order ordinary differential

equations for f2, f3, f
∗
2 , f

∗
3 , subject to the boundary conditions f2(−1) = f2(1) =

f3(−1) = f3(1) = 0 and f ∗2 (−1) = f ∗2 (1) = f ∗3 (−1) = f ∗3 (1) = 0. This gives

c0 : d
2f1

dy2 = 0⇒ f1(y) = −y

c1 : d
2f2

dy2 = 4(f 2
1 − 1)f1 ⇒ f2(y) = −1

5y
5 + 2

3y
3 − 7

15y

c2 : d
2f3

dy2 = 4(3f 2
1 − 1)f2 − (f ∗1 )2 ⇒ f3(y) = p(y),



6. Numerical verifications for ferronematics 79

and

c0 : d
2(f ∗1 )
dy2 = 0⇒ f ∗1 (y) = −y,

c1 : d
2(f ∗2 )
dy2 = ((f ∗1 )2 − 1)f ∗1 ⇒ f ∗2 (y) = − 1

20y
5 + 1

6y
3 − 7

60y,

c2 : d
2(f ∗3 )
dy2 = 3(f ∗1 )2f ∗2 − f ∗2 −

2
ξ
f1f

∗
1 ⇒ f3(y) = q(y).

Here,

p(y) = − 1
30y

9 + 22
105y

7 − 31
75y

5 − 1
12y

4 + 14
45y

3 − 233
3150y + 1

12 ,

and

q(y) = − 1
480y

9 + 11
840y

7 − 31
1200y

5 − 1
6y

4 + 7
360y

3 − 233
50400y + 1

6 .

Thus, the expansions for Q11 and M1 are

Q11(y) = −y + c
(
−1

5y
5 + 2

3y
3 − 7

15y
)

+ c2p(y) +O(c3), (6.4.0.2)

and

M1(y) = −y + c
(
− 1

20y
5 + 1

6y
3 − 7

60y
)

+ c2q(y) +O(c3), (6.4.0.3)

for k = 1
c
and k � 1.

We now check the validity of these expansions, (6.4.0.2) and (6.4.0.3), numerically.

To this end, we compare (·)num and (·)asymp in the L∞-norm, where (·)num is the

numerical solution and (·)asymp corresponds to the asymptotic expansion, depending

on the truncation of the expansions in (6.4.0.2) and (6.4.0.3). For instance, a first

order truncation (with respect to c) yields

Qasymp
11 = −y + c

(
−1

5y
5 + 2

3y
3 − 7

15y
)
,

Masymp
1 = −y + c

(
− 1

20y
5 + 1

6y
3 − 7

60y
)
.

The left-hand column of Figure 6.7 shows a first order convergence by truncating

the expansions up to O(c0), whilst a first order truncation leads to a second order

convergence as shown in the middle column of Figure 6.7 and finally, in the right-

hand column, a truncation up to O(c2) demonstrates a third order convergence

with respect to c, for both Q11 and M1.
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Figure 6.7: Log-log plots of ‖Qnum11 − Qasymp11 ‖∞ (top row) and ‖Mnum
1 −Masymp

1 ‖∞
(bottom row). Left: truncating asymptotic expansions (6.4.0.2) and (6.4.0.3) at c0. Middle:
truncating asymptotic expansions at c1. Right: truncating asymptotic expansions at c2.

6.5 Bifurcation diagrams

The proceeding sections examine the behaviour of the solution profiles for certain

specific choices of parameters. One can obtain further information about the

solutions to the Euler–Lagrange equations (5.2.0.6a)-(5.2.0.6d) by continuing the

parameter and plotting bifurcation diagrams for the parameter space of interest.

We thus perform numerical experiments as we continue the coupling parameter

c or the elastic constant k.

The first experiment regarding varying c is illustated in Figure 6.8. Here, we

choose k1 = k2 = k ∈ [0.2, 3.0] with fixed step size 0.01 and c = 1. It can be seen that

there is only one stable OR solution for k ∈ [1.25, 3.0], being the energy minimiser of

the full energy (5.2.0.2). For k ≈ 1.25, there is a pitchfork bifurcation consisting of

two stable branches and one unstable OR branch (see Figure 6.9 for an illustration

of these three solutions at k = 1). In fact, the two stable solutions (Solutions 1 and

3 in Figure 6.9) differ by the sign of Q12 and M2, i.e., for every solution branch,

(Q11, Q12,M1,M2), there exists another solution branch with (Q11,−Q12,M1,−M2).

The stable solution branches correspond to a smooth rotation in n, between the

two end points y = ±1 and are actually the global energy minimisers for k ≤ 1.25.



6. Numerical verifications for ferronematics 81

0.2 1.0 2.0 3.0
k

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Q

12

Figure 6.8: Left: the bifurcation diagram of continuing k1 = k2 = k ∈ [0.2, 3.0] with
fixed c = ξ = 1; here, black represents unstable solutions while blue indicates stable
solutions. Right: the stable solution for k = 2.

(Solution 1; stable) (Solution 2; unstable) (Solution 3; stable)

Figure 6.9: Three solutions for k = 1 in Figure 6.8. Solutions 1 and 3 are global energy
minimisers.

As k becomes smaller, more (stable or unstable) solutions are found. More

specifically, there are four disconnected bifurcations appearing around k = 0.55,

giving two further stable solutions, which are also local energy minimisers (see

Solutions 1 and 8 in Figure 6.10 for an illustration) for k ∈ [0.2, 0.55]. Again,

they only differ by the sign of Q12 and M2. In Figure 6.10, we plot eight newly

found solution profiles, along with their stabilities. The stable solutions typically

correspond to a smooth n-profiles with minimal rotation (minimal topological degree

consistent with the boundary conditions), while the stable normalised magnetisation

profiles m are also smooth, except for a thin interval of large rotation in m localised

near the end points y = ±1. Meanwhile, it can be seen that the unstable solution

pairs, i.e., Solutions 2 & 7, Solutions 3 & 6 and Solutions 4 & 5 also differ by the sign

of Q12 andM2. Interestingly, all profiles with interior jumps in n and m are unstable.

We next investigate the loss of stability of the OR solution branch for a larger

value of c, i.e., we numerically compute a bifurcation diagram in Figure 6.11, for
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(Solution 1; stable) (Solution 2; unstable) (Solution 3; unstable)

(Solution 4; unstable) (Solution 5; unstable) (Solution 6; unstable)

(Solution 7; unstable) (Solution 8; stable)

Figure 6.10: Eight new solutions for k = 0.2 in Figure 6.8. Solutions 1 and 8 are global
energy minimisers.

the solutions of (5.2.0.6a)-(5.2.0.6d), by continuing k ∈ [3, 5] with a step size of

0.015, and fixed c = 5. One stable OR solution is shown in Figure 6.11 and it

loses stability at the pitchfork bifurcation point k ≈ 4.46, leading to two new

stable branches (see illustrations in Figure 6.12 for k = 4.43). We observe that

they only differ in the signs of Q12 and M2 and in fact are energy minimisers for

k ≤ 4.43. Thus, the qualitative features of the bifurcation diagram are unchanged

by increasing c but the OR solution branch loses stability for k < k∗(c), where k∗(c)

is an increasing function of c. Hence, as c increases, OR solutions are increasingly

difficult to find owing to their shrinking window of stability.

Remark 6.1. One may wonder about the appearance of the two folds in the

bifurcation diagram depicted in Figure 6.11. They do not represent the same
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solution at the intersection points. Instead, they are just overlapping points in this

plot of
∫
Ω Q12 against k. Choosing a different functional may yield a bifurcation

diagram without these intersection points.

3 4 5
l
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2
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2

4

Q
12

Figure 6.11: Left: the bifurcation diagram with fixed c = 5 and ξ = 1; here, black labels
unstable solutions while blue labels stable solutions. Right: one stable OR solution for
k = 4.45.

Figure 6.12: Two new stable solutions at k = 4.43 in Figure 6.11.

6.6 Summary

In this chapter, we performed several numerical experiments that validate the

theoretical analysis derived in [Dal+21]. These include providing more complete

solution landscapes of the ferronematic problem, stability analysis, and showing

multiple patterns of domain walls in the interior. We demonstrated the strength

of Q-tensor theory for characterising defects (i.e., domain walls in director n and

normalised magnetisation m) in one-dimensional ferronematics. We will further

consider more complicated defect structures (in higher dimensions) in the next

part of this thesis.



Part III

Smectic Liquid Crystals

This work expands upon Xia, MacLachlan, Atherton, and Farrell
(2021) [Xia+21].
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In the proceeding part, we have considered the application of the Q-tensor theory

in ferronematics, which can possess multiple domain walls (i.e., where the nematic

tensor Q or magnetic order parameter M vanishes) separating polydomains. In

this last bulk of this thesis, we study and model more complicated defect structures

that exist in smectics, more precisely, in the smectic-A phase.

Smectic liquid crystals are layered mesophases that have a periodic modulation

of the mass density along one spatial direction. Roughly speaking, they can be

thought of as one-dimensional solids along the direction of periodicity and two-

dimensional fluids along the other two remaining directions. Due to their periodic

structures, smectic liquid crystals have drawn extensive research attention and are

directly related to some applications in photonic band-gap materials, metamaterials,

and templates for guided particle self-assembly [ZL08].
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Two common phases of smectic liquid crystals are the smectic-A and smectic-C

phases (see Figure 7.1 for an illustration). In smectic-A phases, the director is

parallel to the normal of the smectic layers while smectic-C phases allow the director

to freely rotate around the normal, and thus present a tilted angle between the

director and the layer normals. In order to characterise the periodic property of

the density in smectic phases, de Gennes first proposed to use a complex-valued

variable as the smectic order parameter, based on an analogue to superfluids in

superconductors [Gen72]. This theory (abbreviated as the dG theory) for modelling

smectics has been a popular tool for investigating defect structures in smectic phases,

e.g., [SK07; OU06] and for modelling smectic liquid crystal fluids [E97].

In this chapter, we first review the classical dG model for smectic-A liquid crystals

and then a more recent model by Pevnyi, Selinger and Sluckin [PSS14] using a

real-valued smectic order parameter. Next, we propose a new model inheriting the

advantages of the real-valued smectic model, which can also represent half charge

defects by adopting a Q-tensor as the nematic order parameter.

Figure 7.1: Graphical illustrations of nematic, smectic-A and smectic-C phases. The
top and bottom substrate plates are polarisers with perpendicular alignment directions.
This type of polarisers is for example used in twisted nematic display [DS11, Technical
Box 10.1]. Picture is taken from [Wal20].

7.1 The de Gennes model

According to de Gennes’ theory [Gen72; Gen74], one can model smectic liquid

crystals based on a complex-valued order parameter ψ : Ω→ C, which describes the

magnitude |ψ| and the phase ∇ψ of smectic layer ordering, and a real vector-valued

nematic order parameter n satisfying the unit-length constraint |n|=1. Furthermore,
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the phase ∇ψ indicates the position of the layers. There is a strong analogy between

the derivation of de Gennes’s formulation for smectics and that of superconductors,

as discussed in [Gen72; HL74].

More precisely, de Gennes proposed the free energy of smectic-A LC to be

J dG(n, ψ) =
∫

Ω

(
FS(n, ψ) +WOF (n)

)
, (7.1.0.1)

where Ω ⊂ Rd (d ∈ {2, 3}) is the region occupied by liquid crystals, WOF denotes

the nematic Oseen–Frank energy density of the form (2.1.0.3), and FS represents

the smectic energy density given by

FS(n, ψ) = |∇ψ − iqnψ|2 + ς|ψ|2 + $

2 |ψ|
4 . (7.1.0.2)

Here, i =
√
−1, q represents the length of the favoured wave-vector, $ > 0 a fixed

number and ς = ς0(Tm−Tns) the discrepancy between the material temperature Tm
and nematic-smectic transition temperature Tns, with ς0 > 0. Since we are focusing

on the smectic phase where Tm is normally below the transition temperature

Tns, it holds that ς < 0.

It is obvious to see that when ψ = 0, (7.1.0.1) reduces to the nematic phase; and

ψ 6= 0 corresponds to the smectic phase. Furthermore, one can note there is no odd

power of the amplitude |ψ| in the smectic energy density (7.1.0.2). This is because

a change in sign, ψ → −ψ, corresponds to a uniform translation of the smectic

layers by one smectic layer and it should cost no additional energy to do so [LS91].

Remark 7.1. We have some comments regarding the derivation of dG model

(7.1.0.1) for smectic liquid crystals: (a) the coefficients in (7.1.0.1) are phenomeno-

logical and their relations to molecular properties are not revealed [LS91]; (b) the

smectic order parameter ψ is assumed to vary spatially on a length scale larger

than the layer thickness τ ; (c) the free energy (7.1.0.1) only includes independent

fluctuations (i.e., the WOF density term and the ς,$ term in FS are dependent

only on n and ψ respectively) in the quantities ψ and n; (d) no orientational

order parameter (e.g., tensor order parameter Q) has been involved. Linhananta

and Sullivan [LS91] have presented a modified dG energy to overcome the above

limitations by means of molecular density functional theories.
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It is important to understand what the coupling term |∇ψ − iqnψ|2 describes.

To this end, we can express the smectic order parameter by

ψ(x) = %(x)eiι(x), % : Ω→ R, ι : Ω→ R, (7.1.0.3)

where %(x) = |ψ(x)| denotes the mass density of the smectic layers at a point x ∈ Ω

and ι parametrises the layers so that ∇ι indicates the direction of the layer normal.

Substituting the above expression into the coupling term, we obtain

|∇ψ − iqnψ|2 = |∇%|2 + %2|∇ι− qn|2,

and the smectic energy density FS becomes

FS(n, %, ι) = |∇%|2 + %2|∇ι− qn|2 + ς|%|2 + $

2 |%|
4. (7.1.0.4)

Consequently, as we perform minimisation over FS, we are actually penalising

the nematic-smectic coupling constraint ∇ι = qn. This illustrates how smectic

layers align with nematic directors n, that is to say, the smectic layer normals

should be parallel to the director.

Remark 7.2. If n is a gradient (i.e., qn = ∇ι which can be derived from penalising

the coupling term %2|∇ι − qn|2 in (7.1.0.4)), then the twist-effect n · (∇ × n) in

WOF (n) is zero. This is known as the incompatibility between smectic order and

twist (see e.g., [CP00, Section 1.6] and [SK07]).

Moreover, the molecular mass density is defined as

%m(x) = %0+ 1
2 (ψ(x) + ψ∗(x)) = %0+%(x) cos ι(x) = %0+|ψ(x)| cos ι(x), (7.1.0.5)

where %0 is the average density and ψ∗ represents the complex conjugate of ψ.

Hence, |ψ(x)| cos ι(x) gives the real-valued density variation between the molecular

mass density and the average density. The derivation of the model by Pevnyi,

Selinger and Sluckin [PSS14] to be introduced in the next section in fact utilises

such a real variable as the smectic order parameter, as we shall now see.
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7.2 The Pevnyi–Selinger–Sluckin model

As discussed in [Bed14; PSS14], the classical dG model (7.1.0.1) using the complex

order parameter ψ gives rise to a direct difficulty: Im(ψ) does not relate to anything

physical. A resulting branch-cut due to the presence of this issue is schematically

illustrated in Figure 7.2 with a +1/2-charge disclination. This situation is similar

to the case of representing the +1/2-charge defect by the vector-valued director n,

where the head-to-tail symmetry of molecules is not respected and thus a branch-cut

occurs when n changes to −n. To avoid the use of a complex variable, Pevnyi,

Selinger and Sluckin [PSS14] proposed a new model (abbreviated henceforth as the

PSS model) adopting the director n : Ω→ Rd and the density variation u : Ω→ R

from the average density as state variables.

Figure 7.2: Illustration of the branch-cut (red dotted line) resulted from the non-physical
imaginary part of ψ in a +1/2-charge disclination. Credit: [PSS14, Fig. 1]

The form of the PSS free energy is given by

J PSS(u,n) =
∫

Ω

(
fs(u) + K

2 |∇n|2 +B
∣∣∣D2u+ q2 (n⊗ n)u

∣∣∣2) , (7.2.0.1)

where the smectic bulk energy density is given by

fs(u) = a1

2 u
2 + a2

3 u
3 + a3

4 u
4.

Here a1, a2, a3, B,K and q are some known real parameters. Moreover, the unit

length constraint n · n = 1 for the director must be enforced. In order to keep fs
bounded from below, we need to choose a3 > 0, and to possess nonzero (i.e., u 6= 0)

minimisers of fs (thus not pure nematic minimisers), we should choose a1 < 0.



7. A mathematical model of smectics 90

Remark 7.3. One can notice that a cubic term of u is added to fs in (7.2.0.1)

when comparing it with the dG model (7.1.0.1). This is allowed because we should

not expect symmetry between positive density variation u > 0 and negative density

variation u < 0.

The derivation of the PSS model comes from the density functional theory (based

on a molecular statistical description) analogous to early work in [LS91; PS91];

however, a detailed explanation (in particular, about how the model parameters

are related to some physically measurable constants) is not given in [PSS14]. In

fact, the idea of [LS91] is to divide the total free energy into local and nonlocal

parts. The local energy includes an isotropic term, modelled by the standard quartic

order Landau–Ginzburg free energy with regard to the smectic density variable,

and an anisotropic term of Q-tensor to characterise nematic LC. For the nonlocal

part, they adopt the typical form of two-body contributions to the free energy

occurring in mean-field density functional theories, which gives rise to a fourth

order term similar to the coupling B-term in (7.2.0.1).

For a better understanding of the PSS model, particularly how the coupling term

in (7.2.0.1) relates to the physical constraint of smectics, we give our interpretation

in the following. As described in [PSS14] and illustrated in (7.1.0.5), the density

variation u can be related to the complex order parameter ψ in the dG model

by the expression

u = <ψ = |ψ| cos(ι)

with < denotes the real part of a complex number. Note that the amplitude |ψ|

of the density modulation does not vary spatially as it refers to the largest mass

density and we can actually see this fact in the numerical results in Chapter 9.

From what we have discussed in Section 7.1, minimising |∇ψ − iqnψ|2 in fact

promotes the relation ∇ι = qn. Subsequently combining with (7.1.0.3), one can

expect the following expression of ψ,

ψ(x) = |ψ|eiqn·x.
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Therefore, we obtain the corresponding form of the density variation u as follows:

u(x) = |ψ| cos(qn · x). (7.2.0.2)

We then calculate

D2u = D(Du) = D(−|ψ| sin(qn · x)qn) = −q2(n⊗ n)u,

and it follows that

D2u+ q2(n⊗ n)u = 0.

Hence, one can interpret minimising the coupling term |D2u+ q2 (n⊗ n)u|2 as

respecting the periodicity of the smectic density, i.e., u = |ψ| cos(qn · x).

The PSS model helps investigate defect structures appearing in the smectic-

A phase in a more physically reasonable way without using the complex order

parameter ψ in the classical dG model (7.1.0.1). There are some numerical examples

of smectic layers respecting different topological defects illustrated in the work

[PSS14]. However, by solving the PSS model as described using n ∈ H1(Ω,Sd−1),

we cannot reproduce the experiments of half-charge defects that are shown in

[PSS14]. This is due to the presence of a discontinuity in the director n in these

defects, which cannot be characterised by a continuous vector field [Bal17]. As a

matter of fact, in private communication, the authors of [PSS14] have commented

that they actually implemented their model with the tensor product n⊗ n, thus

enforcing the unit length constraint of director n implicitly through introducing

the tensor n ⊗ n. This allows them to represent half-charge defects [Bal17], but

numerically enforcing that the order parameter is a line field of the form n ⊗ n

in minimisation is difficult [BNW20].

7.3 Our proposed model

A new mathematical model that incorporates both a tensor field and a real-valued

density variation field could be useful in representing smectic liquid crystals with

complex defect structures. In fact, the idea of combining a Q-tensor variable and a
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real-valued density variable to model smectic LC has been previously discussed in

[LS91; MZ15; Han+15]. However, these works are all molecular-based microscopic

models which are difficult to implement due to their natural complexity in relating

statistical parameters to physically realistic experimental results. It is an open

problem to combine both the microscopic and macroscopic sides for modelling

smectic liquid crystals, as discussed by Ball & Bedford [BB15]. Moreover, these

authors [BB15; Bed14] have noticed the necessity of combining the nematic order

parameter Q and the real-valued smectic order parameter to characterise defects

and thus modified the PSS model by replacing n⊗ n by (Q/s+ I3/3) arising from

the uniaxial expression of Q-tensor:

J BB(u,Q) =
∫

Ω

K

2 |∇Q|2 +B
∣∣∣∣D2u+ q2

(Q
s

+ I3

3

)
u
∣∣∣∣2 + a1

2 u
2 + a2

3 u
3 + a3

4 u
4,

(7.3.0.1)

with u ∈ H2(Ω,R) and Q ∈ SBV (Ω, S0) where SBV denotes special functions of

bounded variation. A preliminary result of existence of minimisers for their modified

model is also briefly included. Nevertheless, the possibility of characterising defects

existing in smectic liquid crystals and the implementation of their model has not

been investigated or realised. One can readily notice the numerical singularities

caused by the denominator s whenever it is near zero (which is likely to happen

around defects). To avoid the aforementioned issue of the denominator s, we assume

that the scalar order parameter s is a fixed constant, which can be determined by

the form of the additional nematic bulk energy (we will discuss this point in detail

later) arising from the phenomenological LdG model of nematics.

7.3.1 A unified framework

In this part, we further assume that Ω is convex as such convexity is needed for

the regularity result (see Theorem 8.1).

Considering that smectic-A liquid crystals are optically uniaxial [Gen73; Gen74],

we can express the Q tensor in a uniaxial form: Q = s
(
n⊗ n− Id

d

)
, where the
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director n is the corresponding eigenvector of Q with the major eigenvalue, say,

λeig. One can readily check that s and λeig satisfy the relation

s = 2λeig for d = 2,

s = 3
2λeig for d = 3.

Moreover, the symmetric traceless Q-tensor has two degrees of freedom (Q11, Q12)

in two dimensions or five degrees of freedom (Q11, Q12, Q13, Q22, Q23) in three

dimensions. Thus, it can be expressed in the form of

Q =
[
Q11 Q12
Q12 −Q11

]
or Q =

Q11 Q12 Q13
Q12 Q22 Q23
Q13 Q23 −(Q11 +Q22)

 . (7.3.1.1)

In particular, we note that tr(Q3) = 0 for d = 2 which can be easily checked

via computations using (7.3.1.1).

We now propose the following Q-tensor model that incorporates the dG theory

for smectic LC and LdG model for nematics while also keeping the density variable

u to be real-valued, as discussed in [PSS14]:

J (u,Q) =
∫

Ω

(
fs(u) +B

∣∣∣∣D2u+ q2
(

Q + Id
d

)
u
∣∣∣∣2 + fn(Q,∇Q)

)
, (7.3.1.2)

where

fs(u) := a1

2 u
2 + a2

3 u
3 + a3

4 u
4 (7.3.1.3)

and

fn(Q,∇Q) = f en(∇Q) + f bn(Q)

:= K

2 |∇Q|2 +

(
−l (tr(Q2)) + l (tr(Q2))2)

, if d = 2,(
− l

2 (tr(Q2))− l
3 (tr(Q3)) + l

2 (tr(Q2))2)
, if d = 3.

(7.3.1.4)

Here, K is the nematic elastic constant, l represents the nematic bulk parameter

that can depend on temperature and a1, a2, a3, B, q are inherited from the PSS

model. We refer to the decoupled case when q = 0.

Remark 7.4. We can observe some differences between our proposed model (7.3.1.2)

and the Ball–Bedford model (7.3.0.1): (a) we have taken the scalar order parameter
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s to be a fixed constant (in fact, s = 1), which is weakly preferred due to the addition

of the nematic bulk term f bn(Q); (b) we give a unified framework applicable to both

two and three dimensions.

One may notice that the term fn arises in the classical LdG model (5.1.0.4)

for nematic LC. Furthermore, it is known that the global minimiser of the bulk

energy f bn is a uniaxial Q tensor with scalar order parameter s = 1 (one can check

this by some calculations or using [MZ10, Proposition 15] as quoted below for self

containment). Adding the bulk energy terms helps in deciding the scalar order

parameter s, and therefore we can adjust the coefficients in the bulk energy density

so to promote s = 1 almost everywhere.

Proposition 7.1. [MZ10, Proposition 15] Assume that la, lb, lc are positive param-

eters and consider the bulk energy in the following form

f bn(Q) = − la2
(
tr(Q2)

)
− lb

3
(
tr(Q3)

)
+ lc

4
(
tr(Q2)

)2
. (7.3.1.5)

Then its minimiser is a uniaxial tensor of the form

Q = s+

(
n⊗ n− I3

3

)
,

where

s+ =
lb +

√
l2b + 24lalc
4lc

.

7.3.2 Existence of minimisers

We have proposed a unified functional (7.3.1.2) for both two- and three-dimensional

cases to be minimised on some admissible set. An immediate question is whether

minimisers exist.

We define the admissible space As of our proposed functional J as

As =
{
u ∈ H2(Ω,R), Q ∈ H1(Ω, S0) :

Q = s
(

n⊗ n− Id
d

)
for some s ∈ [0, 1],Q = Qb on ∂Ω

}
,

(7.3.2.1)
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with n ∈ H1(Ω,Sd−1) and the Dirichlet boundary data Qb ∈ H1/2(∂Ω, S0). For

simplicity, we only consider Dirichlet boundary conditions for Q in this section, but

other types of boundary conditions (e.g., a mixture of the Dirichlet and natural

boundary conditions as used in Chapter 9) can be taken.

Notice that fn(Q,∇Q) is the classical LdG model for nematic LC. It is a known

result from Davis & Gartland [DG98, Corollary 4.4] that there exists a minimiser of

the functional
∫

Ω fn on Q ∈ H1(Ω, S0) in three dimensions. Furthermore, Bedford

[Bed14, Theorem 5.18] has given an existence result of the Ball–Bedford model

(7.3.0.1) for Q ∈ SBV (Ω, S0) and u ∈ H2(Ω,R), also in three dimensions. Motivated

by these two results, we can give the existence result of minimising our proposed

free energy (7.3.1.2) via the direct method of calculus of variations (see e.g., [Gia83,

Section 3, Chapter 1]) in the admissible space As.

Theorem 7.2. (Existence of minimisers) Let J be of the form (7.3.1.2) with

positive parameters a3, B, q, K, l. Then there exists a solution pair (u∗,Q∗) that

minimises J over the admissible set As.

Proof. Note that both the smectic density fs and the nematic bulk density f bn are

bounded from below as a3, l > 0. Thus, J is also bounded from below and we can

choose a minimising sequence {(uj,Qj)}, i.e.,

(uj,Qj) ∈ As, Qj − Q̃ ∈ H1
0 (Ω, S0),

J (uj,Qj)
j→∞−→ inf{J (u,Q) : (u,Q) ∈ As, Q− Q̃ ∈ H1

0 (Ω, S0)} <∞.
(7.3.2.2)

Here, we define Q̃ ∈ H1(Ω, S0) to be the extended function with trace Qb. We

tackle the three terms in (7.3.1.2) separately in the following.

First, for the nematic energy term
∫

Ω fn(Q,∇Q), we can follow the proof of

[DG98, Theorem 4.3] to obtain that fn(Qj,∇Qj) is coercive in H1(Ω, S0) in the

sense that fn grows unbounded as ‖Q‖1 →∞, and thus the minimising sequence

{Qj} must be bounded. Since H1(Ω) is a reflexive Banach Space, we have a

subsequence (also denoted as {Qj}) that weakly converges to Q∗ ∈ H1(Ω, S0) such

that Q∗ − Q̃ ∈ H1
0 (Ω), and from the Rellich–Kondrachov theorem it follows that

Qj → Q∗ in L2(Ω),

∇Qj ⇀ ∇Q∗ in L2(Ω).
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The weakly lower semi-continuity of the nematic energy density fn in (7.3.1.4) is

guaranteed by [DG98, Lemma 4.2], therefore,

lim inf
j→∞

∫
Ω
fn(Qj,∇Qj) ≥

∫
Ω
fn(Q∗,∇Q∗). (7.3.2.3)

Next, for the smectic bulk term
∫

Ω fs(u), we can follow the proof in [Bed14,

Theorem 5.19] with further details. By (7.3.2.2), we have

sup
j

∫
Ω

(∣∣∣D2uj
∣∣∣2 + |uj|2

)
<∞,

which implies an upper bound for ∇uj using [Bed14, Equation (5.42)]:∫
Ω
|∇v|2 ≤ C

(∫
Ω

∣∣∣D2v
∣∣∣2 + v2

)
∀v ∈ H2(Ω,R).

Hence, {uj} is bounded in H2(Ω) and thus there is a subsequence (also denoted as

{uj}) such that

uj ⇀ u∗ in H2(Ω).

Moreover, one can readily check that ‖u∗‖∞ < ∞ by the Sobolev embedding of

H2(Ω) into the Hölder spaces Ct,κ0(Ω) (t + κ0 = 1 for d = 2 and t + κ0 = 1/2

for d = 3) and the boundedness of domain Ω. Again, by the Rellich–Kondrachov

theorem, we have
uj → u∗ in L2(Ω),

D2uj ⇀ D2u∗ in L2(Ω).
Noting that fs is bounded from below for all u ∈ H2(Ω), then there holds that

lim inf
j→∞

∫
Ω
fs(uj) ≥

∫
Ω
fs(u∗). (7.3.2.4)

Now, we consider the nematic-smectic coupling term in (7.3.1.2). Since the

admissible space As admits uniaxial tensors, we calculate

|Qj|2 =
∣∣∣∣sj (nj ⊗ nj −

Id
d

)∣∣∣∣2
= |sj|2

(
|nj ⊗ nj|2 +

∣∣∣∣Idd
∣∣∣∣2 − 2

d
nj ⊗ nj : Id

)

= |sj|2
(

1 + 1
d
− 2
d

)
= |sj|2

(
1− 1

d

)
< |sj|2 ,
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implying that |Qj|2 is always bounded in Ω. By this boundedness and the fact that

‖u∗‖∞ <∞, we can deduce∫
Ω
|ujQj − u∗Q∗|2 =

∫
Ω
|(uj − u∗)Qj + u∗(Qj −Q∗)|2

≤ 2
∫

Ω

(
|uj − u∗|2|Qj|2 + |u∗|2|Qj −Q∗|2

)
→ 0 as uj → u∗,Qj → Q∗ in L2(Ω).

Hence, ujQj → u∗Q∗ in L2(Ω), and further,

uj

(
Qj + Id

d

)
→ u∗

(
Q∗ + Id

d

)
in L2(Ω),

uj

(
Qj + Id

d

)
: D2uj ⇀ u∗

(
Q∗ + Id

d

)
: D2u∗ in L1(Ω).

Therefore, we have

lim inf
j→∞

∫
Ω

∣∣∣∣D2uj + q2
(

Qj + Id
d

)
uj

∣∣∣∣2
= lim inf

j→∞

∫
Ω

(∣∣∣D2uj
∣∣∣2 + 2q2uj

(
Qj + Id

d

)
: D2uj + q4

∣∣∣∣uj (Qj + Id
d

)∣∣∣∣2
)

≥
∫

Ω

(∣∣∣D2u∗
∣∣∣2 + 2q2u∗

(
Q∗ + Id

d

)
: D2u∗ + q4

∣∣∣∣u∗ (Q∗ + Id
d

)∣∣∣∣2
)

=
∫

Ω

∣∣∣∣D2u∗ + q2
(

Q∗ + Id
d

)
u∗
∣∣∣∣2 . (7.3.2.5)

Finally, we only need to check that Q∗ is uniaxial, i.e., Q∗ = s∗
(
n∗ ⊗ n∗ − Id

d

)
for certain s∗ and n∗. This is indeed guaranteed by the L2 convergence of Qj and

the compactness of the unit sphere nj lies. Hence, we can conclude that J (u∗,Q∗)

achieves its minimum in the admissible space As by combining (7.3.2.3), (7.3.2.4)

and (7.3.2.5).

7.4 Summary

In this chapter, we reviewed three models for smectic-A LC: the classical dG model,

a more recent model by Pevnyi, Selinger and Sluckin and the Ball–Bedford model.

Through discussing their potential issues, it motivated us to propose a new model,

incorporating the nematic tensor order parameter Q and a real smectic order

parameter u, to characterise the complex defect structures existing in smectic liquid

crystals. We then gave an existence result for the proposed model.
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It is implied from Theorem 7.2 that there exist minimisers of the free energy

functional (7.3.1.2). One might then naturally ask how those solutions behave. We

therefore consider the discretisation of the problem in this chapter. For simplicity,

we only consider the decoupled case, i.e., q = 0 where two separate problems

are to be solved: a second order PDE for the nematic tensor order parameter Q

and a fourth order PDE for the smectic density variation u. With the derived a

priori error estimates at hand, we then choose a suitable finite element pair for

(Q, u), to be used in the implementations of some realistic scenarios as illustrated

in Chapter 9. We verify the expected convergence behaviour via the manufactured

method of solutions for both q = 0 and q > 0.

98
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8.1 A priori analysis for q = 0

In the decoupled case, we are to solve two independent minimisation problems:

one for the tensor field Q,

min
Q∈H1

b
(Ω,S0)

J1(Q) =
∫

Ω
(fn(Q,∇Q)) ,

and the other for the density variation u:

min
u∈H2(Ω,R)

J2(u) =
∫

Ω

(
B
∣∣∣D2u

∣∣∣2 + fs(u)
)
.

One can derive the following strong forms of their equilibrium equations using

integration by parts (and assuming that u ∈ H4(Ω)),

(P1)


d = 2⇒ −K∆Q + 2l (2|Q|2 − 1) Q = 0 in Ω,
d = 3⇒ −K∆Q + l (−Q− |Q|2 + 2|Q|2Q) = 0 in Ω,
Q = Qb on ∂Ω,

(8.1.0.1)

and 2B (D2 : D2)u+ a1u+ a2u
2 + a3u

3 = 0 in Ω,
S0
bc(u; v) = 0 ∀v ∈ H2(Ω) on ∂Ω,

(8.1.0.2)

with the natural boundary data given by

S0
bc(u; v) :=

∫
∂Ω

{
ν ·
(
D2u · ∇v

)
−
((
∇ · D2u

)
· ν
)
v
}
.

Note that we are not enforcing any essential boundary conditions for the real

variable u in (8.1.0.2). This can be insufficient to guarantee the uniqueness of

solutions, thus leading to ill-posed problems. In fact, both u and −u are admissible

solutions if a2 = 0. Moreover, one expect the solution u of the smectic-A model

(7.3.1.2) to be a cosine function that describes the periodicity as illustrated in

[PSS14, Eq. (5)] due to the alignment between smectic layer normals and directors.

Therefore, the lack of essential boundary conditions may result in multiple solutions

with shifted phases.

To facilitate our analysis, we assume that the fourth order problem is imposed

with a Dirichlet boundary condition u = ub on ∂Ω and a natural boundary condition
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regarding the second derivative of u. That is to say, we consider the following

minimisation problem for u:

min
u∈H2∩H1

b
(Ω,R)

J2(u) =
∫

Ω

(
B
∣∣∣D2u

∣∣∣2 + fs(u)
)
,

which corresponds to a strong form

(P2)


2B (D2 : D2)u+ a1u+ a2u

2 + a3u
3 = 0 in Ω,

u = ub on ∂Ω,
D2u · ν = D2ub · ν on ∂Ω,

(8.1.0.3)

where H1
b (Ω,R) := {v ∈ H1(Ω,R) : v = ub on ∂Ω}.

Remark 8.1. The uniqueness result of the problem (8.1.0.3) is still not guaranteed,

though we have imposed additional boundary conditions. This can be resulted from

the presence of the nonlinear term.

Remark 8.2. In the coupled case that we implement in Chapter 9, the boundary

conditions on u are somewhat different. No essential boundary conditions are

enforced, and some second derivative terms arise in the natural boundary condition.

See (A.0.0.2) for details.

Essentially, (P1) is a second order semi-linear PDE while (P2) yields a fourth

order semi-linear PDE. To be more specific, both PDEs possess cubic nonlinearities.

We now consider these two problems separately.

8.1.1 A priori error estimates for (P1)

Note that problem (P1) is a special form of the classical Landau–de Gennes

model of nematic liquid crystals. Finite element analysis for a more general form

using conforming discretisations has been studied in [DG98] with homogeneous

Dirichlet boundary data and in [Dav94] with inhomogeneous Dirichlet and natural

boundary conditions. More specifically, Davis and Gartland [DG98] gave an abstract

nonlinear finite element convergence analysis where an optimal H1 error bound

is proved on convex domains with piecewise linear polynomial approximations.

However, the L2 error bound is not derived. Quite recently, Maity, Majumdar
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and Nataraj [MMN20] analysed the discontinuous Galerkin finite element methods

(dGFEM) for a two-dimensional reduced Landau–de Gennes free energy, where

optimal a priori error estimates in the L2-norm with exact solutions being in H2

and piecewise linear polynomial approximations are achieved. Their representations

of the nonlinear variational form and approaches of deriving error estimates are

different from those of Davis and Gartland. We follow similar techniques from

[MMN20] in this subsection for concreteness.

We use the common continuous Lagrange elements for the problem (P1). For

simplicity, we only illustrate the analysis in two dimensions for the model problem

(7.3.1.2); the three dimensional case has an additional quadratic term |Q|2 in the

strong form which can be tackled similarly. Since (P1) arises in the classical

LdG model for nematic LC, we can quote some existing results (e.g., regularity,

convergence rate in the H1 norm).

Theorem 8.1. [DG98, Theorem 6.3] (Regularity) Let Ω be an open, bounded,

Lipschitz and convex domain. If the Dirichlet data Qb ∈ H1/2(∂Ω, S0), then any

solution of (P1) belongs to H2(Ω, S0).

Remark 8.3. One may wonder that the H2-regularity of Q possibly excludes the

appearance of singularities, e.g., the half-charge defects in nematics. Indeed, we do

not consider the case with singularities in the analysis throughout this part of work.

Suppose Qh ∈ Vh is the approximate solution (of the discrete problem (8.1.1.2)

introduced later) by finite element methods on a finite dimensional space Vh ⊂

H1
b (Ω, S0). For simplicity, we restrict ourselves in the case that Vh consists of

piecewise linear polynomials. An a priori estimate in the H1 norm has been

shown in [Dav94, Theorem 2.3.3] and [DG98, Theorem 7.3] and we include it

here for self-containment.

Theorem 8.2. [DG98, Theorem 7.3] (H1 error estimate for Q) Let Ω be an open,

bounded, polygonal and convex domain. If Q ∈ H2 ∩ H1
b (Ω, S0) and Qh ∈ Vh

represents an approximated solution to Q, it holds that

‖Q−Qh‖1 . h‖Q‖2. (8.1.1.1)
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Remark 8.4. Theorems 8.1 and 8.2 hold for both Ω ⊂ R2 and Ω ⊂ R3.

Following the same representation of the nonlinear variational form as in

[MMN20], we introduce the continuous weak formulation of (P1): find Q ∈

H1
b (Ω, S0) such that

N n(Q)P := An(Q,P) +Bn(Q,Q,Q,P) +Cn(Q,P) = 0 ∀P ∈ H1
0(Ω), (8.1.1.2)

where the bilinear forms are

An(Q,P) := K
∫

Ω
∇Q ... ∇P,

Cn(Q,P) := −2l
∫

Ω
Q : P,

and the nonlinear operator is given by

Bn(Ψ,Φ,Θ,Ξ) := 4l
3

∫
Ω

((Ψ : Φ)(Θ : Ξ) + 2(Ψ : Θ)(Φ : Ξ)) . (8.1.1.3)

Since (8.1.1.2) is nonlinear, we need to approximate the solution of its linearised

version, i.e., find Θ ∈ H1
0(Ω) such that

〈DN n(Q)Θ,Φ〉 := An(Θ,Φ)+3Bn(Q,Q,Θ,Φ)+Cn(Θ,Φ) = −N n(Q)Φ ∀Φ ∈ H1
0(Ω),

(8.1.1.4)

where 〈·, ·〉 represents the dual pairing between H−1(Ω) and H1
0(Ω). We use

continuous Lagrange elements and the finite dimensional approximation space

Vh ⊂ H1(Ω), thus, the discrete bilinear form inherits from (8.1.1.4).

Remark 8.5. We only consider the approximation of a regular or non-singular

solution Q of (8.1.1.2). This means that the Implicit Function Theorem can be

applied in the Banach space H1(Ω) and it is equivalent to the following continuous

inf-sup condition [MMN20, Equation (2.8)]:

0 < βQ := inf
Θ∈H1(Ω)
‖Θ‖1=1

sup
Φ∈H1(Ω)
‖Φ‖1=1

〈DN n(Q)Θ,Φ〉 = inf
Φ∈H1(Ω)
‖Φ‖1=1

sup
Θ∈H1(Ω)
‖Θ‖1=1

〈DN n(Q)Θ,Φ〉.

(8.1.1.5)
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To deduce the L2 error estimate of regular solutions one can use the Aubin–

Nitsche duality argument; however due to the nonlinearity, it is nontrivial to derive

the dual problem. To this end, we consider the following linear dual problem to

the primary nonlinear problem (8.1.0.1): find N ∈ H1
0(Ω) such that−K∆N + 4l|Q|2N + 8l(Q : N)Q− 2lN = G in Ω,

N = 0 on ∂Ω,
(8.1.1.6)

for a given G ∈ L2(Ω) (we will see the choice of G in the proof of Theorem 8.8).

Here, Q ∈ H1
b(Ω). Furthermore, one can obtain the weak form of (8.1.1.6):

find N ∈ H1
0(Ω) such that

〈DN n(Q)N,Φ〉 = An(N,Φ) + 3Bn(Q,Q,N,Φ) + Cn(N,Φ) = (G,Φ)0. (8.1.1.7)

The technique follows [MMN20], where their proofs based on dGFEM with the

broken Sobolev space

H1
0(Th) =

{
v ∈ L2(Ω) : v|T ∈ H1(T ) ∀T ∈ Th,v = 0 on ∂Ω

}
,

are derived with the mesh-dependent norm

‖v‖2
dG =

∑
T∈Th

∫
T
|∇v|2 +

∑
e∈E

∫
e

σm
he

JvK2.

Here, σm > 0 is the penalty parameter. Moreover, for any interior edge e ∈ EI

shared by two cells T− and T+, we define the jump JvK by JvK = v− · ν− + v+ · ν+

with ν−, ν+ representing the restriction of outward normals in T−, T+ respectively.

On the boundary edge/face e ∈ EB, we define JvK = v · ν.

One can easily check that for a continuous approximation vh ∈ H1
0(Ω), it holds

that JvhK = 0 and the ‖ · ‖dG-norm is in fact the H1 semi-norm in the Sobolev

space H1(Ω) and equivalent to the ‖ · ‖1-norm in the Sobolev space H1
0(Ω) by the

Poincaré inequality. Hence, it is straightforward to derive similar results for the

‖ · ‖1-norm as in [MMN20]. We give some auxiliary results about the operators

An(·, ·), Bn(·, ·, ·, ·) and Cn(·, ·).
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Lemma 8.3. (Boundedness and coercivity of An(·, ·)) For Θ,Φ ∈ H1
0(Ω), there

holds

An(Θ,Φ) . ‖Θ‖1‖Φ‖1,

and

‖Θ‖2
1 . An(Θ,Θ) ∀Θ ∈ H1

0(Ω).

Proof. An application of the Cauchy–Schwarz inequality yields the boundedness

result while the coercivity follows from the Poincaré inequality.

Lemma 8.4. (Boundedness of Bn(·, ·, ·, ·), Cn(·, ·)) For Ψ,Φ,Θ,Ξ ∈ H1(Ω), there

holds

Bn(Ψ,Φ,Θ,Ξ) . ‖Ψ‖1‖Φ‖1‖Θ‖1‖Ξ‖1, Cn(Ψ,Φ) . ‖Ψ‖1‖Φ‖1, (8.1.1.8)

and for Ψ,Φ ∈ H2(Ω), Θ,Ξ ∈ H1(Ω),

Bn(Ψ,Φ,Θ,Ξ) . ‖Ψ‖2‖Φ‖2‖Θ‖1‖Ξ‖1. (8.1.1.9)

Proof. For Ψ,Φ,Θ,Ξ ∈ H1(Ω), we use Hölder’s inequality and the embedding result

H1(Ω) ↪→ L4(Ω) to obtain

Bn(Ψ,Φ,Θ,Ξ) . ‖Ψ‖L4‖Φ‖L4‖Θ‖L4‖Ξ‖L4 . ‖Ψ‖1‖Φ‖1‖Θ‖1‖Ξ‖1.

The proof of (8.1.1.9) follows analogously to that of (8.1.1.8) with the use of the

embedding result H2(Ω) ↪→ L∞(Ω) and Cauchy–Schwarz inequality:

Bn(Ψ,Φ,Θ,Ξ) . ‖Ψ‖∞‖Φ‖∞‖Θ‖0‖Ξ‖0 . ‖Ψ‖2‖Φ‖2‖Θ‖1‖Ξ‖1.

This completes the proof.

We also quote interpolation estimates that will be frequently used.

Lemma 8.5. [BS08a] (Interpolation estimates) For v ∈ H2(Ω) there exists Ihv ∈

Vh such that
‖v− Ihv‖0 . h2‖v‖2,

‖v− Ihv‖1 . h‖v‖2.

Here, Ih : H2 → Vh is the interpolation operator.
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To derive the L2 a priori error estimates, we need two more auxiliary results.

Lemma 8.6. For Q ∈ H2(Ω)∩H1
b(Ω), N ∈ H2(Ω)∩H1

0(Ω) and IhQ ∈ Vh ⊂ H1
b(Ω),

it holds that

An(IhQ−Q,N) . h2‖Q‖2‖N‖2.

Proof. By the definition of the bilinear form An(·, ·), integration by parts (note that

(IhQ−Q)|∂Ω = 0), Cauchy–Schwarz inequality and interpolation estimates from

Lemma 8.5, we have

An(IhQ−Q,N) =
∫

Ω
K∇(IhQ−Q) · ∇N

= −
∫

Ω
K(IhQ−Q) ·∆N

. ‖IhQ−Q‖0‖N‖2

. h2‖Q‖2‖N‖2.

This completes the proof.

We then show that the H2-norm of the dual solution is bounded by the source

term G ∈ L2(Ω).

Lemma 8.7. (Boundedness of the dual solution in the H2-norm) The solution N

to the weak form (8.1.1.7) of the dual linear problem belongs to H2(Ω) ∩H1
0(Ω) and

it holds that

‖N‖2 . ‖G‖0. (8.1.1.10)

Proof. We use the inf-sup condition (8.1.1.5) for the linear operator 〈DN n(Q)·, ·〉,

the weak formulation (8.1.1.7) and Cauchy–Schwarz inequality to obtain

βQ‖N‖1 ≤ sup
Φ∈H1

0
‖Φ‖1=1

〈DN n(Q)N,Φ〉 = sup
Φ∈H1

0
‖Φ‖1=1

(G,Φ)0 ≤ ‖G‖0. (8.1.1.11)

By the form of (8.1.1.7) and boundedness of Bn(Q,Q, ·, ·) and Cn(·, ·), we have

‖K∆N‖0 = ‖−3Bn(Q,Q, ·,N)−Cn(·,N)+(G, ·)0‖0 . ‖N‖1 +‖G‖0. (8.1.1.12)

Note that the linear dual problem (8.1.1.6) includes a Laplace operator. Using the

elliptic regularity result on a domain with polygonal boundary (see e.g., [Gri85,



8. Finite element discretisation 106

Theorem 4.3.1.4]) for Laplace operators, we deduce that N ∈ H2(Ω). Combining

Equations (8.1.1.11) and (8.1.1.12) and the fact that ‖∆ · ‖0 is indeed a norm in

H2(Ω) ∩H1
0(Ω), we can get (8.1.1.10).

Finally, we are ready to deduce the optimal L2 error estimate.

Theorem 8.8. (L2 error estimate) Let Q be a regular solution of the nonlinear

weak problem (8.1.1.2). For sufficiently small mesh size h, there exists a unique

approximate solution Qh of the discrete problem (having the same weak formulation

as (8.1.1.2)) such that

‖Q−Qh‖0 . h2
(
2 +

(
3 + 2h+ 2h2

)
‖Q‖2

2

)
‖Q‖2. (8.1.1.13)

Proof. We take G = IhQ−Qh in the linear dual problem (8.1.1.6), multiply (8.1.1.6)

by IhQ−Qh and integrate by parts to obtain the weak formulation

〈DN n(Q)(IhQ−Qh),N〉 = ‖IhQ−Qh‖2
0.

Here, 〈DN n(Q)(IhQ−Qh),N〉 = An(IhQ−Qh,N) + 3Bn(Q,Q, IhQ−Qh,N) +

Cn(IhQ − Qh,N). Since both Q and its approximation Qh satisfy the weak

formulation (8.1.1.2), we know

N n(Q)IhN = 0 and N n(Qh)IhN = 0.

By the definitions of the nonlinear operator N n(Q)· and bilinear form 〈DN n(Q)·, ·〉,

we calculate

‖IhQ−Qh‖2
0 = 〈DN n(Q)(IhQ−Qh),N〉+N n(Qh)IhN−N n(Q)IhN

= An(IhQ−Qh,N) + 3Bn(Q,Q, IhQ−Qh,N) + Cn(IhQ−Qh,N)

+ An(Qh, IhN) +Bn(Qh,Qh,Qh, IhN) + Cn(Qh, IhN)

− An(Q, IhN)−Bn(Q,Q,Q, IhN)− Cn(Q, IhN)

= An(IhQ−Q,N) + An(Q−Qh,N− IhN)︸ ︷︷ ︸
U1

+ Cn(IhQ−Q,N) + Cn(Q−Qh,N− IhN)︸ ︷︷ ︸
U2



8. Finite element discretisation 107

+ 3Bn(Q,Q, IhQ−Qh,N− IhN) + 3Bn(Q,Q, IhQ−Q, IhN)︸ ︷︷ ︸
U3

+Bn(Qh,Qh,Qh, IhN)− 3Bn(Q,Q,Qh, IhN) + 2Bn(Q,Q,Q, IhN)︸ ︷︷ ︸
U4

=: U1 + U2 + U3 + U4. (8.1.1.14)

We now use the previous auxiliary results to bound U1, · · · , U4 separately, yielding

U1 = An(IhQ−Q,N) + An(Q−Qh,N− IhN)

. h2‖Q‖2‖N‖2 + ‖Q−Qh‖1‖N− IhN‖1, by Lemma 8.6 and Lemma 8.3,

. h2‖Q‖2‖N‖2, by (8.1.1.1) and Lemma 8.5,
(8.1.1.15)

U2 = Cn(IhQ−Q,N) + Cn(Q−Qh,N− IhN)

. ‖IhQ−Q‖0‖N‖0 + ‖Q−Qh‖1‖N− IhN‖1, by CS and (8.1.1.8),

. h2‖Q‖2(‖N‖0 + ‖N‖2), by Lemma 8.5 and (8.1.1.1),

. h2‖Q‖2‖N‖2, by ‖N‖0 ≤ ‖N‖2, (8.1.1.16)

and

U3 = 3Bn(Q,Q, IhQ−Qh,N− IhN) + 3Bn(Q,Q, IhQ−Q, IhN)

. ‖Q‖2
2‖IhQ−Qh‖1‖N− IhN‖1 + ‖Q‖2

2‖IhQ−Q‖0‖IhN‖0, by (8.1.1.9) and CS,

. h‖Q‖2
2‖IhQ−Qh‖1‖N‖2 + h2‖Q‖3

2‖IhN‖0, by Lemma 8.5.
(8.1.1.17)

Here, CS abbreviates for the Cauchy–Schwarz inequality. Note that by triangle

inequality, Lemma 8.5 and (8.1.1.1), it holds that

‖IhQ−Qh‖1 ≤ ‖IhQ−Q‖1 + ‖Q−Qh‖1 . h‖Q‖2,

‖IhN‖0 ≤ ‖IhN−N‖0 + ‖N‖0 . (1 + h2)‖N‖2,

‖IhN‖1 ≤ ‖IhN−N‖1 + ‖N‖1 . (1 + h)‖N‖2. (8.1.1.18)

Therefore, we further estimate U3 in (8.1.1.17) to obtain

U3 . h2(2 + h2)‖Q‖3
2‖N‖2. (8.1.1.19)
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It remains to bound the U4 term in (8.1.1.14). Let E = Qh − Q. We use the

definition (8.1.1.3) of Bn(·, ·) and manipulate terms as follows:

U4 = Bn(Qh,Qh,Qh, IhN)− 3Bn(Q,Q,Qh, IhN) + 2Bn(Q,Q,Q, IhN)

= 4l
∫

Ω
|Qh|2(Qh : IhN)− 4l

∫
Ω

(
|Q|2(Qh : IhN) + 2(Q : Qh)(Q : IhN)

)
+ 8l

∫
Ω
|Q|2(Q : IhN)

= 4l
∫

Ω

(
|Qh|2 − |Q|2

)
(Qh : IhN)− 8l

∫
Ω

Q : (Qh −Q)(Q : IhN)

= 4l
∫

Ω
E : (E + 2Q)(E + Q) : IhN− 8l

∫
Ω

(E : Q)(Q : IhN)

= 4l
∫

Ω
(E : E)(E : IhN) + 4l

∫
Ω

(E : E)(Q : IhN) + 8l
∫

Ω
(E : Q)(E : IhN).

Using the Hölder’s inequality and the embedding result H1(Ω) ↪→ L4(Ω), we can

bound U4 further to obtain

U4 . ‖E‖3
1‖IhN‖1 + ‖E‖2

1‖Q‖1‖IhN‖1 + ‖E‖2
1‖Q‖1‖IhN‖1

= ‖E‖2
1(‖E‖1 + 2‖Q‖1)‖IhN‖1

. (1 + h)‖E‖2
1(‖E‖1 + ‖Q‖1)‖N‖2, by (8.1.1.18),

. h2(1 + h)‖Q‖2
2(h‖Q‖2 + ‖Q‖2)‖N‖2, by Lemma 8.5,

= h2(1 + h)2‖Q‖3
2‖N‖2. (8.1.1.20)

Combining the estimates (8.1.1.15), (8.1.1.16), (8.1.1.19) and (8.1.1.20) and applying

Lemma 8.7 yields

‖IhQ−Qh‖2
0 . h2

(
2 +

(
2 + h2 + (1 + h)2

)
‖Q‖2

2

)
‖Q‖2‖N‖2

. h2
(
2 +

(
3 + 2h+ 2h2

)
‖Q‖2

2

)
‖Q‖2 ‖G‖0︸ ︷︷ ︸

=‖IhQ−Qh‖0

,

implying that

‖IhQ−Qh‖0 . h2
(
2 +

(
3 + 2h+ 2h2

)
‖Q‖2

2

)
‖Q‖2. (8.1.1.21)

By the triangle inequality and Lemma 8.5, we have

‖Q−Qh‖0 ≤ ‖Q− IhQ‖0 + ‖IhQ−Qh‖0 . h2
(
2 +

(
3 + 2h+ 2h2

)
‖Q‖2

2

)
‖Q‖2.

This completes the proof.



8. Finite element discretisation 109

Remark 8.6. One can follow [MMN20] to obtain optimal error estimates in both

norms ‖ · ‖1 and ‖ · ‖0 for higher degrees (≥ 2) of approximating polynomials.

We omit further details since ‖ · ‖1 is actually equivalent to the norm ‖ · ‖dG (in

[MMN20]) in the H1
0(Ω) space and the technique can be directly applied to our case

here.

In this subsection, we have obtained the optimal a priori error estimates of the

regular solution Q in the L2-norm (see Theorem 8.8) and in the H1-norm (see

Theorem 8.2). We will verify this in our subsequent numerical experiments in

Section 8.2 with different choices of approximations.

8.1.2 A priori error estimates for (P2)

Since the PDE (8.1.0.3) for the density variation u is a fourth order problem, a

conforming discretisation requires a finite dimensional subspace of the Sobolev space

H2(Ω), which necessitates the use of C1-continuous elements. The construction of

these elements is quite involved, particularly in three dimensions; without a special

mesh structure, the lowest-degree conforming elements are the Argyris [AFS68] and

Zhang [Zha09] elements, of degree 5 and 9 in two and three dimensions respectively.

One approach to avoid this is to use mixed formulations by solving two second order

systems, and we refer to [Sch78; CHH00] for instance. However, this substantially

increases the size of the linear systems to be solved. Alternatively, one can directly

tackle the fourth-order problem with non-conforming elements, that do not satisfy

the C1-requirement. For instance, the so-called continuous/discontinuous Galerkin

(C/DG) methods and C0 interior penalty methods (C0-IP) are analysed in [Eng+02;

BS05], combining concepts from the theory of continuous and discontinuous Galerkin

methods. Essentially, these methods use C0-conforming elements and penalise inter-

element jumps in first derivatives to weakly enforce C1-continuity. This has the

advantages of both convenience and efficiency: the weak form is simple, with only

minor modifications from a conforming method, and fewer degrees of freedom are

used than with a fully discontinuous Galerkin method.
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We thus adopt the idea of C0-IP methods to solve the nonlinear fourth order

problem (P2). Specifically, we use the usual C0-continuous Lagrange elements and

penalise jumps of the gradient across facets. In what follows, we derive some a

priori error estimates for the fourth order problem (P2) with the strong form

derived in (8.1.0.3).

For simplicity, we only consider the cubic nonlinearity (i.e., a2 = 0) in this

analysis. The quadratic term can be tackled similarly. We therefore analyse

the following strong form,
2B∇ · (∇ · (D2u)) + a1u+ a3u

3 = 0 in Ω,
u = ub on ∂Ω,
D2u · ν = D2ub · ν on ∂Ω.

(8.1.2.1)

The corresponding continuous weak form is defined as: find u ∈ H2(Ω)∩H1
b (Ω) such

that

N s(u)v := As(u, v) +Bs(u, u, u, v) + Cs(u, v) = Ls(v) ∀v ∈ H2(Ω) ∩H1
0 (Ω),

(8.1.2.2)

where for v, w ∈ H2(Ω),

As(v, w) = 2B
∫

Ω
D2v : D2w,

Cs(v, w) = a1

∫
Ω
vw,

Ls(v) := 2B
∫
∂Ω

(
D2ub · ∇v

)
· ν,

and for µ, ζ, η, ξ ∈ H2(Ω),

Bs(µ, ζ, η, ξ) = a3

∫
Ω
µζηξ.

Since (8.1.2.2) is nonlinear, we derive its linearisation: find v ∈ H2(Ω)∩H1
0 (Ω) such

that

〈DN s(u)v, w〉H2 := As(v, w)+3Bs(u, u, v, w)+Cs(v, w) = Ls(w) ∀w ∈ H2(Ω)∩H1
0 (Ω),

(8.1.2.3)

where 〈·, ·〉H2 represents the dual pairing between (H2(Ω) ∩H1
0 (Ω))∗ and H2(Ω) ∩

H1
0 (Ω).
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It is straightforward to derive the coercivity and boundedness of the bilinear

operator As(·, ·) with the semi-norm | · |2 (in fact, this is indeed a norm in

H2(Ω) ∩ H1
0 (Ω)).

Lemma 8.9. For v, w ∈ H2(Ω) ∩H1
0 (Ω), there holds

As(v, w) . |v|2|w|2 and As(v, v) & |v|22.

Define the broken Sobolev space by

H2(Th) := {v ∈ H1(Ω) : v|T ∈ H2(T ) ∀T ∈ Th},

equipped with the broken norm ‖v‖2
2,Th = ∑

T∈Th ‖v‖
2
2,T .

We take the nonconforming but still continuous approximation uh for the

solution u of (8.1.2.2), that is to say, uh ∈ Wh,b ⊂ H2(Th) ∩ H1
b (Ω) with some

related definitions for deg ≥ 2

Wh := {v ∈ H2(Th) ∩H1(Ω) : v ∈ Qdeg(T ) ∀T ∈ Th},

Wh,0 := {v ∈ H2(Th) ∩H1(Ω) : v = 0 on ∂Ω, v ∈ Qdeg(T ) ∀T ∈ Th},

Wh,b := {v ∈ H2(Th) ∩H1(Ω) : v = ub on ∂Ω, v ∈ Qdeg(T ) ∀T ∈ Th}.

Following the derivation of C0-IP formulation similar to [Bre11, Section 3], we

introduce the discrete nonlinear weak form: find uh ∈ Wh,b such that

N s
h(uh)vh := Ash(uh, vh)+P s

h(uh, vh)+Bs
h(uh, uh, uh, vh)+Cs

h(uh, vh) = Ls(vh) ∀vh ∈ Wh,0,

(8.1.2.4)

where for all u, v, µ, ζ, η, ξ ∈ Wh,

Ash(u, v) := 2B
( ∑
T∈Th

∫
T
D2u : D2v −

∑
e∈EI

∫
e

{{
∂2u

∂ν2

}}
J∇vK−

∑
e∈EI

∫
e

{{
∂2v

∂ν2

}}
J∇uK

)
,

Cs
h(u, v) = Cs(u, v) = a1

∫
Ω
uv,

Bs
h(µ, ζ, η, ξ) = Bs(µ, ζ, η, ξ) = a3

∫
Ω
µζηξ,

and

P s
h(u, v) :=

∑
e∈EI

2Bε
h3
e

∫
e
J∇uKJ∇vK. (8.1.2.5)
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Here, ε is the penalty parameter (to be specified in the implementations later),

the average
{{

∂2u
∂ν2

}}
of the second derivatives of u along tangential directions

across e is defined as {{
∂2u

∂ν2

}}
= 1

2

(
∂2u+

∂ν2

∣∣∣∣∣
e

+ ∂2u−
∂ν2

∣∣∣∣∣
e

)
,

with ν denoting the outward normal. In fact, the operator P s
h penalises the first

derivatives across the interior facet since the function in H1(Ω) is not necessarily

continuously differentiable.

Remark 8.7. The nonlinear problems (8.1.2.2) and (8.1.2.4) are equivalent for

the solution u of the strong form (8.1.0.3) since the jump term J∇uK vanishes for

u ∈ H2(Ω), however they are not equivalent for uh ∈ Wh,b ⊂ H1(Ω).

The linearised version of the discrete nonlinear problem (8.1.2.4) yields the

following discrete linear weak form: seek vh ∈ Wh,0 such that

〈DN s
h(uh)vh, wh〉 = Ls(wh) ∀wh ∈ Wh,0, (8.1.2.6)

where

〈DN s
h(uh)vh, wh〉 := Ash(vh, wh) + P s

h(vh, wh) + 3Bs
h(uh, uh, vh, wh) + Cs

h(vh, wh).

(8.1.2.7)

We also define the mesh-dependent H2-like semi-norm for v ∈ Wh,

|||v|||2h :=
∑
T∈Th
|v|2H2(T ) +

∑
e∈EI

∫
e

1
h3
e

|J∇vK|2. (8.1.2.8)

Note that |||·|||h is indeed a norm on Wh,0. This norm will be used in the well-

posedness and convergence analysis below.

We first give an immediate result about the consistency of the discrete form

(8.1.2.4).

Theorem 8.10. (Consistency) Assuming that u ∈ H4(Ω). The solution u of the

continuous weak form (8.1.2.2) solves the discrete weak problem (8.1.2.4).
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Proof. Multiplying the fourth order term 2B∇·(∇·(D2u)) in (8.1.2.1) with v ∈ Wh,0

and using piecewise integration by parts with the boundary condition specified in

(8.1.2.1) for u, one can obtain

2B
∑
T∈Eh

∫
T
∇ · (∇ · (D2u))v = 2B

∑
T∈Eh

∫
T
D2u : D2v − 2B

∑
e∈EI

∫
e

{{
∂2u

∂ν2

}}
J∇vK.

(8.1.2.9)

Since u ∈ H4(Ω) implies ∇u is continuous on the whole domain Ω, the jump term

J∇uK then becomes zero and we can thus symmetrise and penalise the form (8.1.2.9).

This leads to the presence of Ash(u, v) + P s
h(u, v). The remaining terms involving

Bs
h and Cs

h are straightforward as one takes the test function v ∈ Wh,0. Therefore,

u satisfies (8.1.2.4).

8.1.2.1 Elliptic regularity

Essentially, the strong form (8.1.2.1) is similar to the model problem given as

[Bre11, Example 2] of form

∆2u = f in Ω,

u = ∆u = 0 on ∂Ω.
(8.1.2.10)

Remark 8.8. The boundary condition for the second derivative of u in (8.1.2.10)

is different from what we have imposed in (8.1.2.1). We just want to comment about

the regularity of the problem (8.1.2.1) by extending the results for (8.1.2.10).

Noticing that

(
D2 : D2

)
u =

[(
∂2
x

)2
+
(
∂2
y

)2
+ 2

(
∂2
xy

)2
]
u = ∆2u,

it is natural to extend the classical elliptic regularity result [BB80] for the biharmonic

operator ∆2 to the case of the bi-Hessian operator D2 : D2. In general, the weak

solution of (8.1.2.10) in a bounded polygonal domain Ω belongs to H2+κ(Ω) for

some elliptic regularity index κ ∈ (0, 2]. More specifically, by [BB80, Theorem 2], we

know that if each interior angle is smaller than π/2, then for f ∈ H−1(Ω) there holds

‖u‖H3(Ω) . ‖f‖H−1(Ω).
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In addition, if the domain Ω is smooth, the weak solutions even belong to H4(Ω)

by classical elliptic regularity results and thus we take this as an assumption

throughout the analysis for simplicity.

Hence, we assume the solution u of the strong form (8.1.2.1) is sufficiently

regular in what follows and only consider to approximate such regular or non-

singular solutions of the continuous weak form (8.1.2.2). Moreover, to facilitate the

following analysis, we further assume that u is an isolated solution, i.e., within a

sufficiently small ball {v ∈ H2(Ω) ∩H1
0 (Ω) : |v − u|2 ≤ rb} with radius rb, there is

only one solution u satisfying (8.1.2.1). These assumptions then imply that the

linearised operator 〈DN s(u)·, ·〉H2 satisfies the following inf-sup condition:

0 < βu = inf
v∈H2(Ω)∩H1

0 (Ω)
|v|2=1

sup
w∈H2(Ω)∩H1

0 (Ω)
|w|2=1

〈DN s(u)v, w〉H2 = inf
w∈H2(Ω)∩H1

0 (Ω)
|w|2=1

sup
v∈H2(Ω)∩H1

0 (Ω)
|v|2=1

〈DN s(u)v, w〉H2 .

(8.1.2.11)

8.1.2.2 Well-posedness of the discrete form

Recalling [Bre11, Eq. (3.20)] that for u, v ∈ Wh,0,

∑
e∈EI

∣∣∣∣∣
∫
e

{{
∂2w

∂ν2

}}
J∇vK

∣∣∣∣∣ .
∑
T∈Th

∫
T
D2w : D2w

1/2∑
e∈EI

1
he

∫
e
(J∇vK)2

1/2

,

we can immediately obtain

∑
e∈EI

∣∣∣∣∣
∫
e

{{
∂2w

∂ν2

}}
J∇vK

∣∣∣∣∣ .
∑
T∈Th

∫
T
D2w : D2w

1/2∑
e∈EI

1
h3
e

∫
e
(J∇vK)2

1/2

,

(8.1.2.12)

since the edge or facet size he < 1. With the estimate (8.1.2.12) at hand, we can apply

the Cauchy–Schwarz inequality and use the definition (8.1.2.8) of |||·|||h to obtain

the boundedness of Ash(·, ·) and P s
h(·, ·). That is to say, for u, v ∈ Wh,0, there holds

|Ash(u, v)| . |||u|||h|||v|||h,

|P s
h(u, v)| . |||u|||h|||v|||h.

We omit the details of their proofs here and only illustrate the boundedness result

for Bs
h(·, ·, ·, ·) and Cs

h(·, ·) below.
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Lemma 8.11. (Boundedness of Bs
h(·, ·, ·, ·) and Cs

h(·, ·)) For u, v, w, p ∈ Wh,0, we

have
|Bs

h(u, v, w, p)| . |||u|||h|||v|||h|||w|||h|||p|||h,

|Cs
h(u, v)| . |||u|||h|||v|||h.

(8.1.2.13)

For u, v ∈ H2(Ω), w, p ∈ Wh,

|Bs
h(u, v, w, p)| . ‖u‖2‖v‖2|||w|||h|||p|||h. (8.1.2.14)

Proof. By Hölder’s inequality, Sobolev embedding H1(Ω) ↪→ L4(Ω), and the fact

that the H1 semi-norm | · |1 is a norm in H1
0 (Ω), we deduce

|Bs
h(u, v, w, p)| . ‖u‖L4‖v‖L4‖w‖L4‖p‖L4

. |u|1|v|1|w|1|p|1.

It then follows from a Poincaré inequality [Bre03] [BS05, Eq. (4.22)] for piecewise

H1 functions that

∑
T∈Th
|v|21,T .

∑
T∈Th
|v|22,T +

∑
e∈EI

1
h3
e

‖J∇vK‖2
0,e = |||v|||2h ∀v ∈ Wh,0. (8.1.2.15)

Thus, we obtain

|Bs
h(u, v, w, p)| . |||u|||h|||v|||h|||w|||h|||p|||h.

The boundedness of Cs
h(·, ·) follows similarly by Cauchy–Schwarz inequality, the

Sobolev embedding H1(Ω) ↪→ L2(Ω) and the use of (8.1.2.15).

The proof of (8.1.2.14) is analogous to that of (8.1.2.13) with a use of the

embedding result H2(Ω) ↪→ L∞(Ω) and the Cauchy–Schwarz inequality.

We give the coercivity result for the bilinear form (Ash(·, ·) + P s
h(·, ·)).

Lemma 8.12. (Coercivity of Ash + P s
h) For a sufficiently large penalty parameter ε,

there holds

|||vh|||2h . Ash(vh, vh) + P s
h(vh, vh) ∀vh ∈ Wh,0. (8.1.2.16)
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Proof. By (8.1.2.12) and the inequality of geometric and arithmetic means, we

deduce for v ∈ Wh,

Ash(v, v) + P s
h(v, v) ≥ 2B

∑
T∈Th
|v|2H2(T ) − 2BC

∑
T∈Th
|v|22,T

1/2∑
e∈EI

1
h3
e

‖J∇vK‖2
0,e

1/2

+ 2B
∑
e∈EI

∫
e

ε

h3
e

|J∇vK|2


≥ 2B
1

2
∑
T∈Th
|v|2H2(T ) +

(
ε− C2

2

) ∑
e∈EI

1
h3
e

‖J∇vK‖2
0,e


≥ B|||v|||2h,

provided the penalty parameter ε is sufficiently large with the generic constant C

from (8.1.2.12).

An important question about the well-posedness is the coercivity of the bilinear

operator 〈DN s
h(uh)·, ·〉. Due to the presence of Bs

h and Cs
h terms in 〈DN s

h(uh)·, ·〉,

it is not trivial to derive its coercivity. Instead, we discuss the weak coercivity

of the bilinear form 〈DN s
h(u)·, ·〉 defined as

〈DN s
h(u)vh, wh〉 := Ash(vh, wh)+P s

h(vh, wh)+3Bs
h(u, u, vh, wh)+Cs

h(vh, wh) ∀vh, wh ∈ Wh.

(8.1.2.17)

We first give a useful lemma illustrating some estimates related to the enrichment

operator Eh : Wh → WC ⊂ H2(Ω) with WC being the Hsieh–Clough–Tocher macro

finite element space. The degrees of freedom of w ∈ WC include: (i) the values

of the derivatives of w up to order 1 at the interior vertices and (ii) the values

of the normal derivative of w at the midpoints of the interior edges/facets in EI .

The following lemma is adapted to our notations and definition of |||·|||h using

the result [Bre11, Lemma 1].

Lemma 8.13. [Bre11, Lemma 1] For vh ∈ Wh,0, there holds that
∑
T∈Th

(
h−4‖vh − Ehvh‖2

L2(T ) + h−2|vh − Ehvh|2H1(T ) + |vh − Ehvh|2H2(T )

)
.
∑
e∈EI

1
h3
e

‖J∇vhK‖2
L2(e) . |||vh|||

2
h.

(8.1.2.18)
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We can obtain the discrete inf-sup condition for the discrete bilinear oper-

ator 〈DN s
h(u)·, ·〉.

Theorem 8.14. (Weak coercivity of 〈DN s
h(u)·, ·〉) Let u be a regular isolated solution

of the nonlinear continuous weak form (8.1.2.4). For a sufficiently large ε and a

sufficiently small mesh size h, the following discrete inf-sup condition holds on a

smooth domain Ω with a positive constant βc > 0:

0 < βc ≤ inf
v∈Wh

|||vh|||h=1

sup
w∈Wh

|||wh|||h=1

〈DN s
h(u)vh, wh〉. (8.1.2.19)

Proof. For v ∈ H2(Ω) ∩H1
0 (Ω), it follows from the boundedness result of Bs

h, C
s
h

that Bs
h(u, u, v, ·), Bs(u, u, v, ·), Cs

h(v, ·) and Cs(v, ·) ∈ L2(Ω). Furthermore, since

As(·, ·) is bounded and coercive as given by Lemma 8.9, for a given vh ∈ Wh with

|||vh|||h = 1, there exists ξ and η ∈ H4(Ω) ∩H1
0 (Ω) that solve the linear systems:

As(ξ, w) = 3Bs
h(u, u, vh, w) + Cs

h(vh, w) ∀w ∈ H2(Ω) ∩H1
0 (Ω), (8.1.2.20a)

As(η, w) = 3Bs(u, u, Ehvh, w) + Cs(Ehvh, w) ∀w ∈ H2(Ω) ∩H1
0 (Ω). (8.1.2.20b)

It then follows from the standard elliptic regularity result that ‖η‖4 . CBC with

constant CBC depending on ‖u‖2.

Subtracting (8.1.2.20a) from (8.1.2.20b), then taking w = η − ξ and using the

coercivity of As(·, ·) and boundedness of Bs
h, C

s
h, we obtain

|η − ξ|2 .
(
3‖u‖2

2 + 1
)
‖Ehvh − vh‖0

. h2 |||vh|||h︸ ︷︷ ︸
=1

by Lemma 8.13. (8.1.2.21)

Here, we have used the fact that Bs
h and Cs

h are in fact equivalent to Bs and Cs,

respectively, by their definitions. Since u is a regular isolated solution of (8.1.2.2),

it yields by (8.1.2.11) that there exists w ∈ H2(Ω) ∩H1
0 (Ω) with |w|2 = 1 such that

|Ehvh|2 . 〈DN s(u)Ehvh, w〉H2

= As(Ehvh, w) + 3Bs(u, u, Ehvh, w) + Cs(Ehvh, w)

= As(Ehvh + η, w) by (8.1.2.20b),
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. |Ehvh + η|2 |w|2︸︷︷︸
=1

by Lemma 8.9,

= |||Ehvh + η|||h since Ehvh + η ∈ H2,

≤ |||Ehvh − vh|||h + |||vh + Ihξ|||h + |||Ihξ − ξ|||h + |||ξ − η|||h︸ ︷︷ ︸
=|ξ−η|2

by triangle inequality.

(8.1.2.22)

Note that J∇ξK = 0 on EI since ξ ∈ H4(Ω). We can thus calculate

|||Ehvh − vh|||2h .
∑
e∈EI

∫
e

1
h3
e

|J∇vhK|2 by Lemma 8.13,

.
∑
e∈EI

∫
e

1
h3
e

|J∇(vh + ξ)K|2

≤ |||vh + ξ|||2h.

Further, by the triangle inequality, we get

|||Ehvh − vh|||h . |||vh + ξ|||h ≤ |||vh + Ihξ|||h + |||ξ − Ihξ|||h. (8.1.2.23)

Since vh + Ihξ ∈ Wh, it follows from the coercivity result (8.1.2.16) that there

exists wh ∈ Wh with |||w|||h = 1 such that

|||vh + Ihξ|||h . Ash(vh + Ihξ, wh) + P s
h(vh + Ihξ, wh)

= 〈DN s
h(u)vh, wh〉 − 3Bs

h(u, u, vh, wh)− Cs
h(vh, wh)

+ Ash(Ihξ − ξ, wh) + P s
h(Ihξ − ξ, wh) + Ash(ξ, wh) + P s

h(ξ, wh)

= 〈DN s
h(u)vh, wh〉+ 3Bs

h(u, u, vh, Ehwh − wh) + Cs
h(vh, Ehwh − wh)

+ Ash(Ihξ − ξ, wh) + P s
h(Ihξ − ξ, wh)

+ Ash(ξ, wh − Ehwh) + P s
h(ξ, wh − Ehwh), (8.1.2.24)

where in the last equality we have used the fact that

3Bs
h(u, u, vh, Ehwh) + Cs

h(vh, Ehwh) = As(ξ, Ehwh) = Ash(ξ, Ehwh) + P s(ξ, Ehwh)

because of (8.1.2.20a) and J∇ξK = J∇EhwhK = 0.

Using the boundedness result Lemma 8.11 and the enrichment estimates Lemma 8.13,

we obtain

3Bs
h(u, u, vh, Ehwh − wh) + Cs

h(vh, Ehwh − wh) . ‖vh‖0︸ ︷︷ ︸
.|vh|1.|||vh|||h=1

‖Ehwh − wh‖0︸ ︷︷ ︸
.h2|||wh|||h=h2

.

(8.1.2.25)
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By the boundedness of the bilinear form Ash + P s
h and standard interpolation

estimates, we have

Ash(Ihξ − ξ, wh) + P s
h(Ihξ − ξ, wh) . |||Ihξ − ξ|||h |||wh|||h︸ ︷︷ ︸

=1

. hmin{deg−1,2}‖ξ‖4, (8.1.2.26)

where deg ≥ 2 denotes the degree of the approximating polynomials. Moreover, by

the enrichment estimate Lemma 8.13 and the fact that J∇ξK = J∇(Ehwh)K = 0,

there holds

Ash(ξ, wh − Ehwh) + P s
h(ξ, wh − Ehwh)

= 2B
∑
T∈Th

∫
T
D2ξ : D2(wh − Ehwh)− 2B

∑
e∈EI

∫
e

{{
∂2ξ

∂ν2

}}
J∇(wh − Ehwh)K

= 2B
∑
T∈Th
∇ ·

(
∇ · (D2ξ)

)
(wh − Ehwh) by (8.1.2.9),

. ‖ξ‖4‖wh − Ehwh‖0

. h2‖ξ‖4 by Lemma 8.13.
(8.1.2.27)

Combine Equations (8.1.2.25) to (8.1.2.27) in (8.1.2.24) to obtain

|||Ehvh − vh|||h . 〈DN
s
h(u)vh, wh〉+ h2 + hmin{deg−1,2}. (8.1.2.28)

Substituting (8.1.2.28) into (8.1.2.23) and using standard interpolation estimates

yield that

|||Ehvh − vh|||h . 〈DN
s
h(u)vh, wh〉+ h2 + hmin{deg−1,2}. (8.1.2.29)

A use of Equations (8.1.2.28) and (8.1.2.29), standard interpolation estimates and

(8.1.2.21) in (8.1.2.22) leads to

|Ehvh|2 . 〈DN s
h(u)vh, wh〉+ h2 + hmin{deg−1,2}.

Then, by the triangle inequality, we have

1 = |||vh|||h ≤ |||vh − Ehvh|||h + |||Ehvh|||h︸ ︷︷ ︸
=|Ehvh|2

≤ Ct
(
〈DN s

h(u)vh, wh〉+ h2 + hmin{deg−1,2}
)
.
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Therefore, for the mesh size h satisfying

h2 + hmin{deg−1,2} <
1

2Ct
,

the discrete inf-sup condition (8.1.2.19) holds for βc = 1
2Ct .

Moreover, we can obtain the discrete inf-sup condition for the perturbed bilinear

form 〈DN s
h(Ihu)·, ·〉, i.e.,

〈DN s
h(Ihu)vh, wh〉 = Ash(vh, wh)+P s

h(vh, wh)+3Bs
h(Ihu, Ihu, vh, wh)+Cs

h(vh, wh) ∀vh, wh ∈ Wh.

(8.1.2.30)

Theorem 8.15. (Weak coercivity of 〈DN s
h(Ihu)·, ·〉) Let u be a regular isolated

solution of the nonlinear continuous weak form (8.1.2.4) and Ihu the interpolation

of u. For a sufficiently large ε and a sufficiently small mesh size h, the following

discrete inf-sup condition holds:

0 < βc
2 ≤ inf

vh∈Wh

|||vh|||h=1

sup
wh∈Wh

|||wh|||h=1

〈DN s
h(Ihu)vh, wh〉. (8.1.2.31)

Proof. Denote ũ = u − Ihu. By the definition (8.1.2.30) of the bilinear form

〈DN s
h(Ihu)·, ·〉, we have

〈DN s
h(Ihu)vh, wh〉 = Ash(vh, wh)+P s

h(vh, wh)+3Bs
h(u−ũ, u−ũ, vh, wh)+Cs

h(vh, wh).

It follows from the definition of Bs
h and its boundedness result Lemma 8.11 that

Bs
h(u− ũ, u− ũ, vh, wh) = Bs

h(u, u, vh, wh) +Bs
h(ũ, ũ, vh, wh)− 2Bs

h(u, ũ, vh, wh)

≥ Bs
h(u, u, vh, wh) +Bs

h(ũ, ũ, vh, wh)− 2C1|||u|||h|||ũ|||h|||vh|||h|||wh|||h,

where C1 is the generic constant arising in the boundedness result Lemma 8.11 for

Bs
h(·, ·, ·, ·). Therefore, we obtain that

〈DN s
h(Ihu)vh, wh〉 ≥ 〈DN s

h(u)vh, wh〉+3Bs
h(ũ, ũ, vh, wh)−6C1|||u|||h|||ũ|||h|||vh|||h|||wh|||h.



8. Finite element discretisation 121

Now using the inf-sup condition Theorem 8.14 for the bilinear form 〈DN s
h(u)·, ·〉,

boundedness result Lemma 8.11 and interpolation estimates, we get
sup

|||wh|||h=1
wh∈Wh

〈DN s
h(Ihu)vh, wh〉 ≥ sup

|||wh|||h=1
wh∈Wh

〈DN s
h(u)vh, wh〉 − 3|Bs

h(ũ, ũ, vh, wh)|

− 6C1h
min{deg−1,ku−2}|||u|||h|||vh|||h

≥
(
βc − C2h

min{deg−1,ku−2}
)
|||vh|||h

≥ βc
2 |||vh|||h,

for a sufficiently small mesh size h such that hmin{deg−1,ku−2} < βc
2C2

. Here, C2

depends on C1 and ‖u‖2 and ku > 2 gives the regularity of u, i.e., u ∈ Hku(Ω).

Therefore, the inf-sup condition (8.1.2.31) holds.

8.1.2.3 Convergence analysis

We proceed to the error analysis for the discrete nonlinear problem (8.1.2.4). Let

Bρ(Ihu) := {vh ∈ Wh : |||Ihu− vh|||h ≤ ρ},

where Ih is the interpolation operator mapping from the infinite dimensional space

H2(Th) ∩ H1(Ω) to the finite dimensional space Wh. We define the nonlinear

map µh : Wh → Wh by

〈DN s
h(Ihuh)µh(vh), wh〉 = 3Bs

h(Ihuh, Ihuh, vh, wh) + Ls(wh)−Bs
h(vh, vh, vh, wh).

(8.1.2.32)

Due to the weak coercivity property in Theorem 8.15, the nonlinear map µh

is well-defined.

The existence and local uniqueness result of the discrete solution uh to the

discrete nonlinear problem (8.1.2.4) will be proven via an application of Brouwer’s

fixed point theorem, which necessitates the use of two auxiliary lemmas illustrating

that (i) µh maps from a ball to itself; and (ii) the map µh is contracting.

Lemma 8.16. (Mapping from a ball to itself) Let u be a regular isolated solution

of the continuous nonlinear weak problem (8.1.2.2). For a sufficiently large ε and a

sufficiently small mesh size h, there exists a positive constant R(h) > 0 such that:

|||vh − Ihu|||h ≤ R(h)⇒ |||µh(vh)− Ihu|||h ≤ R(h) ∀vh ∈ Wh,0.
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Proof. Note that the solution u ∈ H2(Ω) ∩H1
0 (Ω) of (8.1.2.2) satisfies the discrete

weak formulation (8.1.2.4) due to the consistency result Theorem 8.10, that is to

say, there holds that

Ash(u,wh) + P s
h(u,wh) +Bs

h(u, u, u, wh) + Cs
h(u,wh) = Ls(wh) ∀wh ∈ Wh,0.

(8.1.2.33)

By the linearity of 〈DN s
h(Ihu)·, ·〉H2 , the definition (8.1.2.32) of the nonlinear map

µh and formulation (8.1.2.33), we calculate

〈DN s
h(Ihu)(Ihu− µh(vh)), wh〉

= 〈DN s
h(Ihu)Ihu,wh〉 − 〈DN s

h(Ihu)µh(vh), wh〉

= Ash(Ihu,wh) + P s
h(Ihu,wh) + 3Bs

h(Ihu, Ihu, Ihu,wh) + Cs
h(Ihu,wh)

− 3Bs
h(Ihu, Ihu, vh, wh) +Bs

h(vh, vh, vh, wh)− Ls(wh)

= Ash(Ihu− u,wh) + P s
h(Ihu− u,wh)︸ ︷︷ ︸

N1

+Cs
h(Ihu− u,wh)︸ ︷︷ ︸

N2

+ (Bs
h(Ihu, Ihu, Ihu,wh)−Bs

h(u, u, u, wh))︸ ︷︷ ︸
N3

+ (2Bs
h(Ihu, Ihu, Ihu,wh)− 3Bs

h(Ihu, Ihu, vh, wh) +Bs
h(vh, vh, vh, wh))︸ ︷︷ ︸

N4

=: N1 + N2 + N3 + N4.

In what follows, we give the upper bounds for each Ni, i = 1, 2, 3, 4. A use of the

boundedness of Ash + P s
h , C

s
h and the interpolation estimate [BS05, Eq. (5.3)] in the

|||·|||-norm, we obtain

N1 . |||Ihu− u|||h|||wh|||h . hmin{deg−1,ku−2}|||wh|||h,

N2 . |||Ihu− u|||h|||wh|||h . hmin{deg−1,ku−2}|||wh|||h.

We rearrange terms in N3 and use the boundedness result Lemma 8.11 and the

interpolation result [BS05, Eq. (5.3)] to obtain

N3 = Bs
h(Ihu, Ihu, Ihu,wh)−Bs

h(u, u, u, wh)

= Bs
h(Ihu− u, Ihu− u, Ihu,wh) + 2Bs

h(Ihu− u, Ihu− u, u, wh) + 3Bs
h(u, u, Ihu− u,wh)

.
(
|||Ihu− u|||2h|||Ihu|||h + |||Ihu− u|||2h|||u|||h + ‖u‖2

2‖Ihu− u‖0
)
|||wh|||h

.
(
h2 min{deg−1,ku−2} + hmin{deg+1,ku}

)
|||wh|||h.
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Let eI = vh − Ihu. We use the definition of Bs
h(·, ·, ·, ·) and use its boundedness to

deduce that

N4 = 2Bs
h(Ihu, Ihu, Ihu,wh)− 3Bs

h(Ihu, Ihu, vh, wh) +Bs
h(vh, vh, vh, wh)

= a3

∫
Ω

{
2(Ihu)3wh − 3(Ihu)2vhwh + v3

hwh
}

= a3

∫
Ω

{(
v2
h − (Ihu)2

)
vhwh + 2(Ihu)2(Ihu− vh)wh

}
= a3

∫
Ω

{
eI(eI + 2Ihu)(eI + Ihu)wh − 2(Ihu)2eIwh

}
= a3

∫
Ω

{
eI
(
e2
I + 3eIIhu+ 2(Ihu)2

)
wh − 2(Ihu)2eIwh

}
= a3

∫
Ω

(
e3
I + 3e3

IIhu
)
wh

= Bs
h(eI , eI , eI , wh) + 3Bs

h(eI , eI , Ihu,wh)

. |||eI |||2h (|||eI |||h + |||Ihu|||h) |||wh|||h.

Hence, we combine the above bounds for Ni, i = 1, 2, 3, 4 to have

〈DN s
h(Ihu)(Ihu− µh(vh)), wh〉

.
(
hmin{deg−1,ku−2} + hmin{2deg−2,2ku−4,deg+1,ku} + |||eI |||2h (|||eI |||h + 1)

)
|||wh|||h.

By the inf-sup condition (8.1.2.31) for the perturbed bilinear form, we further

deduce that there exists a wh ∈ Wh with |||wh|||h = 1 such that

|||Ihu− µh(vh)|||h . 〈DN
s
h(Ihu)(Ihu− µh(vh)), wh〉.

Since |||eI |||h ≤ R(h), we obtain

|||Ihu− µh(vh)|||h .
(
hmin{deg−1,ku−2} + hmin{2deg−2,2ku−4,deg+1,ku} +R(h)2 (R(h) + 1)

)
≤

Cu
(
2hmin{deg−1,ku−2} +R(h)2(1 +R(h))

)
for 2 ≤ deg ≤ 3,ku ≤ 4,

Cu
(
hmin{deg−1,ku−2} + hmin{deg+1,2ku−4} +R(h)2(1 +R(h))

)
for deg > 3,ku ≤ 4.

Note that there are other cases when ku > 4 and we only focus on the case of

ku ≤ 4 here for brevity. Hence, the idea of the remainder of the proof is to

choose an appropriate R(h) so that |||Ihu− µh(vh)|||h ≤ R(h). For simplicity of the

calculation, we illustrate the case when 2 ≤ deg ≤ 3, ku ≤ 4. To this end, we take

R(h) = 4Cuhmin{deg−1,ku−2} and choose h satisfying

h2 min{deg−1,ku−2} ≤ 1
32Cu

− 1
16 .
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This yields

|||Ihu− µh(vh)|||h ≤ 2Cuhmin{deg−1,ku−2}
(
1 + CuR(h)2 + Cu

)
= 2Cuhmin{deg−1,ku−2}

(
1 + 32C3

uh
2 min{deg−1,ku−2} + 2Cu

)
≤ R(h).

This completes the proof.

Lemma 8.17. (Contraction result) For a sufficiently large ε, a sufficiently small

mesh size h and any v1, v2 ∈ BR(h)(Ihu), there holds

|||µh(v1)− µh(v2)|||h . hmin{deg−1,ku−2}|||v1 − v2|||h. (8.1.2.34)

Proof. For wh ∈ Wh, we use the definition (8.1.2.32) of the nonlinear map µh,

definition and linearity of 〈DN s
h(Ihu)·, ·〉 to calculate

〈DN s
h(Ihu)(µh(v1)− µh(v2)), wh〉

= 3Bs
h(Ihu, Ihu, v1, wh)−Bs

h(v1, v1, v1, wh)

− 3Bs
h(Ihu, Ihu, v2, wh) +Bs

h(v2, v2, v2, wh)

= a3

∫
Ω

(
3(Ihu)2v1wh − v3

1wh
)
− a3

∫
Ω

(
3(Ihu)2v2wh − v3

2wh
)

= a3

∫
Ω

((
(Ihu)2 − v2

1

)
v1wh + 2(Ihu)2(v1 − v2)wh −

(
(Ihu)2 − v2

2

)
v2wh

)
= a3

∫
Ω

((Ihu− v1)(v1 − Ihu)(v1 − v2)wh + 2(Ihu− v1)Ihu(v1 − v2)wh

+ (Ihu− v1)(Ihu+ v1)v2wh)

+ 2a3

∫
Ω

(Ihu(v1 − v2)(Ihu− v2)wh + Ihu(v1 − v2)v2wh)

− a3

∫
Ω

(Ihu− v2)(Ihu+ v2)v2wh

= a3

∫
Ω

(Ihu− v1)(v1 − Ihu)(v1 − v2)wh + 2a3

∫
Ω

(Ihu− v1)Ihu(v1 − v2)wh

2a3

∫
Ω

(Ihu− v2)Ihu(v1 − v2)wh

+ a3

∫
Ω

(v1 − v2) ((Ihu− v1) + (Ihu− v2)) ((v2 − Ihu) + Ihu)wh.

Let e1 = Ihu − v1, e2 = Ihu − v2 and e = v1 − v2. We make some elementary

manipulations and use the boundedness result of Bs
h and the inequality of geometric
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and arithmetic means to get

〈DN s
h(Ihu)(µh(v1)− µh(v2)), wh〉

= a3

∫
Ω

(−e2
1)ewh + 2a3

∫
Ω
e1(Ihu)ewh + 2a3

∫
Ω
e2(Ihu)ewh

+ a3

∫
Ω
{ewh(e1Ihu+ e2Ihu− e1e2 − e2

2)}

.
(
|||e1|||2h + |||Ihu|||h|||e1|||h + |||e2|||h|||Ihu|||h + |||e1|||h|||e2|||h + |||e2|||2h

)
|||e|||h|||wh|||h

.
(
|||e1|||2h + |||e2|||2h + |||e1|||h + |||e2|||h

)
|||e|||h|||wh|||h

.
(
R(h)2 +R(h)

)
|||e|||h|||wh|||h.

By the inf-sup condition (8.1.2.31), we know that there exist wh ∈ Wh with

|||wh|||h = 1 such that

βc
2 |||µh(v1)− µh(v2)|||h . 〈DN

s
h(Ihu)(µh(v1)− µh(v2)), wh〉.

Therefore, we have

|||µh(v1)− µh(v2)|||h . R(h)(1 +R(h))|||e|||h.

Note that R(h)(1 +R(h)) < 1 for R(h) < 1. This completes the proof.

The existence and local uniqueness of the discrete solution uh can now be

obtained via the application of Brouwer’s fixed point theorem [Kes89].

Theorem 8.18. (Convergence in |||·|||h-norm) Let u be a regular isolated solution of

the nonlinear problem (8.1.2.2). For a sufficiently large ε and a sufficiently small h,

there exists a unique solution uh of the discrete nonlinear problem (8.1.2.4) within

the local ball BR(h)(Ihu). Furthermore, we have the following bound:

|||u− uh|||h . hmin{deg−1,ku−2},

where deg ≥ 1 denotes the degree of the polynomial approximation and ku ≥ 2 is

the regularity index of u.

Proof. A use of Lemma 8.16 yields that the nonlinear map µh maps a closed convex

set BR(h)(Ihu) ⊂ Wh to itself. Moreover it is a contracting map. Therefore, an

application of the Brouwer fixed point theorem [Kes89] yields that µh has at least
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one fixed point, say uh, in this ball BR(h)(Ihu). The uniqueness of the solution to

(8.1.2.4) in that ball BR(h)(Ihu) follows from the contraction result in Lemma 8.17.

Meanwhile, we have by Lemma 8.16 that

|||uh − Ihu|||h . hmin{deg−1,ku−2}. (8.1.2.35)

The error estimate is then obtained straightforwardly using the triangle inequality

|||u− uh|||h ≤ |||u− Ihu|||h + |||Ihu− uh|||h,

combined with (8.1.2.35) and the interpolation estimate [BS05, Eq. (5.3)].

It is implied from Theorem 8.18 that optimal convergence rates have been shown

in the mesh-dependent norm |||·|||h. We will see the numerical verifications of

this in Section 8.2.

8.1.2.4 Estimates in the L2-norm

We derive an L2 error estimate using a duality argument in this subsection. To

this end, we consider the following linear dual problem to the primary nonlinear

problem (8.1.0.3):
2B∇ · (∇ · (D2χ)) + a1χ+ 3a3u

2χ = fdual in Ω,
χ = 0 on ∂Ω,
ν · D2χ = 0 on ∂Ω,

(8.1.2.36)

for fdual ∈ L2(Ω). For smooth domains Ω, it can be deduced by a classical elliptic

regularity result that χ ∈ H4(Ω). The corresponding weak form is derived: find

χ ∈ H2(Ω) ∩ H1
0 (Ω) such that

2B
∫

Ω
D2χ : D2v + a1

∫
Ω
χv + 3a3

∫
Ω
u2χv =

∫
Ω
fdualv ∀v ∈ H2(Ω) ∩H1

0 (Ω),

that is to say,

〈DN s(u)χ, v〉H2 = 〈DN s
h(u)χ, v〉 = (fdual, v)0. (8.1.2.37)

Remark 8.9. The first equality in (8.1.2.37) holds since u ∈ H2(Ω), χ ∈ H2(Ω)

and v ∈ H2(Ω).
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We give two auxiliary results in the following.

Lemma 8.19. For u ∈ Hku(Ω), ku > 2, χ ∈ H4(Ω) ∩ H1
0 (Ω) and Ihu ∈ Wh,0 ⊂

H1
0 (Ω), there holds that

Ash(Ihu− u, χ) + P s
h(Ihu− u, χ) . hmin{deg +1,ku}‖χ‖4.

Proof. Note that J∇χK = 0 since χ ∈ H4(Ω) and χ = 0 on ∂Ω. We calculate

As(Ihu− u, χ) + P s
h(Ihu− u, χ)

=
∑
T∈Eh

∫
T

2BD2(Ihu− u) : D2χ

− 2B
∑
e∈EI

{{
∂2(Ihu− u)

∂ν2

}}
J∇χK− 2B

∑
e∈EI

{{
∂2χ

∂ν2

}}
J∇(Ihu− u)K

+
∑
e∈EI

2Bε
h3
e

∫
e
J∇(Ihu− u)KJ∇χK

=
∑
T∈Eh

∫
T

2BD2(Ihu− u) : D2χ− 2B
∑
e∈EI

{{
∂2χ

∂ν2

}}
J∇(Ihu− u)K

=
∑
T∈Eh

∫
T

2B(Ihu− u)∇ · (∇ · (D2χ))

. ‖Ihu− u‖0‖∇ · (∇ · (D2χ))‖0

. hmin{deg +1,ku}‖χ‖4.

Here, the last, second last, third last steps follow from the standard interpola-

tion estimates, the Cauchy–Schwarz inequality, and integration by parts twice,

respectively.

Lemma 8.20. The solution χ of the linear dual problem (8.1.2.36) belongs to H4(Ω)

on a smooth domain Ω and it holds that

‖χ‖4 . ‖fdual‖0. (8.1.2.38)

Proof. We can use the inf-sup condition (8.1.2.11) for the linear operator 〈DN s(u)·, ·〉,

the weak form (8.1.2.37) and the Cauchy–Schwarz inequality to obtain

|χ|2 . sup
w∈H2∩H1

0
|w|2=1

〈DN s(u)χ,w〉H2 = sup
w∈H2∩H1

0
|w|2=1

(fdual, w)0 . ‖f‖0 ‖w‖0︸ ︷︷ ︸
.|w|2=1

. (8.1.2.39)
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By the form of (8.1.2.37) and the boundedness of Bs(u, u, ·, ·) and Cs(·, ·), we have

‖2B∇ · (∇ · (D2χ))‖0 = ‖ − 3Bs(u, u, χ, ·)− Cs(χ, ·) + (fdual, ·)0‖0

. ‖χ‖0︸ ︷︷ ︸
.|χ|2

+‖fdual‖0

. ‖fdual‖0 by (8.1.2.39).
(8.1.2.40)

Using a bootstrapping argument in elliptic regularity (see, e.g., [Eva10, Section

6.3]), we can deduce that χ ∈ H4(Ω) in a smooth domain Ω. Moreover, it is implied

from (8.1.2.40) that the regularity estimate (8.1.2.38) holds.

We are ready to derive the L2 a priori error estimates.

Theorem 8.21. (L2 error estimate) Under the same conditions as in Theorem 8.18

and assuming further that deg ≥ 1,ku ≥ 2, the discrete solution uh approximates u

such that

‖u− uh‖0 .

hmin{deg +1,ku} for deg ≥ 3,
h2 min{deg−1,ku−2} for deg = 2.

Proof. Taking fdual = Ihu−uh ∈ Wh ⊂ H1(Ω)∩H2(Th) in (8.1.2.36) and multiplying

(8.1.2.36) by a test function vh = Ihu− uh with integration by parts, we obtain

〈DN s
h(u)χ, Ihu− uh〉 = ‖Ihu− uh‖2

0.

It follows from the fact that u ∈ Hku(Ω), ku ≥ 2, and the definition (8.1.2.2) of the

nonlinear continuous weak form N s(u)· that

‖Ihu− uh‖2
0 = 〈DN s

h(u)χ, Ihu− uh〉+N s
h(uh)(Ihχ)−N s

h(u)(Ihχ)

= Ash(χ, Ihu− uh) + P s
h(χ, Ihu− uh) + Cs

h(χ, Ihu− uh) + 3Bs
h(u, u, χ, Ihu− uh)

+ Ash(uh, Ihχ) + P s
h(uh, Ihχ) + Cs

h(uh, Ihχ) +Bs
h(uh, uh, uh, Ihχ)

− Ash(u, Ihχ)− P s
h(u, Ihχ)− Cs

h(u, Ihχ)−Bs
h(u, u, u, Ihχ)

= Ash(Ihu− u, χ) + Ash(u− uh, χ− Ihχ) + P s
h(Ihu− u, χ) + P s

h(u− uh, χ− Ihχ)︸ ︷︷ ︸
U1

+ Cs
h(Ihu− u, χ) + Cs

h(u− uh, χ− Ihχ)︸ ︷︷ ︸
U2

+ 3Bs
h(u, u, Ihu− uh, χ− Ihχ) + 3Bs

h(u, u, Ihu− u, Ihχ)︸ ︷︷ ︸
U3
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+Bs
h(uh, uh, uh, Ihχ)− 3Bs

h(u, u, uh, Ihχ) + 2Bs
h(u, u, u, Ihχ)︸ ︷︷ ︸

U4

=: U1 + U2 + U3 + U4.

We then bound each Ui separately using the boundedness results for Ash, P s
h , B

s
h and

Cs
h and standard interpolation estimates. This leads to

U1 . hmin{deg +1,ku}‖χ‖4 + |||u− uh|||h︸ ︷︷ ︸
.hmin{deg−1,ku−2}

|||χ− Ihχ|||h︸ ︷︷ ︸
.h2‖χ‖4

by Theorem 8.18,

. hmin{deg +1,ku}‖χ‖4,

U2 . ‖Ihu− u‖0︸ ︷︷ ︸
.hmin{deg +1,ku}

‖χ‖0︸ ︷︷ ︸
≤‖χ‖4

+|||u− uh|||h|||χ− Ihχ|||h

. hmin{deg +1,ku}‖χ‖4,

and

U3 = 3Bs
h(u, u, Ihu− uh, χ− Ihχ) + 3Bs

h(u, u, Ihu− u, Ihχ)

. ‖u‖2
2 |||Ihu− uh|||h︸ ︷︷ ︸
.hmin{deg−1,ku−2}

|||χ− Ihχ|||h︸ ︷︷ ︸
.h2‖χ‖4

+‖u‖2
2 ‖Ihu− u‖0︸ ︷︷ ︸
.hmin{deg +1,ku}

‖Ihχ‖0︸ ︷︷ ︸
.‖χ‖4

. hmin{deg +1,ku}‖χ‖4.

Setting e3 = uh − u and estimating U4 as in R4 of Lemma 8.16 yield

U4 . |||e3|||2h (|||e3|||h + |||u|||h) |||Ihχ|||h︸ ︷︷ ︸
.‖χ‖2≤‖χ‖4

. h2 min{deg−1,ku−2}(hmin{deg−1,ku−2} + 1)‖χ‖4 by Theorem 8.18.

Combining the above estimates for Ui (i = 1, 2, 3, 4) and using the regularity

estimate (8.1.2.38), we obtain

‖Ihu− uh‖2
0 .


hmin{deg +1,ku} ‖χ‖4︸ ︷︷ ︸

.‖Ihu−uh‖0

if deg ≥ 3,ku ≥ 4,

h2 min{deg−1,ku−2} ‖χ‖4︸ ︷︷ ︸
.‖Ihu−uh‖0

if deg = 2,kh ≤ 4.

Using the triangle inequality and standard interpolation estimates, we get

‖u− uh‖0 ≤ ‖u− Ihu‖0 + ‖Ihu− uh‖0
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. hmin{deg +1,ku} +
hmin{deg +1,ku} for deg ≥ 3,
h2 min{deg−1,ku−2} for deg = 2,

.

hmin{deg +1,ku} for deg ≥ 3,
h2 min{deg−1,ku−2} for deg = 2.

This complies the proof.

Theorem 8.21 implies that for quadratic approximations to the sufficiently

regular solution of (8.1.2.1), there is a sub-optimal convergence rate in the L2-norm

while for higher order (≥ 3) approximations, we expect optimal L2 error rates. We

shall see numerical verifications of this in the subsequent sections.

8.1.2.5 The inconsistent discrete form

The above analysis considers the consistent weak formulation (8.1.2.4) in finite

element discretisations. In practice, we adopt the inconsistent discrete weak form

in the implementations in Chapter 9 because of its simplicity in the discrete weak

form: find uh ∈ Wh,b such that

Ñ s
h(uh)vh = Ãsh(uh, vh)+Bs

h(uh, uh, uh, vh)+Cs
h(uh, vh)+P s

h(uh, vh) = 0 ∀vh ∈ Wh,0,

(8.1.2.41)

where

Ãsh(u, v) := 2B
∑
T∈Th

∫
T
D2u : D2v.

Note that the missing terms by comparing Ãsh and Ash are those interelement

summations involving the average of the second tangential derivatives, arising from

piecewise integration by parts and the symmetrisation. Due to the absence of

those terms in Ãsh, one can immediately notice that the discrete weak formulation

(8.1.2.41) is inconsistent in the sense that the solution u of the strong form (8.1.2.1)

does not satisfy the weak form (8.1.2.41), as opposed to Theorem 8.10.

Regardless of this inconsistency that complicates the convergence analysis,

our choice of the discrete weak form (8.1.2.4) reduces the complexity of the

implementation and in practice leads to a converging numerical scheme (though

may not possess optimal convergence rates), as illustrated in Section 8.2. This
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is not surprising; a similar idea has also been applied and introduced as weakly

over-penalised symmetric interior penalty (WOPSIP) methods in [BS08b] for second

order elliptic PDEs and in [BGS10] for biharmonic equations.

Remark 8.10. The excessive size of the penalty parameter in the WOPSIP method

could induce ill-conditioned linear systems. It is also discussed in [BS08b] how

to design block preconditioners and analyse the conditioning of the linear systems.

Moreover, in all of our numerical experiments in the next section, we do not observe

any ill-conditioning effects.

In our numerical examinations of the convergence rate for the inconsistent

discrete weak form (8.1.2.41), we find that the inconsistency does not substantially

alter the convergence rate proved for the consistent form. Thus, the inconsistent

formulation (8.1.2.41) can be a viable choice in implementations.

8.2 Convergence tests

The proceeding section presents some a priori error estimates for the continuous

Lagrange finite elements for both Q and u in the decoupled case q = 0. We now

test the convergence rate of the finite element approximations by the method of

manufactured solutions (MMS) and experimentally investigate the coupled case

q 6= 0 in two dimensions. To this end, we choose a nontrivial solution for each

state variable and add an appropriate source term to the equilibrium equations (see

Appendix A for its derivation), thus modifying the energy accordingly. Therefore,

our chosen solution should solve the equilibrium equations exactly when we take a

suitable initial guess and we can compute the numerical convergence order.

Remark 8.11. Since this is purely a numerical verification exercise, the manufac-

tured solution can be physically unrealistic. Moreover, we must specify a reasonable

initial guess for Newton’s iteration due to the nonlinearity of the problem. The

initial guess throughout this section is taken to be
(

1
2(exact solution) + 10−9

)
.
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We take the following exact expressions for each state variable,

Qe
11 =

(
cos

(
π(2y − 1)(2x− 1)

8

))2

− 1
2 ,

Qe
12 = cos

(
π(2y − 1)(2x− 1)

8

)
sin

(
π(2y − 1)(2x− 1)

8

)
,

ue = 10 ((x− 1)x(y − 1)y)3 ,

(8.2.0.1)

and substitute them into the derived equilibrium equations (A.0.0.2) to obtain

the source terms s1, s2 and s3, yielding

s1 := 4Bq4(ue)2qe1 + 2Bq2ue
(
∂2
xu

e − ∂2
yu

e
)
− 2K∆Qe

11

− 4lQe
11 + 16lqe1

(
(Qe

11)2 + (qe2)2
)
,

s2 := 4Bq4(ue)2qe2 + 4Bq2ue (∂x∂yue)− 2K∆Qe
12

− 4lQe
12 + 16lqe2

(
(Qe

11)2 + (Qe
12)2

)
,

s3 := a1u
e + a2(ue)2 + a3(ue)3 + 2B∆2ue

+Bq4
(
4
(
(Qe

11)2 + (Qe
12)2

)
+ 1

)
ue + 2Bq2(te1 + te2),

with

te1 := (Qe
11 + 1/2)∂2

xu
e + (−Qe

11 + 1/2)∂2
yu

e + 2Qe
12∂x∂yu

e,

te2 := ∂2
x (ue (Qe

11 + 1/2)) + ∂2
y(ue(−Qe

11 + 1/2)) + 2∂x∂y(ueQe
12).

We take t1 and t2 when replacing the exact expressions of Qe
11, Q

e
12, u

e by the

unknowns Q11, Q12, u.

Therefore, in conducting the MMS, we are to solve the following governing equa-

tions

4Bq4u2Q11 + 2Bq2u
(
∂2
xu− ∂2

yu
)
− 2K∆Q11 − 4lQ11 + 16lQ11

(
Q2

11 +Q2
12

)
= s1,

4Bq4u2Q12 + 4Bq2u (∂x∂yu)− 2K∆Q12 − 4lQ12 + 16lQ12
(
Q2

11 +Q2
12

)
= s2,

a1u+ a2u
2 + a3u

3 + 2B∇ · (∇ · (D2u)) +Bq4
(
4
(
Q2

11 +Q2
12

)
+ 1

)
u+ 2Bq2(t1 + t2) = s3,

(8.2.0.2)

subject to Dirichlet boundary conditions for both u and Q and a natural boundary

condition for u arising from the manufactured solutions (8.2.0.1).

We partition the domain into N ×N small squares with the uniform mesh size

h = 1
N

(N = 6, 12, 24, 48) and denote numerical solutions uh, Q11,h and Q12,h. The
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numerical errors of u and Q in the ‖ · ‖0-, ‖ · ‖1- and |||·|||h-norms are defined as

‖eu‖0 = ‖ue − uh‖0, ‖eu‖1 = ‖ue − uh‖1, |||eu|||h = |||ue − uh|||h,

‖eQ‖0 =‖(Qe
11, Q

e
12)− (Q11,h, Q12,h)‖0, ‖eQ‖1 = ‖(Qe

11, Q
e
12)− (Q11,h, Q12,h)‖1.

The convergence order is then calculated from the formula

log2

(errorh/2
errorh

)
.

Throughout this section, we use the parameter values

a1 = −10, a2 = 0, a3 = 10, B = 10−5, K = 0.3 and l = 30,

yielding a similar choice as in the simulations of oily streaks in Section 9.4.

8.2.1 Convergence rate for q = 0

In the case of q = 0, we essentially solve two independent nonlinear problems:

one second order PDE for the tensor order parameter Q and a fourth order

PDE for the density variation u. Therefore, we present the convergence results

for Q and u separately in this subsection to verify the a priori error estimates

proven in Section 8.1.

For the tensor variable Q, we expect both optimal H1 and L2 rates, as illustrated

in Theorems 8.2 and 8.8. Table 8.1 presents the numerical convergence rate for

the finite elements [Q1]2, [Q2]2 and [Q3]2. It is clear to see that optimal L2 and

H1 rates are shown with all choices of finite elements. More specifically, second

order in L2 and first order in H1 are observed for the approximation [Q1]2. This

is consistent with the proven error estimates in Section 8.1.1.

Regarding the density variation u, we first present the convergence behaviour of

the consistent discrete formulation (8.1.2.4) with penalty parameter ε = 1, since

we have proven the optimal error rate in the mesh-dependent norm |||·|||h. The

errors and convergence orders are listed in Table 8.2. Optimal rates are observed

in the |||·|||h-norm. Furthermore, optimal orders of convergence in the L2-norm



8. Finite element discretisation 134

N = 1
h
‖eQ‖0 rate ‖eQ‖1 rate

[Q1]2

6 8.12e-04 – 3.78e-02 –
12 2.02e-04 2.01 1.88e-02 1.01
24 5.05e-05 2.00 9.39e-03 1.00
48 1.26e-05 2.00 4.69e-03 1.00

[Q2]2

6 2.92e-05 – 1.11e-03 –
12 3.90e-06 2.90 2.71e-04 2.04
24 5.02e-07 2.96 6.72e-05 2.01
48 6.36e-08 2.99 1.68e-05 2.00

[Q3]2

6 3.02e-07 – 2.25e-05 –
12 2.17e-08 3.80 2.72e-06 3.05
24 1.45e-09 3.90 3.34e-07 3.03
48 9.33e-11 3.96 4.13e-08 3.01

Table 8.1: The convergence rate of Q with different degrees of polynomial approximation
in the decoupled case q = 0.

are shown for approximating polynomials of degree greater than 2, while a sub-

optimal rate in the L2-norm is given for piecewise quadratic polynomials, exactly as

expected. The theoretical a priori error estimates are indeed verified. Sub-optimal

convergence rates for quadratic polynomials were also illustrated in the numerical

results of [SM07]. We also tested the convergence with the penalty parameter

ε = 5× 104 and found that the discrete norms are very similar to Table 8.2. We

therefore avoid repeating the details here.

We next give the error rates for the inconsistent discrete formulation (8.1.2.41)

which is actually used in the applications in Chapter 9. Though the analysis is not

given for such discretisation, we wish to demonstrate that it is still convergent. We

illustrate the discrete norms and the computed convergence rates in Table 8.3 with

the penalty parameter ε = 1. It can be observed that only first order of convergence

is obtained in the H2-like norm |||·|||h even with different approximating polynomials.

Moreover, we notice by comparing Tables 8.2 and 8.3 that the convergence rate

deteriorates slightly for polynomials of degree 3 (although not for degree 4). This,

however, can be improved by choosing a larger penalty parameter, as shown in

Table 8.4 with ε = 5× 104, where optimal rates are shown for the discrete norms
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N = 1
h
‖eu‖0 rate ‖eu‖1 rate |||eu|||h rate

Q2

6 1.17e-05 – 3.46e-04 – 1.36e-02 –
12 2.60e-06 2.17 9.81e-05 1.82 7.25e-03 0.91
24 6.37e-07 2.03 2.54e-05 1.95 3.54e-03 1.03
48 1.82e-07 1.80 6.88e-06 1.88 1.76e-03 1.01

Q3

6 4.73e-06 – 1.32e-04 – 4.98e-03 –
12 3.32e-07 3.83 1.41e-05 3.23 9.96e-04 2.32
24 2.12e-08 3.97 1.63e-06 3.12 2.46e-04 2.02
48 1.32e-09 4.00 1.99e-07 3.03 6.14e-05 2.00

Q4

6 2.01e-07 – 7.76e-06 – 3.94e-04 –
12 5.40e-09 5.22 4.30e-07 4.17 4.88e-05 3.01
24 1.68e-10 5.00 2.68e-08 4.00 6.11e-06 2.99
48 5.27e-12 4.99 1.68e-09 3.99 7.64e-07 3.00

Table 8.2: Convergence rates using the consistent discrete formulation (8.1.2.4) with
the penalty parameter ε = 1 and different polynomial degrees.

|||·|||h, ‖ · ‖1 and ‖ · ‖0 for all polynomial degrees (except only sub-optimal in ‖ · ‖0

when a piecewise quadratic polynomial is used as the approximation).

N = 1
h
‖eu‖0 rate ‖eu‖1 rate |||eu|||h rate

Q2

6 3.50e-06 – 1.06e-04 – 5.60e-03 –
12 8.76e-08 5.32 5.41e-06 4.29 2.56e-03 1.13
24 1.77e-08 2.31 7.47e-07 2.86 1.28e-03 0.99
48 4.35e-09 2.02 1.24e-07 2.56 6.42e-04 1.00

Q3

6 6.47e-06 – 1.86e-04 – 7.59e-03 –
12 3.40e-07 4.25 1.73e-05 3.43 2.74e-03 1.47
24 1.98e-08 4.10 2.03e-06 3.09 1.31e-03 1.07
48 3.73e-09 2.39 2.63e-07 2.95 6.45e-04 1.02

Q4

6 2.05e-07 – 7.85e-06 – 3.93e-04 –
12 5.40e-09 5.24 4.31e-07 4.19 4.88e-05 3.01
24 1.68e-10 5.00 2.68e-08 4.01 6.11e-06 3.00
48 5.27e-12 5.00 1.67e-09 4.00 7.64e-07 3.00

Table 8.3: Convergence rates using the inconsistent discrete formulation (8.1.2.41) with
the penalty parameter ε = 1 and different polynomial degrees.

8.2.2 Convergence rate for q 6= 0

We next investigate the numerical convergence behaviour in the coupled case, i.e.,

q 6= 0, in this subsection. Its analysis is left for future work, but since it is the
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N = 1
h
‖eu‖0 rate ‖eu‖1 rate |||eu|||h rate

Q2

6 1.17e-05 – 3.48e-04 – 1.36e-02 –
12 2.62e-06 2.16 9.86e-05 1.82 7.26e-03 0.91
24 6.38e-07 2.04 2.54e-05 1.96 3.54e-03 1.03
48 1.82e-07 1.81 6.88e-06 1.88 1.76e-03 1.01

Q3

6 4.80e-06 – 1.35e-04 – 4.92e-03 –
12 3.35e-07 3.84 1.43e-05 3.23 9.86e-04 2.32
24 2.14e-08 3.97 1.63e-06 3.13 2.45e-04 2.01
48 1.33e-09 4.01 1.99e-07 3.04 6.13e-05 2.00

Q4

6 2.05e-07 – 7.85e-06 – 3.93e-04 –
12 5.40e-09 5.24 4.31e-07 4.19 4.88e-05 3.01
24 1.68e-10 5.00 2.68e-08 4.01 6.11e-06 3.00
48 5.27e-12 5.00 1.67e-09 4.00 7.64e-07 3.00

Table 8.4: Convergence rates using the inconsistent discrete formulation (8.1.2.41) with
the penalty parameter ε = 5× 104 and different polynomial degrees.

coupled case that is solved in practice it is important to assure ourselves that the

discretisation is sensible. For brevity, we fix the model parameter q = 30.

We directly examine the inconsistent discretisation for u with the penalty

parameter ε = 5 × 104 in the coupled case where q 6= 0 and fixing the [Q2]2-

approximation for Q. In some unreported preliminary experiments, we observed

that varying the approximations for u does not affect the convergence behaviour of

Q, that is to say, the error in Q depends mainly on the element used for Q, but the

polynomial that approximates u should have at least the same degree as that for Q.

We thus give the convergence rates separately for u and Q in Tables 8.5 and 8.6.

It can be seen that Q retains optimal rates in both the H1 and L2 norms, and

though there are some fluctuations of the order for u, it still possesses very similar

convergence rates when compared with the decoupled case described in Table 8.4.

Remark 8.12. We also tested the convergence with the consistent weak formulation

for u under the same numerical settings as in Tables 8.5 and 8.6. We found that

in both cases they present very similar convergence behaviour and thus we skip the

details here.
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N = 1
h
‖eu‖0 rate ‖eu‖1 rate |||eu|||h rate

Q2

6 1.21e-05 – 3.59e-04 – 1.37e-02 –
12 3.98e-06 1.61 1.42e-04 1.34 8.30e-03 0.72
24 1.57e-06 1.35 4.99e-05 1.51 3.89e-03 1.09
48 2.58e-07 2.60 9.06e-06 2.46 1.78e-03 1.13

Q3

6 7.36e-06 – 2.25e-04 – 9.10e-03 –
12 4.13e-07 4.16 1.86e-05 3.60 1.11e-03 3.03
24 4.23e-08 3.29 2.24e-06 3.05 2.53e-04 2.14
48 3.01e-09 3.81 2.28e-07 3.29 6.15e-05 2.04

Table 8.5: Convergence orders for u with q = 30 and the penalty parameter ε = 5× 104

in the inconsistent discretisation (8.1.2.4) for u, while fixing Q with the approximation
[Q2]2.

N = 1
h
‖eQ‖0 rate ‖eQ‖1 rate

[Q1]2
6 8.12e-04 – 3.78e-02 –
12 2.02e-04 2.01 1.88e-02 1.01
24 5.05e-05 2.00 9.39e-03 1.00
48 1.26e-05 2.00 4.69e-03 1.00

[Q2]2
6 2.92e-05 – 1.11e-03 –
12 3.90e-06 2.90 2.71e-04 2.04
24 5.02e-07 2.96 6.72e-05 2.01
48 6.37e-08 2.98 1.68e-05 2.00

[Q3]2
6 3.02e-07 – 2.25e-05 –
12 2.17e-08 3.80 2.72e-06 3.05
24 1.45e-09 3.90 3.34e-07 3.03
48 9.32e-11 3.96 4.13e-08 3.01

Table 8.6: Convergence orders for Q with q = 30 when coupled with the inconsistent
discretisation for u employing the penalty parameter ε = 5× 104, while fixing u with the
approximation Q3.

Since the error norms for the finite element pair Q3 × [Q2]2 for (u,Q) are in a

rather close level of magnitude with a reasonable computational cost, we choose

this approximation in our subsequent numerical experiments in Chapter 9.

8.3 Summary

In this chapter, we derived some a priori error estimates related to our proposed

model (7.3.1.2) for smectics and examined the convergence rates in two dimensions

via the method of manufactured solutions. We focused the analysis on the decoupled
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case for simplicity. Optimal rates in both L2 and H1 norms were shown and verified

for the tensor Q. Moreover, we proved optimal convergence rates for u in the

mesh-dependent norm |||·|||h and the L2 norm ‖ · ‖0 (only suboptimal for piecewise

quadratic polynomials). This was also illustrated in numerical experiments. By

studying the convergence behaviour of different finite element choices, we noted

that Q3 × [Q2]2 for (u,Q) with the penalty parameter ε = 5 × 104 is a suitable

choice to be applied to further scenarios where physically realistic defects need

to be characterised. We will apply our model and discretisation to situations of

physical interest in the next chapter.
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With the convergent finite element pair Q3 × [Q2]2 for (u,Q) at hand, we now

consider three scenarios of physical interest: the defect-free example from the work

of Williams & Kléman [WK75], a focal conic domain simulation, and an oily streaks

simulation. The first scenario is a simple example intended to examine the bending

effect in smectics, while the latter two experiments depict two typical defects in

smectics, thus elucidating the effectiveness of our proposed model.

For the choice of parameters, we mainly use the values suggested in Pevnyi et

al. [PSS14], occasionally varying them based on physical intuition (e.g., choosing

a larger wave number q to achieve thinner layers, or a larger anchoring weight w

to more strongly enforce the boundary conditions). The new parameters that do

not appear in the model of Pevnyi et al. (e.g., l and w) were chosen via unreported

initial numerical experiments.

139



9. Numerical experiments for smectics 140

9.1 Implementation details

As discussed in Section 8.2, we choose C0-continuous finite element pairs for (u,Q)

with the penalty parameter ε = 5× 104 throughout this chapter. In two dimensions,

we use quadrilateral meshes. Since we restrict Q to be a symmetric and traceless

tensor, it has two independent components in two dimensions and we thus seek

the components of Q in [Q2]2 and u in Q3. We utilise hexahedral meshes in

three dimensions, and since Q has five independent components, we then seek its

components in [Q2]5, while retaining u in Q3.

In the numerical experiments, the nonlinear solve is deemed to have converged

when the Euclidean norm of the residual falls below 10−8, or reduces from its initial

value by a factor of 10−8, whichever comes first. For the inner solves, the linearised

systems are solved using the sparse LU factorisation library MUMPS [ADL00]. The

mesh scale, he, employed in the C0 interior penalty approach is chosen to be the

average of the diameters of the cells on either side of an edge.

To compute the stability of each solution profile, we calculate the inertia of the

Hessian matrix of the energy functional with a Cholesky factorisation, implemented

in MUMPS [ADL00]. If the Hessian matrix is positive semi-definite, we characterise

the solution as stable, while any nonzero number of negative eigenvalues characterises

an unstable solution [NW99]. Note that no zero eigenvalues of Hessians were

observed in this chapter, i.e., the stable solutions all in fact had positive-definite

Hessian matrices. For a handful of parameter values where deflation yields a

solution of lowest energy that is unstable (i.e., does not find a candidate ground

state), we then calculate the eigen-directions of negative curvature using the Krylov–

Schur algorithm [Ste02] implemented in SLEPc [HRV05]. We then perturb the

lowest-energy solution along its eigen-directions of negative curvature and employ

the bounded Newton line search algorithm of TAO [Den+20] to converge to a

stable solution of minimal energy.

We give further details for the configuration of each example in the remainder

of this chapter.
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Code availability. For reproducibility, both the solver code [Xia21c] and

the exact version of Firedrake [Fir21b] used to produce the numerical results in

this chapter have been archived on Zenodo. An installation of Firedrake with

components matching those used here can be obtained by following the instructions

at https://www.firedrakeproject.org/download.html with

python3 firedrake-install --doi 10.5281/zenodo.4441123

Defcon version #11e883c should then be installed, as described in https://

bitbucket.org/pefarrell/defcon/.

9.2 Scenario I: defect free

This is a simple example proposed by the work of Williams and Kléman [WK75]

to examine the bending effect in smectics. For a rectangle Ω = [−2, 2] × [0, 2]

with boundary labels

Γl = {(x, y) : x = −2} , Γr = {(x, y) : x = 2} ,

Γb = {(x, y) : y = 0} , Γt = {(x, y) : y = 2} ,

we strongly impose

Q =
[

(cos θ0)2 − 1
2 − cos θ0 sin θ0

− cos θ0 sin θ0 (sin θ0)2 − 1
2

]
on Γb,

Q =
[

(cos θ0)2 − 1
2 cos θ0 sin θ0

cos θ0 sin θ0 (sin θ0)2 − 1
2

]
on Γt,

and enforce periodic boundary conditions on the left and right boundaries, Γl and Γr.

The above Dirichlet data for Q is derived from imposing ne = (cos θ0,− sin θ0) at

the bottom boundary, Γb, and with ne = (cos θ0, sin θ0) at the top boundary,

Γt, for fixed θ0 ∈ [0, π/2].

We discretise the domain Ω into 90 × 30 quadrilateral elements and take the

following initial guesses for u and Q:

u = 1, Q = Q0, (9.2.0.1)

https://www.firedrakeproject.org/download.html
https://bitbucket.org/pefarrell/defcon/
https://bitbucket.org/pefarrell/defcon/
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where Q0 = (nI ⊗ nI − I2
2 ) with

nI = 1
mI

[
x (|x| −R)

(|x|) y

]
,

and

mI = |x|
√

(R− |x|)2 + y2.

Here, the initial guess for the Q-tensor is computed from a simplified two-dimensional

mathematical representation of a family of tori, and we have taken the major radius

R = 0.5 in this implementation.

Furthermore, we specify the values of parameters in this experiment:

a1 = −10, a2 = 0, a3 = 10, B = 10−5, K = 0.3,

q = 30, and l = 30.

The total energy to be minimised in this scenario is

Jε(u,Q) =
∫

Ω

(
a1

2 (u)2 + a2

3 (u)3 + a3

4 (u)4

+B

∣∣∣∣D2u+ q2
(

Q + I2

2

)
u

∣∣∣∣2
+ K

2 |∇Q|2 − l
(
tr
(
Q2
))

+ l
(
tr
(
Q2
))2

)

+
∑
e∈EI

∫
e

1
2h3

e

(J∇uK)2 . (9.2.0.2)

We present the bifurcation diagram in Figure 9.1 for this scenario and quantita-

tively determine which of these solutions is the ground state as a function of θ0. To

give more details on those solution branches with the lowest energy in the bifurcation

diagram, we show some computed stationary states in Figure 9.2 as a function of θ0

by minimising (9.2.0.2). For each state, we display the value of the energy functional

J (u,Q) =
∫

Ω

(
a1

2 (u)2 + a2

3 (u)3 + a3

4 (u)4

+B
∣∣∣∣D2u+ q2

(
Q + I2

2

)
u
∣∣∣∣2

+ K

2 |∇Q|2 − l
(
tr
(
Q2
))

+ l
(
tr
(
Q2
))2

)
,
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Figure 9.1: The bifurcation diagram of the defect-free scenario.

Figure 9.2: Stationary states obtained at different values of θ0 in the defect-free scenario.
The visualisation displays the density perturbation u. For each solution, the value of the
energy functional per unit area is displayed above it and we specify the stable profiles
with asterisks. The bottom row depicts the lowest energy solution found for each value of
θ0.
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per unit area. For each column (i.e., fixed value of θ0), we organise the stationary

states in an energy-decreasing order and identify stable profiles with asterisks. The

bottom row depicts the lowest-energy minimisers found, all of which are stable.

We can observe from Figure 9.2 an energetic competition between the cost of

bending and the cost of introducing disclinations from those equilibrium structure

as a function of θ0. More specifically, when θ0 = 0 (thus the boundary conditions

enforce that the director ne is horizontally aligned), the resulting configuration

is with the layers extending vertically between the substrates in the “bookshelf”

geometry. As θ0 is increased from zero, the boundary conditions impose a bend

deformation on the smectic. This can be accommodated in several ways: by

distributing the deformation over the vertical direction (see the second picture in

the bottom row of Figure 9.2); by localising the bend to a region in the center

with the layers flat and tilted in opposite directions in the top and bottom of the

domain (see the third and fourth pictures in the bottom row of Figure 9.2); or by

introducing edge disclinations to relieve the cost of elastic deformation (see the

last three pictures in the bottom row of Figure 9.2).

We also include one video scenario-i-lowest-energy-in-theta-zero.mp4 in [Xia21a]

to illustrate the stationary configurations of lowest energy found as we vary the

applied bend deformation θ0 ∈ [0, π/2]. The profiles shown in this video are all stable.

9.3 Scenario II: focal conic domains

Among all defect structures in smectic liquid crystals, the most common one is

focal conic domains (FCDs, as illustrated in Figure 1.3): the smectic layers are

kept equidistant and parallel, with common normals and same center of curvature

along the same normal. Such smectic layers are examples of Dupin cyclides which

present two types of disclinations: ellipses and hyperbolas (also known as the fonal

conics). When the ellipse degenerates to a circle and the hyperbola to a straight

line, these smectic layers are called toroidal focal conic domains (TFCDs). In this

section, we simulate FCDs and TFCDs using our proposed model (7.3.1.2).
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We discretise the cuboid Ω = [−1.5, 1.5] × [−1.5, 1.5] × [0, 2] into 6 × 6 × 5

uniform hexahedra, to avoid a directional bias observed in numerical solutions with

tetrahedra. To simulate TFCDs or FCDs, we must impose boundary conditions

(weakly or strongly) that respect their physical properties. To this end, we label

the six boundary faces of Ω as

Γleft = {(x, y, z) : x = −1.5}, Γright = {(x, y, z) : x = 1.5},

Γback = {(x, y, z) : y = −1.5}, Γfront = {(x, y, z) : y = 1.5},

Γbottom = {(x, y, z) : z = 0}, Γtop = {(x, y, z) : z = 2},

and consider the following surface energy

Fsurface(Q) =
∫

Γbottom

w

2 |Q−Qradial|2 +
∫

Γtop

w

2 |Q−Qvertical|2 , (9.3.0.1)

where w denotes the weak anchoring weight,

Qradial =


x2

x2+y2 − 1
3

xy
x2+y2 0

xy
x2+y2

y2

x2+y2 − 1
3 0

0 0 −1
3


represents an in-plane (x-y plane) radial configuration of the director, and

Qvertical =

−
1
3 0 0

0 −1
3 0

0 0 2
3


gives a vertical (i.e., along the z-axis) alignment configuration of the director.

Therefore, the final form of the functional to be minimised in the TFCD scenario is

Jε(u,Q) =
∫

Ω

(
a

2 (u)2 + b

3 (u)3 + c

4 (u)4

+B
∣∣∣∣D2u+ q2

(
Q + I3

3

)
u

∣∣∣∣2 + K

2 |∇Q|2

− l

2
(
tr(Q2)

)
− l

3
(
tr(Q3)

)
+ l

2
(
tr(Q2)

)2
)

+
∫

Γbottom

w

2 |Q−Qradial|2 +
∫

Γtop

w

2 |Q−Qvertical|2 (9.3.0.2)

+
∑
e∈EI

∫
e

1
2h3

e

(J∇uK)2 .
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For the FCD scenario, we only change the top boundary condition to perturb

the preferred tilted director configuration. We perturb the angle θc between the

director and the z-axis on the top surface Γtop, thus adopting

Qc =

−
1
3 0 0

0 (sin(θc))2 − 1
3 sin(θc) cos(θc)

0 sin(θc) cos(θc) (cos(θc))2 − 1
3


instead of Qvertical in (9.3.0.2). Note that when taking θc = 0, we return to

the TFCD case.

Furthermore, we take the initial guesses:

u = cos(6πz), Q = Qic,

where Qic =
(
nic ⊗ nic − I3

3

)
with

nic = 1
mic


x
(√

x2 + y2 −R
)

y
(√

x2 + y2 −R
)

z
(√

x2 + y2
)

 ,
and

mic =
√
x2 + y2

√(
R−

√
x2 + y2

)2
+ z2.

Here, the initial guess for the Q-tensor is computed from the mathematical

representation for a family of tori, and we have taken a major radius R = 1.5

in our implementation.

We specify the values of parameters used in the (T)FCD experiments:

a1 = −10, a2 = 0, a3 = 10, B = 10−3, K = 0.03,

q = 10, l = 30 and w = 10.

Two numerical solutions of simulating TFCDs are given in Figure 9.3. One can

see that these zero isosurfaces of density indeed present a physically reasonable

TFCD with two parts of singularities: circles at the bottom and the central line along

the cusps. Notice that we are not imposing any periodic conditions of the density u

but only weakly enforcing boundary conditions as in (9.3.0.1) on the tensor field Q.

It turns out in Figure 9.3 that the smectic layers align themselves to the director

field arising from Q and thus the periodicity on the lateral faces can be observed.
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(a) TFCD (b) Single screw dislocation

Figure 9.3: Left: the first converged solution using Newton’s method on a mesh of
6× 6× 5 hexahedra using the TFCD settings; right: another solution profile with single
screw dislocation around the central axis of the cuboid. The solution with screw dislocation
has higher energy and both are stable. The gray layers are zero iso-surfaces of the density
variation u.

This is due to the coupling term in the model. Other than the TFCD solution as

illustrated in Figure 9.3, it also shows another possibility of equilibrium solution

with single screw dislocation at the central line, though a theoretical investigation

of such interesting structure remains an open problem. We further comment that

the single screw dislocation possesses higher energy value than that of the TFCD

solution. At this point we are not sure if such a dislocation is physically realistic,

but it presents an interesting pattern of defects in this numerical experiment.

In addition, we noticed from some preliminary experiments under the TFCD prob-

lem settings that a special case, i.e., the radial configuration of director molecules,

of the planar anchoring condition is more likely to give a successful presentation

of TFCDs. This may be helpful for a better and more accurate understanding of

realistic boundary conditions to be enforced for the appearance of TFCDs.

The TFCD profile shown in Figure 9.3 can be generalised into an asymmetric

version, thus presenting the Dupin cyclides. We take θc = π
12 and run the experiment

with the other parameters chosen as in the TFCD settings. Three solution examples

are shown in Figure 9.4, which includes an FCD solution Figure 9.4a, a single screw

dislocation Figure 9.4b and a double screw dislocation structure Figure 9.4c. They

are all stable solutions. It can be observed in the FCD solution profile that the

smectic layers have deformed asymmetrically when responding to the tilting of the

director on the top face. Note here that the FCD solution has the lowest energy due
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(a) FCD (b) Single screw dislocation

(c) Double screw dislocations

Figure 9.4: Three numerical solutions for θc = π
12 on a mesh of 6 × 6 × 5 hexahedra.

The solution with double screw dislocations has highest energy while the FCD solution
possesses lowest energy. All profiles are stable.

(a) FCD (b) Single screw dislocation

Figure 9.5: Two solution profiles by taking θc = π
10 on a mesh of 6× 6× 5 hexahedra.

The solution with screw dislocation has higher energy. Both profiles are stable.

to the energy cost of the dislocation defects. To depict these three solution structures

more closely, we further present an additional video scenario-ii-pi12.mp4 in [Xia21a],

describing the zero-isosurfaces of the smectic density variation field u and colouring

the isosurfaces by height (the z-coordinate) to assist with depth perception. The

time axis of the video is used to illustrate the internal structure of the layers.

If we take θc = π
10 , the first converged solution shows a FCD structure as

presented in Figure 9.5a. Another example is also given in Figure 9.5b which yields

a single screw dislocation profile possessing higher energy. Again, both profiles

are stable equilibrium points of the energy (9.3.0.2).
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(a) FCD (b) Single screw dislocation

Figure 9.6: Two numerical solutions for θc = π
8 on a mesh of 6× 6× 5 hexahedra. The

solution with screw dislocation has higher energy. Both profiles are stable.
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Figure 9.7: Eccentricity of FCD solutions as a function of preferred surface alignment
angle.

Moreover, as we increase the value of θc to be π
8 , two examples of stable numerical

solutions are shown in Figure 9.6, where the focal conic curve in the FCD solution

tilts more when compared with that in Figure 9.4a. We also see the screw dislocation

structure possessing higher energy than that of the FCD solution in this experiment.

As the Dupin cyclide has a confocal pair of a hyperbola and an ellipse, we

fit a hyperbola to each solution with least squares (data points extracted via

ParaView [AGL05]) and calculate its eccentricity (e.g., for a hyperbola expressed as
y2

a2
fit
− z2

b2
fit

= 1, its eccentricity is defined as
√
a2
fit

+b2
fit

afit
). Then the eccentricity of the

ellipse is the inverse of that of the confocal hyperbola. Values of eccentricity

fitted from the solution set are shown as a function of the preferred surface

alignment angle θc in Figure 9.7.
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9.4 Scenario III: oily streaks

Besides the (T)FCD defects illustrated in the previous section, there is another

type of defects that are experimentally observable in films of 8CB deposited in air

on crystalline surfaces of molybdenite (MoS2) [Mic+04]: the so-called oily streaks

(OS). When thin smectic liquid crystal films are subject to competing boundary

conditions, they can form interesting patterns. In particular, planar degenerate

anchoring (i.e., the molecules on the surface are in the plane of the surface) and

homeotropic anchoring (i.e., the molecules prefer to be perpendicular to the surface)

imposed on two opposing surfaces can form a periodic stacking of flattened hemi-

cylinders, as shown in Figure 1.2. We simulate this typical defect in this section

using our proposed model (7.3.1.2).

Let r denote the aspect ratio of a rectangle Ω = [−r, r] × [0, 2] with the

boundaries labels

Γl = {(x, y) : x = −r} , Γr = {(x, y) : x = r} ,

Γb = {(x, y) : y = 0} , Γt = {(x, y) : y = 2} .

We impose the following surface energy

Fsurface(Q) =
∫

Γb

w

2 |Q−Qbottom|2 +
∫

Γt∪Γl∪Γr

w

2 |Q−Qtop|2 ,

where w is the weak anchoring weight and two weakly prescribed configurations

Qbottom and Qtop are given by

Qbottom =
[

1
2 0
0 −1

2

]
,

yielding horizontally aligned directors, and

Qtop =
[
−1

2 0
0 1

2

]
,

yielding vertically aligned directors.
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In this experiment, we always discretise the domain Ω into 90× 30 quadrilateral

elements, even as we change the domain size by varying the aspect ratio r. The

final form of the functional to be minimised in this scenario is

Jε(u,Q) =
∫

Ω

(
a1

2 (u)2 + a2

3 (u)3 + a3

4 (u)4

+B

∣∣∣∣D2u+ q2
(

Q + I2

2

)
u

∣∣∣∣2
+ K

2 |∇Q|2 − l
(
tr
(
Q2
))

+ l
(
tr
(
Q2
))2

)

+
∫

Γb

w

2 |Q−Qbottom|2 +
∫

Γt∪Γl∪Γr

w

2 |Q−Qtop|2 (9.4.0.1)

+
∑
e∈EI

∫
e

1
2h3

e

(J∇uK)2 .

We take the same form of the initial guesses for u and Q as in (9.2.0.1) but

with a larger major radius R = 1 in this scenario.

Finally, we specify the values of parameters in this experiment:

a1 = −10, a2 = 0, a3 = 10, B = 10−5, K = 0.3,

q = 30, l = 1 and w = 10.

Based on X-ray diffraction experiments of thin smectic films, Michel et al.

[Lac+07] proposed some approximate structures of oily streaks as illustrated in

Figure 9.8A-C. Since some experiments reveal that the smectic layer normals are

continuously oriented for smectic layers that are parallel to the plane of substrate

for thin films, the authors gave a possible structure in Figure 9.8A depicting

periodic units incorporating sections of cylinders joined to planes oriented parallel

to the substrate. However, this structure implies significant deformations of the

free interface with singular points between units. To avoid so, they proposed a

more complex structure as illustrated in Figure 9.8B incorporating curvature walls

between units. Moreover, it is observed in the X-ray diffraction of even thinner

films that an apparent excess of the planar region is shown, which cannot be

explained by either structure discussed so far [MLG06]. Therefore, Figure 9.8C

provides a possible structure consistent with the experimental data envisioned in

[MLG06], though it is energetically very costly.
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Figure 9.8: Oily streaks. A-C Candidate structures proposed in Michel et al. [Lac+07]
consistent with X-ray diffraction. D Bifurcation diagram of structures as a function of
aspect ratio. E Selected stationary states obtained at different aspect ratio r. The top
row represents the lowest energy solution found. For each solution, the value of the energy
functional per unit area is displayed below it with asterisks indicating stable profiles.

By implementing the proposed mathematical model, we display the partially

enumerated energy landscape in Figure 9.8D, showing an extremely dense thicket of

solutions. This qualitatively supports earlier work in that an overall minimiser occurs

at an aspect ratio of around 3, which is similar to experimental values even with

no parameter tuning performed here. Close examination of the energy landscape,

together with the corresponding solution set, shows many small discontinuous jumps

that result from delicate commensurability effects, whereby certain sizes of domain

are compatible with a given periodicity of the layers as well as from variations

in the number of defects and their detailed placement. Similar effects have been

observed when other periodic liquid crystals such as cholesterics are confined in

domains that promote geometric frustration [Eme+18].

The solution set obtained contains examples reminiscent of previously proposed

structures (Figure 9.8E). The minimum energy states found at different aspect

ratio contain cylindrical sections mediated by a defect-filled region reminiscent

of the mesoscopic rotating grain boundaries. Other solutions displayed in the

lowest row of Figure 9.8E are quite different from those heretofore proposed, where

regions of relatively vertically oriented layers sit atop cylindrical regions interspersed
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with defects. Each of these incorporates a greater proportion of vertical layers

relative to the hemicylindrical-planar ansatz of Figure 9.8A,B and may provide

alternative structures for oily streaks in ultrathin films. In future work, the boundary

conditions at the top interface should be carefully reconsidered, including the

incorporation of a free interface.

We refer readers to the video scenario-iii-lowest-energy-in-r.mp4 [Xia21a] de-

picting the lowest-energy configurations discovered as we vary the aspect ratio

r ∈ [1, 5]. All presented profiles in this video are stable.

9.5 Summary

In this chapter, we simulated three smectic scenarios involving boundary conditions

that are incompatible with uniform smectic order to investigate the effectiveness of

our proposed mathematical model (7.3.1.2) in characterising the defect structures,

e.g., (toroidal) focal conic domains and oily streaks in smectics. Our new model

successfully reproduced, even without careful tuning of parameters, a number of

experimentally observed and theoretically expected phenomena, as well as producing

new candidate structures for thin smectic films that are explicitly stationary states

of an energy functional. We believe this success can lead to many other smectic

applications in future.
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10.1 Conclusions

This thesis tackles and implements several energy minimisation problems arising from

modelling cholesteric liquid crystals, ferronematics and smectic-A liquid crystals.

In Chapter 2–Chapter 4, we consider the Oseen–Frank model of cholesteric

liquid crystals that employs a vector-valued director field as state variable, subject

to a unit-length constraint. We apply augmented Lagrangian methods to transform

the constrained minimisation problem into an unconstrained one of saddle point

type. The benefits of the AL method are twofold: it helps control the Schur

complement, enabling fast solvers; and it improves the discrete constraint as we

increase the value of the penalty parameter in the implementation. The details

of the relevant discussions are illustrated in Chapter 2. The tradeoff is that it

complicates the solution of the top-left director block, as it adds a semi-definite

154
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term with a large coefficient arising from the AL formulation. To resolve this issue,

our core contribution in Chapter 3 is to develop a robust and efficient multigrid

solver. A parameter-robust relaxation method is achieved by developing a space

decomposition that stably captures the kernel of the semi-definite terms. Chapter 4

demonstrates the validity of our derived parameter- and mesh-independent solver

through several numerical experiments.

Due to the difficulties of (i) solving a constrained minimisation problem and

(ii) representing certain defect structures (e.g., half charge defects), we turn from

the Oseen–Frank theory to the Landau–de Gennes modelling theory that uses a

tensor-valued state variable. We consider a one-dimensional model of ferronematics

in Chapters 5 and 6 to study order reconstruction solutions, bifurcations, and

multistability. We construct a novel numerical bifurcation analysis in Chapter 6

of theoretical results analysed in [Dal+21] and perform an asymptotic analysis

(see Section 6.4) for certain model parameters. We pay special attention to defect

structures (domain walls in ferronematics) in our investigation. These numerical

studies form a solid basis for validating analytical results and demonstrate the

promising potential of capturing defects using the Q-tensor theory.

In the last part of this thesis (Chapters 7 to 9), we devote ourselves to proposing

a new continuum mathematical model for smectic-A liquid crystals, and developing

a convergent finite element discretisation thereof. To represent half charge defects

that are likely to happen in smectics, the model is characterised by a tensor-valued

nematic order parameter and a real-valued smectic order parameter. We prove an

existence result in Chapter 7 for the proposed minimisation problem. Chapter 8

investigates an appropriate finite element formulation for solving the optimality

conditions, which are essentially a coupled system involving a fourth order PDE and

a second order PDE. For the fourth order problem, we take the common Lagrange

elements with an interior penalisation term to avoid the use of more complicated

H2-conforming elements. The second order PDE, which comes from the classical

Landau–de Gennes model for nematic phases, is simpler and is discretised with

standard Lagrange elements. This chapter derives some a priori error estimates
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for both variables in the decoupled case, accompanied by numerical verifications

of convergence rates in the coupled case. Some interesting applications of the

new model are presented in Chapter 9, where some typical defect structures are

numerically captured for the first time. This shows promise for further related

work in smectic liquid crystals.

10.2 Future work I

Regarding the Oseen–Frank model, we have developed in Chapter 3 the theory for

the construction of a robust multigrid algorithm for the equal-constant nematic

LC. Extensions to the multi-constant case give rise to some additional difficulties,

especially in the characterisation of the kernels of the ∇· and ∇× operators in

the Frank energy density (2.1.0.3). A potential resolution for this difficulty is

to use the de Rham complexes [AFW00]. The smooth de Rham complex in

two dimensions is given by

R id−→ C∞(Ω) ∇×−−→ [C∞(Ω)]2 ∇·−→ C∞(Ω) null−−→ 0,

where the kernel Ker(·) of an operator is the range Range(·) of the preceding

operator on a simply connected domain. For instance, Range(∇×) = Ker(∇·). This

allows us to characterise the divergence-free vector fields as the curls of potentials.

However, the above de Rham complex is rather restrictive in implementation as

it requires smooth spaces. For our interests in LC problems with directors having

H1-regularity, we should instead utilise complexes involving Sobolev spaces, e.g.,

the so-called Stokes complex in two dimensions:

R id−→ H2(Ω) ∇×−−→ [H1(Ω)]2 ∇·−→ L2(Ω) null−−→ 0.

Discrete versions of these complexes are much harder to construct and often result

in high order polynomials due to the high regularity requirements, such as the H2-

regularity. The study of an appropriate de Rham complex will help characterise the

kernel of ∇· and ∇× operators in the finite element spaces. This will allow for the

preconditioner developed in this thesis to be analysed for the multi-constant case.
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10.3 Future work II

With the success in predicting typical defects in smectic-A liquid crystals, we can

extend our result to encompass the smectic-C phase, and thus give a unified model

for liquid crystals including isotropic, nematic, smectic-A and C phase transitions.

The idea can be built on the work of Biscari, Calderer and Terentjev [BCT07],

who present a de Gennes variational theory based on a complex-valued smectic order

parameter ψ and a tensor-valued nematic order parameter Q to simultaneously

describe those transitions. More specifically, the difference between smectic-A and

C phases is characterised by a new interaction term

χ := Q∇ψ ×∇ψ. (10.3.0.1)

If the nematic director is aligned to the smectic layer normals as in the smectic-A

phase, then χ = 0, otherwise a nonzero χ represents a smectic-C phase. The

following energy from the interaction term characterising smectic-C phases is

added to the free energy:
∫

Ω
eACχ · χ =

∫
Ω
eAC |Q∇ψ ×∇ψ|2 , (10.3.0.2)

where eAC is a constant. Note that a negative value of eAC will enforce smectic-C

phases in the model and a positive value results in smectic-A phases.

Considering our proposed model of smectic-A LC in Chapter 7, which is based

on a real-valued smectic density u and a tensor-valued nematic order parameter

Q, we intend to introduce the following interaction term similar to (10.3.0.1) to

distinguish the smectic-A and C phases:

χ = Q∇u×∇u,

and add
∫

Ω

eAC
2 |Q∇u×∇u|

2

to our proposed free energy (7.3.1.2).
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One important potential application could be simulating smectic-C LC in a

wedge, as illustrated in [CSL91, Section 3], where smectic layers are expected to form

concentric cylinders with the common axis coinciding with the center of the wedge.

This simulation is used there to examine different distortion effects existed in smectic-

C LC. Another avenue to pursue is to investigate the chevron structure (see [BCT07,

Section IV]), one of the most interesting defects existing in the smectic-C phase.

10.4 Future work III

Concerning the smectic-A phase, there are several topics that can be pursued

further using our proposed smectic model (7.3.1.2).

The computational time required to solve three-dimensional problems is notice-

able longer than for two-dimensional problems. This motivates the use of a faster

algorithm to improve computational efficiency. Some choices can be taken, e.g.,

designing a preconditioner for the model (7.3.1.2) or using the static condensation

technique [Guy65; Iro65] to reduce the size of the stiffness matrix. Moreover, due

to the similarities of our adopted C0-IP methods and the weakly over-penalised

symmetric interior penalty method illustrated in [BGS10] for biharmonic problems,

we may build on [BGS10] for the construction and analysis of efficient solvers for

the smectic-smectic block of the matrix.

Since our proposed model characterises both nematic and smectic-A phases,

it may be used to investigate the nematic-smectic transition by varying the

temperature-dependent parameter a1. Zappone et al. recently confirmed the

existence of intermediate LC state analogous to superconductors [Zap+20] for

thin smectic films of different thicknesses. In particular, they find the so-called

P-texture (see Figure 10.1) only observed when cooling a thin smectic film. It

can be seen from this schematic description that the −1
2 defects possess similar

structures of defect walls as in the oily streaks problem explored in Section 9.4.

This motivates us to apply our new model to study the nematic-smectic transition.

From the numerical perspective and inspired by the progress of using our

proposed smectic-A model (7.3.1.2) to capture typical defects in smectics, we believe
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Figure 10.1: The P-texture profile taken from [Zap+20] where blue and white lines
indicate the director and smectic layers, respectively. Smectic layers penetrate at the
pink-shaded region while the upward- and downward-pointing triangles represent defects
with +1

2 and −1
2 charge, respectively.

it can be further applied to more laboratory experiments to help in investigating

internal defect structures. For instance, one could use our smectic model to

characterise and analyse edge and screw dislocations in a wedge similarly to [LBK06].

We give a preliminary result (see Figure 10.3) related to this wedge problem that

is schematically described in Figure 10.2.

Figure 10.2: Figure 2 of [LBK06]. Original caption: Schematic cross section of a wedge-
shaped homeotropic smectic-A sample, containing a tilt subboundary of edge dislocations.
α is the wedge angle formed by the glass plates.

Another avenue of investigation is to compare results from our model with actual

experiments and with simulations conducted using other methods (particularly

Monte Carlo and Density Functional Theory). This would yield a better under-

standing of the strengths and weaknesses of the different available smectic modelling

theories. We have begun to collaborate with the authors of [Wit+21] to investigate

the smectic structures that are predicted by different modelling frameworks in
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Solution 1: unstable
Energy: −9.0164

Solution 2: unstable
Energy: −8.9032

Solution 3: stable
Energy: −9.0182

Solution 4: stable
Energy: −9.0286

Figure 10.3: Four solution profiles and their stabilities with strongly-enforced Dirichlet
data on δρ = 1 and strongly-enforced homeotropic boundary conditions of Q on top and
bottom surfaces of a wedge. Solution 4 with three edge dislocations has the lowest energy.

confined geometries with holes. A simple example of a geometry to be considered in

this work is two overlapped annuli, as illustrated in Figure 10.4. We present some

preliminary results (see Figures 10.5 and 10.6) of obtained profiles when tangential

boundary conditions are imposed along both external and inner circles of the annuli.

As of writing, laboratory experiments in these geometries are underway, led by

Prof. Dirk Aarts of the Oxford Colloid Group.

Ratio = 0.2 Ratio = 0.4
Figure 10.4: Meshes of two fused annuli. The domains differ in the sizes of the inclusions.
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Stable;
Energy: −16.519

Stable;
Energy: −16.855

Figure 10.5: Two solution profiles of the geometry with inclusion ratio 0.2.

Stable;
Energy: −14.696

Unstable;
Energy: −14.449

Figure 10.6: Two solution profiles for the geometry with inclusion ratio 0.4.
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A
Equilibrium equations in two dimensions

To construct the manufactured solution for numerical verification of the theoretical

convergence order (see Section 8.2), we need to derive the strong form of the

equilibrium equations of the minimisation problem. In two dimensions, the free

energy functional to be minimised is

J (u,Q) =
∫

Ω

(
a1

2 u
2 + a2

3 u
3 + a3

4 u
4

+B
∣∣∣∣D2u+ q2

(
Q + I2

2

)
u
∣∣∣∣2

+ K

2 |∇Q|2 − l
(
tr(Q2)

)
+ l

(
tr(Q2)

)2
)
,

with real parameters a1, a2, a3, B, q,K, l. Note that Q is a symmetric and traceless

2× 2 matrix and thus can be represented by two degrees of freedom (Q11, Q12) as

given by (7.3.1.1). Then, we rewrite the above free energy in terms of variables

(Q11, Q12, u) as follows,

J (Q11, Q12, u) =
∫

Ω

(
a1

2 u
2 + a2

3 u
3 + a3

4 u
4

+B|D2u|2 +Bq4u2
(

2
(
Q2

11 +Q2
12

)
+ 1

2

)
+ 2Bq2u

((
Q11 + 1

2

)
∂2
xu+

(
−Q11 + 1

2

)
∂2
yu+ 2Q12∂x∂yu

)
+K |∇Q11|2 +K |∇Q12|2 − 2l

(
Q2

11 +Q2
12

)
+ 4l

(
Q2

11 +Q2
12

)2
)
.

(A.0.0.1)
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The admissible set for (Q11, Q12, u) based on (7.3.2.1) is denoted as

Ãs = {u ∈ H2(Ω,R), (Q11, Q12) ∈ H1(Ω,R2) : (Q11, Q12) = qb on ∂Ω},

where qb = (qb,1, qb,2)T is the prescribed Dirichlet boundary data arising from Qb.

Remark A.1. Note that the uniaxiality condition is not included in the admissible

set here. This condition is beneficial for the variational analysis in Section 7.3.2, but

enforcing the uniaxiality constraint strongly is not a trivial task [BNW20]. Instead,

we weakly impose this constraint through the additional nematic bulk density f bn(Q)

in (7.3.1.4) which possesses a uniaxial minimiser by [MZ10, Proposition 15].

Remark A.2. Other choices of boundary data can be taken for (Q11, Q12); we

choose Dirichlet boundary conditions for simplicity.

By taking the test functions (p1, p2, v) ∈ H1
0 (Ω) × H1

0 (Ω) × H2(Ω) and using

integration by parts, we derive the weak form of the Euler–Lagrange equations

for the energy functional (A.0.0.1),

JQ11(Q11, Q12, u; p1) =
∫

Ω

(
4Bq4u2Q11 + 2Bq2u

(
∂2
xu− ∂2

yu
)

+ 2K∆Q11 − 4lQ11 + 16lQ11
(
Q2

11 +Q2
12

))
p1

= 0 ∀p1 ∈ H1
0 (Ω),

JQ12(Q11, Q12, u; p2) =
∫

Ω

(
4Bq4u2Q12 + 4Bq2u(∂x∂yu)

+ 2K∆Q12 − 4lQ12 + 16lQ12
(
Q2

11 +Q2
12

))
p2

= 0 ∀p2 ∈ H1
0 (Ω),

Ju(Q11, Q12, u; v) =
∫

Ω

(
a1u+ a2u

2 + a3u
3 + 2B∇ · (∇ · (D2u))

+Bq4
(
4
(
Q2

11 +Q2
12

)
+ 1

)
u

+ 2Bq2
[
(Q11 + 1/2)∂2

xu+ (−Q11 + 1/2)∂2
yu+ 2Q12(∂x∂yu)

]
+ 2Bq2

[
∂2
x(u(Q11 + 1/2)) + ∂2

y(u(−Q11 + 1/2)) + 2∂x∂y(uQ12)
] )
v

+ 2BG1,b(u; v) + 2Bq2G2,b(Q11, Q12, u; v)

= 0 ∀v ∈ H2(Ω),
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where the boundary integrals G1,b and G2,b are of the form

G1,b(u; v) =
∫
∂Ω
ν ·
(
D2u · ∇v

)
−
∫
∂Ω

((
∇ · (D2u)

)
· ν
)
v

and

G2,b(u,Q11, Q12; v) =
∫
∂Ω

(−v (∂x(u(Q11 + 1/2))νx) + (∂xv)u(Q11 + 1/2)νx)

+
∫
∂Ω

(−v (∂y(u(−Q11 + 1/2))νy) + (∂yv)u(−Q11 + 1/2)νy)

+
∫
∂Ω

(−v (∂x(uQ12)νy) + (∂yv)uQ12νx)

+
∫
∂Ω

(−v (∂y(uQ12)νx) + (∂xv)uQ12νy) .

Therefore, the Euler–Lagrange equations for minimising the free energy (A.0.0.1)

for (Q11, Q12, u) ∈ Ãs are
4Bq4u2Q11 + 2Bq2u

(
∂2
xu− ∂2

yu
)
− 2K∆Q11 − 4lQ11 + 16lQ11 (Q2

11 +Q2
12) = 0,

4Bq4u2Q12 + 4Bq2u (∂x∂yu)− 2K∆Q12 − 4lQ12 + 16lQ12 (Q2
11 +Q2

12) = 0,
a1u+ a2u

2 + a3u
3 + 2B∇ · (∇ · (D2u)) +Bq4 (4 (Q2

11 +Q2
12) + 1)u+ 2Bq2(t1 + t2) = 0,

(A.0.0.2)

subject to the boundary conditions

(Q11, Q12) = (qb,1, qb,2) on ∂Ω,

S1
bc(u, qb,1, qb,2; v) = 0 ∀v ∈ H2(Ω) on ∂Ω,

where

t1 := (Q11 + 1/2)∂2
xu+ (−Q11 + 1/2)∂2

yu+ 2Q12∂x∂yu,

t2 := ∂2
x (u (Q11 + 1/2)) + ∂2

y(u(−Q11 + 1/2)) + 2∂x∂y(uQ12),

S1
bc(u, qb,1, qb,2; v) := G1,b(u; v) + q2G2,b(u, qb,1, qb,2; v).

These equations (A.0.0.2) are used for the numerical verification of the theoretical

convergence rates derived in Chapter 8. Here, we will not derive the equilibrium

equations for three dimensional problems due to their complicated form with six

coupled degrees of freedom (Q11, Q12, Q13, Q22, Q23, u).
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